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Revisions 

Date Description Author 
October 2018 Initial release Claudio Fahey 
August 2019 Added sections about storage tiering with H500, RAPIDS Claudio Fahey 

Executive summary 

Deep learning (DL) techniques have enabled great successes in many fields such as computer vision, natural language 
processing (NLP), gaming and autonomous driving by enabling a model to learn from existing data and then to make 
corresponding predictions. The success is due to a combination of improved algorithms, access to larger datasets, and 
increased computational power. To be effective at enterprise scale, the computational intensity of DL requires highly 
powerful and efficient parallel architectures. The choice and design of the system components, carefully selected and 
tuned for DL use-cases, can have a big impact on the speed, accuracy, and business value of implementing AI 
techniques. 

In such a complex environment, it is critical that organizations be able to rely on vendors that they trust. Over the last few 
years, Dell EMC and NVIDIA have established a strong partnership to help organizations fast-track their AI initiatives. Our 
partnership is built on the philosophy of offering flexibility and informed choice across a broad portfolio which combines 
best of breed GPU accelerated compute, scale-out storage, and networking. 

This paper focuses on how Dell EMC Isilon F800 All-Flash Scale-out NAS accelerates AI innovation by delivering the 
performance, scalability, and concurrency to complement the requirements of NVIDIA’s Tesla V100 GPUs for high 
performance AI workloads. 

AUDIENCE 

This document is intended for organizations interested in simplifying and accelerating DL solutions with advanced 
computing and scale-out data management solutions. Solution architects, system administrators, and other interested 
readers within those organizations constitute the target audience. 

Introduction 

DL is an area of artificial intelligence which uses artificial neural networks to enable 
accurate pattern recognition of complex real-world patterns by computers. These new 
levels of innovation have applicability across nearly every industry vertical. Some of the 
early adopters include advanced research, precision medicine, high tech manufacturing, 
advanced driver assistance systems (ADAS) and autonomous driving. Building on these 
initial successes, AI initiatives are springing up in various business units, such as 
manufacturing, customer support, life sciences, marketing and sales. Gartner predicts 
that AI augmentation will generate $2.9 Trillion in business value by 2021 alone. But, 
turning the promise of AI into real value isn’t as easy as flipping a switch. Organizations 
are faced with a multitude of complex choices related to data, analytic skill-sets, 
software stacks, analytic toolkits and infrastructure components; each with significant 
implications on the time to market and the value associated with these initiatives.  

In such a complex environment, it is critical that organizations be able to rely on vendors 
that they trust. Dell EMC and NVIDIA are at the forefront of AI providing the technology 
that makes tomorrow possible today. Over the last few years we have established a 
strong partnership to help organizations accelerate their AI initiatives. Our partnership is 
built on the philosophy of offering flexibility and informed choice across an extensive 
portfolio. Together our technologies provide the foundation for successful AI solutions 
which drive the development of advanced DL software frameworks, deliver massively 
parallel compute in the form of NVIDIA Graphic Processing Units (GPUs) for parallel 
model training, and scale-out file systems to support the concurrency, performance, and 
Petabyte scale of the unstructured image and video data sets. 

This document focuses on the latest step in the Dell EMC and NVIDIA collaboration, a 
new AI reference architecture with Isilon F800 storage and DGX-1 servers for DL 
workloads. This new offer pairs DGX-1 servers with Isilon scale-out all-flash storage to 
give customers more flexibility in how they deploy scalable, high performance DL. The 
results of multiple industry standard image classification benchmarks using TensorFlow 
are included. 
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Deep learning dataflow 

As visualized in Figure 1, DL usually consist of two distinct workflows, model development and inference. 

 

Figure 1: Common DL Workflows: Model development and inference 

The workflow steps are defined and detailed below. Note that the Isilon storage and DGX-1 server architecture is 
optimized for the model development workflow which consists of the model training and the batch inference  
validation steps. It is not intended for and nor was it benchmarked for  
Production Inference. 

1. Ingest Labeled Data - In this step, the labeled data (e.g. images and their labels which indicate whether the image 
contains a dog, cat, or horse) are ingested into the DL system. 

2. Transform - Transformation includes all operations that are applied to the labeled data before they are passed to 
the DL algorithm. It is sometimes referred to as preprocessing. For images, this often includes file parsing, JPEG 
decoding, cropping, resizing, rotation, and color adjustments. Transformations can be performed on the entire 
dataset ahead of time, storing the transformed data on disk. Many transformations can also be applied in a training 
pipeline, avoiding the need to store the intermediate data. 

3. Train Model - In this phase, the model parameters (edge weights) are learned from the labeled data using the 
stochastic gradient descent optimization method. In the case of image classification, there are several prebuilt 
structures of neural networks that have been proven to work well. To provide an example, Figure 2 shows the 
high-level workflow of the Inception-v3 model which contains nearly 25 million parameters that must be learned. In 
this diagram, images enter from the left and the probability of each class comes out on the right. 

 

Figure 2: Inception-v3 model architecture. 

4. Validate Model - Once the model training phase completes with a satisfactory accuracy, you’ll want to measure 
the accuracy of it on validation data - data that the model training process has not seen. This is done by using the 
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trained model to make inferences from the validation data and comparing the result with the label. This is often 
referred to as inference but keep in mind that this is a distinct step from production inference. 

5. Production Inference - The trained and validated model is then often deployed to a system that can perform real-
time inference. It will accept as input a single image and output the predicted class (dog, cat, horse). In some 
cases, inputs are batched for higher throughput but higher latency. 

Solution architecture 

OVERVIEW 

Figure 3 illustrates the reference architecture showing the key components that made up the solution as it was tested and 
benchmarked. Note that in a customer deployment, the number of DGX-1 servers and Isilon storage nodes will vary and 
can be scaled independently to meet the requirements of the specific DL workloads. Refer to the Solution Sizing 
Guidance section. 
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Data Switch
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Figure 3: Reference Architecture  
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STORAGE: DELL EMC ISILON F800 

Dell EMC Isilon F800 represents the 6th generation of hardware built to run the well-proven and massively scalable 
OneFS operating system. Each F800 chassis, shown in Figure 4, contains four storage nodes, 60 high performance Solid 
State Drives (SSDs), and eight 40 Gigabit Ethernet network connections. OneFS combines up to 144 nodes in 36 chassis 
into a single high-performance file system designed to handle the most intense I/O workloads such as DL. As 
performance and capacity demands increase, both can be scaled-out simply and non-disruptively, allowing applications 
and users to continue working. 

 

Figure 4: Isilon F800 chassis, containing four storage nodes 

In the solution tested in this document, eight F800 nodes, in two chassis, were used. 

Dell EMC Isilon F800 has the following features. 

Low latency, high throughput and massively parallel IO for AI. 

• Up to 250,000 file IOPS per chassis, up to 15.75 million IOPS per cluster 

• Up to 15 GB/s throughput per chassis, up to 945 GB/s per cluster 

• 96 TB to 924 TB raw flash capacity per chassis; up to 58 PB per cluster (All-Flash) 

This shortens time for training and testing analytical models for data sets from tens of TBs to tens of PBs on AI platforms 
such as TensorFlow, SparkML, Caffe, or proprietary AI platforms. 

The ability to run AI in-place on data using multi-protocol access. 

• Multi-protocol support such as SMB, NFS, HTTP, and native HDFS to maximize operational flexibility 

This eliminates the need to migrate/copy data and results over to a separate AI stack. Organizations can perform DL and 
run other IT apps on same data already on Isilon by adding additional Isilon nodes to an existing cluster. 

Enterprise grade features out-of-box. 

• Enterprise data protection and resiliency 

• Robust security options 

This enables organizations to manage AI data lifecycle with minimal cost and risk, while protecting data and meeting 
regulatory requirements. 

Extreme scale 

• Seamlessly tier between All Flash, Hybrid, and Archive nodes via SmartPools. 

• Grow-as-you-go scalability with up to 58 PB flash capacity per cluster 

• Up to 63 chassis (252 nodes) may be connected to form a single cluster with a single namespace and a single 
coherent cache 

• Up to 85% storage efficiency to reduce costs 

• Optional data de-dup and compression enabling up to a 3:1 data reduction 

Organizations can achieve AI at scale in a cost-effective manner, enabling them to handle multi-petabyte datasets with 
high resolution content without re-architecture and/or performance degradation. 
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There are several key features of Isilon OneFS that make it an excellent storage system for DL workloads that require 
performance, concurrency, and scale. These features are detailed below. 

Storage Tiering 

Dell EMC Isilon SmartPools software enables multiple levels of performance, protection and storage density to co-exist 
within the same file system, and unlocks the ability to aggregate and consolidate a wide range of applications within a 
single extensible, ubiquitous storage resource pool. This helps provide granular performance optimization, workflow 
isolation, higher utilization, and independent scalability – all with a single point of management.  

SmartPools allows you to define the value of the data within your workflows based on policies, and automatically aligns 
data to the appropriate price/performance tier over time. Data movement is seamless, and with file-level granularity and 
control via automated policies, manual control, or API interface, you can tune performance and layout, storage tier 
alignment, and protection settings – all with minimal impact to your end-users.  

Storage tiering has a very convincing value proposition, namely separating data according to its business value, and 
aligning it with the appropriate class of storage and levels of performance and protection. Information Lifecycle 
Management techniques have been around for a number of years, but have typically suffered from the following 
inefficiencies: complex to install and manage, involves changes to the file system, requires the use of stub files, etc.  

Dell EMC Isilon SmartPools is a next generation approach to tiering that facilitates the management of heterogeneous 
clusters. The SmartPools capability is native to the Isilon OneFS scale-out file system, which allows for unprecedented 
flexibility, granularity, and ease of management. In order to achieve this, SmartPools leverages many of the components 
and attributes of OneFS, including data layout and mobility, protection, performance, scheduling, and impact 
management. 

A typical Isilon cluster will store multiple datasets with different performance, protection, and price requirements. 
Generally, files that have been recently created and accessed should be stored in a hot tier while files that have not been 
accessed recently should be stored in a cold (or colder) tier. Because Isilon supports tiering based on a file’s access time, 
this can be performed automatically. For storage administrators that want more control, complex rules can be defined to 
set the storage tier based on a file’s path, size, or other attributes. 

All files on Isilon are always immediately accessible (read and write) regardless of their storage tier and even while being 
moved between tiers. The file system path to a file is not changed by tiering. Storage tiering policies are applied and files 
are moved by the Isilon SmartPools job, which runs daily at 22:00 by default. 

For more details, see Storage Tiering with Dell EMC Isilon SmartPools. 

OneFS Caching 

The OneFS caching infrastructure design is predicated on aggregating the cache present on each node in a cluster into 
one globally accessible pool of memory. This allows all the memory cache in a node to be available to every node in the 
cluster. Remote memory is accessed over an internal interconnect and has much lower latency than accessing hard disk 
drives. 

The OneFS caching subsystem is coherent across the cluster. This means that if the same content exists in the private 
caches of multiple nodes, this cached data is consistent across all instances. 

OneFS uses up to three levels of read cache, plus an NVRAM-backed write cache, or coalescer. These, and their high-
level interaction, are illustrated in Figure 5. 

https://www.dellemc.com/resources/en-us/asset/white-papers/products/storage/h8321-wp-smartpools-storage-tiering.pdf
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Figure 5: OneFS Caching Architecture 

File Reads 

For files marked with an access pattern of concurrent or streaming, OneFS can take advantage of prefetching of data 
based on heuristics used by the Isilon SmartRead component. SmartRead can create a data pipeline from L2 cache, 
prefetching into a local L1 cache on the captain node. This greatly improves sequential-read performance across all 
protocols and means that reads come directly from RAM within milliseconds. For high-sequential cases, SmartRead can 
very aggressively prefetch ahead, allowing reads of individual files at very high data rates. 

Intelligent caching provided by SmartRead allows for very high read performance with high levels of concurrent access. 
Importantly, it is faster for Node 1 to get file data from the cache of Node 2 (over the low-latency cluster interconnect) than 
to access its own local disk. The SmartRead algorithms control how aggressive the pre-fetching is (disabling pre-fetch for            
random-access cases), how long data stays in the cache, and optimizes where data is cached. This optimized file read 
logic is visualized below in Figure 6. 

 

Figure 6: A File Read Operation on a 3-node Isilon Cluster 

Locks and concurrency 

OneFS has a fully distributed lock manager that coordinates locks on data across all nodes in a storage cluster. The 
locking manager is highly extensible and allows for multiple lock personalities to support both file system locks as well as 
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cluster-coherent protocol-level locks such as SMB share mode locks or NFS advisory-mode locks. OneFS also has 
support for delegated locks such as CIFS oplocks and NFSv4 delegations. Every node in a cluster is a coordinator for 
locking resources and a coordinator is assigned to lockable resources based upon an advanced hashing algorithm. 

For more detailed technical overview of Isilon OneFS, refer to 

https://www.emc.com/collateral/hardware/white-papers/h10719-isilon-onefs-technical-overview-wp.pdf. 

Efficient locking is critical to support the efficient parallel IO profile demanded by many iterative DL workloads enabling 
concurrent file read access up into the millions. 

COMPUTE: NVIDIA DGX-1 SERVER 

The DGX-1 server is a fully integrated, turnkey hardware and software system that is purpose-built for DL workflows. Each 
DGX-1 server is powered by eight Tesla V100 GPUs that are configured in a hybrid cube mesh topology that uses NVIDIA 
NVLink™ technology, which provides an ultra-high bandwidth low-latency fabric for inter-GPU communication. This 
topology is essential for multi-GPU training, eliminating the bottleneck that is associated with PCIe-based interconnects 
that cannot deliver linearity of performance as GPU count increases. The DGX-1 server is also equipped with high-
bandwidth, low-latency network interconnects for multi-node clustering over RDMA-capable fabrics. 

 

Figure 7: NVIDIA DGX-1 server with eight Tesla V100 GPUs 

The NGC container registry provides researchers, data scientists, and developers with simple access to a comprehensive 
catalog of GPU-accelerated software for AI, machine learning and HPC that take full advantage of NVIDIA DGX-1 GPUs 
on-premises and in the cloud. NGC provides containers for today’s most popular DL frameworks such as Caffe2, 
TensorFlow, PyTorch, MXNet, and TensorRT, which are optimized for NVIDIA GPUs. The containers integrate the 
framework or application, necessary drivers, libraries, and communications primitives, and they are optimized across the 
stack by NVIDIA for maximum GPU-accelerated performance. NGC containers incorporate the NVIDIA CUDA Toolkit, 
which provides the NVIDIA CUDA Basic Linear Algebra Subroutines Library (cuBLAS), the NVIDIA CUDA Deep Neural 
Network Library (cuDNN), and much more. The NGC containers also include the NVIDIA Collective Communications 
Library (NCCL) for multi-GPU and multi-node collective communication primitives, enabling topology awareness for DL 
training. NCCL enables communication between GPUs inside a single DGX-1 server and across multiple DGX-1 servers. 

NETWORKING: ARISTA 7060CX2-32S 

The Arista 7060CX2 is a 1RU high performance 40 GbE and 100 GbE high density, fixed configuration, data center switch 
with wire speed layer 2 and layer 3 features, and advanced features for software driven cloud networking. It delivers a rich 
choice of interface speed and density allowing networks to seamlessly evolve from 10 GbE and 40 GbE to 25 GbE and 
100 GbE. With support for advanced EOS features these switches are ideal for traditional or fully virtualized data centers. 
Arista 7060CX2-32S provides support for IEEE 25 GbE and support a larger shared packet buffer pool of 22 MB with the 
same low latency of 450 ns. 

 

Figure 8: Arista 7060CX2-32S: 32 x 40/100GbE QSFP100ports, 2 SFP+ ports 

https://www.emc.com/collateral/hardware/white-papers/h10719-isilon-onefs-technical-overview-wp.pdf.
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BILL OF MATERIALS 

Component Purpose Quantity 

Dell EMC Isilon F800 
96 TB SSD 
1 TB RAM  
4x1GE, 8x40GE Networking 

Storage  2 4U Chassis 
(8 nodes)  

Celestica D4040 851-0259 Isilon back-end Ethernet switch 2 
NVIDIA DGX-1 server 
(8) Tesla V100-SXM2-32GB GPUs 
(2) 20-Core Intel Xeon E5-2698 v4 2.2 GHz 
512 GB 2,133 MHz DDR4 RDIMM RAM  

Compute server with 8 GPUs 9 

Arista 7060CX2-32S Data switch 2 
Mellanox MCP1600-E02A Passive Copper Cable IB 
EDR up to 100Gb/s QSFP LSZH 2.5m 26AWG 

100G cable - DGX-1 server to Arista 36 

Optical cable, MPO, 038-004-218 100G cable - Arista cross connection 2 
Optical cable, MPO, 038-004-218 40G cable – Isilon  

front-end 
16 

Optical cable, MPO, 038-004-218 40G cable – Isilon  
back-end 

16 

Table 1: Bill of materials 

SOFTWARE VERSIONS 

Table 2 shows the software versions that were tested for this document. 

Component Version 

Isilon - OneFS 8.1.0.4 
patches: 231017, 231838, 232711, 239173 

NVIDIA GPU Cloud Image nvcr.io/nvidia/tensorflow:18.09-py3 
TensorFlow Benchmarks https://github.com/claudiofahey/benchmarks/commit/6cdfc0c 
TensorFlow Benchmark Util https://github.com/claudiofahey/tensorflow-benchmark-util/commit/07c9a9c 
Arista – System Image 4.19.8M 
DGX-1 – Ubuntu 16.04.4 LTS 
DGX-1 – Base OS 3.1.6 
DGX-1 – BIOS 5.11 
DGX-1 – NVIDIA Driver 384.125 

Table 2: Software Versions 

Deep learning training performance and analysis 

BENCHMARK METHODOLOGY 

In order to measure the performance of the solution, various benchmarks from the TensorFlow Benchmarks repository 
were carefully executed (see https://www.tensorflow.org/performance/benchmarks#methodology). This suite of 
benchmarks performs training of an image classification convolutional neural network (CNN) on labeled images. 
Essentially, the system learns whether an image contains a cat, dog, car, train, etc. The well-known ILSVRC2012 image 
dataset (often referred to as ImageNet) was used. This dataset contains 1,281,167 training images in 144.8 GB1. All 
images are grouped into 1000 categories or classes. This dataset is commonly used by DL researchers for benchmarking 
and comparison studies. 

The individual JPEG images in the ImageNet dataset were converted to 1024 TFRecord files (see Appendix – Benchmark 
Setup). The TFRecord file format is a Protocol Buffers binary format that combines multiple JPEG image files together 
with their metadata (bounding box for cropping, and label) into one binary file. It maintains the image compression offered 
by the JPEG format and the total size of the dataset remained roughly the same (148 GB). The average image size was 
115 KB. 

 
1 All unit prefixes use the SI standard (base 10) where 1 GB is 1 billion bytes. 

https://github.com/claudiofahey/benchmarks/commit/6cdfc0c
https://github.com/claudiofahey/tensorflow-benchmark-util/commit/07c9a9c
https://www.tensorflow.org/guide/performance/overview
https://dell-my.sharepoint.com/personal/claudio_fahey_dell_com/Documents/Documents/Deep%20Learning/Isilon%20and%20NVIDIA%20DGX-1%20for%20Deep%20Learning/ILSVRC2012
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When running the benchmarks on the 148 GB dataset, it was found that the storage I/O throughput gradually decreased 
and became virtually zero after a few minutes. This indicated that the entire dataset was cached in the Linux buffer cache 
on each DGX-1 server. Of course, this is not surprising since each DGX-1 server has 512 GB of RAM and this workload 
did not significantly use RAM for other purposes. As real datasets are often significantly larger than this, we wanted to 
determine the performance with datasets that are not only larger than the DGX-1 server RAM, but larger than the 2 TB of 
coherent shared cache available across the 8-node Isilon cluster. To accomplish this, we simply made 150 exact copies of 
each TFRecord file, creating a 22.2 TB dataset. 

In our own testing, a parallel Python MPI script was created to quickly create the copies utilizing all DGX-1 and Isilon 
nodes. But to illustrate the copy process, it was basically as simple as this: 

cp train-00000-of-01024 train-00000-of-01024-copy-000 

cp train-00000-of-01024 train-00000-of-01024-copy-001 

cp train-00000-of-01024 train-00000-of-01024-copy-002 

cp train-00001-of-01024 train-00001-of-01024-copy-000 

cp train-00001-of-01024 train-00001-of-01024-copy-001 

cp train-00001-of-01024 train-00001-of-01024-copy-002 

… 

cp train-01023-of-01024 train-01023-of-01024-copy-002 

Having 150 copies of the exact same images doesn’t improve training accuracy or speed but it does produce the same 
I/O pattern for the storage, network, and GPUs. Having identical files did not provide an unfair advantage as Isilon 
deduplication was not enabled and all images are reordered randomly (shuffled) in the input pipeline. 

For this workload, it is straightforward to quantify the effect of caching. Essentially there are many threads reading the 
TFRecord files. Each thread picks a TFRecord file at random, reads it sequentially and completely, and then it moves on 
to another TFRecord file at random. Sometimes, a thread will choose to read a file that another thread has recently read 
and that can be served from cache (either Isilon or Linux). The probability of this occurring, and therefore the fraction of 
data served by cache, is simply the cache size divided by the dataset size. Using this calculation, we expect a 2% cache 
hit rate from the Linux cache on the DGX-1 server and a 9% cache hit rate from Isilon. Conversely, we can say that 91% 
of the dataset is read from Isilon’s SSDs. If the dataset were twice as large (44 TB), 95% of the dataset would need to be 
read from Isilon’s SSDs, which is only a slightly faster rate than what we have measured with the 22 TB dataset. 

One of the critical questions one has when trying to size a system is how fast the storage must be so that it is not a 
bottleneck. To answer this question, we take advantage of the fact that the Linux buffer cache can completely cache the 
entire 148 GB dataset. After performing several warm-up runs, the benchmark is executed and it is confirmed that there is 
virtually zero NFS network I/O to the storage system. The image rate (images/sec) measured in this way accounts for the 
significant preprocessing pipeline as well as the GPU computation. In the next section, results using this method are 
labeled Linux Cache. 

To avoid confusion, the performance results using the synthetic benchmark mode are not reported in this document. In 
the synthetic mode of the benchmark, random images are generated directly in the GPU and training is based on these 
images. This mode is very useful to tune and understand parts of the training pipeline. However, it does not perform 
storage I/O, JPEG decoding, image resizing, or any other preprocessing. 

There are a variety of ways to parallelize model training to take advantage of multiple GPUs across multiple servers. In 
our tests, we used MPI and Horovod. 

Prior to each execution of the benchmark, the L1 and L2 caches on Isilon were flushed with the command “isi_for_array 
isi_flush”. In addition, the Linux buffer cache was flushed on all DGX-1 servers by running “sync; echo 3 > 
/proc/sys/vm/drop_caches”. However, note that the training process will read the same files repeatedly and after just 
several minutes, much of the data will be served from one of these caches. 

The command below was used to perform the ResNet-50 training with 72 GPUs. 

mpirun \ 

--n 72 \ 

-allow-run-as-root \ 

--host dgx1-1:8,dgx1-2:8,dgx1-3:8,dgx1-4:8,dgx1-5:8,dgx1-6:8,dgx1-7:8,dgx1-8:8,dgx1-9:8 \ 

--report-bindings \ 

-bind-to none \ 

-map-by slot \ 

-x LD_LIBRARY_PATH \ 

-x PATH \ 

-mca plm_rsh_agent ssh \ 

-mca plm_rsh_args “-p 2222” \ 
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-mca pml ob1 \ 

-mca btl ^openib \ 

-mca btl_tcp_if_include enp132s0 \ 

-x NCCL_DEBUG=INFO \ 

-x NCCL_IB_HCA=mlx5 \ 

-x NCCL_IB_SL=4 \ 

-x NCCL_IB_GID_INDEX=3 \ 

-x NCCL_NET_GDR_READ=1 \ 

-x NCCL_SOCKET_IFNAME=^docker0 \ 

./round_robin_mpi.py \ 

python \ 

-u \ 

/mnt/isilon/data/tensorflow-benchmarks/scripts/tf_cnn_benchmarks/\ 

tf_cnn_benchmarks.py \ 

--model=resnet50 \ 

--batch_size=256 \ 

--batch_group_size=20 \ 

--num_batches=500 \ 

--nodistortions \ 

--num_gpus=1 \ 

--device=gpu \ 

--force_gpu_compatible=True \ 

--data_format=NCHW \ 

--use_fp16=True \ 

--use_tf_layers=False \ 

--data_name=imagenet \ 

--use_datasets=True \ 

--num_intra_threads=1 \ 

--num_inter_threads=10 \ 

--datasets_prefetch_buffer_size=20 \ 

--datasets_num_private_threads=10 \ 

--train_dir=/mnt/isilon/data/train_dir/2018-10-11-19-36-39-resnet50 \ 

--sync_on_finish=True \ 

--summary_verbosity=1 \ 

--save_summaries_steps=100 \ 

--save_model_secs=600 \ 

--variable_update=horovod \ 

--horovod_device=gpu 

The script round_robin_mpi.py was used to add the --data_dir parameter that distributed each process across four different 
mount points and thus to different Isilon nodes. Note that when testing the Linux Cache performance, only a single mount 
point was used. 

For the other models, only the --model parameter was changed. For different numbers of GPUs, only the --np parameter 
was changed. Note that the -map-by slot setting causes MPI to use all eight GPUs (slots) on a DGX-1 server before it 
begins using the next DGX-1 server. For example, when testing 32 GPUs, only four DGX-1 servers are used. 

The benchmark results in this section were obtained with eight Isilon F800 nodes in the cluster. 
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BENCHMARK RESULTS 

 

Figure 9: Model Development – Training Benchmark Results 

There are a few conclusions that we can make from the benchmarks represented in Figure 9. 

• Image throughput and therefore storage throughput scale linearly from 8 to 72 GPUs. 

• The maximum throughput that was pulled from Isilon occurred with ResNet-50 and 72 GPUs. The total storage 
throughput was 5907 MB/sec. 

• For all tests shown above, each GPU had 97% utilization or higher. This indicates that the GPU was the 
bottleneck. 

• The maximum CPU utilization on the DGX-1 server was 46%. This occurred with ResNet-50. 

• The difference between Linux Cache and Isilon averages only 2% and is at worst 6%. The reason for this minor 
decrease in performance is not known. Possible reasons include 1) storage network traffic increases network 
latency during gradient updates, 2) CPU handling NFS I/O slows other CPU tasks, and 3) preprocessing is 
sensitive to storage latency (this is not expected because there are large preprocessing buffers). 

TEST VARIATIONS 

Measurement of Network I/O between DGX-1 Servers 

To get a sense of the network I/O between the DGX-1 servers during training, all Horovod traffic (i.e. gradient values) was 
forced to a single non-RoCE NIC and a Linux Cache test was performed. ResNet-50 with 72 GPUs was observed to 
generate 545 MB/sec (4.4 Gbps) per DGX-1 server for both send and receive with an average of 711 images/sec/GPU. 
Adding together this non-storage traffic across all nine DGX-1 servers in both directions gives a total of 9810 MB/sec. 
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Training with 4 Isilon F800 Nodes 

In another variation, four of the Isilon F800 nodes were SmartFailed, leaving four nodes in the cluster. ResNet-50 training 
was performed on 72 GPUs and the performance result was identical to that with eight Isilon F800 nodes. This workload 
pulled only around 6 GB/sec. 

Large image training 

The benchmarks in the previous section used the original JPEG images from the ImageNet dataset, with an average size 
of 115 KB. Today it is common to perform DL on larger images. For this section, a new set of TFRecord files are 
generated by resizing all images to three times their original height and width. Each image is encoded as a JPEG with a 
quality of 100 to further increase the number of bytes. Finally, we make 13 copies of each of the 1024 new TFRecord files. 
This results in a new dataset that is 22.5 TB and has an average image size of 1.3 MB. 

Because we are using larger images with the best JPEG quality, we want to match it with the most sophisticated model in 
the TensorFlow Benchmark suite, which is Inception-v4. 

Note that regardless of the image height and width, all images must be cropped and/or scaled to be exactly 299 by 299 
pixels to be used by Inception-v4. Thus, larger images place a larger load on the preprocessing pipeline (storage, 
network, CPU) but not on the GPU. 

The benchmark results in Figure 10 were obtained with eight Isilon F800 nodes in the cluster. 

 

Figure 10: Training performance with large images 

As before, we have linear scaling from 8 to 72 GPUs. The storage throughput with 72 GPUs is now 19,895 MB/sec. GPU 
utilization is at 98% and CPU utilization is at 84%. 

This training benchmark was executed for 6 hours. Figure 11 and Figure 12 below show some of the key metrics collected 
by Isilon InsightIQ. The I/O throughput is constant. The disk throughput (reading from the SSDs on Isilon) is approximately 
91% of the network throughput (NFS). This exactly matches our prediction of the cache hit rate. 

External Network Throughput Rate 

 

Figure 11: External network throughput rate (from Isilon to DGX-1 server) during training with large images. The rate is 
approximately 160 Gbps (20 GB/sec) 
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Disk Throughput Rate 

 

Figure 12: Isilon SSD throughput rate during training with large images. The rate is approximately 145 Gbps (18 GB/sec) 

Training with 4 Isilon H500 Hybrid Nodes 

In this variation, a single DGX-1 server was connected to an Isilon cluster composed of four Isilon F800 all-flash nodes 
and four Isilon H500 hybrid nodes. First a ResNet50 training benchmark was executed with the data on the F800 tier. 
Then a SmartPools job was executed to move the ImageNet data to the H500 tier and the training benchmark was 
executed again. The images per second rate was the same in both benchmark runs. This is not surprising since there 
were only 8 GPUs which demanded a total of 700 MB/sec. An Isilon chassis with four H500 nodes has 60 SATA drives 
and can deliver up to 5 GB/sec and saturate up to 56 GPUs (14 C4140 nodes with 4-GPUs each or 7 DGX-1 nodes). 
Bottom-line: an H500 is a perfectly viable option for large scale deep learning, despite the general perception in 
the industry that all-flash storage is required for Deep Learning. 

UNDERSTANDING FILE CACHING 

There are several caches related to NFS and Isilon storage. 

Isilon Cache 

An Isilon cluster has L1 and L2 cache which utilize the RAM on each Isilon node. Some Isilon models also have an L3 
cache. The L3 cache system will store frequently-used data on the SSDs within each Isilon node, avoiding I/O  
to slower HDDs. The F800 all-flash array does not have L3 cache as all data  
is on SSDs. 

Linux Buffer Cache 

A DGX-1 server, like other Linux-based hosts, has a buffer cache. The Linux buffer cache uses RAM that is otherwise 
unused to store recently used file blocks that were read from, or written to, local disks or NFS filesystems such as Isilon. 
There is generally no need to tune the Linux buffer cache and it is enabled by default on all modern versions of Linux. It 
will automatically grow as more data is read from disks (local and NFS) and it will be released when applications need 
additional RAM. 

Linux NFS File System Cache 

When enabled, the Linux NFS File System Cache uses the local disk to cache NFS files. In the solution described in this 
document (including all benchmarking), File System Cache is not used. In some cases, such as when using a slow NFS 
server, it may help to enable the File System Cache and point it to a local SSD. It is disabled by default. It can be enabled 
by settings the fsc mount option and starting cachefilesd. 

UNDERSTANDING THE TRAINING PIPELINE 

To tune the performance of the training pipeline, it is helpful to understand the key parts of the pipeline shown in Figure 
13. 
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Figure 13: Training pipeline 

1. Preprocessing 

a. (CPU) Read TFRecord files from disk. This may require NFS I/O to the storage system or it may be 
served by the Linux buffer cache in RAM. 

b. (CPU) Parse the TFRecord file into individual records and fields. The JPEG-encoded image is in one 
of these fields. 

c. (CPU) The JPEG is cropped and decoded. We now have an uncompressed RGB image. This is 
generally the most CPU-intensive step and can become a bottleneck in certain cases. 

d. (CPU) The cropped image is resized to 299x299 (Inception only) or 224x224 (all other models). 

e. (CPU) The image is randomly flipped horizontally or vertically. 

f. (CPU) If distortions are enabled, the image brightness is randomly adjusted. Note that distortions were 
disabled for all benchmarks described in this document. 

g. (CPU and GPU) The image is copied from the CPU RAM to the GPU RAM. 

2. Forward and Backward Pass 

a. (GPU) Run the image through the model’s forward pass (evaluate loss function) and backward pass 
(back propagation) to calculate the gradient.  

3. Optimization 

a. (GPU) All GPUs across all nodes exchange and combine their gradients through the network using the 
All Reduce algorithm. In this solution, the communication is accelerated using NCCL and NVLink 
technology, allowing the GPUs to communicate through the Ethernet network, bypassing the CPU  
and PCIe buses. 

b. (GPU) The model parameters are updated based on the combined gradients and the optimization 
algorithm (gradient descent). 

c. Repeat until the desired accuracy (or another metric) is achieved. 

All the steps above are done concurrently. For example, one CPU thread is reading a TFRecord file, while another is 
performing JPEG decoding on a file that was read several milliseconds prior, and this occurs while the GPU is calculating 
gradients on images that were resized several milliseconds ago. Additionally, there is batching and buffering at various 
stages to optimize the performance. As you can see, the preprocessing pipeline is completely handled by the CPUs on 
the DGX-1 server. 

FLOATING POINT PRECISION (FP16 VS. FP32) 

The NVIDIA Tesla V100 GPU contains a new type of processing core called Tensor Core which supports mixed precision 
training. Although many high-performance computing (HPC) applications require high precision computation with FP32 
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(32-bit floating point) or FP64 (64-bit floating point), DL researchers have found they are able to achieve the same 
inference accuracy with FP16 (16-bit floating point) as can be had with FP32. In this document, mixed precision training 
which includes FP16 and FP32 representations is denoted as “FP16” training. 

Although FP16 makes training faster, it requires extra work in the neural network model implementation to match the 
accuracy achieved with FP32. This is because some neural networks require their gradient values to be shifted into FP16 
representable range and may do some scaling and normalization to use FP16 during training. For more details, please 
refer to NVIDIA mixed precision training. 

All benchmark results in this document were obtained using FP16. 

NVIDIA COLLECTIVE COMMUNICATION LIBRARY (NCCL) 

There are two significant types of network traffic when performing training. First, there is the NFS traffic required to read 
the images (TFRecord files). This uses standard TCP/IP on Ethernet. Second, the gradient (the derivative of the loss 
function with respect to each parameter) calculated on each GPU must be averaged with the gradient from all other GPUs 
and the resulting average gradient must be distributed to all GPUs. This is performed optimally using the MPI All Reduce 
algorithm. See Figure 14 below, which optimally calculates the sum of values from all nodes (top) and stores the sum on 
all nodes (bottom). 

 

Figure 14: The All Reduce algorithm. 

NCCL provides fast collectives (such as All Reduce) over multiple GPUs both within and across nodes. It supports a 
variety of interconnect technologies including PCIe, NVLink technology, InfiniBand Verbs, and IP sockets. NCCL also 
automatically patterns its communication strategy to match the system’s underlying GPU interconnect topology. When 
configured properly on the DGX-1 server, NCCL allows GPUs in different nodes to communicate with each other through 
the PCIe switch, NIC, and the Ethernet switch, bypassing the CPU and the main system memory. This logic is visualized 
below in Figure 15. Note: The corners of the mesh-connected faces of the cube are connected to the PCIe tree network, 
which also connects to the CPUs and NICs. 
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Figure 15: DGX-1 server uses an 8-GPU hybrid cube-mesh interconnection network topology. 

The mpirun parameters below will configure NCCL to use the four RoCE-enabled NICs (mlx5_0 through mlx5_3). 

-x NCCL_DEBUG=INFO \ 

-x NCCL_IB_HCA=mlx5 \ 

-x NCCL_IB_SL=4 \ 

-x NCCL_IB_GID_INDEX=3 \ 

-x NCCL_NET_GDR_READ=1 \ 

-x NCCL_SOCKET_IFNAME=^docker0 \ 

 

To confirm that NCCL is optimally configured, carefully review the log messages of the training job and confirm that there 
are lines with “x -> x via NET/IB/x/GDRDMA”. For example: 

DGX1-1:1626:1760 [0] NCCL INFO CUDA Dev 0, IB Ports : mlx5_3/1(SOC) mlx5_2/1(SOC) 

mlx5_1/1(PHB) mlx5_0/1(PIX)  

DGX1-1:1627:1763   [1]   NCCL INFO comm 0x7f7db8539180 rank 1 nranks 4 

DGX1-1:1627:1763   [1]   NCCL INFO NET : Using interface enp132s0:10.55.66. 231<0> 

DGX1-1:1627:1763   [1]   NCCL INFO NET/Socket : 1 interfaces found 

DGX1-1:1627:1763   [1]   NCCL INFO CUDA Dev 1, IB Ports : mlx5_3/1(SOC) mlx5_2/1(SOC) 

mlx5_1/1(PHB) mlx5_0/1(PIX) 

DGX1-1:1626:1760   [0]   NCCL INFO 3 -> 0 via NET/IB/3/GDRDMA 

DGX1-1:1626:1760   [0]   NCCL INFO Ring 00 : 0[0] -> 1[1] via P2P/IPC 

DGX1-1:1627:1763   [1]   NCCL INFO Net: enabling net device 3 to read from rank 1 

DGX1-1:1627:1763   [1]   NCCL INFO NCCL_IB_GID_INDEX set by environment to 3. 

DGX1-1:1627:1763   [1]   NCCL INFO NET/IB: Dev 3 Port 1 qpn 687 mtu 5 GID 3 (0/ 

E705370AFFFF0000) 

 

Deep learning inference performance and analysis 

BENCHMARK METHODOLOGY 

In this section, the same methodology is used as in the previous training section except that the forward_only parameter is 
added. This configures the benchmark to perform the same preprocessing and forward pass (inference) as during 
training. However, the forward-only mode skips the backward pass (back propagation). Forward-only mode avoids the 
calculation and communication of the gradient. For each image, there is less work for the GPU and network to perform. 
Therefore, forward-only mode can always run at a faster image rate than training mode. 
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Another important difference between the two modes is that in training mode, all threads must synchronize after each 
batch because they must communicate their gradients. This is why the optimization method is sometimes called 
synchronous stochastic gradient descent. (Although there are multiple asynchronous optimization methods they are not 
used as a part this document). In forward-only mode, synchronization does not occur. This generally results in some 
threads going consistently faster than others because there is no mechanism to ensure a uniform speed. 

The CNN benchmark in the TensorFlow Benchmarks suite runs the forward-only mode using Horovod (which uses MPI) 
to launch an inference process for each GPU on each server. Once launched however, there is no synchronization of the 
processes. When a process completes a pre-determined number of steps, it prints out the average rate obtained by just 
that process. For example, when running with 72 GPUs, there would be 72 reports for the average image/sec rate. The 
first reported rate would always be the fastest because it completed the same number of images in the shortest time. 
However, this value is not the average rate of all processes because the other 71 processes are still running. The last 
reported rate would always be the slowest. However, this is also not an accurate measurement because the concurrency 
will have varied from 72 to 1. In fact, because of the variance in the concurrency, none of the reported rates, nor an 
aggregation of them, can provide an estimate of the expected long-term images/sec rate. 

To work around this limitation, a slightly different test was performed. The num_batches parameter was set to 50,000 
preventing even the fastest thread from completing. After 15 minutes, the average storage throughput was measured to 
be 11,825 MB/sec (for 72 GPUs). From this, the average images/sec was calculated by dividing by the average image 
size (115 KB/image). Unfortunately, this methodology does not easily allow one to measure the image/sec rate when the 
data is in the Linux Cache. However, it was observed that the GPU utilization (68%) and CPU utilization (78%) were 
identical whether the data came from Isilon or from the Linux cache, suggesting that there was no measurable slow down 
caused by using Isilon. 

The benchmark results in this section were obtained with only four Isilon F800 nodes in the cluster. The other four nodes 
were SmartFailed. 

BENCHMARK RESULTS 

 

Figure 16: Inference using four Isilon F800 nodes 

There are a few conclusions that we can make from the benchmarks represented above in Figure 18. 

• Image throughput and therefore storage throughput scale linearly from 32 to 72 GPUs. 

• The maximum throughput that was pulled from Isilon occurred with ResNet-50 and 72 GPUs. The total storage 
throughput was 11,825 MB/sec. 

• GPU utilization was 68% and CPU utilization was 78%. 

• Despite the reported CPU utilization of only 78%, it is believed that the bottleneck is related to the CPU Despite the 

reported CPU utilization of only 78%, it is believed that the bottleneck is related to the CPU on the DGX-1 server. 

This is based on the observations that the GPU utilization is only 68%, the same performance is observed when 
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using Linux Cache instead of Isilon, and when tests are run with only four GPUs/node, the images/sec/GPU rate 

increases significantly. 

Storage-only performance 

To understand the limits of Isilon when used with TensorFlow, a TensorFlow application was created 
(storage_benchmark_tensorflow.py) that only reads the TFRecord files (the same ones that were used for training and 
inference). No preprocessing nor GPU computation is performed. The only work performed is counting the number of 
bytes in each TFRecord. There is no synchronization between processes during this testing, so some processes may 
read faster than others. The result of this benchmark is shown below. 

 

 

Figure 17: Maximum read throughput from eight Isilon F800 nodes with a trivial asychronous workload. 
 

There is linear scaling from one to two DGX-1 servers, but it clearly tops out at 26.5 GB/sec at three nodes. In this 
solution consisting of eight Isilon F800 nodes, this is the upper limit of an asynchronous TensorFlow application such as 
one performing inference. 

Synchronous reading, in which all processes synchronize with each other after each step (as when training), are generally 
slower than the asynchronous reading shown above. The storage benchmark used above was not used for synchronous 
reading benchmarking. However, for a lower limit, we can use the throughput of 20 GB/sec obtained in the Large Image 
Training section. 

As Isilon has been demonstrated to scale to 144 nodes, additional throughput can be obtained simply by adding Isilon 
nodes. 
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Machine Learning with RAPIDS 

The RAPIDS suite of software libraries can accelerate some machine learning algorithms and analytics pipelines. Like 
TensorFlow, it uses NVIDIA GPUs for acceleration. RAPIDS requires CUDA 9.2 or 10.0 so you must ensure that the 
NVIDIA driver on the host supports this. 
Below shows the steps to run a simple RAPIDS benchmark using the mortgage demo, which uses a 195 GB dataset 
(uncompressed) 

mkdir -p /mnt/isilon/data/mortgage 

cd /mnt/isilon/data/mortgage   

 

wget http://rapidsai-data.s3-website.us-east-2.amazonaws.com/notebook-mortgage-

data/mortgage_2000-2016.tgz 

tar -xzvf mortgage_2000-2016.tgz   

   

docker run --runtime=nvidia \ 

-it \ 

-p 8888:8888 \ 

-p 8787:8787 \ 

-p 8786:8786 \ 

-v /mnt:/mnt \ 

--name rapidsai \ 

nvcr.io/nvidia/rapidsai/rapidsai:0.5-cuda10.0-runtime-ubuntu18.04-gcc7-py3.7  

 

jupyter@12b8e8800eef:/rapids/notebooks$ 

source activate rapids 

   

(rapids) jupyter@12b8e8800eef:/rapids/notebooks$ 

bash utils/start-jupyter.sh 

Open your browser to http://host:8888/. 
Open the notebook mortgage/E2E.ipynb. 
Change acq_data_path to "/mnt/isilon/data/mortgage/acq". Change other paths in same way. 
For a quick test, change end_year to 2000 and part_count to 1. For a benchmark, leave these at the default of 2016 and 
16. 
From the menu, click Kernel -> Restart Kernel and Run All Cells. 
Record the time elapsed for following cells: 

• ETL (cell 17) 

• Load into GPUs (cell 21) 

• Training (cell 22) 

To provide an idea of how long several key phases took to run, the following elapsed times were obtained on a single 
DGX-1 server connected to a 4-node Isilon F800 cluster. 

Phase Notebook Cell Elapsed Time 

ETL 17 1min 39s 

Load into GPUs 21 2min 3s 

Training 22 1min 35s 

Solution sizing guidance 

DL workloads vary significantly with respect to the demand for compute, memory, disk and IO profiles, often by orders of 
magnitude. Sizing guidance for the GPU quantity and configuration of Isilon nodes can only be provided when these 
resource requirements are known in advance. That said, it’s usually beneficial to have a few data points on the ratio of 
GPUs per Isilon node for common image classification benchmarks. 

The following results in Table 3 show a few such data points: 

Storage 
Performance 
Demanded 

Benchmark Required Storage 
Throughput per 
V100 GPU 
(MB/sec/GPU) 

V100 GPUs per 
Isilon Node 

F800 H500 
Low Training, Small Images, ResNet-50 90 27 7 

https://rapids.ai/
https://docs.rapids.ai/containers/rapids-demo
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Medium Inference, Small Images, ResNet-50 160 20 5 
High Training, Large Images, Inception-v4 300 9 2 

Table 3: Sizing consideration based on benchmarked workloads 

To illustrate, training of ResNet-50 with small images and 72 GPUs would need a storage system that can read 72 * 80 = 
5760 MB/sec which can be handled by 2.4 Isilon nodes. As another example, training of Inception-v4 with large images 
and 72 GPUs would need 72 * 300 = 21,600 MB/sec which can be handled by eight Isilon nodes. 

For DL workloads and datasets that require a greater ratio of capacity to throughput or capacity to price than what the 
F800 provides, the Isilon H500 hybrid storage platform may be a good choice. Per node, the H500 delivers about 25-33% 
of the throughput of the F800 for sequential reads. A cluster may contain exclusively H500 nodes, two tiers including F800 
and H500 nodes, or a variety of other combinations to suit your specific workload and datasets. In Table 3, the H500 
sizing information is based on general NFS benchmarks. The H500 has not been tested at scale with the specific DL 
workloads described in this document. 

The above data points do not account for node failure, drive failure, network failure, administrative jobs, or any other 
concurrent workloads supported by Isilon. The ideal ratio of number of GPUs per Isilon node will vary from the above data 
points based on several factors: 

• DL algorithms are diverse and don’t necessarily have the same infrastructure demands as the benchmarks listed 
above. 

• Characteristics and size of the data sets will be different from the data sets described in this document and used to 
generate the above data points. 

• Accounting for node/drive/network failures, admin jobs or other workloads accessing Isilon simultaneously. 

An understanding of the I/O throughput demanded per GPU for the specific workload and the total storage capacity 
requirements can help provide better guidance on Isilon node count and configuration. It is recommended to reach out to 
the Dell EMC account and SME teams to provide this guidance for the specific DL workload, throughput and storage 
requirements. 

Conclusions 

This document discussed key features of Isilon that make it a powerful persistent storage for DL solutions. We presented 
a high-performance architecture for DL by combining NVIDIA DGX-1 servers with Tesla V100 GPUs and Dell EMC Isilon 
F800 All-Flash NAS storage. This new reference architecture extends the commitment that Dell EMC and NVIDIA have to 
making AI simple and accessible to every organization with our unmatched set of joint offerings. Together we offer our 
customers informed choice and flexibility in how they deploy high-performance DL at scale. 

To validate this architecture, we ran several image classification benchmarks and reported system performance based on 
the rate of images processed and throughput profile of IO to disk. We also monitored and reported the CPU,  
GPU utilization and memory statistics that demonstrated that the server, GPU and memory resources were fully utilized 
while IO was not fully saturated. Throughout the benchmarks we validated that the Isilon All-Flash F800 storage was able 
to keep pace and linearly scale performance with NVIDIA’s DGX-1 servers. 

It is important to point out that DL algorithms have a diverse set of requirements with various compute, memory, IO, and 
disk capacity profiles. That said, the architecture and the performance data points presented in this whitepaper can be 
utilized as the starting point for building DL solutions tailored to varied set of resource requirements. More importantly, all 
the components of this architecture are linearly scalable and can be independently expanded to provide DL solutions that 
can manage 10s of PBs of data. 

While the solution presented here provides several performance data points and speaks to the effectiveness of Isilon in 
handling large scale DL workloads, there are several other operational benefits of persisting data for DL on Isilon: 

• The ability to run AI in-place on data using multi-protocol access 

• Enterprise grade features out-of-box 

• Seamlessly tier to more cost effective nodes and/or to scale up to 58 PB per cluster 

In summary, Isilon-based DL solutions deliver the capacity, performance, and high concurrency to eliminate the IO 
storage bottlenecks for AI. This provides a rock-solid foundation for large scale, enterprise-grade DL solutions with a 
future proof scale-out architecture that meets your AI needs of today and scales for the future. 
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Appendix – System configuration 

ISILON 

Configuration 

The Isilon cluster configuration is simple yet it provides excellent performance. 

There are three subnets, each with one pool. One subnet is for 40gige-1 on all nodes, another for 40gige-2, and the final 
one for mgmt-1. In total, sixteen (16) 40 GbE ports are used in the Isilon cluster. 

# isi network interfaces list 

LNN  Name     Status  Owners                   IP Addresses  

------------------------------------------------------------ 

1    40gige-1 Up      groupnet0.subnet66.pool0 10.55.66.211  

1    40gige-2 Up      groupnet0.subnet5.pool0  10.55.5.211   

1    mgmt-1   Up      groupnet0.subnet0.pool0  10.55.67.211  

2    40gige-1 Up      groupnet0.subnet66.pool0 10.55.66.212  

2    40gige-2 Up      groupnet0.subnet5.pool0  10.55.5.212   

2    mgmt-1   Up      groupnet0.subnet0.pool0  10.55.67.212  

3    40gige-1 Up      groupnet0.subnet66.pool0 10.55.66.213  

3    40gige-2 Up      groupnet0.subnet5.pool0  10.55.5.213   

3    mgmt-1   Up      groupnet0.subnet0.pool0  10.55.67.213  

4    40gige-1 Up      groupnet0.subnet66.pool0 10.55.66.214  

4    40gige-2 Up      groupnet0.subnet5.pool0  10.55.5.214   

4    mgmt-1   Up      groupnet0.subnet0.pool0  10.55.67.214  

5    40gige-1 Up      groupnet0.subnet66.pool0 10.55.66.215  

5    40gige-2 Up      groupnet0.subnet5.pool0  10.55.5.215   

5    mgmt-1   Up      groupnet0.subnet0.pool0  10.55.67.215  

6    40gige-1 Up      groupnet0.subnet66.pool0 10.55.66.216  

6    40gige-2 Up      groupnet0.subnet5.pool0  10.55.5.216   

6    mgmt-1   Up      groupnet0.subnet0.pool0  10.55.67.216  

7    40gige-1 Up      groupnet0.subnet66.pool0 10.55.66.217  

7    40gige-2 Up      groupnet0.subnet5.pool0  10.55.5.217   

7    mgmt-1   Up      groupnet0.subnet0.pool0  10.55.67.217  

8    40gige-1 Up      groupnet0.subnet66.pool0 10.55.66.218  

8    40gige-2 Up      groupnet0.subnet5.pool0  10.55.5.218   

8    mgmt-1   Up      groupnet0.subnet0.pool0  10.55.67.218  

------------------------------------------------------------ 

Total: 24 

To have high availability in the event of an Isilon node failure, using the dynamic IP allocation method is recommended. 
This will ensure that all IP addresses in the pool are always available. Refer to the OneFS Best Practices document for 
details. 

Configuring Automatic Storage Tiering 

This section explains one method of configuring storage tiering for a typical DL workload. The various parameters should 
be changed according to the expected workload. 

1. Build an Isilon cluster with two or more node types. For example, F800 all-flash nodes for a hot tier and H500 
hybrid nodes for a cold tier. 

2. Obtain and install the Isilon SmartPools license. 

3. Enable Isilon access time tracking with a precision of 1 day. In the web administration interface, click File System 
→ File System Settings. Alternatively, enter the following in the Isilon CLI: 
isilon-1# sysctl efs.bam.atime_enabled=1 

isilon-1# sysctl efs.bam.atime_grace_period=86400000 

4. Create a tier named hot-tier that includes the F800 node pool. Create a tier named cold-tier that includes the H500 
node pool. 

https://www.emc.com/collateral/white-papers/h16857-wp-onefs-best-practices.pdf
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5. Edit the default file pool policy to change the storage target to hot-tier. This will ensure that all files are placed on 
the F800 nodes unless another file pool policy applies that overrides the storage target.
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6. Create a new file pool policy to move all files that have not been accessed for 30 days to the H500 (cold) tier. 
 

 

Testing Automatic Storage Tiering 

7. Start the Isilon SmartPools job and wait for it to complete. This will apply the above file pool policy and move all 
files to the F800 nodes (assuming that all files have been accessed within the last 30 days). 
isilon-1# isi job jobs start SmartPools 

isilon-1# isi status 

8. Use the isi get command to confirm that a file is stored in the hot tier. Note that first number in each element of the 
inode list (1, 2, and 3 below) is the Isilon node number that contains blocks of the file. For example: 
isilon-1# isi get -D /ifs/data/imagenet-scratch/tfrecords/train-00000-of-01024 

* IFS inode: [ 1,0,1606656:512, 2,2,1372672:512, 3,0,1338880:512 ] 

*  Disk pools:         policy hot-tier(5) -> data target f800_48tb-ssd_256gb:2(2), 

metadata target f800_48tb-ssd_256gb:2(2) 

9. Use the ls command to view the access time. 
isilon-1# ls -lu /ifs/data/imagenet-scratch/tfrecords/train-00000-of-01024 

-rwx------    1 1000  1000  762460160 Jan 16 19:32 train-00000-of-01024 

10. Instead of waiting for 30 days, you may manually update the access time of the files using the touch command. 
isilon-1# touch -a -d '2018-01-01T00:00:00' /ifs/data/imagenet-scratch/tfrecords/* 

isilon-1# ls -lu /ifs/data/imagenet-scratch/tfrecords/train-00000-of-01024 

-rwx------    1 1000  1000  762460160 Jan  1  2018 train-00000-of-01024 

11. Start the Isilon SmartPools job and wait for it to complete. This will apply the above file pool policy and move the 
files to the H500 nodes. 
isilon-1# isi job jobs start SmartPools 

isilon-1# isi status 

12. Use the isi get command to confirm that the file is stored in the cold tier.  
isilon-1# isi get -D /ifs/data/imagenet-scratch/tfrecords/train-00000-of-01024 

* IFS inode: [ 4,0,1061376:512, 5,1,1145344:512, 6,3,914944:512 ] 

*  Disk pools:         policy cold-tier(9) -> data target h500_60tb_3.2tb-

ssd_128gb:15(15), metadata target h500_60tb_3.2tb-ssd_128gb:15(15) 
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13. Run the training benchmark as described in the previous section. Be sure to run at least 4 epochs so that all 
TFRecords are accessed. Monitor the Isilon cluster to ensure that disk activity occurs only on the H500 nodes. 
Note that since the files will be read, this will update the access time to the current time. When the SmartPools job 
runs next, these files will be moved back to the F800 tier. By default, the SmartPool job runs daily at 22:00. 

14. Start the Isilon SmartPools job and wait for it to complete. This will apply the above file pool policy and move the 
files to the F800 nodes. 
isilon-1# isi job jobs start SmartPools 

isilon-1# isi status 

15. Use the isi get command to confirm that the file is stored in the hot tier. 
isilon-1# isi get -D /ifs/data/imagenet-scratch/tfrecords/train-00000-of-01024 

* IFS inode: [ 1,0,1606656:512, 2,2,1372672:512, 3,0,1338880:512 ] 

*  Disk pools:         policy hot-tier(5) -> data target f800_48tb-ssd_256gb:2(2), 

metadata target f800_48tb-ssd_256gb:2(2) 

NVIDIA DGX-1 

All four NICs on the DGX-1 server should be connected to allow direct communication between the GPUs on different 
DGX-1 servers, avoiding the PCIe bus and the CPU. This provides the best performance. 

Follow the DGX-1 server administrator’s manual to configure the NICs to use Ethernet instead of InfiniBand. Use the 
commands below to confirm that they are configured correctly. 

root@DGX1-1:~# ibdev2netdev 

mlx5_0 port 1 ==> enp5s0 (Up) 

mlx5_1 port 1 ==> enp12s0 (Up) 

mlx5_2 port 1 ==> enp132s0 (Up) 

mlx5_3 port 1 ==> enp139s0 (Up) 

 

root@DGX1-1:~ # ibv_devinfo 

hca_id: mlx5_3 

 transport:    InfiniBand (0) 

 fw_ver:    12.18.1000 

 node_guid:    506b:4b03:00f5:cef4 

 sys_image_guid:   506b:4b03:00f5:cef4 

 vendor_id:    0x02c9 

 vendor_part_id:   4115 

 hw_ver:    0x0 

 board_id:    MT_2180110032 

 phys_port_cnt:   1 

 Device ports: 

  port: 1 

   state:  PORT_ACTIVE (4) 

   max_mtu:  4096 (5) 

   active_mtu:  4096 (5) 

   sm_lid:  0 

   port_lid:  0 

   port_lmc:  0x00 

   link_layer:  Ethernet 

Below is an example of the file /etc/network/interfaces. 

auto lo 

iface lo inet loopback 

 

auto enp5s0 

iface enp5s0 inet static 

address 10.55.5.231 

netmask 255.255.255.0 

mtu 9000 

 

auto enp12s0 

iface enp12s0 inet static 
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address 10.55.12.232 

netmask 255.255.255.0 

mtu 9000 

 

auto enp132s0 

iface enp132s0 inet static 

address 10.55.66.231 

netmask 255.255.255.0 

gateway 10.55.66.1 

dns-nameservers 8.8.8.8 

mtu 9000 

 

auto enp139s0 

iface enp139s0 inet static 

address 10.55.139.234 

netmask 255.255.255.0 

mtu 9000 

Below is an example of the file /etc/hosts. 

127.0.0.1 localhost 

127.0.1.1  DGX1-1 

10.55.66.231  DGX1-1 

10.55.66.235  DGX1-2 

10.55.66.239  DGX1-3 

10.55.66.243  DGX1-4 

10.55.66.247  DGX1-5 

10.55.66.251  DGX1-6 

10.55.66.155  DGX1-7 

10.55.66.159  DGX1-8 

10.55.66.163  DGX1-9 

ARISTA DATA SWITCHES 

The 100G switch configuration is also very simple. Although we have defined four layer 3 subnets, we do not need to 
separate the traffic into different VLANs for a network as small as this one. 

All ports to the DGX-1 servers plus the inter-switch ports should be running at 100G (100GBASE-SR4). All ports to the 
Isilon nodes should be running at 40G (40GBASE-SR4). 

Below are the most important configuration commands. 

transceiver qsfp default-mode 4x10G 

spanning-tree mode mstp 

interface Port-Channel10 

interface Ethernet31/1 

channel-group 10 mode active 

interface Ethernet32/1 

channel-group 10 mode active 

ip route 0.0.0.0/0 10.55.67.1 

ip routing 

ISILON VOLUME MOUNTING 

Isilon is used for two types of file storage. First, it is used for scripts, binaries, and logs. This requires low bandwidth and 
must support NFS locks for consistency and proper visibility of changes. This generally uses the default mount options 
and is mounted with: 

mount -t nfs 10.55.66.211:/ifs /mnt/isilon 

Next, there is the data that will be read or written at high speed. To ensure an even balance of traffic across both 40 Gbps 
interfaces on each Isilon node and across two of the four interfaces on each DGX-1 server, we’ll want to carefully create 
several mounts explicitly to the IP addresses of several Isilon nodes. 

As an example, the commands below can be run on each DGX-1 server to mount to each of the 16 Isilon interfaces. 
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mount -t nfs 10.55.66.211:/ifs \ 

rsize=524288,wsize=524288,nolock /mnt/isilon1 

mount -t nfs 10.55.66.212:/ifs \ 

rsize=524288,wsize=524288,nolock /mnt/isilon2 

... 

mount -t nfs 10.55.5.211:/ifs \ 

rsize=524288,wsize=524288,nolock /mnt/isilon9 

... 

mount -t nfs 10.55.5.218:/ifs \ 

rsize=524288,wsize=524288,nolock /mnt/isilon16 

Note that since training is purely a read workload, it is safe to add the nolock parameter to the mounts that contain the 
input data. In some cases, this can improve performance. 

If you are using the recommend dynamic IP allocation policy in the Isilon IP address pool, all IP addresses will remain 
accessible, even in the event of an Isilon node failure. 

In such a mounting scheme, you must ensure that the application evenly uses the data in the 16 mount points. This can 
be easily accomplished with a script like round_robin_mpi.py which uses the rank of the MPI process to select a mount 
point. 

As a simple but less effective alternative, you may mount /mnt/isilon1 to a different Isilon interface on each DGX-1 server, 
but this may result in a sub-optimal balance of traffic. Also, it has been observed that a single NFS mount can read about 
2500 MB/sec which is only half of the 40 Gbps front-end Ethernet links on the Isilon nodes. Therefore, it is best to have at 
least two mounts per Isilon interface. 

Note that different mounts do not share the Linux buffer cache. If your dataset is small enough to fit in the DGX-1 server 
RAM, consider using fewer mounts to allow your entire dataset to be cached. 

Appendix – Benchmark setup 

This section uses several Bash and Python scripts that are available at 

https://github.com/claudiofahey/tensorflow-benchmark-util. 

CREATING THE IMAGENET TFRECORD DATASETS 

To run the TensorFlow Benchmarks suite, the standard 148 GB ImageNet TFRecord dataset was created based on the 
documentation at https://github.com/tensorflow/models/tree/master/research/inception#getting-started. 

To create the 22.2 TB dataset, consisting of 150 copies of the above, the script expand_records.sh was used. To create the 
22.5 TB dataset, consisting of larger resized images, the script resize_tfrecords.sh was used to resize the images and then 
the resulting dataset was copied 13 times using expand_records2.sh. 

OBTAIN THE TENSORFLOW BENCHMARKS 

The TensorFlow Benchmark suite can be obtained from the following Git repository. 

cd /mnt/isilon/data 

git clone https://github.com/claudiofahey/benchmarks tensorflow-benchmarks 

cd tensorflow-benchmarks 

git checkout 6cdfc0c  

Note that the commit above differs from the official repository in only one significant way. It removes an unnecessary file 
name wildcard globbing step which has a huge performance impact when the number of TFRecord files exceeds 10,000. 
See https://github.com/claudiofahey/benchmarks/commit/6cdfc0c.  

To allow the TensorFlow Benchmarks to be modified quickly, the scripts are not included (burned in) to the Docker image. 

START TENSORFLOW CONTAINERS 

In a basic bare-metal deployment of TensorFlow and MPI, all software must be installed on each node. MPI then uses 
SSH to connect to each node to start the TensorFlow application processes. 

In the world of Docker containers, this becomes a bit more complex but significantly easier to manage dependencies. On 
each DGX-1 server, a single Docker container is launched which has an SSH daemon that listens on the custom port 
2222. This Docker container also has TensorFlow, OpenMPI, and NVIDIA libraries and tools. We can then docker exec 

https://github.com/claudiofahey/tensorflow-benchmark-util
https://github.com/tensorflow/models/tree/master/research/inception%23getting-started
https://github.com/claudiofahey/benchmarks/commit/6cdfc0c
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the mpirun command on one of these containers and MPI will connect to the Docker containers on all other DGX-1 
servers via SSH on port 2222. 

First, a custom Docker image is created using the following Dockerfile. 

FROM nvcr.io/nvidia/tensorflow:18.09-py3 

 

# Install SSH. 

RUN apt-get update && apt-get install -y --no-install-recommends \ 

openssh-client \ 

openssh-server \ 

&& \ 

rm -rf /var/lib/apt/lists/* 

# Configure SSHD for MPI. 

RUN mkdir -p /var/run/sshd && \ 

mkdir -p /root/.ssh && \ 

echo “StrictHostKeyChecking no” >> /etc/ssh/ssh_config && \ 

echo “UserKnownHostsFile /dev/null” >> /etc/ssh/ssh_config && \ 

sed -i ‘s/^Port 22/Port 2222/’ /etc/ssh/sshd_config && \ 

echo “HOST *” >> /root/.ssh/config && \ 

echo “PORT 2222” >> /root/.ssh/config && \ 

mkdir -p /root/.ssh && \ 

ssh-keygen -t rsa -b 4096 -f /root/.ssh/id_rsa -N “” && \ 

cp /root/.ssh/id_rsa.pub /root/.ssh/authorized_keys && \ 

chmod 700 /root/.ssh && \ 

chmod 600 /root/.ssh/* 

 

EXPOSE 2222 

As you can see, this Dockerfile is based on the NVIDIA GPU Cloud (NGC) TensorFlow image. You must create an 
account on NGC (there is no charge for this account) and configure Docker to login using this account using the docker 

login nvcr.io command. 

Once logged in, run the following command to build the Docker image. Replace user with your NGC ID, Docker ID, or 
host:port if you are using an on-premise container registry. 

docker build -t user/tensorflow:18.09-py3-custom. 

Note that during the build process, a new RSA key pair is randomly generated and stored in the image. This key pair 
allows containers running this image to SSH into each other. Although this is convenient for a lab environment, a 
production environment should never store private keys in an image. 

Next, you must push this image to a Docker container registry so that it can be pulled from all other DGX-1 servers. You 
can use an NGC private repository, Docker Hub, or your own private on-premise container registry. To run an unsecure 
on-premise registry, refer to https://docs.docker.com/registry/and https://docs.docker.com/registry/insecure/. 

Once logged in to your container registry, run the following command to upload the container. 

docker push user/tensorflow:18.09-py3-custom. 

You are now ready to start the containers on all DGX-1 servers. Repeat this command for each DGX-1 server, replacing 
host with the server name. 

ssh host \ 

nvidia-docker \ 

run \ 

--rm \ 

--detach \ 

--privileged \ 

-v /mnt:/mnt \ 

--network=host \ 

--shm-size=1g \ 

--ulimit memlock=-1 \ 

--ulimit stack=67108864 \ 

--name tf \ 

https://ngc.nvidia.com/catalog/containers/nvidia%2Ftensorflow
https://ngc.nvidia.com/catalog/containers/nvidia%2Ftensorflow
https://docs.docker.com/registry/
https://docs.docker.com/registry/insecure/
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user/tensorflow:18.09-py3-custom \ 

bash -c \ 

“/usr/sbin/sshd ; sleep infinity” 

The above command uses nvidia-docker which is like the docker command except that it allows the container to directly 
access the GPUs on the host. The final line starts the SSH daemon and waits forever. At this point, the container can be 
accessed by MPI via the SSH daemon listening on port 2222. 

Choose any one of the DGX-1 servers as the primary node and enter the container by running the following command. 
This will give you a bash prompt within the container. 

docker exec -it tf bash 

Confirm that this container can connect to all other containers via password-less SSH on port 2222. 

ssh dgx1-1 hostname 

ssh dgx1-2 hostname 

Next, test that MPI can launch processes across all DGX-1 servers. 

mpirun --allow-run-as-root -np 2 -H dgx1-1 -H dgx1-2 hostname 

To stop the containers and all processes within them, run the following command on each DGX-1 server 

docker stop tf 

Note that the script start_containers.sh automates some of these steps. 

Appendix – Monitoring Isilon performance 

INSIGHTIQ 

To monitor and analyze the performance and file system of Isilon storage, the tool InsightIQ can be used. InsightIQ allows 
a user to monitor and analyze Isilon storage cluster activity using standard reports in the InsightIQ web-based application. 
The user can customize these reports to provide information about storage cluster hardware, software, and protocol 
operations. InsightIQ transforms data into visual information that highlights performance outliers, and helps users 
diagnose bottlenecks and optimize workflows. For more details about InsightIQ, refer to the Isilon InsightIQ User Guide. 

ISILON STATISTICS CLI 

For a quick way to investigate the performance of an Isilon cluster when InsightIQ is not available, there is a wealth of 
statistics that are available through the Isilon CLI, which can be accessed using SSH to any Isilon node. 

This first command shows the highest level of statistics. Note that units are in bytes/sec so in the example below Node 1 
is sending (NetOut) 2.9 GB/sec to clients. 

isilon-1# isi statistics system --nodes all --format top 

Node   CPU   SMB FTP HTTP    NFS HDFS  Total   NetIn NetOut DiskIn DiskOut 

 All 72.7%   0.0 0.0  0.0  10.0G  0.0  10.0G  304.4M  10.4G 315.4M   10.8G 

   1 79.2%   0.0 0.0  0.0   2.9G  0.0   2.9G  295.0M   2.9G  70.5M    2.3G 

   2 80.6%   0.0 0.0  0.0   2.7G  0.0   2.7G    3.2M   2.7G  95.5M    2.8G 

   3 71.9%   0.0 0.0  0.0   2.4G  0.0   2.4G    3.4M   2.6G  75.5M    2.8G 

   4 59.2%   0.0 0.0  0.0   2.0G  0.0   2.0G    2.9M   2.1G  73.9M    2.9G 

The following command shows more details related to NFS. All statistics are aggregated over all nodes. 

isilon-1 # isi statistics pstat --format top 

__________________________NFS3 Operations Per Second___________________________ 

access             2.33/s  commit             0.00/s  create             0.75/s 

fsinfo             0.00/s  getattr            2.09/s  link               0.00/s 

lookup             0.99/s  mkdir              0.00/s  mknod              0.00/s 

noop               0.00/s  null               0.00/s  pathconf           0.00/s 

read           18865.24/s  readdir            0.00/s  readdirplus        0.00/s 

readlink           0.00/s  remove             0.00/s  rename             0.75/s 

rmdir              0.00/s  setattr            0.00/s  statfs             0.00/s 

symlink            0.00/s  write              0.75/s 

Total          18872.91/s 

 

https://www.emc.com/collateral/TechnicalDocument/docu65870.pdf
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___CPU Utilization___                                     _____OneFS Stats_____ 

user             1.4%                                     In         73.81 kB/s 

system          72.5%                                     Out         8.96 GB/s 

idle            26.1%                                     Total       8.96 GB/s 

 

____Network Input____        ___Network Output____        ______Disk I/O_______ 

MB/s            12.64        MB/s          9868.11        Disk   272334.03 iops 

Pkt/s       150368.20        Pkt/s      6787182.27        Read       11.73 GB/s 

Errors/s         0.00        Errors/s         0.00        Write      99.63 MB/s 

Appendix – Isilon performance testing with iPerf and FIO 

iPerf is a tool for active measurements of the maximum achievable bandwidth on IP networks. It can be used to validate 
the throughput of the IP network path from an Isilon node to a compute node NIC. It can easily be scripted to run 
concurrently to allow all nodes to send or receive traffic. 

FIO is a disk benchmark tool for Linux. It can be used to easily and quickly produce a storage workload that is nearly 
identical to the TensorFlow benchmark used in this document. 

This section shows how to use iPerf and FIO. 

To begin, on your head node (or first compute node), create a hosts file containing one host name (or IP address) per 
client. For example: 

server1.example.com 

server2.example.com 

IPERF 

Install iPerf on all compute nodes. Note that iPerf is already installed on all Isilon nodes. All versions should match. 

cat hosts | xargs -i -P 0 ssh root@{} yum -y install \ 

iperf-2.0.4-1.el7.rf.x86_64.rpm 

cat hosts | xargs -i -P 0 ssh root@{} pkill -9 iperf 

cat hosts | xargs -i ssh root@{} “iperf --server --daemon \ 

> /dev/null 2>&1 &” 

client_opts=”-t 300 --len 65536 --parallel 2” 

ssh root@isilon-1.example.com iperf -c server1.example.com ${client_opts} & 

ssh root@isilon-2.example.com iperf -c server2.example.com ${client_opts} & 

wait 

To view the aggregate bandwidth, run the following on any Isilon node. 

isi statistics system --format top --nodes all 

FIO 

The procedure below shows how to use FIO to benchmark NFS I/O from multiple clients concurrently. Mount to Isilon. 
Each client will mount to a different Isilon IP address. 

cat hosts | xargs -i -P 0 ssh root@{} mkdir -p /mnt/isilon 

cat hosts | xargs -i -P 0 ssh root@{} umount /mnt/isilon 

ssh root@server1.example.com mount -t nfs 10.1.1.1:/ifs \ 

-o rsize=524288,wsize=524288 /mnt/isilon 

ssh root@server2.example.com mount -t nfs 10.1.1.2:/ifs \ 

-o rsize=524288,wsize=524288 /mnt/isilon 

Install FIO servers. 

cat hosts | xargs -i -P 0 ssh root@{} yum -y install epel-release 

cat hosts | xargs -i -P 0 ssh root@{} yum -y install fio 

cat hosts | xargs -i ssh root@{} fio –version 

Start FIO servers. 

cat hosts | xargs -i ssh root@{} pkill fio 

cat hosts | xargs -i ssh root@{} fio --server --daemonize=/tmp/fio.pid 
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Create a FIO job file shown below, named fio1.job. Set numjobs to the number of GPUs per host. This job file performs 
I/O that is like the TensorFlow CNN benchmark. It creates 30 files per GPU and then reads them sequentially 
concurrently. 

[global] 

name=job1 

directory=/mnt/isilon/tmp/fio 

time_based=1 

runtime=600 

ramp_time=60 

ioengine=libaio 

numjobs=8 

create_serialize=0 

iodepth=32 

kb_base=1000 

[job1] 

rw=read 

nrfiles=30 

size=64GiB 

bs=1024KiB 

direct=1 

sync=0 

rate_iops=83 

Run the FIO job. 

mkdir -p /mnt/isilon/tmp/fio 

fio --client=hosts fio1.job 

Appendix – Collecting system metrics with ELK 

While performing benchmarks on a distributed system such as this, it is valuable to collect and display all relevant metrics 
such as CPU utilization, GPU utilization, memory usage, network I/O, and more. This can be performed with a variety of 
tools. For this document, data was collected using Elasticsearch, Kibana, Metricbeat, and NVIDIA GPU Beat. This suite of 
tools from Elastic is often referred to as the ELK stack, however, Logstash was not used. 

 

Figure 18: A custom Kibana dashboard showing GPU, CPU, and memory utilization. Data is collected by Metricbeat and 
NVIDIA GPU Beat. 

A single-node deployment of Elasticsearch and Kibana can be brought up in a few minutes using the Docker Compose file 
elk/docker-compose.yml in the tensorflow-benchmark-util repository. 

cd tensorflow-benchmark-util/elk 

docker-compose up –d 

https://github.com/claudiofahey/nvidiagpubeat
https://www.elastic.co/
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Next, Metricbeat must be started on all DGX-1 servers. Edit the file metricbeat/hosts to contain the FQDN for all DGX-1 
servers. Edit the file metricbeat/etc/metricbeat/metricbeat.yml to contain the IP address or FQDN for the server running 
Elasticsearch. Then run the script start_metricbeats.sh. This will SSH into each host and start the Metricbeat container. 

For NVIDIA GPU Beat, repeat the above steps but in the nvidiagpubeat directory. Note that the version of NVIDIA GPU 
Beat dated September 25, 2018 has a resource leak that causes resource exhaustion after about 24 hours. Be sure to 
restart the containers every few hours to avoid this. 

Open your browser to port 5601 of the server running Kibana. Import the customized Kibana dashboards and 
visualizations in elk/*kibana.json. Finally, open the dashboard named GPU Dashboard. 

Appendix – Tips 

1. When MPI TensorFlow applications are terminated by the user with Control-C or by application errors, some 
processes may not terminate completely. This may result in subsequent executions getting a GPU out-of-memory 
(OOM) error. This condition can be confirmed by running nvidia-smi and checking the used memory. To fix this, 
simply stop and restart the TensorFlow containers. 

2. Avoid significant amounts of network traffic on the inter-switch links. Since there are no VLANs set up, this can be 
done accidently if NICs are not assigned to the proper IP subnets. Check the interface packet counters on the 
switches before and after a training run to confirm this 
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