ECS

Version 3.4

Data Access Guide

302-999-905

01
September 2019

2

Copyright © 2018-2019 Dell Inc. or its subsidiaries. All rights reserved.
Dell believes the information in this publication is accurate as of its publication date. The information is subject to change without notice.

THE INFORMATION IN THIS PUBLICATION IS PROVIDED “AS-IS.” DELL MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND
WITH RESPECT TO THE INFORMATION IN THIS PUBLICATION, AND SPECIFICALLY DISCLAIMS IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. USE, COPYING, AND DISTRIBUTION OF ANY DELL SOFTWARE DESCRIBED
IN THIS PUBLICATION REQUIRES AN APPLICABLE SOFTWARE LICENSE.

Dell Technologies, Dell, EMC, Dell EMC and other trademarks are trademarks of Dell Inc. or its subsidiaries. Other trademarks may be the property
of their respective owners. Published in the USA.

Dell EMC

Hopkinton, Massachusetts 01748-9103
1-508-435-1000 In North America 1-866-464-7381
www.DellEMC.com

ECS Data Access Guide

CONTENTS

Chapter 1

Chapter 2

S3 7
Amazon S3 API support in ECS.......cooiiiiiiiieerccnn e 8
S3 API supported and unsupported features...........ccccvvieeiieieeeiiiieirenne e 8
Behavior where bucket already eXiStS........cccoevuiiiieiiiriiiiieiiereieeceenannes 1"
(21071 0= o To] [T3 V=TT o] o o) o NP PPPPRPIE 1
Creating, Assigning, and Managing Bucket Policies...........ccccvvvvuunnnnnnn. 13
Bucket poliCy SCENATIOS.........oceeiiiieiiicicee e 14
Supported bucket policy operations..........ccceevvevuvuiiceiiniineee e 15
Supported bucket policy conditions..........ccccovvieieiiiieeiiiiicci e, 17
Object lifecycle Management..........ccoiiiiiiuuiiiieiii e 18
S3 EXTENSIONS....cciiiiiice e e e e e e e e e 26
Byte range eXteNSIONS........ccciiiiiiiiiiiiiiiircee e e 26
(R L=1 0=T g1 o] o T 30
File system enabled.............ooiiiuiiiiiiiiiiiiieie et ra e e e naa s 31
537N TU] o] oo o SRRt 34
Geo-replication Status........uuuuuuuicieiiiiii e 34
Metadata SEarch.........oooo i 35
Assign metadata index values to a bucket............ccceevvvvveniiiciiiiiiineennns 35
Using encryption with metadata search..........cccccvviiieiiiiiiiiiiccccninnnens 38
Assign metadata to objects using the S3 protocol.........cc.ccceeeevevvnnnnnee. 38
Use metadata searCh qUENIeS..........coceieireieiiiiiiii e e e 39
Using Metadata Search from the ECS Java SDKccovvvuiiiiicciiiiinnenns 45
ECS system metadata and optional attributes.........cccccuvvuuiieiiiiiiinnennns 45
S3 and Swift Interoperability..........cccovviiieiiiiiiiii e ———— 46
Create and manage SECTet KEYS.....uuuuuuuiieiiiiiiieeiierreeiesse s s e e s e e e e e e e eees 48
Create a key for an 0bjeCt USer........ccuuuciiiiiiiiiiiiiicce e 48
Create an S3 secret key: self-ServiCe......ccoouuviiiveiiiiiiireiiiiece s eeens 49
Authenticating with the S3 Service...........cveieiiiiiiiiiiiir e 51
Authenticating using Signature V2...........uuviiiiiiiiiiiciieeieecccen e 52
Authenticating using Signature VA.............cieeiiiiiiiiiiiiiiiecccee e 52
Using s3curl with ECS........cooiiiiieccre e 53
Use SDKs to access the S3 ServiCe.........ooeiiiiiiiiiiiieeieeeere e 53
Using the Java Amazon SDK..........ccoiiiiiiiiiiiiin e ee e 53
Java SDK client for ECS........cooo i 55
ECS S3 ITOr COUES.....uuuuumniiniiiiieiiie i e et e et e e e e e e e e e aeaeeas 56
OpenStack Swift 65
OpenStack Swift support in ECS...........cuiiiiiiiii e 66
OpenStack Swift supported operations............ccccceeverieiiiinee s 66
SWIft @XEENSIONS. ..cuuiiiieeii i e e re e e e eees 68
Swift byte range eXtenSioNS.........ccouuviiiiiiiiiiciccc e 68
Updating a byte range within an object............cccccveiieiiiiiii, 68
Overwriting part of an object...........ccccciiiiiiiiii e 69
Appending data to an Object..........cccevvviiiii 70
Reading multiple byte ranges within an object...............ocooeiiiiiiinnnns 71
= =T g1 [o] o A PPN 72
File system enabled..........couuiiiiiiiiii 73
S3 and Swift interoperability..........cccciiiiiiiicii 73
OpenStack Swift authentication...........ccccceviiiiiiiiii 73
Create Swift users in the ECS Portal..........cooooiiiiiiiiiiciieieeeeeeeeeeeee 74

ECS Data Access Guide 3

Contents

4

Chapter 3

Chapter 4

Chapter 5

Chapter 6

ECS Data Access Guide

OpenStack Version 1 authenticationceeuuuiiieiiiiiiiicciecrecccce e, 75
OpenStack Version 2 authentication..............ccceeiiiiiiiceciieeeeccee e 76
Authentication using ECS Keystone V3 integration.........cccccevvvuuucennnnn. 78
Authorization on Container..........cccccooiiiieiiii e 80
ECS Swift €rror COAEs.........ooiiiiiieeeer e 82
EMC Atmos 85
EMC Atmos API support in ECS...........ouiiiiiiiiiiiii e 86
Supported EMC Atmos REST API Calls.......cccccuviiiiiiiimiiieiii e 86
Unsupported EMC Atmos REST API Calls.........ccuiiiieiiiiiiiicceneenens 88
Subtenant Support in EMC Atmos REST API Calls..........ccevvimeiieiiiiiiiiinninnnn. 88
Y o I = =Y g3 o] o TS TP 89
Appending data to an object...........cccciiiiiiiiccici 89
ECS support for retention and retention expiration periods for Atmos
Lo o] [=Tox - PP 90
ECS ATMOS €ITOr COUES.......iiiiieeeeiiiiieeeeee e e e e e e e e e ereean e s e e e e e e e s eeeenn e e aaeaaees 94
CAS 99
Setting up CAS support in ECS.......uuiiiiiiiiiccrerreccee e 100
(070] o IS} (o] - To [T P PUP P 100
(07T 141 0] 1 F=T o Lo TP UUP PR 101
Platform hardening and Compliance............cuuuuivieeiiiiiiieeieereeecee e 101
Compliance and retention poliCy.........cuuuuuuuuiiiiiiiiiiiecccrrce e 101
CompliaNCe ageNt........oeeeeieiiiiiiciee e —————— 102
CAS retention in ECS........cooiiiiiiiiii e 102
Advanced retention for CAS applications: event-based retention, litigation hold,
and the MIN/MaX QOVEIMONcuuiiiuiuuiieeeiess e e e erereeee e s e e e e eeeesas s 104
Set up namespace retention PoliCies..........ccceuuiiiiiiiiiiiiiiiiiice e ————- 108
Create and set up a bucket for a CAS USEr........ccovrvvveeiiiiiiiiiiie e 109
Set Up @ CAS ODJECT USEI.....uiiiiiiiicciteteecce e 110
Set up bucket ACLS fOr CAS.......oi it e 110
ECS Management APIs that support CAS USErsS........ccuuuueuuiieeiiniieeeenreeneeseenns M
Content Addressable Storage (CAS) SDK API SUPPOIt..........covverrvemnuuciininnnnnns 112
S GRS O LN =T 4 o] g oTeTo [T PP 112
ECS Management REST API 119
ECS Management REST APl introduction...........cceoeeiiiiiiinnnenenneeneereereeeeeen 120
Authenticate with the ECS Management REST APl.........ccccoiveiieiiii. 120
Authenticate without COOKIESccoriiimmmiiiiir e 120
oo o T | PP 122
ECS Management REST APl whoami command...........ccccceevvvniiinnnnnnn. 122
ECS Management REST APl summary.........ccccoeivmmemennernnnnenneeienennnnn 123
ECS HDFS 127
ECS HDFS INtrodUuCTioN.......ccceiiiiiiiiie e ee e 128
Configuring Hadoop to use ECS HDFSuuiiiiiiiiiiiicrrreecene e 129
Hadoop authentication Modes...........cccoiiiiiiiiiiiiieiiiicc e 130
Accessing the bucket as a file system.......cccccccivieiiiiiiicciccieeeeeeeee, 130
Bucket Custom Group ACLs and Default Group.........cccceevveeeeereeennnnnne. 131
Hadoop superuser and SUPErgroUP..........ceeetiereeeremmesssssssesseseeeeeneennnns 131
Multi-protocol (cross-head) access........c.ccovvveeiirieevniicieein e, 132
[(0T qY A U 1T =Y 132
EQUIVAIENCE USET......ccceieeteeiccee ettt e e 132

Appendix A

Appendix B

Appendix C

Appendix D

Appendix E

Contents

Migration from a simple to a Kerberos Hadoop cluster...........cccccovvviiieiiineennnn. 132
Hadoop Kerberos authentication mode..........cccccvveeeiiiiiiiiiinieeeiccceenn, 133
File syStem iNteraCtioN.......cciveuiiiieiiiiii et e s e ree e s e ena s e raneees 133
Supported Hadoop appliCations........ccccvveeeieiieiiiiiiieen e 134
Integrate a simple Hadoop cluster with ECS HDFS.........c..uciiiiiiiiiiiiiiiieeeee, 134
Install Hortonworks HDP using Ambari..........cccceevvvivviiicicinnieceeceeene, 135
Create a bucket for HDFS using the ECS Portal........cccuuuiieeiiiiiinennnn, 135
Plan the ECS HDFS and Hadoop integration.......cccccccceceeeiniiiieeeieennnnnn, 140
Obtain the ECS HDFS installation and support package............cccce.... 141
Deploy the ECS HDFS Client Library.......ccccccovveeiiiiiieniicccinnneeeeeeeeennns 141
Configure ECS client properties..........ccceeeerrevvuuiciininiieeeeeeereeeeeee e 142
S UP HIVe...ueii it 143
Verify Hadoop access to ECS.........ciiiiiiiiiiciiirieccee e 145
Secure the bUCKEt..........cccoiieeeere e 145
Relocate the default file system from HDFS to an ECS bucket........... 146
Integrate a secure Hadoop cluster with ECS HDFScccoooviiiiiiiiiiiniiicnn, 147
Plan migration from a simple to a Kerberos cluster...........cccccccvvveeeeene 148
MaP GrOUP NAMES.....c.ieiieiiieeeriieeee s s e e e e e e e s e e e e e e e eeas e s 148
Configure ECS nodes with the ECS service principal........cccccvvvvuuunnee. 149
Enable Kerberos using Ambari........cccccooeeeiiiiiiiiiciciiicceecreeeen 152
Secure the ECS bucket using metadata..........cccccvvveeererieenniiiccininneeenens 152
Reconfigure ECS client properties......cccccccvvveeeeiniiiiieeecrieeicccsen e 156
Start Hadoop services and verify Hadoop access to ECS................... 156
Troubleshooting ECS HDFS Configuration 159
Verify that AD/LDAP is correctly configured with a secure Hadoop cluster.... 160
Pig test fails: unable to obtain Kerberos principal...........ccccooimiriiriiiiiieciennnnnn, 160
Permission denied for AD USET..........eueuiiiiiiieeeeieeeieeee e e e e e e e 161
PermMISSIONS EITOIS. ...ccieeeeeiee i e e e e eeeee e e e e e e e e e e e e e e e e e s e e e e e e e e e e eennn e eeas 161
Failed to process reqUESt..........ccccciimmiiereiriir e 164
Enable Kerberos client-side logging and debugging............cceeeeeveiiiiniiininnnnee. 164
Debug Kerberos on the KDC............uuiiiiiiiiiiiiii e 165
Eliminate CloCk SKEW....... ... e 165
Configure one or more new ECS nodes with the ECS service principal........... 165
Workaround for Yarn directory does not exist error..........ccceeevvvvevneeiierennccinnne, 167
Guidance on Kerberos Configuration in the Hadoop Cluster 169
Set up the Kerberos KDC..........uuuiciiiiiiiicciiriieiises s e e e e eeeeanas 170
Configure AD user authentication for Kerberos...........cccceevrviiiiiciciiniiiiccienenen, 171
HDFS Secure Bucket Metadata Example 173
Secure bucket metadata............ueiiii i e 174
Hadoop core-site xml properties 177
Hadoop core-site.xml properties for ECS HDFS..........ccouvuiuiiiiiiiiniiiieereeeeeae, 178
Sample core-site.xml for simple authentication mode........cccccccceeunnnnn. 181
Hadoop core-site.xml properties for ECS S3...........ccceeirmviriiiciiiiniieeeeeceeeeeaane 182
Sample core-site.xml for ECS S3.........ccoiiiiiiiiiiiiiiiccccrrereen s 183
External Key Management 191
External key management.........coooviiiiiiiiiiiiciiirrrr s 192

ECS Data Access Guide 5

Contents

6 ECS Data Access Guide

CHAPTER1
S3

This section describes the support that ECS provides for the S3 API and the extension. This
section also describes how to authenticate with the service and use the Software Development Kit
(SDK), to develop clients to access the service.

Some aspects of bucket addressing and authentication are specific to ECS. To configure an
existing application to talk to ECS, or develop a new application that uses the S3 API to talk to
ECS, see the ECS Administration Guide ECS Product Documentation page.

e Amazon S3 API support in ECS........e et eeeeens 8
e S3 API supported and unsupported features........covii i e e e 8
LN =¥ To1 =1 o o] {3V AT 0T o] o] o SF PRSP 1
LI O o] 1=Yed 11 {=T oy Vo (=0 o g EoT g EoTe T=T 4 T=T o PR 18
LS B =Y TS] o L= PRt 26
o Metadata SEarCh..... ..o e e e e e e e as 35
e S3 and Swift INteroperability.........ccuueueuieeiiiii e —————— 46
e Create and Manage SECIEt KEYS......uuu i ieiiiiiiiiiieieeie i et et e e e e e e e r e e e e e eeeaeeaeeaaeeennnn 48
e Authenticating With the S3 SErviCe.........co oo 51
o Using S3cUrl With ECS.......cooiiiiiiiiiiie et e e e e e e e e e e e e e e s e e e e mne e e e e e e e e e e e eas 53
o Use SDKs t0 aCCeSS the S3 SEIVICE....cciiiiiiiiiiiiiiiiiie 53
® ECS S3 OITOI COUES iiiieeeeer e et e e e et e e e e e aeaeeeasseeeaea e e nsnnnnneeereeeeeeeeaaeaaaaaesaesaanaannn 56

ECS Data Access Guide 7

https://community.emc.com/docs/DOC-62642

S3

Amazon S3 API support in ECS

ECS supports the Amazon Simple Storage Service (Amazon S3) Application Programming
Interface (API).
The Amazon S3 Object Service is available on the following ports:

Table 1 S3 Object Service

Protocol Ports
HTTP 9020
HTTPS 9021

S3 API supported and unsupported features

ECS supports a subset of the Amazon S3 REST API.

The following sections detail the supported and unsupported APIs:

Supported S3 APIs

The following table lists the supported S3 APl methods:

Table 2 Supported S3 APIs
Feature Notes
GET Service ECS supports marker and max-keys parameters to enable paging of bucket list.

GET /?marker=<bucket>&limit=<num>

For example:

GET /?marker=mybucket&limit=40

DELETE Bucket

DELETE Bucket cors

DELETE Bucket life cycle

Only the expiration part is supported in life cycle. Policies that are related to archiving
(AWS Glacier) are not supported. Lifecycle is not supported on file system-enabled
buckets.

DELETE Bucket policy

GET Bucket (List Objects)

For file system-enabled buckets, / is the only supported delimiter when listing objects
in the bucket.

GET Bucket (List Objects)
Version 2

For file system-enabled buckets, / is the only supported delimiter when listing objects
in the bucket.

GET Bucket cors

GET Bucket acl

8 ECS Data Access Guide

Table 2 Supported S3 APIs (continued)

Feature

Notes

GET Bucket life cycle

Only the expiration part is supported in life cycle. Policies that are related to archiving
(AWS Glacier) are not supported. Lifecycle is not supported on file system-enabled
buckets.

GET Bucket policy

GET Bucket Object
versions

GET Bucket versioning

HEAD Bucket

List Multipart Uploads

PUT Bucket

Where PUT is performed on an existing bucket, refer to Behavior where bucket already
exists.

PUT Bucket cors

PUT Bucket acl

PUT Bucket life cycle

Only the expiration part is supported in life cycle. Policies that are related to archiving
(AWS Glacier) are not supported. Lifecycle is not supported on file system-enabled
buckets.

PUT Bucket policy

Cannot configure the bucket policies for file system-enabled or CAS-enabled buckets.
Cannot configure the bucket policies for operations that ECS does not support. More
information about bucket policy support is provided in Bucket policy support.

PUT Bucket versioning

DELETE Object

Delete Multiple Objects

GET Object

GET Object ACL

HEAD Object

PUT Object

Supports chunked PUT

PUT Object acl

PUT Object - Copy

OPTIONS object

Initiate Multipart Upload

Upload Part

Upload Part - Copy

Complete Multipart Upload

ECS returns an ETag of 00 for this request, which differs from the Amazon S3
response.

Abort Multipart Upload

List Parts

ECS Data Access Guide

S3

S3

Note:

Creation of buckets using names with fewer than three characters fails with 400 Bad
Request, InvalidBucketName.

When creating a bucket or object with empty content, ECS returns 400 invalid
content-length value, which differs from AWS which returns 400 Bad Request.

Copying an object to another bucket that indexes the same user metadata index key but
with a different datatype is not supported and fails with 500 Server Error.

When listing the objects in a bucket, if you use a prefix and delimiter but supply an invalid
marker, ECS throws 500 Server Error, or 400 Bad Request for a file system-enabled
bucket. However, AWS returns 200 OK and the objects are not listed.

The table lists the additional features

Table 3 Additional features

Feature

Notes

Presigned URLs

ECS supports use of presigned URLs to grant access to objects without needing
credentials. More information can be found at: https://docs.aws.amazon.com/
AmazonS3/latest/dev/PresignedUrlUploadObject.html.

Chunked PUT

PUT operation can be used to upload objects in chunks, which enable content to be
sent before the total size of the payload is known. Chunked transfer uses the
Transfer-Encoding header (Transfer-Encoding: chunked) to specify that content is
transmitted in chunks.

Unsupported S3 APIs

The following table lists the unsupported S3 APl methods:
Table 4 Unsupported S3 APIs

Feature

Notes

DELETE Bucket tagging

DELETE Bucket website

GET Bucket location

ECS is only aware of a single Virtual Data Center (VDC).

GET Bucket logging

GET Bucket notification

Notification is only defined for reduced redundancy feature in S3. ECS does not
support notifications.

GET Bucket tagging

GET Bucket
requestPayment

ECS uses its own model for payments.

GET Bucket website

PUT Bucket logging

PUT Bucket notification

Notification is only defined for the reduced redundancy feature in S3. ECS does not
support notifications.

PUT Bucket tagging

10 ECS Data Access Guide

https://docs.aws.amazon.com/AmazonS3/latest/dev/PresignedUrlUploadObject.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/PresignedUrlUploadObject.html

S3

Table 4 Unsupported S3 APIs (continued)

Feature Notes
PUT Bucket ECS uses its own model for payments.
requestPayment

PUT Bucket website

Object APIs

GET Object torrent

POST Object

POST Object restore

The POST Object restore operation is related to AWS Glacier, which is not supported
in ECS.

SELECT Object Content

PUT Object legal hold

GET Object legal hold

PUT Object retention

ECS does not support the new AWS API yet, but has support in its own extensions.
See S3 Extensions on page 26.

GET Object retention

ECS does not support the new AWS API yet, but has support in its own extensions.
See S3 Extensions on page 26.

PUT Object tagging

GET Object tagging

Behavior where bucket already exists

Bucket pol

When an attempt is made to create a bucket with a name that already exists, the behavior of ECS
can differ from AWS.

AWS always returns 409 Conflict when a user who has FULL CONTROL permissions on the
bucket, or any other permissions, attempts to recreate the bucket. When an ECS user who has
FULL_CONTROL or WRITE_ACP on the bucket attempts to recreate the bucket, ECS returns 200
OK and the ACL is overwritten, however, the owner is not changed. An ECS user with WRITE/
READ permissions will get 409 Conflict if they attempt to recreate a bucket.

Where an attempt to recreate a bucket is made by the bucket owner, ECS returns 200 OK and
overwrites the ACL. AWS behaves in the same way.

Where a user has no access privileges on the bucket, an attempt to recreate the bucket throws a
409 Conflict error. AWS behaves in the same way.

icy support

ECS supports the setting of S3 bucket access policies. Unlike ACLs, which either permit all actions
or none, access policies provides specific users, or all users, conditional and granular permissions
for specific actions. Policy conditions can be used to assign permissions for a range of objects that
match the condition and can be used to automatically assign permissions to newly uploaded
objects.

How access to resources is managed when using the S3 protocol is described in http://
docs.aws.amazon.com/AmazonS3/latest/dev/s3-access-control.html and you can use the

ECS Data Access Guide 1

http://docs.aws.amazon.com/AmazonS3/latest/dev/s3-access-control.html
http://docs.aws.amazon.com/AmazonS3/latest/dev/s3-access-control.html

S3

information as the basis for understanding and using S3 bucket policies in ECS. This section
provides basic information about the use of bucket policies, and to identify the differences when
using bucket policies with ECS.

The following provides an example of an ECS bucket policy:

"Version": "2012-10-17",
"Id": "S3PolicyIdNew2",
"Statement": [

{
"Sid":"Granting PutObject permission to user2 ",
"Effect":"Allow",
"Principal": "user n2",
"Action":["s3:PutObject"],
"Resource": ["PolicyBuckl/*"],
"Condition": {
"StringEquals": {"s3:x-amz-server-side-encryption": ["AES256"]}
}

Each policy is a JavaScript Object Notation (JSON) document that includes a version, an
identifier, and one or more statements.

Version

The Version field specifies the policy language version and can be either 2012-10-17 or
2008-10-17. If the version is not specified, 2008-10-17 is automatically inserted.

It is good practice to set the policy language for a new policy to the latest version,
2012-10-17.

Id
The Id field is optional.

Each statement includes the following elements:
SID
A statement ID is a string that describes what the statement does.

Resources

The bucket or object that is the subject of the statement. The resource can be associated
with a Resource or NotResource statement.

The resource name is the bucket and key name and is specified differently depending on
whether you are using virtual host style addressing or path style addressing, as shown:

Host Style: http://bucketname.nsl.emc.com/objectname
Path Style: http://nsl.emc.com/bucketname/objectname

In either case, the resource name is: bucketname/objectname .

You can use the (*) and (?) wildcard characters, where asterisk (*) represents any
combination of zero or more characters and a question mark (?) represents any single

12 ECS Data Access Guide

S3

character. For example, you can represent all objects in bucket that is called bucket name,

using:
bucketname/*
Actions
The set of operations that you want to assign permissions to (enable or deny). The supported
operations are listed in Supported bucket policy operations on page 15.
The operation can be associated with an Action or NotAction statement.
Effect
Can be set to A11ow or Deny to determine whether you want to enable or deny the specified
actions.
Principal
The ECS object user who is enabled or denied the specified actions.
To grant permissions to everyone, as anonymous access, you can set the principal value to a
wildcard, "*", as shown:
"Principal":"*"
Conditions

The condition under which the policy is in effect. The condition expression is used to match a
condition that is provided in the policy with a condition that is provided in the request.

The following condition operators are not supported: Binary, ARN, IfExists, Check Key Exists.
The supported condition keys are listed in Supported bucket policy conditions on page 17.

@ Note: ECS bucket policies do not support federated users, nor do they support Amazon IAM
users and roles.

More information about the elements that you can use in a policy are described in the Amazon S3
documentation, http://docs.aws.amazon.com/IAM/latest/UserGuide/
reference_policies_elements.html.

Creating, Assigning, and Managing Bucket Policies

You can create a bucket policy for a bucket from the ECS Portal (see the ECS Administration
Guide which is available from the ECS Product Documentation page). It is also possible to create a
policy using another editor, and associate the policy with a bucket using the ECS Management
REST API or using the ECS S3 API.

The ECS Management REST API provides the following APIs to enable bucket policy subresources
to be added, retrieved, and deleted:

e PUT /object/bucket/{bucketName}/policy

e GET /object/bucket/{bucketName}/policy

e DELETE /object/bucket/{bucketName}/policy

To set a policy using the ECS Management REST API you must have either the ECS System
Administrator or Namespace Administrator role.

The ECS S3 API provides the following APIs:

ECS Data Access Guide 13

HTTP://DOCS.AWS.AMAZON.COM/IAM/LATEST/USERGUIDE/REFERENCE_POLICIES_ELEMENTS.HTML
HTTP://DOCS.AWS.AMAZON.COM/IAM/LATEST/USERGUIDE/REFERENCE_POLICIES_ELEMENTS.HTML
https://community.emc.com/docs/DOC-62642

S3

e PUT Bucket Policy
e GET Bucket Policy
e DELETE Bucket Policy

Note:
To set a policy using the S3 APl you must be the bucket owner.

Details of these APIs can be found in the ECS API Reference.

Bucket policy scenarios

In general, the bucket owner has full control on a bucket and can grant permissions to other users
and can set S3 bucket policies using an S3 client. In ECS, it is also possible for an ECS System or
Namespace Administrator to set bucket policies using the Bucket Policy Editor from the ECS
Portal.

You can use bucket policies in the following typical scenarios:
¢ Grant bucket permissions to a user
¢ Grant bucket permissions to all users

e Automatically assign permissions to created objects

Grant bucket permissions to a user

To grant permission on a bucket to a user apart from the bucket owner, specify the resource that
you want to change the permissions for. Set the principal attribute to the name of the user, and
specify one or more actions that you want to enable.

The following example shows a policy that grants a user who is named user1 the permission to
update and read objects in the bucket that is named mybucket:

"Version": "2012-10-17",
"Id": "S3PolicyIdl",
"Statement": [
{
"Sid": "Grant permission to userl",
"Effect": "Allow",
"Principal": ["userl"],
"Action": ["s3:PutObject","s3:GetObject"],
"Resource": ["mybucket/*"]

You can also add conditions. For example, if you only want the user to read and write object when
accessing the bucket from a specific |IP address, add a ITpAddress condition as shown in the
following policy:

"Version": "2012-10-17",
"Id": "S3PolicyIdl",
"Statement": [
{
"Sid": "Grant permission ",
"Effect": "Allow",
"Principal": ["userl"],
"Action": ["s3:PutObject","s3:GetObject"],
"Resource": ["mybucket/*"]
"Condition": {"IpAddress": {"aws:SourcelIp": "<Ip address>"}

14 ECS Data Access Guide

http://doc.isilon.com/ECS/3.2/API/index.html

S3

Grant bucket permissions to all users

To grant permission on a bucket to a user apart from the bucket owner, specify the resource that
you want to change the permissions for. Set the principal attribute as anybody (*), and specify
one or more actions that you want to enable.

The following example shows a policy that grants anyone permission to read objects in the bucket
that is named mybucket:

"Version": "2012-10-17",

"Id": "S3PolicyId2",

"Statement": [

{

"Sid": "statement2",
"Effect": "Allow",
"Principal": ["*"],
"Action": ["s3:GetObject" 1],
"Resource": ["mybucket/*"]

Automatically assign permissions to created objects

You can use bucket policies to automatically enable access to ingested object data. In the following
example bucket policy, userl and user?2 can create subresources (that is, objects) in the bucket
that is named mybucket and can set object ACLs. With the ability to set ACLs, the users can then
set permissions for other users. If you set the ACL in the same operation, a condition can be set.
Such that a canned ACL public-read must be specified when the object is created. This ensures
anybody can read all the created objects.

"Version": "2012-10-17",
"Id": "S3PolicyId3",
"Statement": [
{
"Sid": "statement3",
"Effect": "Allow",
"Principal": ["userl", "user2"],
"Action": ["s3:PutObject, s3:PutObjectAcl”],
"Resource": ["mybucket/*"]

"Condition": {"StringEquals":{"s3:x-amz-acl": ["public-read"]}}

Supported bucket policy operations

The following tables show the supported permission keywords and the operations on bucket,
object, and sub-resource that they control.

ECS Data Access Guide 15

S3

Table 5 Permissions for Object Operations

Permission keyword

Supported S3 operations

s3:GetObject applies to
latest version for a version-
enabled bucket

GET Object, HEAD Object

s3:GetObjectVersion

number

GET Object, HEAD Object This permission supports requests that specify a version

s3:PutObject

PUT Object, POST Object, Initiate Multipart Upload, Upload Part, Complete Multipart
Upload PUT Object - Copy

s3:GetObjectAcl

GET Object ACL

s3:GetObjectVersionAcl

GET ACL (for a Specific Version of the Object)

s3:PutObjectAcl

PUT Object ACL

s3:PutObjectVersionAcl

PUT Object (for a Specific Version of the Object)

s3:DeleteObject

DELETE Object

s3:DeleteObjectVersion

DELETE Object (a Specific Version of the Object)

s3:ListMultipartUploadPart | List Parts
s
s3:AbortMultipartUpload Abort Multipart Upload

16

The tabke lists the permissions for Bucket operations

Table 6 Permissions for Bucket Operations

Permission keyword

Supported S3 operations

s3:DeleteBucket

DELETE Bucket

s3:ListBucket

GET Bucket (List Objects), HEAD Bucket

s3:ListBucketVersions

GET Bucket Object versions

s3:GetLifecycleConfiguration

GET Bucket lifecycle

s3:PutLifecycleConfiguration

PUT Bucket lifecycle

The table lists the permissions for Bucket Sub-resource operations

Table 7 Permissions for Bucket Sub-resource Operations

Permission keyword

Supported S3 operations

s3:GetBucketAcl

GET Bucket acl

s3:PutBucketAcl

PUT Bucket acl

s3:GetBucketCORS

GET Bucket cors

s3:PutBucketCORS

PUT Bucket cors

s3:GetBucketVersioning

GET Bucket versioning

s3:PutBucketVersioning

PUT Bucket versioning

s3:GetBucketPolicy

GET Bucket policy

ECS Data Access Guide

Table 7 Permissions for Bucket Sub-resource Operations (continued)

Permission keyword Supported S3 operations

s3:DeleteBucketPolicy DELETE Bucket policy

s3:PutBucketPolicy PUT Bucket policy

Supported bucket policy conditions
The condition element is used to specify conditions that determine when a policy is in effect.

The following tables show the condition keys that are supported by ECS and that can be used in

condition expressions.

The table lists the supported generic AWS condition keys

Table 8 Supported generic AWS condition keys

Key name Description

Applicable operators

aws:CurrentTime

Used to check for date/time conditions

Date operator

aws:EpochTime

Used to check for date/time conditions using a date in epoch or
UNIX time (see Date Condition Operators).

Date operator

aws:principalType

Used to check the type of principal (user, account, federated user,
etc.) for the current request.

String operator

aws:Sourcelp

Used to check the requester's IP address.

String operator

aws:UserAgent

Used to check the requester's client application.

String operator

aws:username

Used to check the requester's user name.

String operator

The table lists the supported S3-specific condition keys for object operations

Table 9 Supported S3-specific condition keys for object operations

Key name

Description

Applicable permissions

s3:x-amz-acl

Sets a condition to require specific
access permissions when the user
uploads an object.

s3:PutObject, s3:PutObjectAcl,
s3:PutObjectVersionAcl

s3:x-amz-grant-permission (for
explicit permissions), where
permission can be:read, write, read-
acp, write-acp, full-control

Bucket owner can add conditions
using these keys to require certain
permissions.

s3:PutObject, s3:PutObjectAcl,
s3:PutObjectVersionAcl

s3:x-amz-server-side-encryption

Requires the user to specify this
header in the request.

s3:PutObject, s3:PutObjectAcl

s3:Versionld

Restrict the user to accessing data
only for a specific version of the
object

s3:PutObject, s3:PutObjectAcl,
s3:DeleteObjectVersion

The table lists the supported S3-specific condition keys for bucket operations

ECS Data Access Guide

17

S3

Table 10 Supported S3-specific condition keys for bucket operations

Key name

Description

Applicable permissions

s3:x-amz-acl

Set a condition to require specific
access permissions when the user
uploads an object

s3:CreateBucket, s3:PutBucketAcl

s3:x-amz-grant-permission (for
explicit permissions), where
permission can be:read, write, read-
acp, write-acp, full-control

Bucket owner can add conditions
using these keys to require certain
permissions

s3:CreateBucket, s3:PutBucketAcl

delimiter parameter in the Get
Bucket (List Objects) request.

s3:prefix Retrieve only the object keys with a | s3:ListBucket, s3:ListBucketVersions
specific prefix.
s3:delimiter Require the user to specify the s3:ListBucket, s3:ListBucketVersions

s3:max-keys

Limit the number of keys ECS
returns in response to the Get
Bucket (List Objects) request by
requiring the user to specify the max-
keys parameter.

s3:ListBucket, s3:ListBucketVersions

Object lifecycle management

ECS supports S3 Lifecycle Configuration on both version-enabled buckets and non-version-
enabled buckets.

Where you need to modify objects and delete objects, but need to ensure that the objects are still
retained for a period, you can enable versioning on a bucket and use the lifecycle capability to
determine when deleted versions of objects will be removed from ECS.

Versioning and lifecycle are standard S3 features. However, lifecycle expiration is closely related
to retention, which is an ECS extension. If the lifecycle expires before the retention period expires,
the object will not be deleted until the retention period is over.

Lifecycle cannot be enabled on FS enabled buckets.

Lifecycle is a bucket level concept.

Maximum of 1000 lifecycle rules per bucket is applicable.

There may be a delay between the expiration date and the date at which S3 removes an object.
Always round up the resulting time to the next day midnight UTC.

For expiration, the days are calculated since the last modified date (= Creation date for the
objects not yet modified/deleted).

For noncurrentexpiration, the days are calculated since the object became noncurrent.
The date-based rules trigger action on all objects created on or before this date.

Example lifecycle configurations for ECS

The following are some lifecycle configurations examples.

Aborting old MPU's (versioning and non-versioning enabled buckets)

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<LifecycleConfiguration xmlns="http://s3.amazonaws.com/doc/2006-03-01/">

18 ECS Data Access Guide

S3

<Rule>
<ID>lifecycle-v2-expire-non-current-and-dmarkers—-and-mpu</ID>
<Filter/>
<Status>Enabled</Status>
<AbortIncompleteMultipartUpload>

<DaysAfterInitiation>1</DaysAfterInitiation>

</AbortIncompleteMultipartUpload>

</Rule>

</LifecycleConfiguration>

Expiring objects after a certain # of days (versioning and non-versioning enabled buckets)

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<LifecycleConfiguration xmlns="http://s3.amazonaws.com/doc/2006-03-01/">
<Rule>
<ID>lifecycle-v2-expire-one-year</ID>
<Filter/>
<Status>Enabled</Status>
<Expiration>
<Days>365</Days>
</Expiration>
</Rule>
</LifecycleConfiguration>

Expiring NoncurrentVersions of objects after a certain # of days (versioning enabled buckets only)

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<LifecycleConfiguration xmlns="http://s3.amazonaws.com/doc/2006-03-01/">
<Rule>
<ID>lifecycle-v2-expire-non-current</ID>
<Filter/>
<Status>Enabled</Status>
<NoncurrentVersionExpiration>
<NoncurrentDays>1</NoncurrentDays>
</NoncurrentVersionExpiration>
</Rule>
</LifecycleConfiguration>

Removing expired object delete markers (versioning enabled buckets only)

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<LifecycleConfiguration xmlns="http://s3.amazonaws.com/doc/2006-03-01/">
<Rule>
<ID>lifecycle-v2-expire-dmarkers</ID>
<Filter/>
<Status>Enabled</Status>
<Expiration>
<ExpiredObjectDeleteMarker>true</ExpiredObjectDeleteMarker>
</Expiration>
</Rule>
</LifecycleConfiguration>

Expire all non-current versions, dmarkers and incomplete MPU's after 1 day

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<LifecycleConfiguration xmlns="http://s3.amazonaws.com/doc/2006-03-01/">
<Rule>
<ID>lifecycle-v2-expire-non-current-and-dmarkers—-and-mpu</ID>
<Filter/>
<Status>Enabled</Status>

ECS Data Access Guide 19

S3

<Expiration>
<ExpiredObjectDeleteMarker>true</ExpiredObjectDeleteMarker>

</Expiration>

<AbortIncompleteMultipartUpload>
<DaysAfterInitiation>1</DaysAfterInitiation>

</BbortIncompleteMultipartUpload>

<NoncurrentVersionExpiration>
<NoncurrentDays>1</NoncurrentDays>

</NoncurrentVersionExpiration>

</Rule>
</LifecycleConfiguration>

PUT/GET lifecycle with s3curl examples

The following are PUT and GET lifecycle with s3curl examples. See Using s3curl with ECS for more
information.

PUT lifecycle

admin@: /usr/share/s3curl> cat lifecycle.xml
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<LifecycleConfiguration xmlns="http://s3.amazonaws.com/doc/2006-03-01/">
<Rule>
<ID>lifecycle-v2-non-current-expiration</ID>
<Filter/>
<Status>Enabled</Status>
<NoncurrentVersionExpiration>
<NoncurrentDays>1</NoncurrentDays>
</NoncurrentVersionExpiration>
</Rule>
</LifecycleConfiguration>
admin@:/usr/share/s3curl>
admin@: /usr/share/s3curl> sudo perl ./s3curl.pl --debug --id=emc --
put=lifecycle.xml --calculateContentMd5 -- "http://192.0.2.0:9020/
emc lifecycle?lifecycle" -v
s3curl: Found the url: host=10.32.169.121; port=9020; uri=/emc lifecycle;
query=lifecycle;
s3curl: replaced string: lifecycle
s3curl: ordinary endpoint signing case
s3curl: StringToSign='PUT\nFjZKcAgVegBUaGdgfEh/Ig==\n\nTue, 06 Nov 2018
17:28:58 +0000\n/tom lifecycle?lifecycle’
s3curl: exec curl -v -H 'Date: Tue, 06 Nov 2018 17:28:58 +0000' -H
'Authorization: AWS emc:xDTXdXSF+qVIQ4EreEe+iglHRns=' -L -H 'content-type: ' -
H 'Content-MD5: FjZKcAgVegBUaGdgfEh/Ig==' -T lifecycle.xml http://
192.0.2.0:9020/tom_lifecycle?lifecycle -v
* Hostname was NOT found in DNS cache
Trying 192.0.2.0...
Connected to 192.0.2.0 (192.0.2.0) port 9020 (#0)
PUT /emc lifecycle?lifecycle HTTP/1.1
User-Agent: curl/7.37.0
Host: 192.0.2.0:9020
Accept: */*
Date: Tue, 06 Nov 2018 17:28:58 +0000
Authorization: AWS emc:xDTXdXSF+gVIQ4EreEe+iglHRns=
Content-MD5: FjZKcAgVegBUaGdgfEh/Ig==
Content-Length: 376
Expect: 100-continue

HTTP/1.1 100 Continue

We are completely uploaded and fine

HTTP/1.1 200 OK

Date: Tue, 06 Nov 2018 17:28:58 GMT

Server ViPR/1.0 is not blacklisted

Server: ViPR/1.0

x—amz-request-id: 0a20a979:166c6842ba5:82ba:5

x—amz-1d-2: 6687ce5967202724ed9a94d44c939438d39cabae%9abcb5a2c48a60c2c5355£95e

ANNANXAAN XAV VVVVVYVVVV E®

20 ECS Data Access Guide

S3

< Content-Length: 0
<
* Connection #0 to host 10.32.169.121 left intact

Troubleshooting LDS:

Enabling debug logging for LDS

LDS log is in resourcesvc-log4j2.xml

<Logger
name="com.emc.storageos.data.object.impl.resource.LifeCycleDeleteScanner"
level="DEBUG" />

Other relevant classes for troubleshooting lifecycle issues from blobsvc-
log4j2.xml

<Logger name="com.emc.storageos.data.object.impl.gc.DeleteJobScanner"
level="DEBUG" />

<Logger
name="com.emc.storageos.data.object.impl.file.directoryTable.ObjectDirectoryOp
eration" level="DEBUG"/>

<Logger
name="com.emc.storageos.data.object.impl.file.directoryTable.BlobsvcOperationB
ase" level="DEBUG"/>

<Logger name="com.emc.storageos.data.object.impl.file.ObjectExpirationHelper"
level="DEBUG" />

dataheadsvc-log4j2.xml
<Logger name="com.emc.storageos.data.object.RESTAccess.ObjectListingHelper"
level="DEBUG" />

GET lifecycle
:/usr/share/s3curl # perl ./s3curl.pl --id=EMC -- "http://192.0.2.0:9020/test-
bucket/?lifecycle" -s | xmllint --format -

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<LifecycleConfiguration xmlns="http://s3.amazonaws.com/doc/2006-03-01/">
<Rule>
<ID>lifecycle-v2-abortmpu-one-week</ID>
<Filter/>
<Status>Enabled</Status>
<NoncurrentVersionExpiration>
<NoncurrentDays>1</NoncurrentDays>
</NoncurrentVersionExpiration>
</Rule>
</LifecycleConfiguration>
:/usr/share/s3curl #

Supported lifecycle configuration elements
This table describes the supported lifecycle configuration elements

Table 11 Supported lifecycle configuration elements

Name Description Required
AbortIncomplete |o Container for specifying when an Yes, if no other action is specified for the
MultipartUpload incomplete multipart upload becomes rule.

eligible for an abort operation.

e When you specify this lifecycle action,
the rule cannot specify a tag-based filter.

e Child: DaysAfterlnitiation

e Type: Container

ECS Data Access Guide 21

S3

Table 11 Supported lifecycle configuration elements (continued)

e This action specifies a period in an
object's lifetime when S3 should take the
appropriate expiration action. The action
S3 takes depends on whether the bucket
is versioning-enabled.

e If versioning has never been enabled on
the bucket, S3 deletes the only copy of
the object permanently. Otherwise, if
your bucket is versioning-enabled (or
versioning is suspended), the action
applies only to the current version of the
object. A versioning-enabled bucket can

Name Description Required
e Ancestor: Rule
And e Container for specify rule filters. These | Yes if you specify more than one filter
filters determine the subset of objects to | condition (for example, one prefix and one or
which the rule applies. more tags).
e Type: String
e Ancestor: Rule
Date e Date when you want S3 to take the Yes, if Days and
action. ExpiredObjectDeleteMarker are
absent.
e The date value must conform to the ISO
8601 format. The time is always midnight
UTC.
e Type: String
e Ancestor: Expiration or Transition
Days e Specifies the number of days after Yes, if Date and
object creation when the specific rule ExpiredObjectDeleteMarker are
action takes effect. absent.
e Type: Nonnegative Integer when used
with Transition, Positive Integer when
used with Expiration.
e Ancestor: Expiration, Transition
DaysAfterInitia |, Specifies the number of days after Yes, if ancestor is specified.
tion initiating a multipart upload when the
multipart upload must be completed. If it
does not complete by the specified
number of days, it becomes eligible for
an abort operation and S3 aborts the
incomplete multipart upload.
e Type: Positive Integer.
e Ancestor:
AbortIncompleteMultipartUpload
Expiration Yes, if no other action is present in the Rule.

22 ECS Data Access Guide

Table 11 Supported lifecycle configuration elements (continued)

Name

Description

Required

have many versions of the same object,
one current version, and zero or more
noncurrent versions.

e |nstead of deleting the current version,
S3 makes it a noncurrent version by
adding a delete marker as the new
current version.

@ Note:

= |f your bucket state is versioning-
suspended, S3 creates a delete
marker with version ID null. If you
have a version with version ID
null, then S3 overwrites that
version.

= To set expiration for noncurrent
objects, you must use the
NoncurrentVersionExpirat
ion action.

e Type: Container
e Children: Days or Date

e Ancestor: Rule

Filter

e Container for elements that describe the
filter identifying a subset of objects to
which the lifecycle rule applies. If you
specify an empty filter (<Filter></
Filter>), the rule applies to all objects in
the bucket.

e Type: String
e Children: Prefix, Tag

e Ancestor: Rule

Yes

1D

e Unique identifier for the rule. The value
cannot be longer than 255 characters.

e Type: String

e Ancestor: Rule

No

Key

e Specifies the key of a tag. A tag key can
be up to 128 Unicode characters in
length.

e Tag keys that you specify in a lifecycle
rule filter must be unique.

e Type: String

e Ancestor: Tag

Yes, if <Tag> parent is specified.

ECS Data Access Guide

23

S3

S3

Table 11 Supported lifecycle configuration elements (continued)

Name

Description

Required

LifecycleConfig
uration

e Container for lifecycle rules. You can add
as many as 1,000 rules.

e Type: Container
e Children: Rule

e Ancestor: None

Yes

ExpiredObjectDe
leteMarker

e On a versioned bucket (versioning-
enabled or versioning-suspended
bucket), you can add this element in the
lifecycle configuration to direct S3 to
delete expired object delete markers. On
a nonversioned bucket, adding this
element in a policy is meaningless
because you cannot have delete markers
and the element does not do anything.

e When you specify this lifecycle action,
the rule cannot specify a tag-based filter.

e Type: String

e Valid values: true | false (the value false
is allowed, but it is no-op and S3 does
not take action if the value is false)

e Ancestor: Expiration.

Yes, if Date and Days are absent.

NoncurrentDays

e Specifies the number of days an object is
noncurrent before S3 can perform the
associated action.

e Type: Nonnegative Integer when used
with
NoncurrentVersionTransition
Positive Integer when used with
NoncurrentVersionExpiration

e Ancestor:
NoncurrentVersionExpiration or
NoncurrentVersionTransition

Yes

NoncurrentVersi
onExpiration

e Specifies when noncurrent object
versions expire. Upon expiration, S3
permanently deletes the noncurrent
object versions.

e You set this lifecycle configuration action
on a bucket that has versioning enabled
(or suspended) to request that S3 delete
noncurrent object versions at a specific
period in the object's lifetime.

e Type: Container

e Children: NoncurrentDays

Yes, if no other action is present in the Rule.

24 ECS Data Access Guide

Table 11 Supported lifecycle configuration elements (continued)

Name Description Required
e Ancestor: Rule
Prefix e Object key prefix identifying one or more | N©
objects to which the rule applies. Empty
prefix (<Prefix></Prefix>) indicates
there is no filter based on key prefix.
@ Note: ECS supports <Prefix> with
and without <Filter>.
PUT Bucket lifecycle with <Filter>
<Filter>
<Prefix>value</Prefix>
</Filter>
PUT Bucket lifecycle (Deprecated)
without <Filter>
<Prefix>value</Prefix>
e There can be at most one Prefix in a
lifecycle rule Filter.
e Type: String
e Ancestor: Filter or And (if you specify
multiple filters such as a prefix and one
or more tags)
Rule e Container for a lifecycle rule. A lifecycle | Yes
configuration can contain as many as
1,000 rules.
e Type: Container
e Ancestor: LifecycleConfiguration
Status e If Enabled, S3 executes the rule as Yes
scheduled. If Disabled, S3 ignores the
rule.
e Type: String
e Ancestor: Rule
e Valid values: Enabled, Disabled.
Value e Specifies the value for a tag key. Each Yes, if <Tag> parent is specified.
object tag is a key-value pair.
e Tag value can be up to 256 Unicode
characters in length.
e Type: String

ECS Data Access Guide

25

S3

S3

Table 11 Supported lifecycle configuration elements (continued)

Name

Description Required

e Ancestor: Tag

Enabling Lifecycle Delete Scanner (LDS)

The purpose of the LDS scanner is to initiate expiration of objects/versions created before the
lifecycle is applied. So for instance, if there is a bucket created sometime ago and has been in use
and now there is a requirement to apply lifecycle, in such cases LDS must be enabled for lifecycle
policies to cover previous objects/versions.

@ | Note: LDS is disabled by default. For enabling pre 3.2.1, contact ECS Remote Support.

For enabling 3.2.1 and higher versions, set the
com.emc.ecs.resource.lifecycledeletescanner.enable parameter value as true.

svc_param set com.emc.ecs.resource.lifecycledeletescanner.enable -v "true" -r
"Enable LDS"

S3 Extensions

ECS supports a number of extensions to the S3 API.

The extensions and the APIs that support them are listed below.
e Byte range extensions on page 26

e Retention on page 30

¢ File system enabled on page 31

¢ Metadata Search on page 35

e S3A support on page 34

Byte range extensions

The following byte range extensions are provided:
e Updating a byte range within an object

e Overwriting part of an object

e Appending data to an object

e Reading multiple byte ranges within an object

@ Note: A byte range operation (update/append/overwrite) on a versioned object does not
create a version and latest version itself is updated.
A byte range operation (update/append/overwrite) on an old version of an object updates the
latest version.

Updating a byte range within an object

26

You can use ECS extensions to the S3 protocol to update a byte range within an object.

Partially updating an object can be very useful in many cases. For example, to modify a binary
header that is stored at the beginning of a large file. On Amazon or other S3 compatible platforms,
it is necessary to send the full file again.

ECS Data Access Guide

S3

The following example demonstrates use of the byte range update. In the example, objectl has
the value The quick brown fox jumps over the lazy dog.

GET /bucketl/objectl HTTP/1.1

Date: Mon, 12 Mar 2018 20:04:40 -0000

X—-emc-namespace: emc

Content-Type: application/octet-stream

Authorization: AWS wuserl:9qgxKiHt2H7upUDPF86dvGp8VdvI=
Accept-Encoding: gzip, deflate, compress

HTTP/1.1 200 OK

Date: Mon, 12 Mar 2018 20:04:40 GMT
Content-Type: application/octet-stream
Last-Modified: Mon, 12 Mar 2018 20:04:28 GMT
ETag: 6

Content-Type: application/json
Content-Length: 43

The quick brown fox jumps over the lazy dog.

To update a specific byte range within this object, the Range header in the object data request
must include the start and end offsets of the object that you want to update.
The format is: Range: bytes=<startOffset>-<endOffset>.

In the example, the PUT request includes the Range header with the value bytes=10-14
indicating to replace the bytes 10,11,12,13,14 by the value that is sent in the request. Here, the new
value green is being sent.

PUT /bucketl/objectl HTTP/1.1

Content-Length: 5

Range: bytes=10-14

ACCEPT: application/json,application/xml,text/html,application/octet-stream
Date: Mon, 12 Mar 2018 20:15:16 -0000

X-emc-namespace: emc

Content-Type: application/octet-stream

Authorization: AWS wuserl:xHJcAYAEQansKLaF+/4PdLBHyaM=

Accept-Encoding: gzip, deflate, compress

green

HTTP/1.1 204 No Content

ETag: 10

x—amz-1d-2: objectl

x-amz-request-id: 027£037c-29ea-4670-8670-de82d0e9f52a
Content-Length: 0

Date: Mon, 12 Mar 2018 20:15:16 GMT

When reading the object again, the new value is now The quick green fox Jjumps over
the lazy dog. A specific byte range within the object is updated, replacing the word brown
with the word green.

GET /bucketl/objectl HTTP/1.1

Cookie: JSESSIONID=wdit99359t8rnvipinz4tbtu

ACCEPT: application/json,application/xml,text/html,application/octet-stream
Date: Mon, 12 Mar 2018 20:16:00 -0000

X-emc-namespace: emc

Content-Type: application/octet-stream

Authorization: AWS wuserl:0GVN4z8NV5vnSAilQTdpv/fcQzU=

Accept-Encoding: gzip, deflate, compress

HTTP/1.1 200 OK
Date: Mon, 12 Mar 2018 20:16:00 GMT

ECS Data Access Guide 27

S3

Content-Type: application/octet-stream
Last-Modified: Mon, 12 Mar 2018 20:15:16 GMT
ETag: 10

Content-Type: application/json
Content-Length: 43

The quick green fox jumps over the lazy dog.

Overwriting part of an object
You can use ECS extensions to the S3 protocol to overwrite part of an object.

To overwrite part of an object, provide the data to be written and the starting offset. The data in
the request is written starting at the provided offset. The format is: Range:
<startingOffset>-.

For example, to write the data brown cat starting at offset 10, you issue this PUT request:

PUT /bucketl/objectl HTTP/1.1

Content-Length: 9

Range: bytes=10-

ACCEPT: application/json,application/xml,text/html,application/octet-stream
Date: Mon, 12 Mar 2018 20:51:41 -0000

X-emc-namespace: emc

Content-Type: application/octet-stream

Authorization: AWS wuserl:uwPjDAgmazCP5lu77Zvbo+CiT4Q=

Accept-Encoding: gzip, deflate, compress

brown cat

HTTP/1.1 204 No Content

ETag: 25

x—amz-1d-2: objectl

x-—amz-request-id: 65be4d45c2-0ee8-448a-a5a0-£f££82573aa3b
Content-Length: 0

Date: Mon, 12 Mar 2018 20:51:41 GMT

When the object is retrieved, part of the data is replaced at the provided starting offset (green
fox is replaced with brown cat) and the final value is: The quick brown cat jumps over
the lazy dog and cat.

GET /bucketl/objectl HTTP/1.1

Date: Mon, 12 Mar 2018 20:51:55 -0000

X-emc-namespace: emc

Content-Type: application/octet-stream

Authorization: AWS wuserl:/UQpdxNgZtyDkzGbK169GzhZmt4=
Accept-Encoding: gzip, deflate, compress

HTTP/1.1 200 OK

Date: Mon, 12 Mar 2018 20:51:55 GMT
Content-Type: application/octet-stream
Last-Modified: Mon, 12 Mar 2018 20:51:41 GMT
ETag: 25

Content-Type: application/json
Content-Length: 51

The quick brown cat jumps over the lazy dog and cat.

Note that when you overwrite existing parts of an object, the size and numbers of the new parts is
added to the size and numbers of the existing parts you overwrote. For example, in a bucket that
has one part that is 20 KB in size, you overwrite 5 KB. When you query the bucket using GET /

28 ECS Data Access Guide

S3

object/billing/buckets/{namespace}/{bucketName}/info, the output will show
total mpu size =25 KB (not 20 KB) and total mpu parts =2 (not1).

Appending data to an object
You can use ECS extensions to the S3 protocol to append data to an object.

There may be cases where you append to an object, but determining the exact byte offset is not
efficient or useful. For this scenario, ECS provides the ability to append data to the object without
specifying an offset (the correct offset is returned to you in the response). For example, in order
to append lines a log file, on Amazon or other S3 compatible platforms, you must send the full log
file again.

A Range header with the special value bytes=-1- can be used to append data to an object. In

this way, the object can be extended without knowing the existing object size. The format is:
Range: bytes=-1-

A sample request showing appending to an existing object using a Range value of bytes=-1-is
shown in the following example. Here the value and cat is sent in the request.

PUT /bucketl/objectl HTTP/1.1

Content-Length: 8

Range: bytes=-1-

ACCEPT: application/json,application/xml, text/html,application/octet-stream
Date: Mon, 12 Mar 2018 20:46:01 -0000

X-emc-namespace: emc

Content-Type: application/octet-stream

Authorization: AWS wuserl:/sqOFL65riEBSWLg6t8hLODFW4c=

Accept-Encoding: gzip, deflate, compress

and cat

HTTP/1.1 204 No Content

ETag: 24

x—-amz-1d-2: objectl

x-amz-request-id: 087ac237-6££5-43e3-b587-0c8£fe5c08732
Content-Length: 0

Date: Mon, 12 Mar 2018 20:46:01 GMT

When the object is retrieved, and cat has been appended, and you can see the full value: The
quick green fox jumps over the lazy dog and cat.

GET /bucketl/objectl HTTP/1.1

ACCEPT: application/json,application/xml,text/html,application/octet-stream
Date: Mon, 12 Mar 2018 20:46:56 -0000

X-emc-namespace: emc

Content-Type: application/octet-stream

Authorization: AWS wuserl:D8FSE8J0oL10MTQcFmd4nGlgMDTg=

Accept-Encoding: gzip, deflate, compress

HTTP/1.1 200 OK

Date: Mon, 12 Mar 2018 20:46:56 GMT
Content-Type: application/octet-stream
Last-Modified: Mon, 12 Mar 2018 20:46:01 GMT
ETag: 24

Content-Type: application/json
Content-Length: 51

The quick green fox jumps over the lazy dog and cat.

ECS Data Access Guide 29

S3

Reading multiple byte ranges within an object
You can use ECS extensions to the S3 protocol to read multiple byte ranges within an object.

Reading multiple parts of an object can be very useful in many cases. For example, to get several
video parts. On Amazon or other S3 compatible platforms, it is necessary to send a different
request for each part.

To read two specific byte ranges within the object that is named object1, you issue the following
GET request for Range: bytes==4-8,41-44. The read response is words quick and lazy.

GET /bucketl/objectl HTTP/1.1

Date: Mon, 12 Mar 2018 20:51:55 -0000

X—emc-namespace: emc

Range: bytes==4-8,41-44

Content-Type: application/octet-stream

Authorization: AWS wuserl:/UQpdxNgZtyDkzGbK169GzhZmti=
Accept-Encoding: gzip, deflate, compress

HTTP/1.1 206 Partial Content

Date: Mon, 12 Mar 2018 20:51:55 GMT

Content-Type: multipart/byteranges;boundary=boundO4acf7f0ae3ccc
Last-Modified: Mon, 12 Mar 2018 20:51:41 GMT

Content-Length: 230

--bound04acf7f0ae3ccc

Content-Type: application/octet-stream
Content-Range: bytes 4-8/50

quick

--bound04acf7f0ae3ccc

Content-Type: application/octet-stream
Content-Range: bytes 41-44/50

lazy

--boundO4acf7f0ae3ccc—-

Retention

The ECS S3 head supports retention of objects to prevent them being deleted or modified for a
specified period. The ECS S3 is an ECS extension and is not available in the standard S3 API.

Retention can be set in the following ways:

Retention period on object

Stores a retention period with the object. The retention period is set using an x-emc-
retention-period header on the object.

Retention policy on object

A retention policy can be set on the object and the period that is associated with the policy
can be set for the namespace. The retention policy enables the retention period for a group of
objects to be set to the same value using a policy and can be changed for all objects by
changing the policy. The use of a policy provides much more flexibility than applying the
retention period to an object. In addition, multiple retention policies can be set for a
namespace to allow different groups of objects to have different retention periods.

When applying a retention policy to an object using a x—emc-retention-policy header on
the object, the policy retention period must be set. The ECS administrator must set the policy
retention period from the ECS Portal or using the ECS Management REST API.

Retention period on bucket

A retention period that is stored against a bucket sets a retention period. The retention period
is set for all objects with the object level retention period or policy that is used to provide an

30 ECS Data Access Guide

S3

object-specific setting, where a longer retention is required. The retention period is set using
an x-emc-retention-period header on the bucket.

When an attempt is made to modify or delete the object, the larger of the bucket retention period
or the object period is used to determine whether the operation can be performed. The object
period is set directly on the object or using the object retention policy.

S3 buckets can also be created from the ECS Management REST API or from the ECS Portal and
the retention period for a bucket can be set from there.

File system enabled

S3 buckets can be File System (FS) enabled so that the files that are written using the S3 protocol
can be read using the file protocols, such as Network File system (NFS) and Hadoop Distributed
File System (HDFS), and the opposite way.

Enabling FS access

You can enable FS access using the x-emc-file-system-access-enabled header when
creating a bucket using the S3 protocol. File system access can also be enabled when creating a
bucket from the ECS Portal (or using the ECS Management REST API).

Limitation on FS support
When a bucket is FS enabled S3 life cycle management cannot be enabled.
Cross-head support for FS

Cross-head support is accessing objects written using one protocol using a different, ECS-
supported protocol. Objects written using the S3 head can be read and written using NFS and
HDFS file system protocols.

An important aspect of cross-head support is how object and file permissions translate between
protocols and for file system access how user and group concepts translate between object and
file protocols.

You can find more information about the cross-head support with file systems in the ECS
Administration Guide which is available from the ECS Product Documentation page.

NFS WORM (Write Once, Read Many)

NFS data become Write Once Read Many (WORM) compliant when autocommit is implemented
on it.

In detail, creating files through NFS is a multi step process. To write to a new file, NFS client first
sends the CREATE request with no payload to NFS server. After receiving a response, the server
issues a WRITE request. It is a problem for FS enabled buckets under retention as the file created
with O bytes blocks any writes to it. Due to this reason, until ECS 3.3, retention on FS enabled
bucket makes the whole mounted file-system read-only. There is no End of File (EOF) concept in
NFS. Setting a retention for files, on the FS enabled buckets, after writing to them does not work
as expected.

To remove the constraints that are placed on NFS files in a retention enabled bucket, the
autocommit period is implemented on NFS data. For this reason, it is decided to introduce the
autocommit period during which certain types of updates (for now identified as writes, Acl updates
and deletes that are required for rsync, and rename that is required for Vim editor) are allowed,
which removes the retention constraints for that period alone.

@ Note:

* The autocommit and the Atmos retention start delay are the same. See Retention start
delay window on page 94.

* Autocommit period is a bucket property like retention period.

ECS Data Access Guide 31

https://community.emc.com/docs/DOC-62642

S3

32

* Autocommit period is:
= Applicable only for the file system enabled buckets with retention period
= Applicable to the buckets in noncompliant namespace
= Applies to only requests from NFS and Atmos
Seal file

The seal file functionality helps to commit the file to WORM state when the file is written ignoring
the remaining autocommit period. The seal function is performed through the command: chmod
ugo-w <file> on the file.

@ | Note: The seal functionality does not have any effect outside the retention period.

High level overview
This table describes the Autocommit terms

Table 12 Autocommit terms

Term Description

Autocommit period Time interval relative to the object's last modified time during which
certain retention constraints (example: file modifications, file
deletions, and so on) are not applied. It does not have any effect
outside of the retention period.

Retention Start Delay | Atmos head uses the start delay to indicate the autocommit period.

The following diagram provides an overview of the autocommit period behavior.

Object Lifecycle

Time line
L L
Created mIme Autocommit ends Retention ends
(Last Modified Time)
data modification requests succeed | data modification requests fail |

Autocommit configuration

The autocommit period can be set from the user interface or bucket REST API or S3 head or
Atmos subtenant API.

User Interface
The user interface has the following support during bucket create and edit:
¢ When the File System is not enabled, no autocommit option is displayed.

¢ When the File System is enabled /no retention value that is specified, autocommit is displayed
but disabled.

¢ When the File System is enabled/retention value selected/autocommit is displayed and
enabled for selection.

@ Note: Maximum autocommit period is limited to the smaller of the Bucket Retention period or
the default maximum period of one day.

ECS Data Access Guide

S3

REST API

Create bucket REST API is modified with the new header, x-emc-autocommit-period.

lglou063:~ # curl -i -k -T /tmp/bucket -X POST https://10.247.99.11:4443/
object/bucket -H "$token" -H "Content-Type: application/xml" -v

The contents of /tmp/bucket

<object bucket create>
<name>bucket2</name>
<namespace>s3</namespace>
<filesystem enabled>true</filesystem enabled>
<autocommit period>300</autocommit period>
<retention>1500</retention>

</object bucket create>

S3 head

Bucket creation

Bucket creation flow through s3 head can make use of optional request header, x—emc-auto-
commit-period:seconds to set the autocommit period. The following checks are made in this
flow:

e Allow only positive integers
e Settable only for file system buckets

e Settable only when the retention value is present

./s3curl.pl --ord --id=naveen --key=+1Zh4YC2r2puulUaj3Lbnj3u0G9qgPRjORIWIhPxH
--createbucket -- -H 'x-emc-autocommit-period:600' -H 'x-emc-file-system-
access-enabled:true' -H 'x-emc-namespace:nsl' http://10.249.245.187:9020/
bucket5 -v

Atmos
Atmos creates a subtenant request header, x—emc-retention-start-delay, captures the
autocommit interval.

./atmoscurl.pl -user USER1 -action PUT -pmode TID -path / -header "x-emc-
retention-period:300" -header "x-emc-retention-start-delay:120" -include

Behavior of file operations
This table describes the behavior of file operations

Table 13 Behavior of file operations

File Operation Expected within Expected within retention period
autocommit period (after autocommit period)

Change permission of file | Allowed Denied

Change ownership of file | Allowed Denied

Write to existing file Allowed Denied

Create empty file Allowed Allowed

Create non-empty file Allowed Denied

Remove file Allowed Denied

ECS Data Access Guide 33

S3

S3A support

Table 13 Behavior of file operations (continued)

File Operation

Expected within
autocommit period

Expected within retention period
(after autocommit period)

file/ directory

Move file Allowed Denied
Rename file Allowed Denied
Make dir Allowed Allowed
Remove directory Denied Denied
Move directory Denied Denied
Rename directory Denied Denied
Change permission on Denied Denied
directory

list Allowed Allowed
Read file Allowed Allowed
Truncate file Allowed Denied
Copy of local read-only Allowed Allowed
files to NFS share

Copy of read-only files Allowed Allowed
from NFS share to NFS

share

Change atime/mtime of | Allowed Denied

The AWS S3A client is a connector for AWS S3, which enables you to run MapReduce jobs with

ECS S3.

@ Note:

e ECS does not enable you to run S3A client on FS enabled buckets.

e S3A support is available on Hadoop 2.7 or later version.

Geo-replication status

The ECS S3 head supports Geo replication status of an object with replicationinfo. It API retrieves
Geo replication status of an object using replicationinfo. This automates their capacity
management operations, enable site reliability operations and ensures that the critical date is not

deleted accidently.

Retrieves Geo replication status of an object by API to confirm that the object has been
successfully replicated.

Request:

GET /bucket/key?replicationInfo

34 ECS Data Access Guide

S3

Response:

<ObjectReplicationInfo xmlns="http://s3.amazonaws.com/doc/
2006-03001/"
<IndexReplicated>false</IndexReplicated>
<ReplicatedDataPercentage>64.0</ReplicatedDataPercentage>
</ObjectReplicationInfo>

Metadata Search

The ECS S3-compatible API provides a metadata search extension. The search enables objects
within a bucket to be indexed based on their metadata, and for the metadata index to be queried to
find objects and their associated data.

Metadata can be associated with objects using the ECS S3 API. If you know the identity of an
object, you can read an object's metadata. Without the ECS metadata search feature, it is not
possible to find an object using its metadata without iterating through the set of object in a bucket.

Metadata can be either user metadata or system metadata. System metadata is defined and
automatically written to objects by ECS, clients write the user metadata with reference to the user
requirements. Both system and user metadata can be indexed and used as the basis for metadata
searches. The number of metadata values that can be indexed is limited to 30 and must be defined
when the bucket is created.

@ Note: In the case of small objects (100KB and below), the ingest rate for data slightly reduces
on increasing the number of index keys. Performance testing data showing the impact of using
metadata indexes for smaller objects is available in the ECS Performance white paper.

When querying objects based on their indexed metadata, the objects that match the query and the
values of their indexed metadata are returned. You can also choose to return all of the system
and/or user metadata that is associated with the returned objects. In addition to system metadata,
objects also have attributes which can be returned as part of metadata search results. The system
metadata values that are available and can be indexed, and the metadata values that can optionally
be returned with search query results, are listed ECS system metadata and optional attributes.

The following topics cover the steps involves in setting up and using the metadata search feature:
e Assign metadata index values to a bucket
¢ Assign metatdata to objects using S3 protocol

e Use metadata search queries

Assign metadata index values to a bucket

You can set metadata index values on a bucket using the ECS Portal or ECS Management REST
API, or using the S3 protocol. The index values must reflect the name of the metadata that they
are indexing and can be based on system metadata or user metadata.

A list of the available system metadata is provided in ECS System metadata and optional
attributes.

Index values are set when a bucket is created. You can disable the use of indexing on a bucket, but
you cannot change or delete individual index values.

Setting index values using the Portal
You can set index values using the portal
The Manage > Bucket page enables buckets to be created and for index values to be assigned
during the creation process.

ECS Data Access Guide 35

S3

Setting index values using the ECS Management REST API
You can set index values using the ECS Management REST API

The ECS Management REST API provides the methods for working with indexes that are listed in
the following table and links are provided to the API reference.

Table 14 ECS Management REST API methods

API Path Description

GET /object/bucket/ Lists the names of all system metadata keys available for assigning to a new
searchmetadata bucket.

POST /object/bucket Assigns the metadata index names that are indexed for the specified bucket.

The index names are supplied in the method payload.

GET /object/bucket Gets a list of buckets. The bucket information for each bucket shows the
metadata search details.

GET /object/bucket/{bucketname}/ | Gets the bucket details for the selected bucket. The information for the
info bucket includes the metadata search details.

DELETE /object/bucket/ Stops indexing using the metadata keys.
{bucketname}/searchmetadata

Example: Get the list of available metadata names

The following example gets the entire list of metadata names available for indexing and that can be
returned in queries.

s3curl.pl --id myuser -- http://{host}:9020/?searchmetadata

The results of the query are as follows.

<MetadataSearchList xmlns="http://s3.amazonaws.com/doc/2006-03-01/">
<IndexableKeys>
<Key>
<Name>LastModified</Name>
<Datatype>datetime</Datatype>
</Key>
<Key>
<Name>Owner</Name>
<Datatype>string</Datatype>
</Key>
<Key>
<Name>Size</Name>
<Datatype>integer</Datatype>
</Key>
<Key>
<Name>CreateTime</Name>
<Datatype>datetime</Datatype>
</Key>
<Key>
<Name>ObjectName</Name>
<Datatype>string</Datatype>
</Key>
</IndexableKeys>
<OptionalAttributes>
<Attribute>
<Name>ContentType</Name>
<Datatype>string</Datatype>

36 ECS Data Access Guide

</Attribute>

<Attribute>
<Name>Expiration</Name>
<Datatype>datetime</Datatype>

</Attribute>

<Attribute>
<Name>ContentEncoding</Name>
<Datatype>string</Datatype>

</Attribute>

<Attribute>
<Name>Expires</Name>
<Datatype>datetime</Datatype>

</Attribute>

<Attribute>
<Name>Retention</Name>
<Datatype>integer</Datatype>

</Attribute>

</OptionalAttributes>
</MetadataSearchList>

Example: Get the list of keys being indexed for a bucket

The following example gets the list of metadata keys currently being indexed for a bucket.

s3curl.pl --id myuser -- http://{host}:9020/mybucket/?searchmetadata
The results of this example are as follows.

<MetadataSearchlList xmlns="http://s3.amazonaws.com/doc/2006-03-01/">
<MetadataSearchEnabled>true</MetadataSearchEnabled>
<IndexableKeys>
<Key>
<Name>Size</Name>
<Datatype>integer</Datatype>
</Key>
<Key>
<Name>x-amz-meta-DAT</Name>
<Datatype>datetime</Datatype>
</Key>
</IndexableKeys>
</MetadataSearchList>

Setting values using the S3 API

The S3 API provides methods for working with indexes that are listed in the following table and

links are provided to the API reference.
Table 15 ECS Management REST APl methods

API Path Description
GET /?searchmetadata Lists the names of all system metadata available for indexing on new
buckets.

search: {name[;datatype],...} header.

not necessary for a system metadata key.

PUT /{bucket} -H x-emc-metadata- | Creates a bucket with the search metadata key that is indicated in the

@ Note: A datatype must be associated with a user metadata key, but is

ECS Data Access Guide

37

S3

S3

Table 15 ECS Management REST APl methods (continued)

API Path Description
GET /{bucket}/?searchmetadata Gets the list of metadata keys that are currently being indexed for the
bucket.
Example

The following example shows how to create a bucket with metadata indexes for three system
metadata keys and two user metadata keys.

s3curl.pl --id myuser --createbucket -- http://{host}:9020/mybucket
-H "x-emc-metadata-search:Size,CreateTime, LastModified, x-amz-meta-STR; String, x—amz-meta-
INT; Integer"

@ Note: When adding an object with x-amz-meta-, values containing special characters do not
have to be url-encoded.

Using encryption with metadata search

When encryption is used on a bucket, object metadata keys that are indexed are stored in non-
encrypted form, so it is always possible to perform metadata searches on encrypted buckets.

Where the encryption was performed using system-supplied keys, the object metadata returned
by a query will be decrypted and shown in text form. However, if the data was encrypted using a
user-supplied encryption key, metadata that is not indexed will still be encrypted when returned by
a metadata search query as the user encrypted keys cannot be provided via the query.

Assign metadata to objects using the S3 protocol

End users can assign user metadata to objects using the x—amz-meta- header. The value
assigned can be any text string and is case sensitive, but the metadata names are case insensitive,
S0 x-emc-meta-FO0O0, x-emc-meta-foo are referring to the same field foo.

@ | Note: When defining the fields to index and searching, ensure that you use all lowercase.

When the metadata is indexed so that it can be used as the basis of object searches (the metadata
search feature), a datatype is assigned to the data. When writing metadata to objects, clients
should write data in the appropriate format so that it can be used correctly in searches.

The datatypes are:

String
If the search index term is marked as text, the metadata string is treated as a string in all
search comparisons.

Integer

If the search index term is marked as integer, the metadata string is converted to an integer in
search comparisons.

Decimal

If a search index term is marked as decimal, the metadata string is converted to a decimal
value so that the "." character is treated as a decimal point.

38 ECS Data Access Guide

S3

Datetime

If the search index term is marked as datetime, the metadata string is treated as a date time
with the expected format: yyyy-MM-ddTHH :mm: ssZ If you want the string to be treated as
datetime, you need to use the format yyyy-MM-ddTHH : mm: ssZ when specifying the

metadata.
Example
The example below uses the S3 API to upload an object and two user metadata values on the
object.
s3curl.pl --id myuser --put myfile -- http://{host}:9020/mybucket/file4 -i -H x-amz-meta-

STR:String4 -H x-amz-meta-INT:407

Use metadata search queries

The metadata search feature provides a rich query language that enables objects that have
indexed metadata to be searched.

The syntax is shown in the table below.
Table 16 API Syntax

API Syntax Response Body
GET /{bucket}/? <BucketQueryResult xmlns:ns2="http://
query={expression} s3.amazonaws.com/doc/2006-03-01/">
&attributes={fieldname, ..} <Name>mybucket</Name>
&sorted={selector} <Marker/>
&include older version={tru <NextMarker>NO MORE PAGES</NextMarker>
e|false} <MaxKeys>0</MaxKeys>
&max-keys=(num_ keys) <ObjectMatches>
&marker= (marker value) <object>

<objectName>file4</objectName>

. ¢ T <objectId>09998027blb7fbb21f50el13fabb48la237ba
C) Note: Prefix capability is added 2f60£352d437c8da3c7clc8d7589</objectId>

to the metadata search. See <rersleonTesie/versionids
Prefix capability in metadata <queryMds>
h <type>SYSMD</type>
search. s
<entry>

<key>createtime</key>
<value>1449081778025</value>
</entry>
<entry>
<key>size</key>
<value>1024</value>
</entry>
<entry>
<key>mtime</key>
<value>1449081778025</value>
</entry>
</mdMap>
</queryMds>
<queryMds>
<type>USERMD</type>
<mdMap>
<entry>
<key>x-amz-meta-INT</key>
<value>407</value>
</entry>
<entry>
<key>x-amz-meta-STR</key>
<value>String4</value>

ECS Data Access Guide 39

S3

Table 16 API Syntax

API Syntax Response Body

</entry>
</mdMap>
</queryMds>
<indexKey/>
</object>
<object

</object>
</ObjectMatches>
</BucketQueryResult>

The expression keywords and their meanings are listed below:

expression
An expression in the form:

[(]{conditionl} [%20[and/or]%20{condition2}][)][%20[and/or]%20..]

Where "condition" is a metadata key name filter in the form:

{selector} {operator}
{argument},

For example:

LastModified > 2018-03-01T11:22:002

selector
A searchable key name associated with the bucket.

operator
An operator. One of: ==, >, <, <=, >=

argument

A value that the selector is tested against.

attributes=[fieldname,...]

Specifies any optional object attributes that should be included in the report. Attribute values
will be included in the report where that attribute is present on the object. The optional
attribute values comprise:

¢ ContentEncoding
e ContentType

¢ Retention

e Expiration

e Expires

40 ECS Data Access Guide

S3

In addition, it is possible to return the non-indexed metadata associated with objects that are
returned by the search query. The following:

ALL
Lists both system and user metadata associated with the returned objects.

ALL_SMD
Lists the system metadata associated with the returned objects.

ALL_UMD
Lists the user metadata associated with the returned objects.

sorted=[selector]

Specifies one searchable key name associated with the bucket. The key name must be a key
that appears in the expression. In the absence of &sorted=keyname, the output will be sorted
according to the first key name that appears in the query expression.

@ | Note: If "or" operators are used in the expression, the sort order is indeterminate.

include-older-versions=[true|false]
When S3 versioning is enabled on a bucket, setting this to true will return current and older
versions of objects that match the expression. Default is false.

max-keys
The maximum number of objects that match the query that should be returned. If there are

more objects than the max-keys, a marker will be returned that can be used to retrieve more
matches.

marker

The marker that was returned by a previous query and that indicates the point from which
query matches should be returned.

Datetime queries

Datetime values in user metadata are specified in ISO-8601 format yyyy-MM-dd'T'HH:mm: ssZ
and are persisted by ECS in that format. Metadata queries also use this format. However, ECS
persists datetime values for system metadata as epoch time, the number of milliseconds since the
beginning of 1970.

When a query returns results, it returns the datetime format persisted by ECS. An example of the
two formats is shown below.

User metadata upload header example:

-H x-amz-meta-Fo0:2018-03-06T12:00:002Z

User and System query expression format:

?query=CreateTime>2018-01-01T00:00:00Z and x-amz-meta-Foo==2018-03-06T12:00:00%2

ECS Data Access Guide 41

S3

Query results fragment - system metadata

<key>createtime</key> <value>1449081777620</value>

Query results fragment - user metadata

<key>x-amz-meta-Foo</key> <value>2018-03-06T12:00:00z</value>

Using markers and max-keys to paginate results

You can specify the maximum number of objects that will be returned by a query using the max-
keys query parameter.

The example below specified a maximum number of objects as 3.

?query=CreateTime>2018-01-01T00:00:00Z and x-amz-meta-Foo==2018-03-06T12:00:00Z&max-keys=3

Where a query matches more objects than the max-keys that has been specified, a marker will also
be returned that can be used to return the next page objects that match the query but were not
returned.

The query below specifies a marker that has been retrieved from a previous query:

?query=CreateTime>2018-01-01T00:00:00Z and x-amz-meta-Foo==2018-03-06T12:00:00Z&max~-
keys=3&marker=rO0ABXNyAD. ..

When the objects that are returned are the final page of objects, NO MORE PAGES is returned in
the NextMarker of the response body.

<NextMarker>NO MORE PAGES</NextMarker>

Using special characters in queries

You can use special characters in queries

The use of url-encoding is required to ensure that special characters are received correctly by the
ECS REST service and quoting can be required to ensure that when ECS parses the query it does
not mis-interpret symbols. For example:

¢ When querying on x-amz-meta values, special characters must be url-encoded. For example:
when using "%" (ASCII 25 hex), or "/" (ASCII 2F), they must be encoded as %25 and 2F,
respectively.

¢ When querying on x-amz-meta values that have SQL-reserved characters the reserved
characters must be escaped. This is to ensure that the SQL parser used by ECS does not
consider them operators. For example: 'ab < cd' (that is, make sure a pair of quotes is passed
into the service so that the SQL parser used by ECS does not consider them operators). The
SQL-reserved characters include comparison operators (=, <, >, +, -, |, ~) and syntax
separators (comma, semicolon).

42 ECS Data Access Guide

S3

Different ways of quoting are possible and depend on the client being used. An example for
Unix command-line tools like S3curl.pl, would be:

?query=""ab+cd<ed;ef'"
In this case, the search value is single-quoted and that is wrapped in double quotes.

Prefix capability in metadata search
You can use prefix capability in metadata search

S3 API metadata search supports the prefix and delimiter parameters. It follows the standard S3
definition of these parameters. Prefix capability effectively transforms every single metadata
query into a multi query request with AND operation between prefix and the query string. In other
words, it is possible to combine the AND and OR predicates in the queries.

S3 API metadata is modified to support prefix and delimiter parameters as described below:

GET /bucketName/?prefix={prefix}&delimiter={delimiter}&query={queryString}

Limitations

e A prefix is always applied before the actual query.

e Custom sorting is not supported with prefixes. If sorting is specified together with a prefix, the
API returns 400 Bad Request.

¢ Objects are returned in lexicographical order.

e Using ObjectName in a query string together with a prefix is not allowed. It creates ambiguity
as both filter objects based on name. If both are specified, the API returns 400 Bad Request.

Metadata search example

You can use metadata search example

The example below uses the S3 API to search a bucket for a particular object size and user
metadata value match.

@ | Note: Some REST clients may require that you encode "spaces" with url code %20.

s3curl.pl --id myuser
-—- "http://{host}:9020.mybucket?query=Size>1000%20and%20x-amz-meta-STR>=String4

The result shows three objects that match the search.

<BucketQueryResult xmlns:ns2="http://s3.amazonaws.com/doc/2006-03-01/">
<Name>mybucket</Name>
<Marker/>
<NextMarker>NO MORE PAGES</NextMarker>
<MaxKeys>0</MaxKeys>
<ObjectMatches>
<object>
<objectName>filed</objectName>
<objectId>09998027blb7fbb21£f50el13fabb481la237ba2f60£352d437c8da3c7clc8d7589</objectId>
<versionId>0</versionId>
<queryMds>
<type>SYSMD</type>
<mdMap>

ECS Data Access Guide 43

S3

<entry>
<key>createtime</key>
<value>1449081778025</value>
</entry>
<entry>
<key>size</key>
<value>1024</value>
</entry>
<entry>
<key>mtime</key>
<value>1449081778025</value>
</entry>
</mdMap>
</queryMds>
<gqueryMds>
<type>USERMD</type>
<mdMap>
<entry>
<key>x-amz-meta-INT</key>
<value>407</value>
</entry>
<entry>
<key>x-amz-meta-STR</key>
<value>String4</value>
</entry>
</mdMap>
</queryMds>
<indexKey/>
</object>
<object>
<objectName>file5</objectName>
<objectId>1ad87d86e£558ca0620a26855662dal030£7d9ffld4bbc7c2f£dfe29943b9150</objectId>
<queryMds>
<type>SYSMD</type>
<mdMap>
<entry>
<key>createtime</key>
<value>1449081778396</value>
</entry>
<entry>
<key>size</key>
<value>1024</value>
</entry>
<entry>
<key>mtime</key>
<value>1449081778396</value>
</entry>
</mdMap>
</queryMds>
<queryMds>
<type>USERMD</type>
<mdMap>
<entry>
<key>x-amz-meta-INT</key>
<value>507</value>
</entry>
<entry>
<key>x-amz-meta-STR</key>
<value>Sringb</value>
</entry>
</mdMap>
</queryMds>
<indexKey/>
</object>
</ObjectMatches>
</BucketQueryResult>

44 ECS Data Access Guide

S3

Using Metadata Search from the ECS Java SDK

In the 3.0 SDK, there is an option to exclude the "search" and "searchmetadata" parameters from
the signature if you are connecting to a pre-3.0 ECS. These parameters were not part of the
signature computation in ECS 2.x, but are now part of the computation to enhance security.

The following compatibility table is provided to show SDK support for the Metadata Search
feature:

Table 17 SDK Support for Metadata Search

- ECS Version

2.x 3.x
SDK 2.x Yes No
SDK 3.x Yes Yes

ECS system metadata and optional attributes

System metadata is automatically associated with each object stored in the object store. Some
system metadata is always populated and can be used as index keys, other metadata is not always
populated but, where present, can be returned with metadata search query results.

System metadata
The system metadata listed in the table below can be used as keys for metadata search indexes.

Table 18 System Metadata

Name (Alias) Type Description

ObjectName string Name of the object.

Owner string Identity of the owner of the object.

Size integer | Size of the object.

CreateTime datetime | Time at which the object was created.

LastModified datetime | Time and date at which the object was last
modified.
@ Note: Modification supported by ECS S3 byte-

range update extensions, not by pure S3 API.

Optional metadata attributes

Optional system metadata attributes may or may not be populated for an object, but can be
optionally returned along with search query results. The optional system metadata attributes are
listed in the table below.

The Table lists the Optional Metadata attributes

Table 19 Optional metadata attributes

Name (Alias) Type
ContentType string
Expiration datetime

ECS Data Access Guide 45

S3

Table 19 Optional metadata attributes (continued)

Name (Alias) Type
ContentEncoding string
Expires datetime
Retention integer

S3 and Swift Interoperability

46

S3 and Swift protocols can interoperate so that S3 applications can access objects in Swift
buckets and Swift applications can access objects in S3 buckets.

When considering whether objects created using the S3 head is accessible using the Swift head,
and conversely, you should first consider whether users can access the bucket (called a container
in Swift). A bucket is assigned a bucket type (S3 or Swift, for example) based on the ECS head
that created it. The object users must have appropriate permissions for the type of bucket, for an
application to access both Swift and S3 buckets. Consider giving the permissions, because of the
way in which permissions are determined for Swift and S3 buckets is different.

@ Note: S3 and Swift interoperability is not compatible with the use of bucket policies. Bucket
policies apply only to bucket access using the S3 head and are not enforced when accessing a
bucket using the Swift API.

In ECS, the same object user name can be given both S3 and Swift credentials. So, as far as ECS
is concerned, a user who is called john who authenticates as a Swift user, can then access any S3
resources that john is allowed to access.

Access to a resource is determined either by being the bucket owner, or by being assigned
permission on the bucket using ACLs. When a S3 user creates a bucket, for example, that bucket
is owned by the S3 user name. That user has full permissions on the bucket, and a Swift user with
the same name similarly has full permissions on the bucket.

Where you want users other than the owner to be able to access a bucket, permissions can be
assigned using ACLs. Access to Swift containers can be granted using group ACLs (Custom Group
ACLs, in ECS), and the Swift head performs a check on group membership before checking group
ACL permissions. Swift containers add the admin group implicitly, and any user that is a member
of the admin group (an admin user) can access any other admin user’s containers. Only admin
users have permissions to create, delete, and list-all containers. The admin user’s permissions only
apply to the namespace to which the user belongs. Access to S3 buckets depends on user
permissions (User ACLs), not group permissions. To determine access to a bucket, the S3 head
checks if the user has ACL permissions on the bucket. See the illustration in the following
illustration.

ECS Data Access Guide

S3

Figure 1 S3 user access checks

USER ACL GROUP ACL
check Swift
Checigﬁ group ACL
user permissions
Swift user access S3 user access
to S3 bucket to Swift container
S3 BUCKET ACCESS SWIFT BUCKET ACCESS
S3 user access Swift user access
to S3 bucket CROSSHEAD to Swift container
S3 HEAD ECS OBJECT SWIFT HEAD
USER
S3 KEY

SWIFT PASSWORD
SWIFT GROUP

SWIFT
S3 APPLICATION APPLICATION

Swift uses groups to enable access to resources, for an S3 user to be able to access a Swift
container. The S3 user must be assigned to a Swift group, either the admin group, or a group that
has been given Custom Group ACLs on the container.

In summary, one of the following conditions should be met for access to S3 buckets:
e The Swift or S3 user must be the bucket owner.

e The Swift or S3 user must have been added to the user ACL for the bucket.

One of the following conditions should be met for access to Swift containers:

e The S3 or Swift user must be the container owner.

e The S3 user must also be a Swift user and must have been added to a Swift group. The Swift
group must be added as a custom group, unless the user is a member of the Swift admin
group, which is added automatically to the custom groups.

¢ The Swift user must have been added to a group ACL for the container, or the user must be in
the Swift admin group, which is added automatically to the custom groups.

@ Note:

Reading a Swift DLO object through the S3 API does not work. The request follows a generic
code path for the read without acknowledging the presence of the X-Object-Manifest
metadata key, to stitch the object back from its individual paths.

@ Note:

For an MPU upload, the Swift 1ist parts operation fails since it does not understand the '?
uploadld=<uploadld>' sub-resource.

ECS Data Access Guide 47

S3

Create and manage secret keys

Users of the ECS object services require a secret key in order to authenticate with a service.
Secret keys can be created and made available to the object user in the following ways:

e An administrator creates a key and distributes to the object user (Create a key for an object
user).

¢ A domain user creates an object user account by creating a new secret key using the self-
service API provided by the self-service API (Create an S3 secrte key: self-service).

It is possible to have two secret keys for a user. When changing (sometimes referred to as "rolling
over") a secret key, an expiration time in minutes can be set for the old key. During the expiration
interval, both keys are accepted for requests. This provides a grace period where an application
can be updated to use the new key.

Create a key for an object user

ECS Management users can create a secret key for an object user.
e Generate a secret key from the ECS Portal
¢ Create an S3 secret key using the ECS Management REST API

For more information about ECS users, see the ECS Administration Guide which is available from
the ECS Product Documentation page.

Generate a secret key from the ECS Portal

You can generate a secret key at the ECS Portal.

Before you begin

¢ You must be an ECS System Administrator or Namespace Administrator.
About this task

If you are a System Administrator, you can create a secret key for an object user belonging to any
namespace. If you are a Namespace Administrator, you can create a secret key for an object user
who belongs to your namespace.

Procedure
1. In the ECS Portal, select the Manage > Users page.

2. In the Object Users table, select New Object User or select Edit for an existing user to
which you want to assign a secret key.

3. For S3, select Generate & Add Password.

To change a secret key for a user, you can generate a second secret key and specify when
the first key expires.

4. Copy the generated key and email to the object user.

Create an S3 secret key using the ECS Management REST API

48

The ECS Management REST API| enables a management user to create a secret key for an S3
object user.

The APl is as follows:

ECS Data Access Guide

https://community.emc.com/docs/DOC-62642

S3

Table 20 API Path

API Path Description
/object/user-secret- API to allow secret keys to be assigned to object users and enable secret
keys/{uid} keys to be managed. A Namespace Administrator can create keys for users

in their namespace. A System Administrator can assign keys to users in any
namespace. To change a key, a second key can be assigned and the time at
which the first key expires can be specified.

You can find out more information about the API call in the ECS API Reference.

Create an S3 secret key: self-service

The ECS Management REST API provides the ability to allow authenticated domain users to
request a secret key to enable them to access the object store.

The ECS API Reference can be used where you want to create a custom client to perform certain
ECS management operations. For simple operations domain users can use curl or a browser-based
HTTP client to execute the API to create a secret key.

When a user runs the object/secret-keys API, ECS automatically creates an object user and
assigns a secret key.

The following table describes the Object secret keys

Table 21 Object Secret Keys

API Path Description

/object/secret-keys API to allow S3 client users to create a new secret key that enables them to
access objects and buckets within their namespace. This is also referred to
as a self-service API.

The payload for the /object/secret-keys can include an optional existing key expiry time.

<secret key create param>
<existing key expiry time mins></existing key expiry time mins>
</secret key create param>

If you are creating a secret key for the first time, you can omit the existing_key_expiry_time_mins
parameter and a call would be:

POST object/secret-keys

Request body
<?xml version="1.0" encoding="UTF-8"?>
<secret key create param/>

Response
<user_secret key>
<secret key>...</secret key>
<key timestamp>...</key timestamp>

<link rel="..." href="..." />
</user secret key>

ECS Data Access Guide 49

http://doc.isilon.com/ECS/3.2/API/index.html
http://doc.isilon.com/ECS/3.2/API/index.html

S3

Working with self-service keys

Examples provided here help you use the ECS Management REST API to create, read, and manage
secret keys.

To perform operations with secret keys you must first authenticate with the Management API. The
examples provided use the curl tool.

¢ Log in as domain user
e Generate first key

e Generate second key
e Check keys

e Delete all secret keys

Log in as a domain user

You can log in as a domain user and obtain an authentication token that can be used to
authenticate subsequent requests.

curl -ik -u user@mydomain.com:<Password> https://10.241.48.31:4443/1ogin

HTTP/1.1 200 OK

Date: Mon, 05 Mar 2018 17:29:38 GMT

Content-Type: application/xml

Content-Length: 107

Connection: keep-alive

X-SDS-AUTH-TOKEN: BAAcaVAzNU1l6eVcwM09rOWd2Y1ZoUFZ4QmRTK2JVPOMAQQIADTEOMzAWNZQ4ODAINTQDAC
51cm46VGI9rZW4 6YWIJmODAINTELtYmMFkNCOOZDA2 LWFMMmMtMTQ1YzRFOTA1INGQOAGACOA8=

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<loggedIn>

<user>tcasf@corp.sean.com</user>

</loggedIn>

Generate first key

You can generate a secret key.

curl -ks -H "X-SDS-AUTH-TOKEN: BAAcaVAzNU1l6eVcwM09rOWd2Y1ZoUFZ4QmRTK2JVPOMAQQIADTEOMzAW
NzQ40ODAINTQDAC51cm46VGIrZW4 6YWImODAINTELtYmFkNCOOZDA2LWFMMmMMEMTQ1YZzRjOTA1INGQOAGACOAS=""
-H "Content-Type: application/json" -X POST -d "{}"
https://10.241.48.31:4443/object/secret-keys | xmllint --format -

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<user secret key>
<link rel="self" href="/object/user-secret-keys/tcas@corp.sean.com"/>
<secret key>7hXZ9/EHTVvmFuYly/z3gHpihXtEUX/VZxdxDDBd</secret key>
<key expiry timestamp/>
<key timestamp>2018-03-05 17:39:13.813</key timestamp>

</user secret key>

Generate second key

You can generate a second secret key and set the expiration for the first key.
curl -ks -H "X-SDS-AUTH-TOKEN: BAAcaVAzNU16eVcwM09rOWd2Y1ZoUFZ4QOmRTK2JVPOMAQQIADTEOMzAWN
zQ40DAINTQDACS51cmé 6VGIrZW4 6 YWImODAINTE t YmFKNCO0ZDA2 LWFMMMMtMTQ1Y zRjOTd1NGQOAGACOAS="
-H "Content-Type: application/json" -X POST -d "{\"existing key expiry time mins\": \"10\"}"
https://10.241.48.31:4443/object/secret-keys | xmllint --format -

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

50 ECS Data Access Guide

S3

<user secret key>
<link rel="self" href="/object/user-secret-keys/tcas@corp.sean.com"/>
<secret key>13fPCuFCG/bxo0OXCPZoYuPwhXrSTwU0flkFDaRUr</secret key>
<key expiry timestamp/>
<key timestamp>2018-03-05 17:40:12.506</key timestamp>

</user secret key>

Check keys

You can check the keys that you have been assigned. In this case, there are two keys with the first
having an expiration date/time.

curl -ks -H "X-SDS-AUTH-TOKEN: BAAcaVAzNU1l6eVcwM09rOWd2Y1ZoUFZ4QmRTK2JVPOMAQQIADTEOMZAW
NzQ40ODAINTQDAC51cm46VGOrZW4 6YWIJMODAINTELYmMFkNCOOZDA2 LWFMMMMEMTQ1YZzRJOTAINGQOAGACOAB=""
https://10.241.48.31:4443/object/secret-keys | xmllint --format -
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<user secret keys>

<secret key 1>7hXZ9/EHTVvmFuYly/z3gHpihXtEUX/VZxdxDDBd</secret key 1>

<secret key 2>13fPCuFCG/bxoOXCPZoYuPwhXrSTwUOflkFDaRUr</secret key 2>

<key expiry timestamp 1>2018-03-05 17:50:12.369</key expiry timestamp 1>

<key expiry timestamp 2/>

<key timestamp 1>2018-03-05 17:39:13.813</key timestamp 1>

<key timestamp 2>2018-03-05 17:40:12.506</key timestamp 2>

<link rel="self" href="/object/secret-keys"/>
</user secret keys>

Delete all secret keys

If you need to delete your secret keys before regenerating them. You can use the following.

curl -ks -H "X-SDS-AUTH-TOKEN: BAAcaVAzNU1l6eVcwM09rOWd2Y1ZoUFZ4QmRTK2JVPQMAQQIADTEOMzAW
NzQ40ODAINTQDAC51cmd46VGOrZW4 6YWIJMODAINTELtYmMFkNCOOZDA2 LWFMMMMEMTQ1YZzRJOTdINGQOAGACOAB=""

-H "Content-Type: application/json" -X POST -d "{}" https://10.241.48.31:4443/object/secret-
keys/deactivate

Authenticating with the S3 service
The ECS S3 service enables authentication using Signature Version 2 and Signature Version 4. This
topic identifies any ECS-specific aspects of the authentication process.

Amazon S3 uses an authorization header that must be present in all requests to identify the user
and provide a signature for the request. The format of the authorization header differs between
Signature Version 2 and Signature Version 4 authentication.

In order to create an authorization header, you need an AWS Access Key Id and a Secret Access
Key. In ECS, the AWS Access Key Id maps to the ECS user id (UID). An AWS Access Key ID has 20
characters (some S3 clients, such as the S3 Browser, check this), but ECS data service does not
have this limitation.

Authentication using Signature V2 and Signature V4 are introduced in:
e Authenticating using Signature V2

e Authenticating using Signature V4

The following notes apply:

¢ Inthe ECS object data service, the UID can be configured (through the ECS REST API or the
ECS Portal with two secret keys. The ECS data service tries to use the first secret key, and if
the calculated signature does not match, it tries to use the second secret key. If the second
key fails, it rejects the request. When users add or change the secret key, they should wait two

ECS Data Access Guide 51

S3

minutes so that all data service nodes can be refreshed with the new secret key before using
the new secret key.

¢ In the ECS data service, namespace is also taken into HMAC signature calculation.

Authenticating using Signature V2

The Authorization header when using Signature V2 looks like this:

Authorization: AWS <AWSAccessKeyId>:<Signature>
For example:

GET /photos/puppy.Jjpg
?AWSAccessKeyId=userllsExpires=1141889120&Signature=vijbyPxybdZaNmGa%2ByT272YEAiv4%3D HTTP/1.1
Host: myco.s3.amazonaws.com

Date: Mon, 26 Mar 2007 19:37:58 +0000

Authentication using Signature V2 is described in:

e http://docs.aws.amazon.com/AmazonS3/latest/dev/RESTAuthentication.html

Authenticating using Signature V4

The Authorization header when using Signature V4 looks like this:

Authorization: AWS4-HMAC-SHA256
Credential=userl11/20130524/us/s3/aws4_ request,
SignedHeaders=host;range;x-amz-date,
Signature=fe5f80f77d5fa3beca038a248ff027d0445342fe2855ddc963176630326£1024

The Credential component comprises your Access Key Id followed by the Credential Scope. The
Credential Scope comprises Date/Region/Service Name/Termination String. For ECS, the Service
Name is always s3 and the Region can be any string. When computing the signature, ECS uses the
Region string passed by the client.

Authentication using Signature VA4 is described in:

e http://docs.aws.amazon.com/AmazonS3/latest/API/sig-v4-authenticating-requests.html ,
and

e http://docs.aws.amazon.com/AmazonS3/latest/API|/sig-v4-header-based-auth.html

An example of a PUT bucket request using Signature V4 is provided below:

PUT /bucket demo HTTP/1.1

x-amz-date: 20160726T033659Z

Authorization: AWS4-HMAC-SHA256 Credential=userl11/20160726/us/s3/

aws4 request, SignedHeaders=host;x-amz-date;x-emc—

namespace, Signature=e75al50daa28a2b2f7ca24£6£d0el61cb58648a25121d3108£f0af5c9451b09%ce
x-emc-namespace: nsl

x-emc-rest-client: TRUE

x—amz-content-sha256: e3b0c44298fclcl49afbf4c8996£fb92427ae41e46490934ca495991b7852b855
Content-Length: 0

Host: 10.247.195.130:9021

Connection: Keep-Alive

User-Agent: Apache-HttpClient/4.2.1 (java 1.5)

52 ECS Data Access Guide

http://docs.aws.amazon.com/AmazonS3/latest/dev/RESTAuthentication.html
http://docs.aws.amazon.com/AmazonS3/latest/API/sig-v4-authenticating-requests.html
http://docs.aws.amazon.com/AmazonS3/latest/API/sig-v4-header-based-auth.html

S3

Response:

HTTP/1.1 200 OK

Date: Tue, 26 Jul 2016 03:37:00 GMT

Server: ViPR/1.0

x—amz-request-id: 0af7c382:156123ab861:4192:896

x-amz-1d-2: 3e2b2280876d444d6c7215091692fb43b87d6ad95b970£48911d635729a8£7ff
Location: /bucket demo 2016072603365969263

Content-Length: 0

Using s3curl with ECS

A modified version of s3curl is required for use with ECS.

When using ECS custom headers (x-emc), the signature element of the Authorization header must
be constructed to include the custom headers. In addition, when connecting to ECS 3.0 and later,
the "search" and "searchmetadata" parameters are part of the signature computation.

You can obtain an ECS-specific version of s3curl that is modified to handle these conditions from
the EMCECS Git Repository.

Use SDKs to access the S3 service
When developing applications that talk to the ECS S3 service, there are a number of SDKs that
support your development activity.

The ECS Community provides information about the various clients that are available and provides
guidance on their use: ECS Community: Developer Resources.

The following topics describe the use of the Amazon S3 SDK and the use of the ECS Java SDK.
e Using the Java Amazon SDK>
e Java SDK client for ECS

@ Note: If you want to make use of the ECS REST API Extensions, support for these extensions
is provided in the ECS Java SDK. If you do not need support for the ECS extensions, or you
have existing applications that use it, you can use the Amazon Java SDK.

@ Note: Compatibility of the ECS Java SDK with the metadata search extension is described in
Using Metadata Search from the ECS Java SDK.

Using the Java Amazon SDK

You can access ECS object storage using the Java S3 SDK.

By default the AmazonS3Client client object is coded to work directly against amazon . com. This
section shows how to set up the AmazonS3Client to work against ECS.

In order to create an instance of the AmazonS3Client object, you need to pass it credentials. This
is achieved through creating an AWSCredentials object and passing it the AWS Access Key (your
ECS username) and your generated secret key for ECS.

The following code snippet shows how to set this up.

AmazonS3Client client = new AmazonS3Client (new BasicAWSCredentials (uid, secret)):;

By default the Amazon client attempts to contact Amazon WebServices. In order to override this
behavior and contact ECS you need to set a specific endpoint.

ECS Data Access Guide 53

https://github.com/EMCECS/s3curl
https://community.emc.com/community/products/ecs#developer

S3

You can set the endpoint using the setEndpoint method. The protocol specified on the endpoint
dictates whether the client should be directed at the HTTP port (9020) or the HTTPS port (9021).

@ Note: If you intend to use the HTTPS port, the JDK of your application must be set up to
validate the ECS certificate successfully; otherwise the client will throw SSL verification errors
and fail to connect.

In the snippet below, the client is being used to access ECS over HTTP:

AmazonS3Client client = new AmazonS3Client (new BasicAWSCredentials (uid, secret));
client.setEndpoint ("http://ecsl.emc.com:9020") ;

When using path-style addressing (ecs1.emc.com/mybucket), you will need to set the
setPathStyleAccess option, as shown below:

S3ClientOptions options = new S3ClientOptions();
options.setPathStyleAccess (true) ;

AmazonS3Client client = new AmazonS3Client (new BasicAWSCredentials (uid, secret));
client.setEndpoint ("http://ecsl.emc.com:9020") ;
client.setS3ClientOptions (options) ;

The following code shows how to list objects in a bucket.

ObjectListing objects = client.listObjects ("mybucket");
for (S30bjectSummary summary : objects.getObjectSummaries()) {
System.out.println (summary.getKey ()+ " "+summary.getOwner ()) ;

}

The CreateBucket operation differs from other operations in that it expects a region to be
specified. Against S3 this would indicate the data center in which the bucket should be created.
However, ECS does not support regions. For this reason, when calling the CreateBucket operation,
we specify the standard region, which stops the AWS client from downloading the Amazon Region
configuration file from Amazon CloudFront.

client.createBucket ("mybucket", "Standard");

The complete example for communicating with the ECS S3 data service, creating a bucket, and
then manipulating an object is provided below:

public class Test {

public static String uid = "root";

public static String secret = "KHBkaHOXd7YKF43ZPFbWMBT9OPOvIcFAMkD/9dwj";
public static String viprDataNode = "http://ecs.yourco.com:9020";

public static String bucketName = "myBucket";

public static File objectFile = new File ("/photos/catl.jpg");
public static void main(String[] args) throws Exception {
AmazonS3Client client = new AmazonS3Client (new BasicAWSCredentials (uid, secret)):;

S3ClientOptions options = new S3ClientOptions();
options.setPathStyleAccess (true);

AmazonS3Client client = new AmazonS3Client (credentials);
client.setEndpoint (viprDataNode) ;

54 ECS Data Access Guide

S3

client.setS3ClientOptions (options) ;

client.createBucket (bucketName, "Standard"):;
listObjects(client) ;

client.putObject (bucketName, objectFile.getName (), objectFile);
listObjects(client) ;

client.copyObject (bucketName, objectFile.getName () ,bucketName, "copy-" +
objectFile.getName ()) ;
listObjects(client) ;
}
public static void listObjects (AmazonS3Client client) {
ObjectListing objects = client.listObjects (bucketName) ;
for (S30bjectSummary summary : objects.getObjectSummaries()) {
System.out.println (summary.getKey ()+ " "+summary.getOwner ()) ;

}

Java SDK client for ECS
The ECS Java SDK builds on the Amazon S3 Java SDK and supports the ECS API extensions.

An example of using the ViPRS3client is shown below.

package com.emc.ecs.sample;

import com.amazonaws.util.StringInputStream;
import com.emc.vipr.services.s3.ViPRS3Client;

public class BucketCreate ({

private ViPRS3Client s3;

public BucketCreate () {

URI endpoint = new URI (“http://ecs.yourco.com:9020") ;

String accessKey = “fred@yourco.com”;
String secretKey = “pcQQ20rDI2DHZOIWNkAug3wK4XJP9sQOnZgbQJdev3”;
BasicAWSCredentials creds = new BasicAWSCredentials (accessKey, secretKey);

ViPRS3Client client = new ViPRS3Client (endpoint, creds);

public static void main(String[] args) throws Exception {
BucketCreate instance = new BucketCreate();
instance.runSample () ;

}
public void runSample () {

String bucketName="mybucket";

String keyl = "testl.txt";
String content = "Hello World!";
try {

s3.createBucket (bucketName) ;
s3.putObject (bucketName, keyl, new StringInputStream(content), null);
}

catch (Exception e) {

ECS Data Access Guide 55

S3

ECS S3 error codes

The error codes that can be generated by the ECS S3 head are listed in the following table.

The following table describes the error codes

Table 22 Error Codes
Error Code HTTP | Generic Error Code Description Error
Status
Code

AccessDenied 403 AccessDenied Access Denied

BadDigest 400 BadDigest The Content-MDb5 you specified
did not match that received.

BucketAlreadyExists 409 BucketAlreadyExists The requested bucket name is not
available. The bucket namespace
is shared by all users of the
system. Please select a different
name and try again.

BucketNotEmpty 409 BucketNotEmpty The bucket you tried to delete is
not empty.

ContentMD5Empty 400 InvalidDigest The Content-MDb5 you specified
was invalid.

ContentMD5Missing 400 InvalidRequest The required Content-MD5
header for this request is missing.

EntityTooSmall 400 EntityTooSmall The proposed upload is smaller
than the minimum allowed object
size.

EntityToolLarge 400 EntityToolLarge The proposed upload exceeds the
maximum allowed object size.

IncompleteBody 400 IncompleteBody The number of bytes specified by
the Content-Length HTTP
header were not provided.

InternalError 500 InternalError An internal error was
encountered. Please try again.

ServerTimeout 500 ServerTimeout An internal timeout error was
encountered. Please try again.

InvalidAccessKeyld 403 InvalidAccessKeyld The Access Key Id you provided
does not exist.

InvalidArgument 400 InvalidArgument Invalid Argument.

56 ECS Data Access Guide

Table 22 Error Codes (continued)

Error Code HTTP | Generic Error Code Description Error
Status
Code

NoNamespaceForAnonymous 403 AccessDenied ECS could not determine the

Request namespace from the anonymous
request. Please use a namespace
BaseURL or include an x-emc-
namespace header.

InvalidBucketName 400 InvalidBucketName The specified bucket is not valid.

InvalidDigestBadMD5 400 InvalidDigest The Content-MDb5 you specified
was invalid.

InvalidDigest 403 SignatureDoesNotMatch The Content-MDb5 you specified
was an invalid.

InvalidRequest 400 InvalidRequest Invalid Request.

InvalidPart 400 InvalidPart One or more of the specified parts
could not be found. The part
might not have been uploaded.

InvalidPartOrder 400 InvalidPartOrder The list of parts was not in
ascending order. Parts list must
specified in order by part number.

InvalidPartSizeZero 400 InvalidPartSizeZero The upload part size cannot be
zero.

MissingEncryption 400 InvalidRequest The multipart upload initiate
requested encryption. Subsequent
part requests must include the
appropriate encryption
parameters.

NoEncryptionNeed 400 InvalidRequest The multipart initiate request did
not request encryption. Please
resend the request without
sending encryption parameters.

BadMD5 400 InvalidRequest The calculated MD5 hash of the
key did not match the hash that
was provided.

BadEncryptKey 400 InvalidRequest The provided encryption
parameters did not match the
ones used originally.

InvalidRange 416 InvalidRange The requested range cannot be
satisfied.

KeyToolLong 400 KeyToolLong The specified key is too long.

MalformedACLError 400 MalformedACLError The XML provided was not well-

formed or did not validate against
the ECS published schema.

ECS Data Access Guide

57

S3

S3

Table 22 Error Codes (continued)

Error Code HTTP | Generic Error Code Description Error
Status
Code

Malformed XML 400 MalformedXML Malformed xml (that does not
conform to the published xsd) for
the configuration was sent.

MaxMessagelengthExceeded 400 MaxMessagelengthExceeded The request was too big.

MetadataToolLarge 400 MetadataToolLarge The metadata headers exceed the
maximum allowed metadata size.
*

InvalidProject 400 InvalidProject The specified project is Invalid.

InvalidVPool 400 InvalidVPool The specified vPool (Replication
Group) is Invalid.

InvalidNamespace 400 InvalidNamespace The specified namespace is
Invalid.

MethodNotAllowed 405 MethodNotAllowed The specified method is not
allowed against this resource.

MissingContentLength 1M MissingContentLength The Content-Length HTTP header
must be provided.

MissingRequestBodyError 400 MissingRequestBodyError An empty XML document was
sent. The error message is:
Request body is empty.

MissingSecurityHeader 400 MissingSecurityHeader The equest was missing a required
header.

IncompleteLifecycleConfig 400 IncompleteLifecycleConfig At least one action needs to be
specified in a rule.

MalformedLifecycleConfig 400 MalformedLifecycleConfig The XML provided was not well-
formed or did not validate against
the published schema.

MalformedDateLifecycleConfig 400 MalformedDateLifecycleConfig The XML provided was not well-
formed or did not validate against
the published schema. Invalid Date
or Days.

NoSuchBucket 404 NoSuchBucket The specified bucket does not
exist.

NoSuchBucketPolicy 404 NoSuchBucketPolicy The bucket policy does not exist.

NoSuchKey 404 NoSuchKey The specified key does not exist.

NoSuchRetention 404 NoSuchRetention The specified retention does not
exist.

ObjectUnderRetention 409 ObjectUnderRetention The object is under retention and

cannot be deleted or modified.

58 ECS Data Access Guide

Table 22 Error Codes (continued)

Error Code HTTP | Generic Error Code Description Error
Status
Code

NoSuchUpload 404 NoSuchUpload The specified multipart upload
does not exist. The upload ID
might be invalid.

Notlmplemented 501 Notlmplemented The requested functionality is not
implemented.

OperationAborted 409 OperationAborted A conflicting conditional operation
is currently in progress against
this resource. Please try again.

PermanentRedirect 301 PermanentRedirect The bucket you are attempting to
access must be addressed using
the specified endpoint. Please
send all future requests to this
endpoint.

PreconditionFailed 112 PreconditionFailed At least one of the preconditions
you specified did not hold.

RequestisNotMultiPartContent 400 RequestisNotMultiPartContent Bucket POST must be of the
enclosure type multipart/
form-data.

RequestTimeout 400 RequestTimeout The socket connection to the
server was not read from or
written to within the timeout
period.

RequestTimeTooSkewed 403 RequestTimeTooSkewed The difference between the
request time and the server's time
is too large.

DatelsRequired 403 AccessDenied A valid Date or x—amz-date
header is required.

SignatureDoesNotMatch 403 SignatureDoesNotMatch The request signature calculated
does not match the signature
provided. Check the Secret
Access Key and signing method.

ZeroAmzExpires 403 Forbidden Zero value specified for x-amz-
expires.

InvalidAmzExpires 400 Bad Request Invalid value specified for x-amz-
expires.

ServiceUnavailable 503 ServiceUnavailable Please reduce your request rate.

TemporaryRedirect 307 TemporaryRedirect Requests are being redirected to
the bucket while DNS updates.

TooManyBuckets 400 TooManyBuckets The request attempted to create

more buckets than allowed.

ECS Data Access Guide

59

S3

S3

Table 22 Error Codes (continued)

Error Code HTTP | Generic Error Code Description Error
Status
Code

UnexpectedContent 400 UnexpectedContent The request does not support this
content.

UnresolvableGrantByEmailAddres | 400 UnresolvableGrantByEmailAddres | The email address you provided

s s does not match any account on
record.

InvalidBucketState 409 InvalidBucketState The request is not valid with the
current state of the bucket.

SlowDown 503 SlowDown Please reduce your request rate.

AccountProblem 403 AccountProblem There is a problem with the
specified account that prevents
the operation from completing
successfully.

CrossLocationLoggingProhibited | 403 CrossLocationLoggingProhibited | Cross location logging is not
allowed. Buckets in one
geographic location cannot log
information to a bucket in another
location.

ExpiredToken 400 ExpiredToken The provided token has expired.

lllegalVersioningConfiguration 400 lllegalVersioningConfiguration The Versioning configuration

Exception Exception specified in the request is invalid.

IncorrectNumberOfFilesInPost 400 IncorrectNumberOfFilesIinPost POST requires exactly one file

Request Request upload per request.

InvalidAddressingHeader 500 InvalidAddressingHeader The specified role must be
Anonymous role.

InvalidLocationConstraint 400 InvalidLocationConstraint The specified location constraint
is not valid.

InvalidPolicyDocument 400 InvalidPolicyDocument The content of the form does not
meet the conditions specified in
the policy document.

InvalidStorageClass 400 InvalidStorageClass The storage class you specified is
not valid.

InvalidTargetBucketForLogging 400 InvalidTargetBucketForLogging The target bucket for logging
does not exist, is not owned by
you, or does not have the
appropriate grants for the log
delivery group.

InvalidToken 400 InvalidToken The provided token is malformed
or otherwise invalid.

InvalidURI 400 InvalidURI Unable to parse the specified URI.

60 ECS Data Access Guide

Table 22 Error Codes (continued)

Error Code HTTP | Generic Error Code Description Error
Status
Code

MalformedPOSTRequest 400 MalformedPOSTRequest The body of the POST request is
not well-formed multipart/
form-data.

MaxPostPreDatalLengthExceeded |400 MaxPostPreDatalLengthExceeded | The POST request fields

Error Error preceding the upload file were too
large.

NoLoggingStatusForKey 400 NolLoggingStatusForKey There is no such thing as a logging
status subresource for a key.

NoSuchLifecycleConfiguration 404 NoSuchLifecycleConfiguration The lifecycle configuration does
not exist.

NoSuchVersion 404 NoSuchVersion Indicates that the version ID
specified in the request does not
match an existing version.

RequestTorrentOfBucketError 400 RequestTorrentOfBucketError Requesting the torrent file of a
bucket is not permitted.

UserKeyMustBeSpecified 400 UserKeyMustBeSpecified The bucket POST must contain
the specified field name. If it is
specified please check the order
of the fields.

AmbiguousGrantByEmailAddress | 400 AmbiguousGrantByEmailAddress | The email address you provided is
associated with more than one
account.

BucketAlreadyOwnedByYou 409 BucketAlreadyOwnedByYou The previous request to create
the named bucket succeeded and
you already own it.

CredentialsNotSupported 400 CredentialsNotSupported The request does not support
credentials.

InlineDataToolLarge 400 InlineDataToolLarge The inline data exceeds the
maximum allowed size.

InvalidPayer 403 InvalidPayer All access to this object has been
disabled.

TokenRefreshRequired 400 TokenRefreshRequired The provided token must be
refreshed.

AccessModeNotSupported 409 AccessModeNotSupported The bucket does not support file
access or the requested access
mode is not allowed.

AccessModelnvalidToken 409 AccessModelnvalidToken The token for the file access
switch request is invalid.

NoSuchBaseUrl 400 NoSuchBaseUrl The specified BaseUrl does not

exist.

ECS Data Access Guide

61

S3

S3

Table 22 Error Codes (continued)

entered

Error Code HTTP | Generic Error Code Description Error
Status
Code

NoDataStoreForVirtualPool 404 NoDataStoreForVirtualPool No Data Store found for
Replication Group of the bucket.

VpoolAccessNotAllowed 400 Cannot Access Vpool Bucket is hosted on a Replication
Group that is not accessible from
S3.

InvalidCorsRequest 403 InvalidCorsRequest Invalid CORS request.

InvalidCorsRule 400 InvalidCorsRule Invalid CORS rule.

NoSuchCORSConfiguration 404 NoSuchCORSConfiguration The CORS configuration does not
exist.

InvalidAcIRequest 404 NoACLFound The ACL does