
 

 

    

Dell EMC PowerScale Deep Learning 
Infrastructure with NVIDIA DGX A100 Systems for 
Autonomous Driving 
December 2021 

H18627.1 

 

White Paper 

Abstract 
This document demonstrates the design and architecture of a large-
scale deep learning (DL) infrastructure for the development of 
autonomous driving use cases. It also showcases how the Dell EMC 
PowerScale F800 All-Flash scale-out NAS powered by PowerScale 
OneFS and NVIDIA DGX A100 systems are used to accelerate and 
scale DL training workloads. Benchmark results based on object 
detection and semantic segmentation use cases are created by using 
prominent, automotive-focused and publicly available datasets. 

Dell Technologies 



Copyright  

 

2 Dell EMC PowerScale Deep Learning Infrastructure with NVIDIA DGX A100 Systems for Autonomous Driving 

The information in this publication is provided as is. Dell Inc. makes no representations or warranties of any kind with respect 
to the information in this publication, and specifically disclaims implied warranties of merchantability or fitness for a particular 
purpose.  

Use, copying, and distribution of any software described in this publication requires an applicable software license. 

Copyright © 2021 Dell Inc. or its subsidiaries. All Rights Reserved. Dell Technologies, Dell, EMC, Dell EMC and other 
trademarks are trademarks of Dell Inc. or its subsidiaries. Intel, the Intel logo, the Intel Inside logo and Xeon are trademarks 
of Intel Corporation in the U.S. and/or other countries. Other trademarks may be trademarks of their respective owners. 
Published in the USA December 2021 H18627.1. 

Dell Inc. believes the information in this document is accurate as of its publication date. The information is subject to change 
without notice. 

 

 

 

 

 

 



 Contents 

 

3 Dell EMC PowerScale Deep Learning Infrastructure with NVIDIA DGX A100 Systems for Autonomous Driving 

Contents 
Executive summary ....................................................................................................................... 4 

DL in ADAS development ............................................................................................................. 5 

Key components ........................................................................................................................... 8 

Reference architecture ............................................................................................................... 12 

Design considerations for distributed ADAS/AD DL training solution .................................... 15 

ADAS DL training performance and analysis ............................................................................ 24 

Conclusion................................................................................................................................... 33 

Technical support and resources .............................................................................................. 36 
 

 

 

 



Executive summary  

 

4 Dell EMC PowerScale Deep Learning Infrastructure with NVIDIA DGX A100 Systems for Autonomous Driving 

Executive summary 
 
Computer vision and machine learning (ML) solutions are integrated into vehicles to 
improve safety, convenience, and the driver experience. Data coming from multiple 
sources such as camera, lidar, radar and ultrasonic sensors are processed and used to 
extract information and characteristics of the surrounding environment. Modern vehicles 
have moved from passive safety systems such as seat-belt pre-tensioning and airbags 
(designed to minimize injury resulting from collisions).to active safety systems, such as 
anti-lock braking (ABS) and autonomous emergency braking (AEB) to avoid collisions.  

With the evolution of Artificial Intelligence (AI) and DL, the industry is developing 
embedded control units (ECUs) into vehicles with computer vision algorithms that can 
interpret real-time sensor data and point cloud data to make corresponding predictions 
and to derive actions. 

The significant automotive safety improvement in the past was passive safety, mainly 
designed to minimize damage during an accident. Advanced driver assistance systems 
(ADAS) in many of today’s vehicles can proactively help the driver to avoid accidents by 
utilizing innovative DL technologies. For example, blind spot detection can alert a driver 
as they try to move into an occupied lane, pedestrian detection notifies the driver that 
pedestrians are in front of or behind the car, AEB activates the brakes to avoid an 
accident or pedestrian injury. More ADAS features like path planning combine with sensor 
fusion, which brings us closer to the goal of an autonomous vehicle. As the level of 
accuracy and sophistication increases, autonomous driving (AD) can realize improved 
capabilities. Critical success factors include improved safety algorithms, increased and 
efficient computational power, and access to large, comprehensive verification datasets. 

This paper focuses on the IT infrastructure challenges faced by automotive original 
equipment manufacturers (OEMs), and suppliers in developing DL algorithms for 
ADAS/AD and proposes a scale-out compute and storage solution. The solution is 
optimized for ADAS/AD workloads—delivering high performance, high concurrency, 
massive scalability, and flexibility. 
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DL in ADAS development 
 
The following figure illustrates the typical ADAS development lifecycle for automotive 
OEMs and suppliers leveraging the Dell EMC PowerScale scale-out NAS as the central 
data lake: 

 
Figure 1. ADAS development lifecycle 

1. Data Acquisition: Huge volumes of sensor data are captured by a fleet of test 
vehicles, including camera video sequences, ultrasonic proximity, radar, Light 
Detection and Ranging (LiDAR), Global Positioning System (GPS), and other 
sensor data. Sensors with very high-resolution such as 4K (or greater) cameras are 
being adopted. Some of these sensors will be beta samples of the actual sensors 
planned for the production vehicle, while other sensors will be capturing high-
resolution reference data (“ground truth”) around the test vehicle. Another important 
reference is the actions of the test driver – such as accelerator / brake / steering 
functions. Typically, we see ADAS developers generating real-world test data on the 
order of 2 TB per hour, or around 30–80 TB per car per day with some developers 
running test fleets with 50 or more vehicles. The data is stored with each vehicle in 
real-time using dedicated industrial data-logging hardware with removable solid-state 
storage disks. These drives are swapped out either daily or at the end of each shift— 
depending on the amount of data captured per shift. The drives are then either 
shipped directly to a centralized ingest server, transferred virtually through WAN 
lines, or transferred locally to tape, with the tapes then being shipped to a 
centralized ingest server for upload to the data lake (centralized storage). 

2. Data Ingestion: During the data ingest process, which includes moving data from 
the vehicle to the data lake, custom copy stations apply data cleaning and lossless 
data compression algorithms to reduce the final amount of required storage and, 

ADAS 
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therefore, costs. Data cleansing can occur in-line to avoid multiple copies or move 
operations. Typically, 10%–15% of the recorded data is used to train the ML/DL 
algorithms and over 50% of the recorded data is used to run re-simulations as well. 

3. Data Preparation: Once the data has been ingested, engineering teams will 
prepare the data, which may include trimming, decoding, data enrichment (labeling 
or ground truth generation), processing and adding metadata such as weather and 
traffic conditions. This requires a vast amount of compute and GPU resources in 
the high-performance computing (HPC) cluster to process the data, as well as fast 
storage—such as Dell EMC PowerScale storage, which meets both high capacity 
and high sequential read and write performance needs.  

4. Test Preparation: Engineers can build test suites with various test use cases, as 
well as required closed-loop simulation and open-loop re-simulation (replay) 
validation jobs to verify ADAS models. With massive raw datasets, it is vital to be 
able to search through metadata quickly to find the corresponding sensor data for 
specific scenarios from within the vast data lake. Tests developed using captured 
sensor data tests against possible corner cases, with discrepancies between the 
ECU validation and test driver actions identified as potential bugs. The NVIDIA 
DRIVE Sim software and NVIDIA DRIVE Constellation AV simulator deliver a 
scalable, comprehensive, and diverse testing environment. DRIVE Sim is an open 
platform with plug-ins for third-party models from ecosystem partners, allowing 
users to customize it for their unique use cases. 

5. Design and Development Phase: When the data is ready, the ADAS engineering 
teams can develop and build algorithms for smart cameras or ECU models through 
DL. ML models are created by training them on a huge amount of data (traffic 
signs, lanes, vehicles, and people). With huge amounts of data, it is strongly 
recommended to run multi-GPU training with data parallelism. Data parallelism 
allows a higher throughput of images during training, and therefore reduced training 
time.  

6. Re-simulations: After algorithms are developed, it is crucial to run iterative tests 
using data fusion of all the sensors, GPS, weather, and road/environment data. On 
small projects, individual sensors and ECUs may be tested independently. Then all 
subsystems are tested together at the system level (sensor fusion). It is important to 
test corner-cases and complex interaction of various ADAS functions, sophisticated 
scenarios involving various road environments, pedestrians, other vehicles, and 
driver behavior to ensure the safety of the system. With various test cases, the 
engineering teams can schedule re-simulation jobs on the hardware-in-the-loop 
(HiL) and software-in-the-loop (SiL) computer clusters. Re-sim involves “replaying” 
the captured raw sensor data back through the test farm—usually with hundreds or 
even thousands of iterations running in parallel. For HiL this will be replayed in real-
time, and for SiL it is often replayed faster than real-time. This workload requires 
the inherent high-concurrency benefit of the Dell EMC PowerScale scale-out NAS 
architecture. The NVIDIA DRIVE Sim software and NVIDIA DRIVE Constellation AV 
simulator deliver a scalable, comprehensive, and diverse testing environment. 
DRIVE Sim is an open platform with plug-ins for third-party models from ecosystem 
partners, allowing users to customize it for their unique use cases. For more 
information, refer to this link.  

7. Analysis: Once testing is complete, engineers need to analyze the test results and 
determine whether additional validation is required. In-place analytics compare 

https://www.nvidia.com/en-us/self-driving-cars/drive-constellation/
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ECU operation to original test driver actions to quickly identify potential bugs. 
Algorithms are refined to achieve the expected output results, and the revised ECU 
version can be uploaded to the test vehicles adopting a continuous improvement 
process. All the results are sent to data center storage to provide the engineering 
teams with on-demand access. 

8. Archive: Following final validation, data used to develop the ECU algorithms can 
move to lower-cost archive storage. Archiving must meet regulatory and contractual 
commitments, which typically span multiple decades – the agreed “life of the 
vehicle.” Many OEMs stipulate service-level agreements (SLAs) of 1-30 days for 
simulation data restoration time – for example, in the event of a safety recall – to 
allow quick turn-around of updates. Dell Technologies strongly recommends an 
active archive solution such as ECS cloud neutral object storage, implementing the 
S3 API. 

Note: The preceding steps are not time sequential. Steps are concurrent and continuous to 
ensure high-quality solution outcomes and efficiency. 

 
Training and validating new deep neural networks, such as those used in ADAS / AD 
development, require large datasets along with significant IT infrastructure that includes 
compute, networking and storage. The right infrastructure is crucial for safety-critical 
system development. These advanced algorithms must operate even within complex 
circumstances like varying weather conditions, visibility and road surface quality. 

Key challenges of the DL training workload for ADAS are:  

• Explosive Data Growth: A typical vehicle used for data collection in the ADAS 
system test use case includes multiple sensors such as LiDAR, RADAR, ultrasonic, 
GPS and cameras – all of which continuously generate data. Also, the vehicle 
controller area network (CAN) bus data and test driver captures the control 
information. This high level of visibility and redundancy builds a detailed picture to 
enable the vehicle to make reliable decisions in adverse weather conditions or in 
the event of an individual component failure. Due to the safety requirements for 
driving, development engineers need to ensure that the system used can detect 
objects sufficiently far away to operate safely at high speeds. This combination of 
vehicle speed and critical safety demands higher image resolutions than used in 
other industries, which in turn generates more data. Massive challenges occur in 
terms of the scale of the unstructured sensor data (videos, cloud point, images, 
text) that must be captured and replayed to test ADAS subsystems. 

To illustrate, a typical SAE Level 2 ADAS project, capturing 200,000 km of driving at 
an average speed of 65 km/h, would generate over 3,076 hours of test data, 
requiring approximately 6.2 petabytes (PB) of storage. Note that even within SAE 
L2 solutions, the total number of ADAS sensors required varies with functionality 
(lane departure warning, self-parking, and more). Multiple sensors are typically 
required. A typical SAE Level 3 ADAS project, which typically requires 1,000,000 
km of driving, could generate 30 PB of raw sensor test data per test vehicle. As 
most ADAS developers have multiple cars, typical total storage for a single 
production vehicle development averages between 50 – 200 PBs of data. 

• Fast training cycle: To assure safety and reliability, the neural networks designed 
must utilize millions of parameters which generate more compute-intensive 

Challenge of DL 
training 
workload for 
ADAS 
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requirements for the underlying systems and hardware architecture. To accelerate 
time-to-market, neural network training must be as fast and efficient as possible. 
First, the deeper the network, the higher the number of parameters and operations 
needed to store many intermediate results in GPU memory. Second, training 
usually proceeds in the method of mini-batches, I/O throughput is thus the primary 
performance metric of concern in DL training. 

• Test and validation: Validation is a key stage of the ADAS development cycle. 
Since most ADAS systems are intended to improve safety, the robustness and 
reliability of the trained model is paramount. This demands exhaustive testing and 
verification on the trained algorithm to represent diverse traffic scenarios and 
dimensions, which might include road geometry, driver and pedestrian behaviors, 
traffic conditions, weather conditions, vehicle characteristics and variants, 
spontaneous component faults, security, and more.  

• High quality labeled data: The availability of labeled data is critical for ADAS DL 
training. High quality labeled data yields better model performance. Labels are 
added either manually (often via crowd sourcing) or automatically by image 
analysis, depending on the complexity of the problem. Labeling massive collections 
of training data is a tedious task and requires significant effort.  

Key components 
 
This section describes the key components recommended for distributed DL targeted at 
ADAS/AD development.   

 
Dell EMC PowerScale all-flash storage platforms, powered by the PowerScale OneFS 
operating system, provide a powerful yet simple scale-out storage architecture to speed 
access to massive amounts of unstructured data, while dramatically reducing cost and 
complexity. With a highly dense design that contains four nodes within a single 4U 
chassis, PowerScale all-flash delivers extreme performance and efficiency for your most 
demanding unstructured data applications and workloads – including ADAS/AD. The Dell 
EMC PowerScale family includes four all-flash nodes recommended for DL workloads: 

• PowerScale F200: Provides the performance of flash storage in a cost-effective 
form factor to address the needs of a wide variety of workloads. Each node allows 
you to scale raw storage capacity from 3.84 TB to 15.36 TB per node and up to 3.8 
PB of raw capacity per cluster. The F200 includes in-line compression and 
deduplication. The minimum number of PowerScale nodes per cluster is three while 
the maximum cluster size is 252 nodes. 

• PowerScale F600: With NVMe flash drives, the F600 provides larger capacity with 
massive performance in a cost-effective compact form factor to power the most 
demanding workloads. Each node allows you to scale raw storage capacity from 
15.36 TB to 61.4 TB per node and up to 15.48 PB of raw storage per cluster. The 
F600 includes inline software data compression and deduplication. The minimum 
number of nodes per cluster is three while the maximum cluster size is 252 nodes. 

• PowerScale F800: Provides massive performance and capacity and delivers up to 
250,000 IOPS and 15 GB/s aggregate throughput in a single chassis configuration 
and up to 15.75M IOPS and 945 GB/s of aggregate throughput in configurations of 

Introduction 

PowerScale 
storage for DL 
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up to a 252-nodes cluster. Each chassis houses 60 SSDs with a capacity choice of 
1.6 TB, 3.2 TB, 3.84 TB, 7.68 TB, or 15.36 TB per drive. This allows you to scale 
raw storage capacity from 96 TB to 924 TB in a single 4U chassis and up to 58 PB 
in a single cluster. 

• PowerScale F810: Provides massive performance and capacity along with inline 
data compression and deduplication capabilities to deliver extreme efficiency. The 
F810 delivers up to 250,000 IOPS and 15 GB/s aggregate throughput in a single 
chassis configuration and up to 15.75M IOPS and 945 GB/s of aggregate 
throughput in a 252-node cluster. Each F810 chassis houses 60 SSDs with a 
capacity choice of 3.84 TB, 7.68 TB, or 15.36 TB per drive. This allows you to scale 
raw storage capacity from 230 TB to 924 TB in a 4U chassis and up to 58 PB of raw 
storage in a single cluster. Depending on your specific dataset and workload, F810 
inline data compression and deduplication delivers up to a 3:1 reduction in storage 
requirements, this increasing the effective capacity up to 138 PB per cluster. For 
more information, see the document PowerScale All-Flash Scale-Out NAS 
Specification Sheet.  

 
Figure 2. Dell EMC Isilon F800/F810 

Dell EMC PowerScale families have the following features to benefit DL: 

• Low latency, high throughput, and massively parallel I/O for AI. This shortens time 
for training and testing analytical models on data sets from tens of TB to hundreds 
of PB on AI platforms such as TensorFlow, SparkML, Caffe, or proprietary AI 
platforms. Isilon F810/F800 performance characters are: 

 Up to 250,000 file IOPS per chassis, up to 15.75M IOPS per cluster 

 Up to 15 GB/s throughput per chassis, up to 945 GB/s per cluster 

 230 TB to 924 TB raw flash capacity per chassis; up to 58 PB per cluster (All-
Flash) 

• The ability to run AI in-place on data using multi-protocol access. Most data used 
for DL training is also used for other workloads, like HiL and SiL validation. These 
workloads, which use captured sensor data, typically require lower cost hybrid 
storage, such as Isilon H5600 but in one PowerScale cluster. This eliminates the 
need to migrate/copy data and results over to a separate AI stack. Organizations 
can perform DL and run other IT apps on same data already on PowerScale by 
adding PowerScale all-flash nodes to the existing cluster. 

 Multi-protocol support such as SMB, NFS, HTTP, and native HDFS to 
maximize operational flexibility  

https://www.dellemc.com/en-us/collaterals/unauth/data-sheets/products/storage/h15963-ss-isilon-all-flash.pdf
https://www.dellemc.com/en-us/collaterals/unauth/data-sheets/products/storage/h15963-ss-isilon-all-flash.pdf
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• Enterprise grade features out-of-box. This enables organizations to manage AI data 
throughout the lifecycle of the ADAS project with minimal cost and risk, while 
protecting data and meeting regulatory requirements. 

 Enterprise data protection and resiliency  

 Robust security options  

 Economical, long-term archival with fast recovery 

 Data Management System (DMS) using a single pane of glass 

 Container Storage Interface (CSI) driver for provisioning of persistent storage 

 Ansible Module to automate and orchestrate configuration and management 
(link) 

• Extreme scale support. Organizations can achieve AI at scale in a cost-effective 
manner by leveraging PowerScale for DL as well as other ADAS workflows. 
Enabling them to handle multi-petabyte data sets with high resolution content and 
high performance without the need to re-architect their data center, and/or 
performance degradation. 

 Seamlessly tier between all flash, hybrid, and archive nodes via SmartPools 

 Grow-as-you-go scalability with up to 58 PB capacity per cluster 

 Up to 252 nodes may be connected to form a single cluster with a single 
namespace and a single coherent cache 

 Data Management solutions spanning multiple clusters for Exabyte scale 

 Depending on your specific dataset and workload, F810 inline data 
compression and deduplication delivers up to a 3:1 reduction in storage 
requirements, this increasing the effective capacity up to 138 PB per cluster 

 
The NVIDIA DGX A100 system is a universal system for all AI workloads, offering 
unprecedented compute density, performance, and flexibility in the world’s first 5-petaflop 
AI system. Each DGX A100 system features eight of the world’s most advanced 
accelerators, the NVIDIA A100 Tensor Core GPU, enabling enterprises to consolidate 
training, inference and analytics into a unified, easy-to-deploy AI infrastructure that 
includes direct access to NVIDIA AI experts. 

It allows organizations to standardize on a single system that can speed through any type 
of AI task at any time and dynamically adjust to changing compute needs over time. This 
unmatched flexibility reduces costs, increases scalability, and makes the DGX A100 
system the foundational building block of the modern AI data center. 

With the DGX SuperPOD program, customers can significantly reduce time to DC 
deployment and ultimately, time-to-market. Customers of the SuperPOD program have 
seen 6+ months reduction in DC deployment time. AI infrastructure requires extremely 
high-speed storage to handle a variety of data types in parallel, such as text, tabular data, 
audio, and video.  

NVIDIA DGX 
A100 system 

https://github.com/dell/csi-isilon
https://github.com/dell/ansible-isilon
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Figure 3. NVIDIA DGX A100 system 

 

The NVIDIA A100, built on the latest Ampere architecture, supports both training and 
inference workloads. In the case of AV development, DNN training and validation 
(RePlay) can be supported by one, unified infrastructure.  

 
Figure 4. NVIDIA A100 GPU 

NVIDIA A100 
GPU 
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DL models are very complex and large, and a DL framework is an interface, library or a 
tool which allows developers to tackle DL tasks easily and quickly, without requiring in-
depth understanding of all the details of the underlying algorithms. These frameworks 
provide a clear and concise way for defining models using a collection of pre-built and 
pre-optimized components. Popular DL frameworks include TensorFlow, Keras, PyTorch, 
and Caffe. 

Key characteristics of a well-designed DL framework include: 

• Optimized for GPU performance 

• Easy to understand and code 

• Extensive community support 

• Process parallelization to reduce computation cycles 

• Automatically computed gradients 

• Cloud-native app development capability (Docker, Kubernetes etc.) 

Training with large datasets and DL networks can be accelerated by using multiple GPUs 
and/or more servers, but only if the underlying infrastructure is architected correctly.  

In the market, there are some popular platforms and toolkits to allow developers to test 
distributed execution of different DL platforms on GPU clusters including MPI-based Uber 
Horovod and the Microsoft Distributed Machine Learning Toolkit (DMTK), available on the 
Microsoft website. Horovod is a distributed training framework for TensorFlow, Keras, 
PyTorch, and MXNet. The goal of Horovod is to make distributed DL fast and easy to use. 
These platforms are designed to make large-scale parallel distributed DL jobs easy and 
better.  

 
The NVIDIA NGC container registry provides researchers, data scientists and developers 
with simple access to a comprehensive catalog of GPU-accelerated software for AI, DL, 
and HPC that take full advantage of NVIDIA DGX A100 systems. NGC provides 
containers for today’s most popular AI frameworks such as RAPIDS, Caffe2, TensorFlow, 
PyTorch, MXNet and TensorRT, which are optimized for NVIDIA GPUs. The containers 
integrate the framework or application, necessary drivers, libraries and communications 
primitives and they are optimized across the stack by NVIDIA for maximum GPU-
accelerated performance. NGC containers incorporate the NVIDIA CUDA Toolkit, which 
provides the NVIDIA CUDA Basic Linear Algebra Subroutines Library (cuBLAS), the 
NVIDIA CUDA Deep Neural Network Library (cuDNN), and much more. The NGC 
containers also include the NVIDIA Collective Communications Library (NCCL) for multi-
GPU and multi-node collective communication primitives, enabling topology awareness 
for DL training. NCCL enables communication between GPUs inside a single DGX A100 
system and across multiple DGX A100 systems. 

Reference architecture 
 
The following figure illustrates the reference architecture showing the key components of 
the solution as it was tested and benchmarked. For an in-depth review of the reference 

NVIDIA NGC 

Introduction 

https://github.com/horovod/horovod
https://github.com/horovod/horovod
http://www.dmtk.io/
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architecture, see Dell EMC PowerScale and NVIDIA DGX A100 Systems for Deep 
Learning. 

 
Figure 5. Dell EMC ADAS/AD DL reference architecture 

 
Note: In a customer deployment, the number of DGX A100 systems and PowerScale 
storage nodes will vary and can be scaled independently to meet the requirements of the 
specific DL workloads.  

The hardware architectures include these key components:  

• Compute: Four NVIDIA DGX A100 systems.  

The DGX A100 system is a fully integrated, turnkey hardware and software system 
that is purpose-built for DL workflows. Each DGX A100 system is powered by eight 
NVIDIA A100 Tensor Core GPUs that are interconnected using NVIDIA NVSwitch 
technology, which provides an ultra-high bandwidth low-latency fabric for inter-GPU 
communication. This topology is essential for multi-GPU training, eliminating the 

ADAS deep 
learning 
reference 
architecture 

https://www.delltechnologies.com/resources/en-us/asset/white-papers/products/storage/h18597-dell-emc-powerscale-and-nvidia-dgx-a100-systems-for-deep-learning.pdf
https://www.delltechnologies.com/resources/en-us/asset/white-papers/products/storage/h18597-dell-emc-powerscale-and-nvidia-dgx-a100-systems-for-deep-learning.pdf
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bottleneck that is associated with PCIe-based interconnects that cannot deliver 
linearity of performance as GPU count increases. The DGX A100 system is also 
equipped with eight single-port NVIDIA Mellanox ConnectX-6 VPI HDR InfiniBand 
adapters for clustering and two dual-port ConnectX-6 VPI Ethernet adapters for 
storage and management networking, all capable of 200Gb/s. 

• Storage: A critical component of DL solutions is high-performance storage. One 
Dell EMC PowerScale F800 with 4 nodes was used in this solution with a mounted 
NFS share on the NVIDIA DGX A100 systems. It is uniquely suited for modern DL 
applications – delivering the flexibility to deal with any data type; the scalability for 
data sets ranging in the PBs; and the concurrency to support the massive 
concurrent I/O requests from the GPUs.  

• Networking: The solution consists of two network fabrics: 

 The NVIDIA Mellanox SN3700V Ethernet switches provide the high speed 
“front-end” Ethernet connectivity between the Isilon F800 cluster nodes and 
NVIDIA DGX A100 systems. The F800 nodes connect with 40GbE 
connections, the DGX A100 systems connect with 100GbE connections, and 
the SN3700 switches automatically forward traffic across the different speed 
connections with minimal latency. Based on the NVIDIA Spectrum-2 switch 
ASIC and purpose built for the modern datacenter, the SN3700V switch 
combines high-performance packet processing, rich datacenter features, cloud 
network scale and visibility. A flexible unified buffer to ensure fair and 
predictable performance across any combination of ports and speeds from 
10Gb/s to 200Gb/s, and an Open Ethernet design supports multiple network 
OS choices including NVIDIA Cumulus Linux, NVIDIA Onyx, and Software for 
Open Networking in the Cloud(SONiC).  

 The NVIDIA Mellanox QM8700 InfiniBand switches provide high-throughput, 
low-latency networking between the DGX A100 systems. Designed for both 
EDR 100Gb/s and HDR 200 Gb/s InfiniBand links, they minimize latency and 
maximize throughput for all GPU-to-GPU communication between systems. 
The QM8700 switches support Remote Direct Memory Access (RDMA) and in-
network computing offloads for AI and data analytics to enable faster and more 
efficient data transfers. They support NVIDIA GPUDirect, Mellanox SHARP for 
network-based AI and analytics offloads (such as MPI AllReduce), and 
Mellanox SHIELD for maximum resiliency in a self-healing network. Learn more 
about the NVIDIA Mellanox Quantum QM8700 InfiniBand switches.  

The software architectures include these key components:  

• Docker containers or virtual machines: There has been a dramatic rise in the 
use of software containers for simplifying deployment of applications at scale. You 
can use either virtual machines or containers encapsulated by all the application’s 
dependencies to provide reliable execution of DL training jobs. A docker container 
is more widely used now for bunding an application with all its libraries, 
configuration files and environment variables so that the execution environment is 
always the same. To enable portability in Docker images that leverage GPUs, 
NVIDIA developed the Docker Engine Utility for NVIDIA GPUs which is also known 
as the NVIDIA Container Toolkit, an open-source project that provides a command-
line tool. The publicly available CSI driver for the scale-out NAS PowerScale 
provides support for provisioning of persistent storage. 

https://www.mellanox.com/products/infiniband-switches/QM8700
https://github.com/NVIDIA/nvidia-docker
https://github.com/dell/csi-isilon
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Apart from the DL architecture, the development environment needs a rich ecosystem of 
open-source tools and partner-led solutions specific to the unique requirements of each 
customer, as shown in the following figure. Dell Technologies has put together the 
following map of workflow and possible ecosystem solutions. More information can be 
collected from a blog “What DevOps for AD/ADAS looks like” here: Link.  

 
Figure 6. Dell autonomous drive ecosystem 

Design considerations for distributed ADAS/AD DL training 
solution 

 
This section describes the key considerations and best practices of designing distributed 
ADAS DL solution. 

 
Here are some key design considerations for preparing ADAS DL datasets:  

• Collect real-world raw datasets: An end-to-end DL system requires large 
amounts of training data for the development of Deep Neural Networks (DNN) that 
can successfully interpret virtually all driving scenarios likely to be encountered in 
the real world. OEMs and Tier-1 suppliers typically deploy fleets of test cars 
outfitted with sensors to capture this data. Sensor data rates of around 2 TB/hour 
per car are common.  

• Data and scenario diversity: The recorded sensor data is used to train DNNs in 
the data center, with over 1 million images per DNN viewed as a best practice for 

Introduction 

Datasets 
preparation 

https://www.delltechnologies.com/en-us/blog/what-devops-for-ad-adas-looks-like/
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relatively simple DNNs (complex DNNs typically will require up to 3 million images). 
A RAND report highlights that 11 billion miles from realistic road scenarios are 
needed to assure the safety of ADAS/AD DNN models. The data also must be 
diverse enough to cover different types of road scenarios to verify the model 
accuracy.  

• Public ADAS/AD dataset utilization: Existing public AD datasets can be 
leveraged heavily to verify the algorithm accuracy as well. As shown in the following 
table, many multimodal datasets from different countries are now available, where 
each is typically comprised of images, range sensor (lidar, radar) data and 
GPS/IMU data. These are available to researchers and developers to accelerate 
the development and validation of ADAS systems (subject to individual license 
restrictions).  

Table 2. Major public ADAS/AD datasets 

Dataset Year Volumes Diversity Annotations 

ApolloScape 2018 • 140,000 annotated 
images  

• 20,000 Lidar 3D point 
cloud annotation data  

• No radar 

• Include GPS/IMU 
data/timestamps  

• Different times in the day 
• Mainly in Beijing, China  

• Semantic  
• Instance-wise 
• Dense pixel 

annotations 
• 2D/3D boxes 

BDD100K  2017 • 120,000,000 with 
100,000 annotated 
images (1280 * 720) 

• No lidar/radar 

• Multiple cities  
• Multiple scene type 
• Different times in the day 
• Include GPS/IMU 

data/timestamps 
• Multiple weather  

• Semantic  
• Instance-wise 
• Dense pixel 

annotations 
• 2D boxes 

Cityscapes  2016 • 25,000 annotated images 
(1280 * 720) 

• No lidar/radar 

• 50 cities 
• Several months 
• Daytime  
• Good weather conditions 
• Include GPS/timestamp 

metadata 

• Semantic  
• Instance-wise 
• Dense pixel 

annotations  
• 2D boxes 

KITTI 2012 • 15,000 annotated images 
(1248 * 384)  

• 15,000 Lidar 3D point 
cloud annotation data 

• No radar 

• Include GPS/IMU 
data/timestamps 

• Daytime 
• Mainly in Karlsruhe 

• Semantic  
• Instance-wise 
• Dense pixel 

annotations 
• 2D/3D boxes 

Lyft Dataset 2019 • 55,000 3D annotated 
images 

• HD Mapping data  

• 1,000 driving scenes in 
multiple cities 

• Different times in the day 

• Semantic  
• Instance-wise 
• Dense pixel 

annotations 
• 2D/3D boxes 

https://www.rand.org/pubs/research_reports/RR1478.html
http://apolloscape.auto/
https://bdd-data.berkeley.edu/
https://www.cityscapes-dataset.com/dataset-overview/
http://www.cvlibs.net/datasets/kitti/raw_data.php
https://level5.lyft.com/dataset/
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Dataset Year Volumes Diversity Annotations 

nuScenes 2019 • 1,400,000 with 40,000 
annotated images  

• 390,000 Lidar 3D point 
cloud data  

• 1,400,000 radar sweeps 

• 1,000 driving scenes in 
multiple cities 

• Different times in the day 
• Multiple weather 

• Semantic  
• Instance-wise 
• Dense pixel 

annotations 
• 2D/3D boxes 

Waymo Open 
Dataset 

2019 • 200,000 annotated 
images (1920 * 1280 & 
1920 * 886)  

• Lidar 3D point cloud data  
• 12 million 3D labels and 

1.2 million 2D labels  

• 1,000 driving scenes in 
multiple cities 

• Different times in the day 
• Multiple weather (day 

and night, dawn and 
dusk, sun and rain)  

• Semantic  
• Instance-wise 
• Dense pixel 

annotations 
• 2D/3D boxes 

 
Here are some key design considerations for data ingestion and data management for 
ADAS DL workflow:  

 
Figure 7. Dell EMC Data Management System dashboard 

DMS is integrated into the managed service offering for ingesting data from test 
vehicles in an automated fashion. Specific metadata types and tags are 
configurable and can be customized for each customer. The service provider can 
manage logistics to receive the storage media from the vehicles and insert them 
into ingestion stations. This will automatically initiate processes that dynamically 
decide which cluster/location to upload the raw data to—in such a fashion that all 
ingestion processes are well balanced across the storage environment. DMS then 
initiates the data transfer automatically while enriching the data with appropriate 
metadata tagging, resulting in all data and tags being logged in a global index that 
tracks the data sets across the namespace and clusters. At the completion of the 
data transfer and indexing, DMS can launch post-processing jobs within the DL and 
HPC server grid as preconfigured through the scheduling platform. Functions 
available can include accurately splitting and merging data files as required, 
decoding the data into human readable form, automatically updating the index upon 
completion and other functions as defined by the customer. These processes are 

Data ingestion 
and data 
management 

https://www.nuscenes.org/
https://waymo.com/open/
https://waymo.com/open/
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wrapped within a series of real-time monitoring, status dashboards, and logs to alert 
of any errors or anomalies. 

Dell EMC DataIQ product, as shown in the 
following figure, solves these challenges with its ability to break down storage silos 
and unify the unstructured data environment. It provides a single UI to view sensor 
data across heterogenous storage environments including the public cloud.  

 
Figure 8. New hybrid cloud solution for ADAS development with Dell EMC DataIQ 

DataIQ also equips organizations with the ability to rapidly search across billions of 
files and locate data, which can then be precisely moved or copied to on-prem or 
public cloud storage as needed, ensuring the right projects have access to pertinent 
data. This can help free up space on higher performance tiers and enables 
organizations to archive data as long as is required. The cost savings can be 
immense, and data can be retrieved easily from a well-curated, searchable archive 
for re-simulation and DL development in the future. 

 
Training neural networks with images requires developers to first normalize those images. 
Moreover, images are often compressed to save storage. Developers have therefore built 
multi-stage data processing pipelines that include loading, decoding, cropping, resizing 
and many other augmentation operators. Here are some key design considerations for 
data ingestion and data management for an ADAS DL workflow:  

• Consider Data augmentation strategy: Dataset augmentation applies 
transformations to training data. Transformations can be as simple as flipping an 

Data transform 

https://www.delltechnologies.com/en-us/storage/dataiq.htm
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image, or as complicated as applying neural style transfer. By performing data 
augmentation, it is possible to increase training dataset size and diversity. This can 
help to prevent a neural network from learning irrelevant patterns (common with 
small datasets) that would degrade overall training accuracy. Here are two common 
methods for data augmentation: 

 Offline augmentation is to create new augmented data which is stored on the 
filesystem. This can help effectively increase the training sample size many 
times over with variety of different augmentation technologies.  

• Use NVIDIA Data Loading Library (DALI): The DALI is a portable, open source 
library for decoding and augmenting images, videos, and speech to accelerate DL 
applications. As shown in the following figure, DALI is a set of highly optimized 
building blocks plus an execution engine used to accelerate input data pre-
processing for DL applications.  

 
Figure 9. DALI inside architecture (©NVIDIA) 

DALI provides performance and flexibility for accelerating different data pipelines. 
DALI reduces latency and training time, mitigating bottlenecks, by overlapping 
training and pre-processing. It provides a drop-in replacement for built in data 
loaders and data iterators in popular DL frameworks for easy integration and 
retargeting to different frameworks. Here are some key features: 

 Easy-to-use Python API 

 Transparent scaling across multiple GPUs 

 Accelerated image classification (ResNet-50), object detection (SSD) 
workloads and speech recognition models such as Jasper and RNN-T 

 Flexible graphs that let developers create custom pipelines 

 Support of multiple data formats—LMDB, RecordIO, TFRecord, COCO, JPEG, 
wav, Free Lossless Audio Codec (FLAC), Ogg, H.264, and HEVC 

https://developer.nvidia.com/DALI
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 Ability for developers to add custom audio, image, and video processing 

For more information, refer to NVIDIA blog. 
 
The ability to train neural network data models with many hidden layers, as well as the 
ability to train them with large datasets in a short amount of time, at scale, is critical to 
ADAS/AD development. To assure safety and reliability, the neural networks designed for 
driving operations will utilize many permutations of parameters which will generate more 
compute-intensive requirements for the underlying systems and hardware architecture. In 
distributed DL platforms, the model needs to be synchronized across all nodes. It also 
requires the careful management and distributed coordination of computation and 
communication across all nodes.  

• Data parallelism vs model parallelism: Data parallelism, as shown in the 
following figure, is generally easier to implement. Each device works with a different 
part of the overall dataset and the devices collectively update a shared model. 
These devices can be located on a single machine or across multiple machines.  

 
Figure 10. Data parallelism flow 

Most DL frameworks use data parallelism to partition the workload over multiple 
devices. The following figure shows the details of the process of data parallelism to 
distribute training processes across multiple GPU systems and devices.  

Most DL frameworks use data parallelism to partition the workload over multiple 
devices. The following figure shows the details of the process of data parallelism to 
distribute training processes across multiple GPU systems and devices.  

Data model 
training 

https://devblogs.nvidia.com/fast-ai-data-preprocessing-with-nvidia-dali/
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Figure 11. Data parallelism approach to distribute training processes 

Data parallelism also requires less communication between nodes as it benefits 
from high amount of computations per weight. Assume for example, there are n 
devices, where each device receives a copy of the complete model and trains it 
with 1/nth of the data. The results such as gradients and the updated model itself 
are communicated across these devices.  

To ensure efficient training, the network bandwidth across the nodes cannot 
become a bottleneck. Also note it is inefficient—and bad practice—to store training 
data on the local disks of every worker node, which forces the copying of terabytes 
of data to each worker node before the actual training can be started. 

When models are so large that they don’t fit into device memory, then an alternative 
method, called model parallelism, is employed. With model parallelism, as 
illustrated in the following figure, different devices are assigned the task of learning 
different parts of the model.  



Design considerations for distributed ADAS/AD DL training solution  

 

22 Dell EMC PowerScale Deep Learning Infrastructure with NVIDIA DGX A100 Systems for Autonomous Driving 

 
Figure 12. Model parallelism flow 

Model parallelism requires more careful consideration of dependences between the 
model parameters. Model parallelism may work well for GPUs in a single server 
that shares a high-speed bus. It can be used with larger models as hardware 
constraints per node are no longer a limitation. 

• Leverage open source DL toolkits like Horovod: Horovod is a distributed training 
framework for TensorFlow, Keras, PyTorch, and MXNet. The goal of Horovod is to 
make distributed DL fast and easy to use. Horovod use Message Passing Interface 
(MPI) model to be much more straightforward and require far less code changes 
than the Distributed TensorFlow with parameter servers. Horovod currently 
supports models that fit into one server but may span multiple GPUs.  

• Use the latest DL framework: Leverage the latest DL framework and toolkit, to 
avoid potential performance issue or bugs, as well as compatible cuDNN and 
NVIDIA Collective Communications Library (NCCL). The newer version always 
delivers great performance improvements and bug fixes.  

 
Here are some key design considerations on designing infrastructure for distributed DL:  

• Build high network bandwidth between nodes: Distributed DL is a very 
compute-intensive task. To accelerate computation, training can be distributed 
across multiple machines connected by a network. During the training, constant 
synchronization between GPUs within and across the servers is required. Limited 
network bandwidth is one of the key bottlenecks towards the scalability of 
distributed DNN training. Most important metrics for the interconnection network are 
low latency and high bandwidth. It is recommended to use InfiniBand or 100Gbps 
Ethernet Network to maximum the network bandwidth between nodes. With enough 
network bandwidth, GPU utilization across nodes performs similar to that of single 
GPU configurations.  

• Choose high throughput, scale-out centralized storage: With scalable 
distributed DL, the distribution of the training data (batches) to the worker nodes is 
crucial. It is inefficient to store training data in the local disks or Non-Volatile 
Random-Access Memory (NVRAM) on every worker node and copy terabytes of 
data across each worker node before the actual training can be started. Using a 

Infrastructure 

https://github.com/horovod/horovod
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high throughput, scale-out storage for centralized storage for the training data, 
offers a more convenient, higher performance and cost-effective solution for 
ADAS/AD DL training.  

GPU servers can have 20-30k cores and each one request its own read thread. 
Most file systems max out at between 2,000–6,0000 open read threads, but the 
PowerScale OneFS operating system doesn’t have a performance limit on open 
threads. DL workloads also require high throughput random reads during the 
training and data processing, as well as high throughput sequential writes during 
data ingest. With distributed DL on multiple GPUs, to full utilize GPUs a steady flow 
of data from centralized storage into multiple GPUs jobs is critical for obtaining 
optimal and timely results. Data preprocessing (CPU) and model execution of a 
training step (GPU) run in parallel during the training and require high throughput 
data reads from storage.  

An ADAS high performance DL system requires equally high-performance storage 
with scalability to multiple petabytes within a single file system. For a typical SAE 
level 3 project, this requirement ranges between 50 to 100 PB of data. The high-
performance storage scalability is crucial to meet different business requirements of 
ADAS DL projects. 

Dell EMC PowerScale all-flash storage platforms, powered by the PowerScale 
OneFS operating system, provide a powerful yet simple scale-out storage 
architecture that scales up to 33 petabytes per cluster. It allows DL workloads to 
access massive amounts of unstructured data with high performance, while 
dramatically reducing cost and complexity. 

• Leverage NVIDIA Container Toolkits on NVIDIA GPUs: NVIDIA offers ready-to-
run GPU-accelerated containers with the top DL frameworks. NVIDIA also offers a 
variety of pre-built containers which allow users to build and run GPU accelerated 
Docker containers quickly. To deploy DL applications at scale, it is very easy to 
leverage containers encapsulating an application’s dependencies to provide reliable 
execution of application and services even without the overhead of a full virtual 
machine. For more detail information, refer to the NVIDIA Container Toolkit page.  

• Use Kubernetes to manage containers for distributed DL: Kubernetes is an 
increasingly popular option for training deep neural networks at scale, as it offers 
flexibility to use different ML frameworks via containers as well as the agility to 
scale on demand. It allows researchers to automate and accelerate DL training with 
their own Kubernetes GPU cluster. For more information, see How to automate DL 
training with Kubernetes GPU-cluster.  

• Use NVIDIA DL GPU Training System (DIGITS) for user interface: DIGITS is a 
wrapper for NVCaffe and TensorFlow that provides a graphical web interface to 
those frameworks in the following figure, rather than dealing with them directly on 
the command-line.  

https://github.com/nvidia/nvidia-docker
https://github.com/Langhalsdino/Kubernetes-GPU-Guide
https://github.com/Langhalsdino/Kubernetes-GPU-Guide
https://developer.nvidia.com/digits
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Figure 13. NVIDIA DIGITS for DL user interface platform 

DIGITS simplify common DL tasks such as managing data, designing, and training 
neural networks on multi-GPU systems, monitoring performance in real time with 
advanced visualizations, and selecting the best performing model from the results 
browser for deployment. DIGITS is completely interactive so that data scientists can 
focus on designing and training networks rather than programming and debugging.  

ADAS DL training performance and analysis 
 
In this section, the performance of DL training is tested for Cityscapes object detection 
and semantic segmentation, as shown in Table 2. The well-known dataset used was the 
Cityscapes Benchmark which consists of 2,975 training images with high quality dense 
pixel annotation, 500 validation images and 1,525 test images. This dataset is commonly 
used by ADAS DL researchers for benchmarking and comparison studies. Cityscapes has 
labeled 30 different classes.  

 
Since the entire Cityscapes raw dataset, including label data, is only 11 GB and can easily 
fit into system memory. The size of the dataset was increased 557 times to exercise the 
storage system (Isilon F800) more realistically. We did this by applying random rotation 
data augmentation techniques to each JPEG image in the dataset. This is standard 
practice in data analytics and DL to increase size of data sets. In total, this “557x” dataset 
contained 2,025,975 images and annotations with 5.4 TB in total. The average PNG 
image pixel is 1024 x 2048 and average size is 2,193KB.  

The performance test utilized in this document uses this data to train two different 
convolutional neural network (CNN) models, shown in the following table, that are used 
for semantic image segmentation and object detection.  

Introduction 

ADAS dataset 
and CNN models 

https://www.cityscapes-dataset.com/dataset-overview/
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Table 3. Convolutional neural network models used in the tests 

CNN model Purpose Dataset DL framework Distributed 
framework 

SSD: Single Shot 
MultiBox Detector  

Real-Time Object 
Detection 

Cityscapes 
Benchmark data 
with 972,825 
training images (2.8 
TB in total) 

PyTorch 1.4 PyTorch Distributed 
Data Parallel  

Semantic-
Segmentation 

Hierarchical Multi-
Scale Attention for 
Semantic 
Segmentation. 

Cityscapes 
Benchmark data 
with 2,025,975 
training images (5.4 
TB in total)  

PyTorch 1.3 PyTorch Distributed 
Data Parallel 

 
In this test, the hardware comprises four DGX A100 systems with four Isilon F800 nodes, 
and network switches. The following tables show the detailed hardware and software 
configurations. 

Table 4. Hardware configuration 

Component Number Configuration 

Storage 1 Dell EMC Isilon F800 4-nodes cluster  
• Front-end Network: 2* 40Gb Ethernet 
• Drives: 15.4 TB SSD x 60 with 924 TB capacity 

Compute Node 4 NVIDIA DGX A100 system: 
• 8 NVIDIA A100 Tensor Core GPUs with 40GB 
• Two 64-Core AMD EPYC 7742 @3.3 GHz 
• 1 TB RAM 
• 2x Dual-Port NVIDIA Mellanox ConnectX-6 VPI 200 Gb/s Ethernet 
• 8x Single-Port NVIDIA Mellanox ConnectX-6 VPI 200Gb/s HDR 

InfiniBand 

Storage Fabric Switch 2 NVIDIA Mellanox SN3700V Ethernet switches 

Compute Fabric Switch 2 NVIDIA Mellanox QM8700 InfiniBand HDR Switch 

 
Table 5. Software configurations 

Component Version 

Dell EMC Isilon – OneFS • 8.2.1.0 
• Patches: 8.2.1_KGA-RUP_2020-04_268538, 

8.2.1_UGA-PATCH-INFRA_2019-11_263088, 
8.2.1_UGA-RUP_2020-04_268536 

NVIDIA Mellanox SN3700V – NCLU Version 1.0-cl4.2.1u1 

NVIDIA Mellanox SN3700V – Distribution Release 4.2.1 

NVIDIA Mellanox QM8700 Product Release 3.9.0606 

DGX A100 system – Base OS 4.99.11 

DGX A100 system – Linux kernel 5.3.0-59-generic 

Hardware and 
software 
configuration 

https://arxiv.org/abs/1512.02325
https://arxiv.org/abs/1512.02325
https://github.com/NVIDIA/semantic-segmentation
https://github.com/NVIDIA/semantic-segmentation
https://devblogs.nvidia.com/detectnet-deep-neural-network-object-detection-digits/
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Component Version 

DGX A100 system – NVIDIA Data Center GPU Driver 450.51.06 

DGX A100 system – Ubuntu 18.04.5 LTS 

NVIDIA NGC PyTorch Image nvcr.io/nvidia/mxnet:20.06-py3 

 
In order to measure the training time and bandwidth requirements for the distributed DL 
platform, different training procedures were carefully executed by using different 
configuration setups. 

Real-time object detection model training test methodology 
Here are some key test methodologies that we used to during the training benchmark:  

• In order to measure the distributed training performance of the solution, we used 
SSD (Single Shot MultiBox Detector) model from the NVIDIA DL Examples GitHub 
repository. This suite of benchmarks performs training of augmented Cityscapes 
labeled images. This dataset contains 972,825 training images totaling 2.8 TB. This 
dataset is commonly used by automotive DL researchers for benchmarking and 
comparison studies. The solution used CityscapesScripts to convert annotations in 
standard PNG format to COCO format for SSD training. 

• Training of SSD requires computationally costly augmentations. To fully utilize 
GPUs during the training, we are using the NVIDIA DALI library to accelerate data 
preparation pipelines. 

• Scale-out trainings were performed on HW configurations ranging from one DGX 
A100 system with eight A100 GPUs to four DGX A100 systems with 32 A100 
GPUs. This enabled the measurement of the training time, throughput performance, 
and provided a basic understanding of the training performance.  

• In order to measure the training time across multi-GPUs and determine the 
corresponding bandwidth requirement, we trained SSD model for multi-epochs with 
the following setup:  

 SGD with momentum: 0.9 

 Learning rate: 2.6e-3 * number of GPUs * (batch_size / 32) 

 batch size: 16 per GPU 

 number of worker threads: 20 

 no warmup  

 ResNet-50 is used as backbone  

• Prior to each execution of the benchmark, the L1 and L2 caches on Isilon F800 
were flushed with the command isi_for_array isi_flush. It is worth noting, however, 
that the training process will read the same files repeatedly and after just several 
minutes, much of the data will be served from one of these caches. 

• Multi-GPU training with Distributed Data Parallel – the NVIDIA model uses APEX’s 
DDP to implement efficient multi-GPU training with NCCL.  

• Excepting the training model, we also used the following command to evaluate the 
training benchmark: 

Test 
methodology 

https://arxiv.org/abs/1512.02325
https://github.com/mcordts/cityscapesScripts
https://github.com/NVIDIA/DALI
https://github.com/NVIDIA/apex
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python -m torch.distributed.launch --nproc_per_node=8 --
nnodes=3 --node_rank=0 \ 
     main.py --batch-size 32\ 
               --mode training \ 
               --num-workers 20\ 
               --epochs 20\ 
               --data /mnt/cityscapes/ssd3T  

Semantic segmentation model training test methodology 
Here are some key test methodologies that we used during the training benchmark:  

• In order to measure the distributed training performance of the solution, we used 
NVIDIA semantic segmentation from the GitHub repository to train the model. This 
training was performed on augmented cityscapes labeled images. This dataset 
contains 2,025,975 training images in 5.4 TB.  

• Scale-out trainings were performed to measure the training time and throughput 
performance in order to provide a basic understanding of the training performance. 
Hardware configurations used for this testing ranged from one NVIDIA DGX A100 
compute nodes with 8 A100 GPUs to 4 NVIDIA DGX A100 compute nodes with 32 
A100 GPUs.  

• In order to measure the training time across multi-GPUs and evaluate bandwidth 
requirement, we trained semantic segmentation model in multiple epochs with the 
following setup:  

 batch size:8 per GPU 

 number of worker threads: 10 

 no warmup  

 deepv3Plus  

• Prior to each execution of the benchmark, the L1 and L2 caches on Isilon F800 
were flushed with the command isi_for_array isi_flush. In addition, the 
Linux buffer cache was flushed on all compute nodes by running sync; echo 3 > 
/proc/sys/vm/drop_caches. However, note that the training process will read 
the same files repeatedly and after just several minutes, much of the data will be 
served from one of these caches. 

• Multi-GPU training with Distributed Data Parallel – the NVIDIA model uses Apex's 
DDP to implement efficient multi-GPU training with NCCL. For example, we used 
the following command to evaluate the training benchmark: 

python -m torch.distributed.launch --nproc_per_node=8 --
nnodes=4 --node_rank=0 \ 
     train.py  --bs_trn 8\ 
               --apex \ 
               --fp16 \ 
               --crop_size "800,800"\ 
               --num_workers 10\ 
               --max_epoch 20\ 
               --arch deepv3.DeepV3PlusW38 

https://github.com/NVIDIA/semantic-segmentation
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Training throughput 
The following figure shows the Single Shot MultiBox Detector model training benchmark 
throughput results. It is obvious from the results that image throughput scales linearly from 
8 to 32 A100 GPUs. 

 
Figure 14. SSD model training benchmark from 8 GPUs to 32 GPUs 

 

 
Figure 15. Semantic segmentation training benchmark from 8 GPUs to 32 GPUs 

 

Training time and system metrics: SSD model 
The following table shows the test results for the SSD model training time and bandwidth 
for each epoch. As shown in Figure 16, the average storage throughput grew almost 
linearly from 8 to 32 GPUs and reduced training time as well.  
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Table 6. SSD training time and storage bandwidth for each epoch with 2.8 TB dataset 

GPUs Average training time 
for each epoch 

Average storage 
bandwidth per epoch 

Peak storage bandwidth 
per epoch 

8 18 minutes 15 seconds 2,080 MB/s 2,267 MB/s  

16 7 minutes 51 seconds 2,350 MB/s 4,177 MB/s 

24 5 minutes 23 seconds 2,860 MB/s 4,680 MB/s 

32 3 minutes 55 seconds 3,420 MB/s 5,363 MB/s  

 

 
Figure 16. SSD model training average storage bandwidth from 8 GPUs to 32 GPUs 

The following table lists the system metrics during the training. This indicates that the 
GPUs were fully utilized by leveraging the NVIDIA DALI library.  

Table 7. SSD model training system metrics 

System metrics Percentage 

Average GPU utilization  94% 

Average GPU memory utilization 50% 

Average compute node CPU utilization 35%  

Average compute node memory utilization 99% 

 
As shown in the following figure, during the training time, the peak storage throughput 
reached to 42.9Gb/s (5.36GB/s) with three DGX systems with 24 GPUs. We observed 
that the training is a heavily read intensive workload as it needed to read entire dataset 
from storage for training.  
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Figure 17. SSD model training storage throughput with three DGX A100 systems 

We also observed that the storage throughput dropped after one epoch training. This was 
because the total dataset is only 2.8 TB. While running more than one epoch with three 
DGX systems (total 3 TB RAM), the system cache exceeded the total dataset. During the 
training, some of the data became cached on the system side, which reduced the storage 
throughput required during the training.  

For storage configuration considerations, it is crucial to plan sizing for peak throughput on 
Isilon F800 storage during the training in order to minimize training times as required for 
business development needs. 

During the training time, GPUs are fully utilized at 94%, as shown in the following figure. 

 
Figure 18. SSD model training with average 32 A100 GPU utilization  
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Training time and system metrics: Semantic segmentation model 
The following table shows the test results for the semantic segmentation model training 
time and bandwidth. As shown in Figure 19, the average throughput scaled linearly from 8 
to 32 GPUs and reduced training time as well.  

Table 8. Semantic segmentation training time and storage bandwidth for each epoch with 
5 TB dataset 

GPUs Training Time for 
each epoch  

Average storage 
bandwidth for each 
epoch 

Peak storage 
bandwidth for each 
epoch 

8 8 hours 5 minutes  145.64 MB/s 138.43 MB/s  

16 4 hours 2 minutes 303.75 MB/s 385.69 MB/s 

24 2 hours 44 minutes  451.25 MB/s 570.32 MB/s 

32 2 hours 4 minutes 550.34 MB/s 698.85 MB/s 

 

 
Figure 19. Semantic segmentation model training throughput from 8 GPUs to 32 GPUs 

The following table lists the system metrics during the training. This indicates that the 
GPUs were fully utilized by leverage NVIDIA DALI library.  

Table 9. DeepLabv3+ model training system metrics  

System metrics Percentage 

Average GPU utilization  96% 

Average GPU memory utilization 36.7% 

Average compute node CPU utilization 9.86%  

Average compute node memory utilization 98% 

 
As shown in the next figure, during the training time, the average storage throughput 
reached to 4.4Gb/s (0.55 GB/s) and was read intensive. The storage throughput is 
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consistent during the training because the total dataset exceeded the total compute server 
cache.  

 
Figure 20. Semantic segmentation model training with 32 GPU storage throughput  

Test results comparison 
From our test results shown in the following figure, DGX A100 systems delivered over 
twice the training performance of an eight V100 GPU system, such as the NVIDIA DGX-1 
system. The combination of the groundbreaking A100 GPUs with massive computing 
power and high-bandwidth access to large DRAM, and fast interconnect technologies, 
makes the DGX A100 system optimal for dramatically accelerating complex networks.  

 
Figure 21. SSD model training performance comparisons 
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The DGX A100 system required higher storage throughput over V100 GPU system, as 
shown in the next figure. In our test results, we observed the average storage throughput 
dropped after testing with four DGX A100 systems. This was because the total dataset is 
only 2.8 TB. While running more with three DGX systems (total 3 TB RAM), the system 
cache exceeded the total dataset.  

 
Figure 22. SSD model average storage throughput comparisons  

Conclusion 
 
Here are some key considerations for DL training that we observed during the tests: 

• Different CNN models generate varying throughput requirements: Comparing 
the test results, different CNN models can greatly vary the performance 
requirements for storage bandwidth. Complex CNN models (like DeepLabv3+) may 
generate less storage throughput than simple CNN models (like SSD). A high-
resolution dataset can generate higher storage bandwidth needs even for the same 
CNN models. Dell Technologies published a whitepaper Dell EMC PowerScale and 
NVIDIA DGX A100 Systems for Deep Learning which provides a sizing guideline for 
different CNN models. 

• Multiple GPUs and systems are particularly beneficial to large dataset 
training: From our tests, we were able to observe the training time for average one 
epoch reduced from 18 minutes to 3 minutes by using 32 GPUs with 2.8 TB 
datasets. Multiple DGX A100 systems reduced the training time by 6x for large 
dataset DL model development. 

• Storage throughput requirement grows linearly with the increase of total 
GPUs during training: From our test results, storage throughput grows linearly 
with the increase of GPU numbers during the model training. During the sizing for 
DL infrastructure, it is important to plan storage for future GPU growth as well. 
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https://www.delltechnologies.com/resources/en-us/asset/white-papers/products/storage/h18597-dell-emc-powerscale-and-nvidia-dgx-a100-systems-for-deep-learning.pdf
https://www.delltechnologies.com/resources/en-us/asset/white-papers/products/storage/h18597-dell-emc-powerscale-and-nvidia-dgx-a100-systems-for-deep-learning.pdf
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• Larger dataset can generate higher bandwidth requirements during training: It 
is observed that a large dataset which exceeds the compute system cache will 
consistently generate higher bandwidth requirements. During the sizing, it is crucial 
for ADAS development to size your infrastructure with consideration of future data 
growth.  

• NVIDIA DALI allows the training to run at full speed: GPU utilization is generally 
much higher than CPU utilization. In most of the training cases, the average GPU 
utilization can reach up to 97%. Low GPU usage could be caused by CPU 
bottlenecks. When the GPU utilization is low, the CPU is busy with data fetching 
from storage to memory or from working on small operations. DALI reduces latency 
and training time, mitigating bottlenecks, by overlapping training and pre-processing 
which maximizes the training speed. DALI is primarily designed to do preprocessing 
on a GPU, but most operations also have a fast CPU implementation. 

• Batch size should be large enough to reduce training time: It is observed that 
larger batch size will decrease the training time with higher GPU utilization. The 
larger batch size will also increase the throughput, so eliminating storage 
bottlenecks is also required to accelerate the training time. Also, some research by 
Facebook has shown that in distributed learning, the learning rate scaling rule is 
surprisingly effective for a broad range of batch sizes. It is recommended to 
increase learning rate following batch size. For more information, refer to Facebook 
article Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour. 

 
This document discussed key features of the scale-out NAS Dell EMC PowerScale as a 
powerful persistent storage solution for ADAS DL solutions. We presented a powerful and 
robust hardware architecture for DL by combining NVIDIA DGX A100 systems with 
embedded NVIDIA A100 GPUs and all-flash PowerScale storage. We ran several object 
detections and reported system performance based on the rate of images processed and 
throughput profile of I/O to disk. We also monitored and reported the CPU, GPU utilization 
and memory statistics that demonstrated that the system, GPU, and memory resources 
were fully utilized while the Dell EMC PowerScale was still capable of providing more I/O. 

DL algorithms have a diverse set of requirements with various compute, memory, I/O, and 
disk capacity profiles. That said, the architecture and the performance data points 
presented in this whitepaper can be utilized as the starting point for building DL solutions 
tailored to varied set of resource requirements. More importantly, all the components of 
this architecture are linearly scalable and can be expanded to provide DL solutions that 
can manage tens to thousands of petabytes of data.  

While the solution presented here provides several performance data points and speaks 
to the effectiveness of PowerScale in handling large scale DL workloads, there are 
several other operational benefits of persistent data for DL on PowerScale: 

• The ability to run AI in-place on data using multi-protocol access. 

• Enterprise grade features out-of-box. 

• The ability to share data via tiering with other ADAS workloads (ex: HiL/SiL) without 
copying data to lower-performance, hybrid storage tiers (typical for HiL/SiL) 

• Seamlessly tier to higher density nodes for cost-effective archiving while 
maintaining SLAs  

Summary 

https://arxiv.org/pdf/1706.02677.pdf
https://arxiv.org/pdf/1706.02677.pdf
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In summary, PowerScale based DL solutions deliver the capacity, flexible performance, 
and high concurrency to eliminate the I/O storage bottlenecks for AI. The DGX A100 
system delivers over twice the training performance of an eight V100 GPU system, such 
as the DGX-1 system using the same cityscapes dataset. This provides a solid foundation 
for large scale, enterprise-grade DL solutions with a future proof scale-out architecture 
that meets your AI needs of today and scales for the future. 
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Technical support and resources 
Dell.com/support is focused on meeting customer needs with proven services and 
support. 

Dell Technologies Automotive Landing page provide extended material to build-up an AD 
stack 

Storage technical documents and videos provide expertise that helps to ensure customer 
success on Dell EMC storage platforms. 

Additional resources include: 

• Dell EMC PowerScale and NVIDIA DGX A100 Systems for Deep Learning 

• Dell EMC PowerScale: Storage Solution for Autonomous Driving 

• Dell EMC PowerScale for ADAS and Autonomous Driving 

• Top 5 reasons to choose Dell EMC PowerScale for AD/ADAS 

• Solving the storage conundrum in ADAS development and validation 

• Cityscapes Public Dataset 

• Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour 

• NVIDIA SSD300 v1.1 For PyTorch 

• NVIDIA Semantic-Segmentation 

• NVIDIA DALI 

 

http://www.dell.com/support
http://www.delltechnologies.com/automotive
http://www.dell.com/storageresources
https://www.delltechnologies.com/resources/en-us/asset/white-papers/products/storage/h18597-dell-emc-powerscale-and-nvidia-dgx-a100-systems-for-deep-learning.pdf
https://www.dellemc.com/resources/en-us/asset/white-papers/products/storage/h17846-dell-emc-isilon-autonomous-driving-wp.pdf
https://www.delltechnologies.com/asset/en-us/products/storage/briefs-summaries/h17545-so-dell-emc-storage-for-adas-autonomous-driving.pdf
https://www.delltechnologies.com/asset/en-us/products/storage/briefs-summaries/h17545-so-dell-emc-storage-for-adas-autonomous-driving.pdf
https://www.dellemc.com/resources/en-us/asset/briefs-handouts/products/storage/h17239_top_five_reasons_for_dell_emc_isilon_in_adas.pdf?dgc=SM&lid=spr2185427817&linkId=64799080
https://www.dellemc.com/resources/en-us/asset/white-papers/products/storage/dell-emc-adas-solution-powered-by-isilon-wp.pdf
https://www.cityscapes-dataset.com/dataset-overview/
https://www.cityscapes-dataset.com/dataset-overview/
https://arxiv.org/pdf/1706.02677.pdf
https://github.com/NVIDIA/DeepLearningExamples/tree/master/PyTorch/Detection/SSD
https://github.com/NVIDIA/semantic-segmentation
https://github.com/NVIDIA/semantic-segmentation
https://github.com/NVIDIA/DALI
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