

AI-assisted Radiology Using Distributed Deep
Learning on Apache Spark and Analytics Zoo
April 2019

H17686

White Paper

Abstract
This white paper describes building a distributed deep neural network
with Apache Spark and Analytics Zoo to predict diseases from chest
x-rays.

Dell EMC Solutions

Copyright

2 AI-assisted Radiology Using Distributed Deep Learning on Apache Spark and Analytics Zoo
 White Paper

The information in this publication is provided as is. Dell Inc. makes no representations or warranties of any kind with respect
to the information in this publication, and specifically disclaims implied warranties of merchantability or fitness for a particular
purpose.

Use, copying, and distribution of any software described in this publication requires an applicable software license.

Copyright © [Year or Years] Dell Inc. or its subsidiaries. All Rights Reserved. Dell Technologies, Dell, EMC, Dell EMC and
other trademarks are trademarks of Dell Inc. or its subsidiaries. Intel, the Intel logo, the Intel Inside logo and Xeon are
trademarks of Intel Corporation in the U.S. and/or other countries. Other trademarks may be trademarks of their respective
owners. Published in the USA 04/19 White Paper H17686.

Dell Inc. believes the information in this document is accurate as of its publication date. The information is subject to change
without notice.

 Contents

3 AI-assisted Radiology Using Distributed Deep Learning on Apache Spark and Analytics Zoo
White Paper

Contents
Executive summary ... 4

Introduction ... 5

Detecting diseases in chest x-rays .. 5

Solution stack .. 7

Analytics Zoo ... 9

Model development and training .. 12

Model optimizations, recommendations, and results ... 15

Conclusion... 19

References ... 20

Executive summary

4 AI-assisted Radiology Using Distributed Deep Learning on Apache Spark and Analytics Zoo
 White Paper

Executive summary
The health care industry is poised to reap the benefits of AI and deep learning to improve
patient outcomes, reduce costs, and expediate diagnoses. Consequently, we have
developed a deep learning model to predict pneumonia, emphysema, and other diseases
from chest x-rays. Using the Stanford University CheXNet model as inspiration, we
explore methods of developing an accurate model on a distributed Apache Spark cluster.

The model is built by using BigDL, a distributed deep learning library for Apache Spark
and Analytics Zoo, a unified analytics and AI platform that seamlessly unites Spark,
TensorFlow, Keras, and BigDL programs into an integrated pipeline. The solution is
implemented on Dell EMC Ready Solution for AI: Machine Learning with Hadoop.

Using Analytics Zoo APIs, we built an integrated Spark ML pipeline that incorporates
reading images as Spark Dataframes, feature engineering, transfer learning, and neural
network training. We provide insights and observations about Spark parameters and
model hyperparameter tuning, including optimizers and batch size, which lead to
achieving over 80 percent average AUC for the 14 diseases in the x-rays.

Finally, we evaluate and present the results about how our model scales across an
Apache Spark cluster that is powered by Dell EMC PowerEdge servers and Intel Xeon
Scalable processors. By using a transfer learning approach, we can accurately train the
model in approximately 2.5 hours on a 16-node Spark cluster. We show that we can
achieve three times speedup scaling from four nodes to 16 nodes.

This white paper describes how we build a distributed deep neural network with Apache
Spark and Analytics Zoo to predict diseases from chest X-rays.

Dell EMC and the authors of this document welcome your feedback on the solution and
the solution documentation. Contact the Dell EMC Solutions team by email or provide
your comments by completing our documentation survey.

Authors: Bala Chandrasekaran (Dell EMC), Yuhao Yang (Intel), Sajan Govindan (Intel),
Mehmood Abd (Dell EMC)

Acknowledgements: We want to acknowledge the following contributors to this study:
Michael Bennett, Jenwei Hsieh, Phil Hummel, Andrew Kipp, Dharmesh Patel, Leela
Uppuluri, Luke Wilson, and Penelope Howe-Mailly.

Note: The AI Info Hub for Ready Solutions on the Dell EMC Communities website provides links
to additional documentation for this solution.

Document
purpose

We value your
feedback

mailto:EMC.Solution.Feedback@emc.com?subject=AI-assisted%20Radiology%20Using%20Distributed%20Deep%20Learning%20on%20Apache%20Spark%20and%20Analytics%20Zoo%20(H17686)
https://www.surveymonkey.com/r/SolutionsSurveyExt
https://community.emc.com/docs/DOC-67097

 Introduction

5 AI-assisted Radiology Using Distributed Deep Learning on Apache Spark and Analytics Zoo
White Paper

Introduction
Artificial intelligence is expected to revolutionize many industries. The health care industry
is poised to realize the early benefits of AI for early detection of diseases, diagnosis,
decision making, and treatment. Deep learning is the practice of training and deploying
artificial neural networks models on various datasets that include images, videos, speech,
and structured and unstructured text data. It is expected to be adopted widely as it can
provide better prediction from massive amounts of data while automatically
comprehending feature extraction.

Data scientists still spend an inordinate amount of time on data wrangling – the process of
selecting and transforming raw data into a format for analysis and prediction. In today’s
enterprises, much of the data storage and data wrangling occur on big data systems that
are running Hadoop and Spark ecosystem solutions. Having an integrated deep learning
pipeline and framework on Spark significantly reduces the model development time. It
also eliminates the complexities of operating a separate deep learning cluster and the
need to migrate training data to it.

Analytics Zoo1 is an open-source framework that unifies analytics and AI, integrating a
deep learning framework on Apache Spark. It provides code samples, pretrained models,
and reference use cases that can jump start any project seeking to unite Spark,
TensorFlow, Keras, and BigDL2 programs into an integrated pipeline. By using this tool
set, data scientists can develop, train, tune hyperparameters, and deploy deep learning
models. Existing Hadoop and Spark compute clusters or worker nodes can now be used
for distributed training and inference.

In this white paper, we demonstrate how to build an integrated ML pipeline on Apache
Spark to develop a deep neural model to predict diseases from chest X-rays using
Analytics Zoo. The open-source software that is described in this white paper is available
in GitHub at:

 https://github.com/dell-ai-engineering/BigDL-ImageProcessing-Examples

Detecting diseases in chest x-rays

We used the chest x-ray dataset that was released by the National Institutes of Health
(NIH)3 of the United States to develop an AI model to diagnose pneumonia, emphysema,
and other thoracic pathologies from chest x-rays. Based on the Stanford University
CheXNet project4, we explore ways to develop accurate models on a distributed Spark
cluster. We explore various neural network topologies and hyperparameter tunings to gain
insight into what types of models provide better accuracy and reduce training time.

https://github.com/dell-ai-engineering/BigDL-ImageProcessing-Examples

Detecting diseases in chest x-rays

6 AI-assisted Radiology Using Distributed Deep Learning on Apache Spark and Analytics Zoo
 White Paper

The dataset contains more than 120,000 images of frontal chest x-rays, each potentially
labeled with one or more of 14 different thoracic pathologies. The following table and
figure list the diseases and the number of occurrences in the dataset.

Table 1. Occurrence of diseases in the ChestXray14 dataset

Disease Images Percentage

Atelectasis 11535 10.28

Consolidation 4667 4.16

Infiltration 19871 17.72

Pneumothorax 5298 4.72

Edema 2303 2.05

Emphysema 2516 2.24

Fibrosis 1686 1.5

Effusion 2516 2.24

Pneumonia 1353 1.2

Pleural Thickening 3385 3.01

Cardiomegaly 2772 2.47

Nodule 6323 5.64

Mass 5746 5.12

Hernia 227 0.2

No Findings 60412 53.88

Totals 112,120 100

 Solution stack

7 AI-assisted Radiology Using Distributed Deep Learning on Apache Spark and Analytics Zoo
White Paper

Figure 1. Occurrence of diseases in the ChestXray14 dataset

As the figure shows, the dataset is also unbalanced, with no findings for more than
half of the dataset images. Also, a single chest x-ray image can indicate more than
one disease. This requirement causes a multiclass, multilabel classification problem.
Our goal is to develop a classification model that can predict the probability of
diseases for a single, specific chest x-ray image. The model also must be able to
correctly predict multiple diseases if they are present in the chest x-rays.

This deep learning model experimentation was developed and implemented on Dell EMC
Ready Solution for AI: Machine Learning with Hadoop. The following sections provide an
overview of the Ready Solution, an overview of Analytics Zoo, a description of the
methodology that we used to develop the model, and observations and results.

Solution stack

The Ready Solution for Artificial Intelligence: Machine Learning with Hadoop architecture5
addresses all aspects of running machine learning jobs on a production Cloudera
Enterprise cluster. It addresses the physical server hardware, the network fabric, the
software environment, and the interfaces between the core cluster and the machine
learning environment.

Ready Solutions
for AI: Machine
Learning with
Hadoop

Solution stack

8 AI-assisted Radiology Using Distributed Deep Learning on Apache Spark and Analytics Zoo
 White Paper

The following figure shows the primary components in this Ready Solution.

Figure 2. Primary components of the Ready Solution

The components include:

• Cloudera Enterprise Hadoop Cluster— Cloudera Enterprise Hadoop cluster
powered by Dell EMC hardware infrastructure.

• Apache Spark—A unified analytics engine for large-scale data processing,
which is a key component of Cloudera Hadoop. It runs on the cluster worker
nodes and provides libraries that include SQL and DataFrames for data
processing, MLlib for machine learning, GraphX for graph processing, and
Spark Streaming.

• Cloudera Data Science Workbench—A multiuser platform for data scientists
to develop and collaborate. Cloudera Data Science Workbench organizes data
science activities into projects and provides isolated, containerized
environments called engines for interactive sessions and production workflows.
Cloudera Data Science Workbench is fully integrated into the security,
management, and operations infrastructure of Cloudera Enterprise.

• Cloudera Data Science Workbench Nodes—Specialized edge nodes
deployed on Dell EMC PowerEdge servers that run the data science workbench
application and the supporting Kubernetes and Docker infrastructure. They also
provide storage for projects and local data. These nodes have direct
connections to both the cluster data network and the corporate network.

• BigDL and Intel Analytics Zoo—BigDL is an open-source distributed deep
learning framework for Spark. Analytics Zoo simplifies building distributed deep
learning applications on Spark that are based on TensorFlow, Keras, and BigDL
by providing an end-to-end analytics and AI platform. An overview BigDL and
Analytics Zoo are provided in the following sections.

 Analytics Zoo

9 AI-assisted Radiology Using Distributed Deep Learning on Apache Spark and Analytics Zoo
White Paper

• Dell EMC Preconfigured Engines6—Containerized environments with ready-
to-run projects including examples that are based on common use cases and
implemented with BigDL and Spark. These engines contain the necessary
binaries, configuration, and libraries to use BigDL and Analytics Zoo with
Cloudera Data Science Workbench.

In this study, we use 16 PowerEdge R740xd servers that are configured with Intel Xeon
Platinum 8160 CPU @ 2.10GHz as a Cloudera Hadoop and Spark cluster. The chest
x-ray images are stored in HDFS, which is distributed across the cluster. Model training is
initiated on the Spark cluster by creating a project Cloudera Data Science Workbench and
using the preconfigured engines mentioned previously.

Analytics Zoo
Analytics Zoo provides a unified analytics and AI platform that seamlessly unites Spark,
TensorFlow, Keras, and BigDL programs into an integrated pipeline. The entire pipeline
can then transparently scale out to a large Hadoop/Spark cluster for distributed training or
inference. Key features of Analytics Zoo include:

• Data wrangling and analysis by using PySpark

• Deep learning model development by using TensorFlow or Keras

• Distributed TensorFlow, Keras, and BigDL training/inference on Spark

• High-level pipeline APIs with native support for Spark Dataframe, ML pipelines
and transfer learning, and model serving APIs for inference pipelines

In addition, Analytics Zoo also provides a rich set of analytics and AI support for the end-
to-end pipeline, including:

• Easy-to-use abstractions and APIs (for example, transfer learning support,
autograd operations, Spark DataFrame and ML pipeline support, online model
serving API, and so on.)

• Common feature engineering operations (for image, text, 3D image, time series,
speech, and so on)

• Integrated deep learning models (for example, object detection, image
classification, text classification, recommendation7 , anomaly detection, text
matching, sequence-to-sequence, and so on)

• Reference use cases (for example, anomaly detection, sentiment analysis,
fraud detection, image similarity, chatbot, and so on)

BigDL is a distributed deep learning library for Spark. By using BigDL, users can write
their deep learning applications as standard Spark programs, which can run directly on
existing Spark or Hadoop clusters. BigDL takes advantage of Spark’s distributed in-
memory compute engine to enable efficient scale-out data analytics and deep learning
workloads. It achieves high performance on the Intel Xeon processors in the Hadoop
cluster by using Intel Math Kernel Library (Intel MKL) and multithreaded programming in
each Spark task.

BigDL enables distributed training of a neural network. It is built from the ground up on
Spark, thereby inheriting fault tolerance and other architectural benefits of Spark. To

BigDL

Analytics Zoo

10 AI-assisted Radiology Using Distributed Deep Learning on Apache Spark and Analytics Zoo
 White Paper

enable efficient distributed training, BigDL uses a data-parallel approach to training with
synchronous minibatch Stochastic Gradient Descent (SGD). Training data is partitioned
into RDD samples, which are automatically partitioned and distributed to each worker. In
addition, BigDL also constructs an RDD of models, each of which is a replica of the
original neural network model. The model and sample RDDs are copartitioned and
colocated across the cluster. Model training is performed in an iterative process. It first
computes gradients locally on each worker by taking advantage of locally stored partitions
of the training data and model to perform in-memory transformations. Then, an
AllReduce function schedules workers with tasks to calculate and update weights.
Finally, a broadcast synchronizes the distributed copies of the model with updated
weights. The following figure shows the training approach.

Figure 3. Distributed training in BigDL

A key criterion is that the number of data samples in the minibatch (batch size) must be a
multiple of the number of Spark executors that are multiplied by the number of cores in
each executor. This value ensures that the local gradients are computed on the same
number of sample datasets by each worker.

Spark enables ML pipelines8, which provide a uniform set of high-level APIs built on Spark
DataFrames that help users create and tune machine learning pipelines. ML pipelines
enable users to chain together multiple transformers (data manipulations) and estimators
(models) to specify an ML workflow. A benefit of this workflow is that all transformers and
estimators share a common API for specifying parameters. For more information about
Spark ML pipelines, including Transformers and Estimators go to Spark ML Pipelines. The
following figure from the Spark documentation shows an example ML pipeline for a
Logistic Regression model.

Figure 4. Spark ML Pipeline: Pipeline.fit()method

Integration with
Spark ML
pipelines

https://spark.apache.org/docs/latest/ml-pipeline.html

 Analytics Zoo

11 AI-assisted Radiology Using Distributed Deep Learning on Apache Spark and Analytics Zoo
White Paper

Analytics Zoo uses Spark ML pipeline concepts for deep learning and artificial neural
networks. NNFrames is an Analytics Zoo package that provides high-level APIs that are
built on Spark DataFrames to help Spark users create neural network pipelines. It
supports native integration with Spark ML Pipelines, which enables users to combine the
power of Analytics Zoo, BigDL, and Apache Spark MLlib. Key concepts of NNFrames and
Analytics Zoo include:

• PreProcessing and Chained PreProcessing—Preprocessing defines data
transforms during feature preprocessing. Multiple Preprocessing can be
combined into a ChainedPreprocessing operation. For example, image
rotation is a preprocessing transformation.

• NNEstimator—NNEstimator extends the Spark ML Pipeline Estimator and
supports training a BigDL model with Spark DataFrame data. It can be
integrated into a standard Spark ML Pipeline to enable users to combine the
components of BigDL and Spark MLlib.

• NNModel—NNModel extends Spark's ML Transformer. Invoking a .fit()
method in NNEstimator yields an NNModel. A pretrained BigDL Model can be
loaded into a NNModel and used as a transformer in a Spark ML pipeline to
perform transfer learning with new DataFrames or predict the results for a
DataFrame.

• NNClassifier and NNClassifierModel—NNClassifier is a specialized
NNEstimator that simplifies the data format for classification problems.
Invoking a .fit() method in NNClassifier yields a NNClassifierModel,
as shown in the following figure.

Figure 5. Deep learning pipeline with Analytics Zoo: Classifier.fit()method

In Model development and training, we demonstrate how we use the Analytics Zoo API to
develop our model. We use the feature engineering APIs that are available in Analytics
Zoo to process chest x-ray images and NNEstimator to build our model. We train the
neural network to produce NNModel, which predicts the diseases.

Transfer learning9 is a machine learning method in which a model that is trained for a task
is reused as the starting point for a model on a second related task. In deep learning, a
neural network that is trained on a dataset is used as a starting point to train a new
dataset. For example, a neural network that is trained to identify vehicles can be used as
a starting point to identify specific vehicle models.

Analytics Zoo provides high-level APIs that can be used to apply transfer learning
methodologies to train a neural network. The capabilities include:

• Loading an existing pretrained model—The Net.load API can be used to
load existing models for BigDL, Torch, TensorFlow, and Caffe.

Transfer learning

Model development and training

12 AI-assisted Radiology Using Distributed Deep Learning on Apache Spark and Analytics Zoo
 White Paper

• Remove the last few layers in the neural network—The newGraph API can
be used to remove the last few layers in the pretrained network. This API is
typically used to remove the output layers. For example, output layers that are
designed for the previous classification task must be removed as they are no
longer applicable.

• Adding new layers—The to_keras API can be used to add new layers for the
new task. For example, new output layers that are designed for the new
classification task can be added.

• Freeze the first few layers—The freeze_up_to API can be used to freeze
the first few layers. This API is typically used to preserve some of the training in
the previous task.

We use transfer learning to develop our model for predicting diseases from chest x-rays.
The following section shows how we use these APIs to load and configure a pretrained
model to train with the chest x-ray dataset.

Model development and training
This section describes how we developed and trained the deep learning model for
detecting diseases in chest X-rays by using Analytics Zoo API. The steps for developing
the deep learning model include:

• Reading the chest x-ray images—Reading images from Hadoop Distributed File
System (HDFS) as a Spark Dataframe

• Feature Engineering—Processing the chest x-ray images to improve the
prediction of the model and decrease the training time

• Defining the model—Loading and configuring a pretrained model

• Defining the optimizer— Defining the Adam optimizer for use with the learning
rate scheduler

• Building the model—Building the NNModel by using NNEstimator

• Measuring the accuracy—Measuring accuracy by using AUC-ROC

We use NNImageReader to read the images from HDFS and convert them to a Spark
DataFrame. The images in the chest x-ray dataset are 1024 x1024 pixels and use three
channels (RGB). We use one hot encoding to represent the 14 labels in the dataset. We
encode the 14 diseases in the array into 14 binary elements. When the images are
converted to Spark DataFrames, it is easy to perform image preprocessing operations.
The operations are now transformations on the RDDs and Spark implements them on the
distributed compute cluster.

We perform the following preprocessing tasks on the images by using the
ChainedPreprocessing and other feature engineering APIs in Analytics Zoo:

• Resize the images to 224 x 224 pixels. As noted previously, the original images
are 1024 x 1024 pixels. We find that reducing the image size has little impact on
accuracy while significantly improving the training time10.

• Horizontally flip half the images, which are chosen randomly.

Reading the
chest x-ray
images

Feature
Engineering

 Model development and training

13 AI-assisted Radiology Using Distributed Deep Learning on Apache Spark and Analytics Zoo
White Paper

• Adjust the brightness for half the images, which are chosen randomly.

• Normalize the images by subtracting the mean of ImageNet dataset.

The following code snippet shows the image prepreocessing operations:

transformer = ChainedPreprocessing(RowToImageFeature(),
ImageCenterCrop(224, 224),
ImageRandomPreprocessing(ImageHFlip(), 0.5),
ImageRandomPreprocessing(ImageBrightness(0.0,
32.0), 0.5),
ImageChannelNormalize(123.68, 116.779, 103.939),
ImageMatToTensor(), ImageFeatureToTensor()])

As with the Stanford approach, we use transfer learning to train our model. We use a
pretrained ResNet-50 architecture, which has been previously trained on the ImageNet11
dataset. The pretrained model provides a better-than-random starting point for training to
identify features in chest x-ray images. It reduces the number of epochs of training that is
required to converge to a functional model.

The following code snippet shows loading the pretrained model:

def get_resnet_model(model_path, label_length):
 full_model = Net.load_bigdl(model_path)
 model = full_model.new_graph(["pool5"])
 inputNode = Input(name="input", shape=(3, 224, 224))
 resnet = model.to_keras()(inputNode)
 flatten = GlobalAveragePooling2D(dim_ordering='th')(resnet)
 dropout = Dropout(0.2)(flatten)
 logits = Dense(label_length, W_regularizer=L2Regularizer(1e-
1), b_regularizer=L2Regularizer(1e-1), activation="sigmoid")
(dropout)
 lrModel = Model(inputNode, logits)
 return lrModel

Using Analytics Zoo APIs, we remove the final layer from the pretrained ResNet-50
model. This layer is a softmax layer that is specific to the ImageNet classification. We add
a new last layer to predict the 14 diseases. We use Sigmoid for the activation function and
a dropout rate of 0.25. To avoid overfitting, we use L2 regularization (Lasso Regression)
for both the input weight and the bias. We also add a new input layer for the resized chest
x-rays images (224 x 244 pixels with three channels).

We also evaluated the performance of Inception and DenseNet topology. For the results,
see Model optimization and results.

We use Adam optimizer12 with the learning rate scheduler. The learning rate scheduler is
implemented in two phases. First, we gradually increase the learning rate (warm up) for
some epochs and the maximum learning rate. Then, we cool down the learning rate until
we reach the required accuracy. For the results, see Model optimization and results.

Defining the
Model

Defining the
optimizer

Model development and training

14 AI-assisted Radiology Using Distributed Deep Learning on Apache Spark and Analytics Zoo
 White Paper

The following code snippet shows how we defined the optimizer:

def get_adam_optimMethod(num_epoch, trainingCount, batchSize):
 iterationPerEpoch = int(ceil(float(trainingCount)batchSize))
 warmupEpoch = 5
 warmup_iteration = warmupEpoch * iterationPerEpoch
 initlr = 1e-7
 maxlr = 0.0001
 warmupDelta = (maxlr - initlr) / warmup_iteration
 cooldownIteration = (num_epoch - warmupEpoch) *

iterationPerEpoch
 lrSchedule = SequentialSchedule(iterationPerEpoch)
 lrSchedule.add(Warmup(warmupDelta), warmup_iteration)
 lrSchedule.add(Plateau("Loss", factor=0.1, patience=1,

mode="min", epsilon=0.01, cooldown=0, min_lr=1e-15),
 cooldownIteration)
 optim = Adam(lr=initlr, schedule=lrSchedule)
 return optim

We use the Analytics Zoo NNEstimator API to build the model. BinaryCrossEntropy
is used as the loss function. By calling the .fit() method, we train the model.
NNEstimator extracts feature and label data from the input DataFrame and uses the
ChainedPreprocessing API to convert data for the model, including converting the
feature and label to tensors. The model is then trained.

The following code snippet shows how we build the model:

estimator = NNEstimator(xray_model, BinaryCrossEntropy(),
transformer)

 .setBatchSize(batch_size)
 .setMaxEpoch(num_epoch)

 .setFeaturesCol("image")
 .setCachingSample(False)

.setValidation(EveryEpoch(), validationDF, [AUC()],
batch_size)

 .setTrainSummary(train_summary)
 .setValidationSummary(val_summary)
 .setOptimMethod(optim_method)

nnModel = estimator.fit(trainingDF)

We use area under the curve (AUC) Receiver Operating Characteristics (RoC) to
measure the accuracy of the model. We use the Spark ML pipeline
BinaryClassificationEvaluator API to determine the AUC-ROC for each disease.
We also calculate the average AUC-ROC for all 14 diseases. These values determine the
accuracy of the model.

Building the
model with
NNEstimator

Measuring the
accuracy of the
model using
AUC-ROC

 Model optimizations, recommendations, and results

15 AI-assisted Radiology Using Distributed Deep Learning on Apache Spark and Analytics Zoo
White Paper

Model optimizations, recommendations, and results
This section presents the results of our model training, how our model scales, and
recommendations that are based on our observations from tuning the model.

The following Spark parameters must be determined before training the model:

 Number of executors and cores—The number of executors and cores
depends on the number of compute resources that are available for training.
We recommend one Spark executor per available compute node. The number
of executor cores determines the number of Spark tasks that can run in
parallel. If the entire worker node is dedicated for training, we recommend that
the number of cores per executor equals the number of physical cores in that
server minus two (two cores can be allocated for Spark overhead).

 Executor memory—The following formula can determine the memory that is
allocated to an executor:

Executor memory = Number of cores per executor * (Memory required for each
core + data partition)

The memory that the executors use depends on the size of the dataset and
size of the neural network model. In our chest x-ray model training using
ResNet-50, we used 300 GB memory for each executor.

We evaluated three topologies to train our model: ResNet-50, DenseNet, and Inception.
We trained the model on four executors for 15 epochs. We used the Adam optimizer with
the learning rate scheduler for all three topologies.

The following table and figure shows the results.

Table 2. Results on different topologies

Disease ResNet-50 DenseNet Inception

Atelectasis 0.789 0.764 0.770

Consolidation 0.873 0.915 0.844

Infiltration 0.865 0.826 0.855

Pneumothorax 0.689 0.683 0.688

Edema 0.807 0.778 0.764

Emphysema 0.729 0.762 0.684

Fibrosis 0.731 0.592 0.696

Effusion 0.870 0.753 0.841

Pneumonia 0.794 0.696 0.775

Pleural Thickening 0.886 0.867 0.865

Cardiomegaly 0.887 0.796 0.825

Nodule 0.762 0.722 0.725

Spark
parameters

Neural Network
Topology

Model optimizations, recommendations, and results

16 AI-assisted Radiology Using Distributed Deep Learning on Apache Spark and Analytics Zoo
 White Paper

Disease ResNet-50 DenseNet Inception

Mass 0.768 0.709 0.738

Hernia 0.759 0.796 0.565

Average AUC 0.801 0.761 0.760

Figure 6. Results on different topologies

As noted, ResNet-50 yields the best results. Other experiments that are conducted on a
distrusted TensorFlow framework and found that ResNet-50 scales effectively on
distributed training when compared to DenseNet13 and Inception. DenseNet consists of
many repeating blocks of convolutional and batch normalization layers. The prevalence of
batch normalization layers might be the limiting factor in scaling DenseNet topology for
large-scale distributed training. ResNet-50 slightly outperforms Inception because we
believe that Inception is impacted by vanishing gradient14.

We chose ResNet-50, pretrained with an ImageNet dataset, as the primary model for our
training and to determine how well our model scales.

We investigated two optimizers with adaptive learning rates: SGD and Adam. SGD with
minibatch gradient decent is a simple optimizer that computes the gradient for every
batch. The Adam optimizer improves on SGD by adding several decay components. In
our case, we found that the Adam optimizer converges faster and provides the best model
in seven to eight epochs, while SGD does not yield as much accuracy, even with 50 or
more epochs.

0.5

0.6

0.7

0.8

0.9

1
AU

C
 (H

ig
he

r i
s

be
tte

r)

Inception DenseNet ResNet

Optimizers and
the learning rate
scheduler

 Model optimizations, recommendations, and results

17 AI-assisted Radiology Using Distributed Deep Learning on Apache Spark and Analytics Zoo
White Paper

The following figure shows the impact on AUC by learning rate scheduler for Adam
optimizer.

Figure 7. Impact on AUC by learning rate scheduler for Adam optimizer

The batch size parameter is for model accuracy and for scalability. Artificial neural
networks are trained by minimizing a loss function that measures the deviation of the
output of the network from the wanted output. The input data is divided into batches and
fed into the neural network to calculate the loss function. The weights of the network are
adjusted at the end of each batch to optimize the loss function.

For a smaller batch size, the gradients are calculated based on a smaller sample of data.
Therefore, it is reasonable to expect that the model converges faster for a larger batch
size. Increasing the batch size also increases the parallelism.

While this result is true for smaller batch sizes, it is not always the case. Increasing the
batch size can lead to a loss in generalization performance15.. In other words, the
performance of the model on testing datasets is often worse when trained with large-batch
methods as compared to small-batch methods.

As explained in BigDL on page 9, the batch size must be a multiple of the number of
executors that are multiplied by the number of cores in each executor. A lower batch size
might yield better accuracy because the gradients are calculated for a smaller data
sample. To gain more parallelism, you must increase the number of executors, potentially
increasing the batch size. However, increasing the batch size might negatively affect the
generalization performance of the model because the gradients are calculated on a larger
data sample.

Batch size

Model optimizations, recommendations, and results

18 AI-assisted Radiology Using Distributed Deep Learning on Apache Spark and Analytics Zoo
 White Paper

We evaluated the model by varying the number of images in a batch per thread. The
following figure shows the results.

Figure 8. Results of varied number of images in a batch per thread

As expected, the average AUC increases as we increase the number of images in
a batch per thread. After a certain point, due to a generalization issue, the average
AUC continues to decrease. In our case, the average AUC is the highest when the
batch per thread is four.

We demonstrate how the model scales as we increase the number of servers and
scale the batch size accordingly. The following calculation determines global batch
size:

Global batch size = number of executors * number of cores * batch per thread

We change the number of executors (and thus the number of compute nodes) for
four, eight, 12, and 16 executors. We choose four as the batch per thread and 32
as the number of cores. We measure the time for 15 epochs.

Scalability

 Conclusion

19 AI-assisted Radiology Using Distributed Deep Learning on Apache Spark and Analytics Zoo
White Paper

The following figure shows the throughput.

Figure 9. Results of scaling the number of executors on speedup

We achieve three times the speedup when scaling the number of Spark workers
from four to 16 workers. We can accurately train the model in approximately 2.5
hours. The average AUC for 14 diseases is within a percentage variation between
the data points. We believe that the overhead of the Spark executors and the tasks
prevents us from achieving linear scalability.

Conclusion
This white paper describes how we built an end-to-end ML pipeline in Apache Spark to
train a neural network to detect diseases from chest x-rays accurately. We show how to
build a deep learning pipeline by using Analytics Zoo APIs to read images as Spark
Dataframes, feature engineering, and neural network training. We describe how we used
transfer learning to predict diseases accurately in chest x-rays by using a ResNet-50
model trained on an ImageNet dataset. We provide guidance for Spark parameters. Our
work proves that it is important to consider batch size and the adaptive learning rate
scheduler to improve accuracy of the model when training to scale.

We also demonstrate how deep learning applications can be developed and deployed at
scale on an existing Hadoop and Spark cluster. This approach avoids the need to move
data to a different deep learning cluster and eliminates the operational complexities of
provisioning and maintaining yet another distributed compute environment.

In the future, we intend to implement learning rate schedule options such as LARS to
determine how well the model can train on large-scale clusters. We also plan to
investigate performance characteristics for image classification and develop guidance for
sizing the Spark worker nodes.

References

20 AI-assisted Radiology Using Distributed Deep Learning on Apache Spark and Analytics Zoo
 White Paper

References
1Analytics Zoo

2BigDL

3X. Wang, Y. Peng, L. Lu, Z. Lu, M. Bagheri, and R. M. Summers, “Chestx-ray8: Hospital-
scale chest x-ray database and benchmarks on weakly-supervised classification and
localization of common thorax diseases,” in 2017 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR). IEEE, 2017, pp. 3462–3471.

4P. Rajpurkar, J. Irvin, K. Zhu, B. Yang, H. Mehta, T. Duan, D. Ding, A. Bagul, C. Langlotz,
K. Shpanskaya et al., “Chexnet: Radiologist-level pneumonia detection on chest x-rays
with deep learning,” arXiv preprint arXiv:1711.05225, 2017.

5Dell EMC Ready Solution for Artificial Intelligence Machine Learning with Hadoop:
Design Guide

6BigDL and Analytics Zoo Engine for Cloudera Data Science Workbench

7Yang, Yuhao, Jiao(Jennie) Wang. Deep Learning with Analytic Zoo Optimizes
Mastercard* Recommender AI Service, published on March 4, 2019.

8Spark ML Pipelines

9Y. Bengio, “Deep learning of representations for unsupervised and transfer learning,” in
Proceedings of ICML Workshop on Unsupervised and Transfer Learning, 2012, pp. 17–
36.

10Lucas A. Wilson, Vineet Gundecha, Srinivas Varadharajan, Alex Filby and Quy Ta, “Fast
and Accurate Training of an AI Radiologist on Intel Xeon-based Dell EMC
Supercomputers”.

11J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “ImageNet: A large-scale
hierarchical image database,” in Computer Vision and Pattern Recognition, 2009. CVPR
2009. IEEE Conference on. IEEE, 2009, pp. 248–255.

12J. B. DP Kingma, “Adam: A method for stochastic optimization,” in Proceedings of the
3rd International Conference on Learning Representations, 2014.

13Lucas A. Wilson, Vineet Gundecha, Srinivas Varadharajan, Alex Filby, Pei Yang, Quy
Ta, Valeriu Codreanu, Damian Podareanu, Vikram Saletore, SC 2018. Fast and Accurate
Training of an AI Radiologist

14Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun, “Deep Residual Learning for
Image Recognition”, 2015, arXiv:1512.03385.

15Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, Ping
Tak Peter Tang, “On Large-Batch Training for Deep Learning: Generalization Gap and
Sharp Minima”, in ICLR 2017, arXiv:1609.04836.

https://github.com/intel-analytics/analytics-zoo
https://github.com/intel-analytics/BigDL
https://www.emc.com/collateral/technical-documentation/h17161-rb-ai-hadoop-ra.pdf
https://www.emc.com/collateral/technical-documentation/h17161-rb-ai-hadoop-ra.pdf
https://github.com/dell-ai-engineering/bigdlengine4cdsw
https://software.intel.com/en-us/articles/deep-learning-with-analytic-zoo-optimizes-mastercard-recommender-ai-service
https://software.intel.com/en-us/articles/deep-learning-with-analytic-zoo-optimizes-mastercard-recommender-ai-service
https://spark.apache.org/docs/latest/ml-pipeline.html
https://www.emc.com/collateral/white-papers/ai-radiologist.pdf
https://www.emc.com/collateral/white-papers/ai-radiologist.pdf
https://www.emc.com/collateral/white-papers/ai-radiologist.pdf
https://sc18.supercomputing.org/proceedings/tech_poster/tech_poster_pages/post201.html
https://sc18.supercomputing.org/proceedings/tech_poster/tech_poster_pages/post201.html

	AI-assisted Radiology Using Distributed Deep Learning on Apache Spark and Analytics Zoo
	Contents
	Executive summary
	Document purpose
	We value your feedback

	Introduction
	Detecting diseases in chest x-rays
	Solution stack
	Ready Solutions for AI: Machine Learning with Hadoop

	Analytics Zoo
	BigDL
	Integration with Spark ML pipelines
	Transfer learning

	Model development and training
	Reading the chest x-ray images
	Feature Engineering
	Defining the Model
	Defining the optimizer
	Building the model with NNEstimator
	Measuring the accuracy of the model using AUC-ROC

	Model optimizations, recommendations, and results
	Spark parameters
	Neural Network Topology
	Optimizers and the learning rate scheduler
	Batch size
	Scalability

	Conclusion
	References

