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Executive summary 
The health care industry is poised to reap the benefits of AI and deep learning to improve 
patient outcomes, reduce costs, and expediate diagnoses. Consequently, we have 
developed a deep learning model to predict pneumonia, emphysema, and other diseases 
from chest x-rays. Using the Stanford University CheXNet model as inspiration, we 
explore methods of developing an accurate model on a distributed Apache Spark cluster.  

The model is built by using BigDL, a distributed deep learning library for Apache Spark 
and Analytics Zoo, a unified analytics and AI platform that seamlessly unites Spark, 
TensorFlow, Keras, and BigDL programs into an integrated pipeline. The solution is 
implemented on Dell EMC Ready Solution for AI: Machine Learning with Hadoop. 

Using Analytics Zoo APIs, we built an integrated Spark ML pipeline that incorporates 
reading images as Spark Dataframes, feature engineering, transfer learning, and neural 
network training. We provide insights and observations about Spark parameters and 
model hyperparameter tuning, including optimizers and batch size, which lead to 
achieving over 80 percent average AUC for the 14 diseases in the x-rays.  

Finally, we evaluate and present the results about how our model scales across an 
Apache Spark cluster that is powered by Dell EMC PowerEdge servers and Intel Xeon 
Scalable processors. By using a transfer learning approach, we can accurately train the 
model in approximately 2.5 hours on a 16-node Spark cluster. We show that we can 
achieve three times speedup scaling from four nodes to 16 nodes. 

 
This white paper describes how we build a distributed deep neural network with Apache 
Spark and Analytics Zoo to predict diseases from chest X-rays.   

 
Dell EMC and the authors of this document welcome your feedback on the solution and 
the solution documentation. Contact the Dell EMC Solutions team by email or provide 
your comments by completing our documentation survey.  

Authors:  Bala Chandrasekaran (Dell EMC), Yuhao Yang (Intel), Sajan Govindan (Intel), 
Mehmood Abd (Dell EMC)  

Acknowledgements: We want to acknowledge the following contributors to this study: 
Michael Bennett, Jenwei Hsieh, Phil Hummel, Andrew Kipp, Dharmesh Patel, Leela 
Uppuluri, Luke Wilson, and Penelope Howe-Mailly. 

Note: The AI Info Hub for Ready Solutions on the Dell EMC Communities website provides links 
to additional documentation for this solution.  

Document 
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We value your 
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mailto:EMC.Solution.Feedback@emc.com?subject=AI-assisted%20Radiology%20Using%20Distributed%20Deep%20Learning%20on%20Apache%20Spark%20and%20Analytics%20Zoo%20(H17686)
https://www.surveymonkey.com/r/SolutionsSurveyExt
https://community.emc.com/docs/DOC-67097


 Introduction 

 

5 AI-assisted Radiology Using Distributed Deep Learning on Apache Spark and Analytics Zoo 
White Paper 

  

Introduction 
Artificial intelligence is expected to revolutionize many industries. The health care industry 
is poised to realize the early benefits of AI for early detection of diseases, diagnosis, 
decision making, and treatment. Deep learning is the practice of training and deploying 
artificial neural networks models on various datasets that include images, videos, speech, 
and structured and unstructured text data. It is expected to be adopted widely as it can 
provide better prediction from massive amounts of data while automatically 
comprehending feature extraction. 

Data scientists still spend an inordinate amount of time on data wrangling – the process of 
selecting and transforming raw data into a format for analysis and prediction. In today’s 
enterprises, much of the data storage and data wrangling occur on big data systems that 
are running Hadoop and Spark ecosystem solutions. Having an integrated deep learning 
pipeline and framework on Spark significantly reduces the model development time. It 
also eliminates the complexities of operating a separate deep learning cluster and the 
need to migrate training data to it.  

Analytics Zoo1 is an open-source framework that unifies analytics and AI, integrating a 
deep learning framework on Apache Spark. It provides code samples, pretrained models, 
and reference use cases that can jump start any project seeking to unite Spark, 
TensorFlow, Keras, and BigDL2 programs into an integrated pipeline. By using this tool 
set, data scientists can develop, train, tune hyperparameters, and deploy deep learning 
models. Existing Hadoop and Spark compute clusters or worker nodes can now be used 
for distributed training and inference.   

In this white paper, we demonstrate how to build an integrated ML pipeline on Apache 
Spark to develop a deep neural model to predict diseases from chest X-rays using 
Analytics Zoo. The open-source software that is described in this white paper is available 
in GitHub at: 

 https://github.com/dell-ai-engineering/BigDL-ImageProcessing-Examples 

Detecting diseases in chest x-rays  

We used the chest x-ray dataset that was released by the National Institutes of Health 
(NIH)3 of the United States to develop an AI model to diagnose pneumonia, emphysema, 
and other thoracic pathologies from chest x-rays. Based on the Stanford University 
CheXNet project4, we explore ways to develop accurate models on a distributed Spark 
cluster. We explore various neural network topologies and hyperparameter tunings to gain 
insight into what types of models provide better accuracy and reduce training time. 

https://github.com/dell-ai-engineering/BigDL-ImageProcessing-Examples
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The dataset contains more than 120,000 images of frontal chest x-rays, each potentially 
labeled with one or more of 14 different thoracic pathologies. The following table and 
figure list the diseases and the number of occurrences in the dataset. 

Table 1. Occurrence of diseases in the ChestXray14 dataset 

Disease Images Percentage 

Atelectasis 11535 10.28 

Consolidation 4667 4.16 

Infiltration 19871 17.72 

Pneumothorax 5298 4.72 

Edema 2303 2.05 

Emphysema 2516 2.24 

Fibrosis 1686 1.5 

Effusion 2516 2.24 

Pneumonia 1353 1.2 

Pleural Thickening 3385 3.01 

Cardiomegaly 2772 2.47 

Nodule 6323 5.64 

Mass 5746 5.12 

Hernia 227 0.2 

No Findings 60412 53.88 

Totals 112,120 100 
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Figure 1. Occurrence of diseases in the ChestXray14 dataset 

As the figure shows, the dataset is also unbalanced, with no findings for more than 
half of the dataset images. Also, a single chest x-ray image can indicate more than 
one disease. This requirement causes a multiclass, multilabel classification problem. 
Our goal is to develop a classification model that can predict the probability of 
diseases for a single, specific chest x-ray image. The model also must be able to 
correctly predict multiple diseases if they are present in the chest x-rays. 

This deep learning model experimentation was developed and implemented on Dell EMC 
Ready Solution for AI: Machine Learning with Hadoop. The following sections provide an 
overview of the Ready Solution, an overview of Analytics Zoo, a description of the 
methodology that we used to develop the model, and observations and results. 

Solution stack 
 
The Ready Solution for Artificial Intelligence: Machine Learning with Hadoop architecture5 
addresses all aspects of running machine learning jobs on a production Cloudera 
Enterprise cluster. It addresses the physical server hardware, the network fabric, the 
software environment, and the interfaces between the core cluster and the machine 
learning environment. 

Ready Solutions 
for AI: Machine 
Learning with 
Hadoop 
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The following figure shows the primary components in this Ready Solution. 

 
 

Figure 2. Primary components of the Ready Solution  

The components include: 

• Cloudera Enterprise Hadoop Cluster— Cloudera Enterprise Hadoop cluster 
powered by Dell EMC hardware infrastructure. 

• Apache Spark—A unified analytics engine for large-scale data processing, 
which is a key component of Cloudera Hadoop. It runs on the cluster worker 
nodes and provides libraries that include SQL and DataFrames for data 
processing, MLlib for machine learning, GraphX for graph processing, and 
Spark Streaming. 

• Cloudera Data Science Workbench—A multiuser platform for data scientists 
to develop and collaborate. Cloudera Data Science Workbench organizes data 
science activities into projects and provides isolated, containerized 
environments called engines for interactive sessions and production workflows. 
Cloudera Data Science Workbench is fully integrated into the security, 
management, and operations infrastructure of Cloudera Enterprise. 

• Cloudera Data Science Workbench Nodes—Specialized edge nodes 
deployed on Dell EMC PowerEdge servers that run the data science workbench 
application and the supporting Kubernetes and Docker infrastructure. They also 
provide storage for projects and local data. These nodes have direct 
connections to both the cluster data network and the corporate network. 

• BigDL and Intel Analytics Zoo—BigDL is an open-source distributed deep 
learning framework for Spark. Analytics Zoo simplifies building distributed deep 
learning applications on Spark that are based on TensorFlow, Keras, and BigDL 
by providing an end-to-end analytics and AI platform. An overview BigDL and 
Analytics Zoo are provided in the following sections. 
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• Dell EMC Preconfigured Engines6—Containerized environments with ready-
to-run projects including examples that are based on common use cases and 
implemented with BigDL and Spark. These engines contain the necessary 
binaries, configuration, and libraries to use BigDL and Analytics Zoo with 
Cloudera Data Science Workbench. 

In this study, we use 16 PowerEdge R740xd servers that are configured with Intel Xeon 
Platinum 8160 CPU @ 2.10GHz as a Cloudera Hadoop and Spark cluster. The chest  
x-ray images are stored in HDFS, which is distributed across the cluster. Model training is 
initiated on the Spark cluster by creating a project Cloudera Data Science Workbench and 
using the preconfigured engines mentioned previously. 

Analytics Zoo 
Analytics Zoo provides a unified analytics and AI platform that seamlessly unites Spark, 
TensorFlow, Keras, and BigDL programs into an integrated pipeline. The entire pipeline 
can then transparently scale out to a large Hadoop/Spark cluster for distributed training or 
inference. Key features of Analytics Zoo include: 

• Data wrangling and analysis by using PySpark 

• Deep learning model development by using TensorFlow or Keras 

• Distributed TensorFlow, Keras, and BigDL training/inference on Spark 

• High-level pipeline APIs with native support for Spark Dataframe, ML pipelines 
and transfer learning, and model serving APIs for inference pipelines  

In addition, Analytics Zoo also provides a rich set of analytics and AI support for the end-
to-end pipeline, including: 

• Easy-to-use abstractions and APIs (for example, transfer learning support, 
autograd operations, Spark DataFrame and ML pipeline support, online model 
serving API, and so on.) 

• Common feature engineering operations (for image, text, 3D image, time series, 
speech, and so on) 

• Integrated deep learning models (for example, object detection, image 
classification, text classification, recommendation7 , anomaly detection, text 
matching, sequence-to-sequence, and so on) 

• Reference use cases (for example, anomaly detection, sentiment analysis, 
fraud detection, image similarity, chatbot, and so on) 

 
BigDL is a distributed deep learning library for Spark. By using BigDL, users can write 
their deep learning applications as standard Spark programs, which can run directly on 
existing Spark or Hadoop clusters. BigDL takes advantage of Spark’s distributed in-
memory compute engine to enable efficient scale-out data analytics and deep learning 
workloads. It achieves high performance on the Intel Xeon processors in the Hadoop 
cluster by using Intel Math Kernel Library (Intel MKL) and multithreaded programming in 
each Spark task. 

BigDL enables distributed training of a neural network. It is built from the ground up on 
Spark, thereby inheriting fault tolerance and other architectural benefits of Spark. To 

BigDL   
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enable efficient distributed training, BigDL uses a data-parallel approach to training with 
synchronous minibatch Stochastic Gradient Descent (SGD). Training data is partitioned 
into RDD samples, which are automatically partitioned and distributed to each worker. In 
addition, BigDL also constructs an RDD of models, each of which is a replica of the 
original neural network model. The model and sample RDDs are copartitioned and 
colocated across the cluster. Model training is performed in an iterative process. It first 
computes gradients locally on each worker by taking advantage of locally stored partitions 
of the training data and model to perform in-memory transformations. Then, an 
AllReduce function schedules workers with tasks to calculate and update weights. 
Finally, a broadcast synchronizes the distributed copies of the model with updated 
weights. The following figure shows the training approach. 

 
Figure 3. Distributed training in BigDL 

A key criterion is that the number of data samples in the minibatch (batch size) must be a 
multiple of the number of Spark executors that are multiplied by the number of cores in 
each executor. This value ensures that the local gradients are computed on the same 
number of sample datasets by each worker. 

 
Spark enables ML pipelines8, which provide a uniform set of high-level APIs built on Spark 
DataFrames that help users create and tune machine learning pipelines. ML pipelines 
enable users to chain together multiple transformers (data manipulations) and estimators 
(models) to specify an ML workflow. A benefit of this workflow is that all transformers and 
estimators share a common API for specifying parameters. For more information about 
Spark ML pipelines, including Transformers and Estimators go to Spark ML Pipelines. The 
following figure from the Spark documentation shows an example ML pipeline for a 
Logistic Regression model. 

 

 
 

Figure 4. Spark ML Pipeline: Pipeline.fit()method 

Integration with 
Spark ML 
pipelines 

https://spark.apache.org/docs/latest/ml-pipeline.html
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Analytics Zoo uses Spark ML pipeline concepts for deep learning and artificial neural 
networks. NNFrames is an Analytics Zoo package that provides high-level APIs that are 
built on Spark DataFrames to help Spark users create neural network pipelines. It 
supports native integration with Spark ML Pipelines, which enables users to combine the 
power of Analytics Zoo, BigDL, and Apache Spark MLlib. Key concepts of NNFrames and 
Analytics Zoo include: 

• PreProcessing and Chained PreProcessing—Preprocessing defines data 
transforms during feature preprocessing. Multiple Preprocessing can be 
combined into a ChainedPreprocessing operation. For example, image 
rotation is a preprocessing transformation. 

• NNEstimator—NNEstimator extends the Spark ML Pipeline Estimator and 
supports training a BigDL model with Spark DataFrame data. It can be 
integrated into a standard Spark ML Pipeline to enable users to combine the 
components of BigDL and Spark MLlib.  

• NNModel—NNModel extends Spark's ML Transformer. Invoking a .fit() 
method in NNEstimator yields an NNModel. A pretrained BigDL Model can be 
loaded into a NNModel and used as a transformer in a Spark ML pipeline to 
perform transfer learning with new DataFrames or predict the results for a 
DataFrame. 

• NNClassifier and NNClassifierModel—NNClassifier is a specialized 
NNEstimator that simplifies the data format for classification problems. 
Invoking a .fit() method in NNClassifier yields a NNClassifierModel, 
as shown in the following figure. 

 

 
Figure 5. Deep learning pipeline with Analytics Zoo: Classifier.fit()method 

In Model development and training, we demonstrate how we use the Analytics Zoo API to 
develop our model. We use the feature engineering APIs that are available in Analytics 
Zoo to process chest x-ray images and NNEstimator to build our model. We train the 
neural network to produce NNModel, which predicts the diseases. 

 
Transfer learning9 is a machine learning method in which a model that is trained for a task 
is reused as the starting point for a model on a second related task. In deep learning, a 
neural network that is trained on a dataset is used as a starting point to train a new 
dataset. For example, a neural network that is trained to identify vehicles can be used as 
a starting point to identify specific vehicle models.   

Analytics Zoo provides high-level APIs that can be used to apply transfer learning 
methodologies to train a neural network. The capabilities include:  

• Loading an existing pretrained model—The Net.load API can be used to 
load existing models for BigDL, Torch, TensorFlow, and Caffe. 

Transfer learning 
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• Remove the last few layers in the neural network—The newGraph API can 
be used to remove the last few layers in the pretrained network. This API is 
typically used to remove the output layers. For example, output layers that are 
designed for the previous classification task must be removed as they are no 
longer applicable.  

• Adding new layers—The to_keras API can be used to add new layers for the 
new task. For example, new output layers that are designed for the new 
classification task can be added. 

• Freeze the first few layers—The freeze_up_to API can be used to freeze 
the first few layers. This API is typically used to preserve some of the training in 
the previous task. 

We use transfer learning to develop our model for predicting diseases from chest x-rays. 
The following section shows how we use these APIs to load and configure a pretrained 
model to train with the chest x-ray dataset. 

Model development and training 
This section describes how we developed and trained the deep learning model for 
detecting diseases in chest X-rays by using Analytics Zoo API. The steps for developing 
the deep learning model include: 

• Reading the chest x-ray images—Reading images from Hadoop Distributed File 
System (HDFS) as a Spark Dataframe 

• Feature Engineering—Processing the chest x-ray images to improve the 
prediction of the model and decrease the training time 

• Defining the model—Loading and configuring a pretrained model 

• Defining the optimizer— Defining the Adam optimizer for use with the learning 
rate scheduler 

• Building the model—Building the NNModel by using NNEstimator 

• Measuring the accuracy—Measuring accuracy by using AUC-ROC 
 
We use NNImageReader to read the images from HDFS and convert them to a Spark 
DataFrame. The images in the chest x-ray dataset are 1024 x1024 pixels and use three 
channels (RGB). We use one hot encoding to represent the 14 labels in the dataset. We 
encode the 14 diseases in the array into 14 binary elements. When the images are 
converted to Spark DataFrames, it is easy to perform image preprocessing operations. 
The operations are now transformations on the RDDs and Spark implements them on the 
distributed compute cluster.  
 
We perform the following preprocessing tasks on the images by using the 
ChainedPreprocessing and other feature engineering APIs in Analytics Zoo: 

• Resize the images to 224 x 224 pixels. As noted previously, the original images 
are 1024 x 1024 pixels. We find that reducing the image size has little impact on 
accuracy while significantly improving the training time10. 

• Horizontally flip half the images, which are chosen randomly. 

Reading the 
chest x-ray 
images 

Feature 
Engineering 
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• Adjust the brightness for half the images, which are chosen randomly. 

• Normalize the images by subtracting the mean of ImageNet dataset. 

The following code snippet shows the image prepreocessing operations: 

transformer = ChainedPreprocessing( RowToImageFeature(),  
ImageCenterCrop(224, 224),  
ImageRandomPreprocessing(ImageHFlip(), 0.5), 
ImageRandomPreprocessing(ImageBrightness(0.0, 
32.0), 0.5), 
ImageChannelNormalize(123.68, 116.779, 103.939),  
ImageMatToTensor(), ImageFeatureToTensor()]) 

 
As with the Stanford approach, we use transfer learning to train our model. We use a 
pretrained ResNet-50 architecture, which has been previously trained on the ImageNet11 
dataset. The pretrained model provides a better-than-random starting point for training to 
identify features in chest x-ray images. It reduces the number of epochs of training that is 
required to converge to a functional model. 

The following code snippet shows loading the pretrained model: 

def get_resnet_model(model_path, label_length): 
    full_model = Net.load_bigdl(model_path) 
    model = full_model.new_graph(["pool5"]) 
    inputNode = Input(name="input", shape=(3, 224, 224)) 
    resnet = model.to_keras()(inputNode) 
    flatten = GlobalAveragePooling2D(dim_ordering='th')(resnet) 
    dropout = Dropout(0.2)(flatten) 
    logits = Dense(label_length, W_regularizer=L2Regularizer(1e-
1), b_regularizer=L2Regularizer(1e-1), activation="sigmoid") 
(dropout) 
    lrModel = Model(inputNode, logits) 
    return lrModel 

Using Analytics Zoo APIs, we remove the final layer from the pretrained ResNet-50 
model. This layer is a softmax layer that is specific to the ImageNet classification. We add 
a new last layer to predict the 14 diseases. We use Sigmoid for the activation function and 
a dropout rate of 0.25. To avoid overfitting, we use L2 regularization (Lasso Regression) 
for both the input weight and the bias. We also add a new input layer for the resized chest 
x-rays images (224 x 244 pixels with three channels).  

We also evaluated the performance of Inception and DenseNet topology. For the results, 
see Model optimization and results. 

 
We use Adam optimizer12 with the learning rate scheduler. The learning rate scheduler is 
implemented in two phases. First, we gradually increase the learning rate (warm up) for 
some epochs and the maximum learning rate. Then, we cool down the learning rate until 
we reach the required accuracy. For the results, see Model optimization and results. 

Defining the 
Model 

Defining the 
optimizer 
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The following code snippet shows how we defined the optimizer: 

def get_adam_optimMethod(num_epoch, trainingCount, batchSize): 
    iterationPerEpoch = int(ceil(float(trainingCount)batchSize)) 
    warmupEpoch = 5 
    warmup_iteration = warmupEpoch * iterationPerEpoch 
    initlr = 1e-7 
    maxlr = 0.0001 
    warmupDelta = (maxlr - initlr) / warmup_iteration 
    cooldownIteration = (num_epoch - warmupEpoch) * 

iterationPerEpoch 
    lrSchedule = SequentialSchedule(iterationPerEpoch) 
    lrSchedule.add(Warmup(warmupDelta), warmup_iteration) 
    lrSchedule.add(Plateau("Loss", factor=0.1, patience=1, 

mode="min", epsilon=0.01, cooldown=0, min_lr=1e-15 ), 
      cooldownIteration) 
    optim = Adam(lr=initlr, schedule=lrSchedule) 
    return optim 

 
We use the Analytics Zoo NNEstimator API to build the model. BinaryCrossEntropy 
is used as the loss function. By calling the .fit() method, we train the model. 
NNEstimator extracts feature and label data from the input DataFrame and uses the 
ChainedPreprocessing API to convert data for the model, including converting the 
feature and label to tensors. The model is then trained.  

The following code snippet shows how we build the model:  

estimator = NNEstimator(xray_model, BinaryCrossEntropy(), 
transformer)  

               .setBatchSize(batch_size)  
            .setMaxEpoch(num_epoch)  

              .setFeaturesCol("image")  
            .setCachingSample(False)  

.setValidation(EveryEpoch(), validationDF, [AUC()], 
batch_size)  

               .setTrainSummary(train_summary)  
            .setValidationSummary(val_summary)  
            .setOptimMethod(optim_method) 

 
nnModel = estimator.fit(trainingDF) 

 
We use area under the curve (AUC) Receiver Operating Characteristics (RoC) to 
measure the accuracy of the model. We use the Spark ML pipeline 
BinaryClassificationEvaluator API to determine the AUC-ROC for each disease. 
We also calculate the average AUC-ROC for all 14 diseases. These values determine the 
accuracy of the model. 

Building the 
model with 
NNEstimator  

Measuring the 
accuracy of the 
model using 
AUC-ROC 
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Model optimizations, recommendations, and results 
This section presents the results of our model training, how our model scales, and 
recommendations that are based on our observations from tuning the model.  

 
The following Spark parameters must be determined before training the model: 

 Number of executors and cores—The number of executors and cores 
depends on the number of compute resources that are available for training. 
We recommend one Spark executor per available compute node. The number 
of executor cores determines the number of Spark tasks that can run in 
parallel. If the entire worker node is dedicated for training, we recommend that 
the number of cores per executor equals the number of physical cores in that 
server minus two (two cores can be allocated for Spark overhead). 

 Executor memory—The following formula can determine the memory that is 
allocated to an executor: 

Executor memory = Number of cores per executor * (Memory required for each 
core + data partition) 

The memory that the executors use depends on the size of the dataset and 
size of the neural network model. In our chest x-ray model training using 
ResNet-50, we used 300 GB memory for each executor. 

 
We evaluated three topologies to train our model: ResNet-50, DenseNet, and Inception. 
We trained the model on four executors for 15 epochs. We used the Adam optimizer with 
the learning rate scheduler for all three topologies.  

The following table and figure shows the results.  

Table 2. Results on different topologies 

Disease ResNet-50 DenseNet Inception 

Atelectasis 0.789 0.764 0.770 

Consolidation 0.873 0.915 0.844 

Infiltration 0.865 0.826 0.855 

Pneumothorax 0.689 0.683 0.688 

Edema 0.807 0.778 0.764 

Emphysema 0.729 0.762 0.684 

Fibrosis 0.731 0.592 0.696 

Effusion 0.870 0.753 0.841 

Pneumonia 0.794 0.696 0.775 

Pleural Thickening 0.886 0.867 0.865 

Cardiomegaly 0.887 0.796 0.825 

Nodule 0.762 0.722 0.725 

Spark 
parameters 

Neural Network 
Topology 
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Disease ResNet-50 DenseNet Inception 

Mass 0.768 0.709 0.738 

Hernia 0.759 0.796 0.565 

Average AUC 0.801 0.761 0.760 

 

  
Figure 6. Results on different topologies 

As noted, ResNet-50 yields the best results. Other experiments that are conducted on a 
distrusted TensorFlow framework and found that ResNet-50 scales effectively on 
distributed training when compared to DenseNet13 and Inception. DenseNet consists of 
many repeating blocks of convolutional and batch normalization layers. The prevalence of 
batch normalization layers might be the limiting factor in scaling DenseNet topology for 
large-scale distributed training. ResNet-50 slightly outperforms Inception because we 
believe that Inception is impacted by vanishing gradient14. 

We chose ResNet-50, pretrained with an ImageNet dataset, as the primary model for our 
training and to determine how well our model scales. 

 
We investigated two optimizers with adaptive learning rates: SGD and Adam. SGD with 
minibatch gradient decent is a simple optimizer that computes the gradient for every 
batch. The Adam optimizer improves on SGD by adding several decay components. In 
our case, we found that the Adam optimizer converges faster and provides the best model 
in seven to eight epochs, while SGD does not yield as much accuracy, even with 50 or 
more epochs. 
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The following figure shows the impact on AUC by learning rate scheduler for Adam 
optimizer. 

 
Figure 7. Impact on AUC by learning rate scheduler for Adam optimizer  

 
The batch size parameter is for model accuracy and for scalability. Artificial neural 
networks are trained by minimizing a loss function that measures the deviation of the 
output of the network from the wanted output. The input data is divided into batches and 
fed into the neural network to calculate the loss function. The weights of the network are 
adjusted at the end of each batch to optimize the loss function. 

For a smaller batch size, the gradients are calculated based on a smaller sample of data. 
Therefore, it is reasonable to expect that the model converges faster for a larger batch 
size. Increasing the batch size also increases the parallelism.  

While this result is true for smaller batch sizes, it is not always the case. Increasing the 
batch size can lead to a loss in generalization performance15.. In other words, the 
performance of the model on testing datasets is often worse when trained with large-batch 
methods as compared to small-batch methods.  

As explained in BigDL on page 9, the batch size must be a multiple of the number of 
executors that are multiplied by the number of cores in each executor. A lower batch size 
might yield better accuracy because the gradients are calculated for a smaller data 
sample. To gain more parallelism, you must increase the number of executors, potentially 
increasing the batch size. However, increasing the batch size might negatively affect the 
generalization performance of the model because the gradients are calculated on a larger 
data sample.  

Batch size 
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We evaluated the model by varying the number of images in a batch per thread. The 
following figure shows the results. 

 
Figure 8. Results of varied number of images in a batch per thread 

As expected, the average AUC increases as we increase the number of images in 
a batch per thread. After a certain point, due to a generalization issue, the average 
AUC continues to decrease. In our case, the average AUC is the highest when the 
batch per thread is four. 

 
We demonstrate how the model scales as we increase the number of servers and 
scale the batch size accordingly. The following calculation determines global batch 
size: 

Global batch size = number of executors * number of cores * batch per thread 

We change the number of executors (and thus the number of compute nodes) for 
four, eight, 12, and 16 executors. We choose four as the batch per thread and 32 
as the number of cores. We measure the time for 15 epochs.  

Scalability 



 Conclusion 
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The following figure shows the throughput.  

 
Figure 9. Results of scaling the number of executors on speedup  

We achieve three times the speedup when scaling the number of Spark workers 
from four to 16 workers. We can accurately train the model in approximately 2.5 
hours. The average AUC for 14 diseases is within a percentage variation between 
the data points. We believe that the overhead of the Spark executors and the tasks 
prevents us from achieving linear scalability.  

Conclusion 
This white paper describes how we built an end-to-end ML pipeline in Apache Spark to 
train a neural network to detect diseases from chest x-rays accurately. We show how to 
build a deep learning pipeline by using Analytics Zoo APIs to read images as Spark 
Dataframes, feature engineering, and neural network training. We describe how we used 
transfer learning to predict diseases accurately in chest x-rays by using a ResNet-50 
model trained on an ImageNet dataset. We provide guidance for Spark parameters. Our 
work proves that it is important to consider batch size and the adaptive learning rate 
scheduler to improve accuracy of the model when training to scale. 

We also demonstrate how deep learning applications can be developed and deployed at 
scale on an existing Hadoop and Spark cluster. This approach avoids the need to move 
data to a different deep learning cluster and eliminates the operational complexities of 
provisioning and maintaining yet another distributed compute environment. 

In the future, we intend to implement learning rate schedule options such as LARS to 
determine how well the model can train on large-scale clusters. We also plan to 
investigate performance characteristics for image classification and develop guidance for 
sizing the Spark worker nodes. 
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