
ECS
Version 3.4

Data Access Guide
302-999-905

01

September 2019



Copyright © 2018-2019 Dell Inc. or its subsidiaries. All rights reserved.

Dell believes the information in this publication is accurate as of its publication date. The information is subject to change without notice.

THE INFORMATION IN THIS PUBLICATION IS PROVIDED “AS-IS.” DELL MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND

WITH RESPECT TO THE INFORMATION IN THIS PUBLICATION, AND SPECIFICALLY DISCLAIMS IMPLIED WARRANTIES OF

MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. USE, COPYING, AND DISTRIBUTION OF ANY DELL SOFTWARE DESCRIBED

IN THIS PUBLICATION REQUIRES AN APPLICABLE SOFTWARE LICENSE.

Dell Technologies, Dell, EMC, Dell EMC and other trademarks are trademarks of Dell Inc. or its subsidiaries. Other trademarks may be the property

of their respective owners. Published in the USA.

Dell EMC
Hopkinton, Massachusetts 01748-9103
1-508-435-1000 In North America 1-866-464-7381
www.DellEMC.com

2 ECS Data Access Guide



S3 7
Amazon S3 API support in ECS...........................................................................8
S3 API supported and unsupported features.......................................................8

Behavior where bucket already exists....................................................11
Bucket policy support........................................................................................ 11

Creating, Assigning, and Managing Bucket Policies.............................. 13
Bucket policy scenarios........................................................................ 14
Supported bucket policy operations..................................................... 15
Supported bucket policy conditions...................................................... 17

Object lifecycle management............................................................................ 18
S3 Extensions................................................................................................... 26

Byte range extensions..........................................................................26
Retention............................................................................................. 30
File system enabled.............................................................................. 31
S3A support......................................................................................... 34
Geo-replication status..........................................................................34

Metadata Search.............................................................................................. 35
Assign metadata index values to a bucket............................................ 35
Using encryption with metadata search............................................... 38
Assign metadata to objects using the S3 protocol................................38
Use metadata search queries............................................................... 39
Using Metadata Search from the ECS Java SDK ................................ 45
ECS system metadata and optional attributes..................................... 45

S3 and Swift Interoperability............................................................................ 46
Create and manage secret keys........................................................................ 48

Create a key for an object user............................................................ 48
Create an S3 secret key: self-service...................................................49

Authenticating with the S3 service....................................................................51
Authenticating using Signature V2....................................................... 52
Authenticating using Signature V4....................................................... 52

Using s3curl with ECS.......................................................................................53
Use SDKs to access the S3 service...................................................................53

Using the Java Amazon SDK................................................................ 53
Java SDK client for ECS...................................................................... 55

ECS S3 error codes.......................................................................................... 56

OpenStack Swift 65
OpenStack Swift support in ECS...................................................................... 66
OpenStack Swift supported operations............................................................ 66
Swift extensions............................................................................................... 68
Swift byte range extensions..............................................................................68

Updating a byte range within an object................................................ 68
Overwriting part of an object............................................................... 69
Appending data to an object.................................................................70
Reading multiple byte ranges within an object...................................... 71

Retention.......................................................................................................... 72
File system enabled...........................................................................................73
S3 and Swift interoperability.............................................................................73
OpenStack Swift authentication....................................................................... 73

Create Swift users in the ECS Portal................................................... 74

Chapter 1

Chapter 2

CONTENTS

ECS Data Access Guide 3



OpenStack Version 1 authentication ....................................................75
OpenStack Version 2 authentication.................................................... 76
Authentication using ECS Keystone V3 integration.............................. 78

Authorization on Container............................................................................... 80
ECS Swift error codes...................................................................................... 82

EMC Atmos 85
EMC Atmos API support in ECS........................................................................86
Supported EMC Atmos REST API Calls............................................................ 86
Unsupported EMC Atmos REST API Calls.........................................................88
Subtenant Support in EMC Atmos REST API Calls........................................... 88
API Extensions..................................................................................................89

Appending data to an object................................................................ 89
ECS support for retention and retention expiration periods for Atmos
objects................................................................................................. 90

ECS Atmos error codes.....................................................................................94

CAS 99
Setting up CAS support in ECS....................................................................... 100
Cold Storage................................................................................................... 100
Compliance...................................................................................................... 101

Platform hardening and Compliance....................................................101
Compliance and retention policy......................................................... 101
Compliance agent............................................................................... 102

CAS retention in ECS...................................................................................... 102
Advanced retention for CAS applications: event-based retention, litigation hold,
and the min/max governor.............................................................................. 104
Set up namespace retention policies............................................................... 108
Create and set up a bucket for a CAS user...................................................... 109
Set up a CAS object user................................................................................. 110
Set up bucket ACLs for CAS............................................................................ 110
ECS Management APIs that support CAS users............................................... 111
Content Addressable Storage (CAS) SDK API support.................................... 112
ECS CAS error codes....................................................................................... 112

ECS Management REST API 119
ECS Management REST API introduction....................................................... 120
Authenticate with the ECS Management REST API........................................ 120

Authenticate without cookies ............................................................ 120
Logout................................................................................................ 122
ECS Management REST API whoami command................................. 122
ECS Management REST API summary............................................... 123

ECS HDFS 127
ECS HDFS Introduction................................................................................... 128
Configuring Hadoop to use ECS HDFS ........................................................... 129
Hadoop authentication modes......................................................................... 130

Accessing the bucket as a file system.................................................130
Bucket Custom Group ACLs and Default Group.................................. 131
Hadoop superuser and supergroup...................................................... 131
Multi-protocol (cross-head) access....................................................132
Proxy user.......................................................................................... 132
Equivalence user.................................................................................132

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Contents

4 ECS Data Access Guide



Migration from a simple to a Kerberos Hadoop cluster.................................... 132
Hadoop Kerberos authentication mode............................................... 133

File system interaction.....................................................................................133
Supported Hadoop applications....................................................................... 134
Integrate a simple Hadoop cluster with ECS HDFS..........................................134

Install Hortonworks HDP using Ambari............................................... 135
Create a bucket for HDFS using the ECS Portal................................. 135
Plan the ECS HDFS and Hadoop integration.......................................140
Obtain the ECS HDFS installation and support package...................... 141
Deploy the ECS HDFS Client Library................................................... 141
Configure ECS client properties......................................................... 142
Set up Hive......................................................................................... 143
Verify Hadoop access to ECS............................................................. 145
Secure the bucket.............................................................................. 145
Relocate the default file system from HDFS to an ECS bucket...........146

Integrate a secure Hadoop cluster with ECS HDFS ........................................ 147
Plan migration from a simple to a Kerberos cluster............................. 148
Map group names............................................................................... 148
Configure ECS nodes with the ECS service principal..........................149
Enable Kerberos using Ambari............................................................ 152
Secure the ECS bucket using metadata..............................................152
Reconfigure ECS client properties......................................................156
Start Hadoop services and verify Hadoop access to ECS................... 156

Troubleshooting ECS HDFS Configuration 159
Verify that AD/LDAP is correctly configured with a secure Hadoop cluster.... 160
Pig test fails: unable to obtain Kerberos principal............................................ 160
Permission denied for AD user......................................................................... 161
Permissions errors........................................................................................... 161
Failed to process request.................................................................................164
Enable Kerberos client-side logging and debugging......................................... 164
Debug Kerberos on the KDC............................................................................ 165
Eliminate clock skew....................................................................................... 165
Configure one or more new ECS nodes with the ECS service principal........... 165
Workaround for Yarn directory does not exist error.........................................167

Guidance on Kerberos Configuration in the Hadoop Cluster 169
Set up the Kerberos KDC.................................................................................170
Configure AD user authentication for Kerberos................................................ 171

HDFS Secure Bucket Metadata Example 173
Secure bucket metadata..................................................................................174

Hadoop core-site xml properties 177
Hadoop core-site.xml properties for ECS HDFS.............................................. 178

Sample core-site.xml for simple authentication mode......................... 181
Hadoop core-site.xml properties for ECS S3................................................... 182

Sample core-site.xml for ECS S3........................................................183

External Key Management 191
External key management............................................................................... 192

Appendix A

Appendix B

Appendix C

Appendix D

Appendix E

Contents

ECS Data Access Guide 5



Contents

6 ECS Data Access Guide



CHAPTER 1

S3

This section describes the support that ECS provides for the S3 API and the extension. This
section also describes how to authenticate with the service and use the Software Development Kit
(SDK), to develop clients to access the service.

Some aspects of bucket addressing and authentication are specific to ECS. To configure an
existing application to talk to ECS, or develop a new application that uses the S3 API to talk to
ECS, see the ECS Administration Guide ECS Product Documentation page.

l Amazon S3 API support in ECS............................................................................................... 8
l S3 API supported and unsupported features........................................................................... 8
l Bucket policy support............................................................................................................. 11
l Object lifecycle management................................................................................................. 18
l S3 Extensions........................................................................................................................26
l Metadata Search...................................................................................................................35
l S3 and Swift Interoperability................................................................................................. 46
l Create and manage secret keys.............................................................................................48
l Authenticating with the S3 service........................................................................................ 51
l Using s3curl with ECS........................................................................................................... 53
l Use SDKs to access the S3 service....................................................................................... 53
l ECS S3 error codes...............................................................................................................56

ECS Data Access Guide 7

https://community.emc.com/docs/DOC-62642


Amazon S3 API support in ECS
ECS supports the Amazon Simple Storage Service (Amazon S3) Application Programming
Interface (API).

The Amazon S3 Object Service is available on the following ports:

Table 1 S3 Object Service

Protocol Ports

HTTP 9020

HTTPS 9021

S3 API supported and unsupported features
ECS supports a subset of the Amazon S3 REST API.

The following sections detail the supported and unsupported APIs:

Supported S3 APIs

The following table lists the supported S3 API methods:

Table 2 Supported S3 APIs

Feature Notes

GET Service ECS supports marker and max-keys parameters to enable paging of bucket list.

GET /?marker=<bucket>&limit=<num>

For example:

GET /?marker=mybucket&limit=40

DELETE Bucket -

DELETE Bucket cors -

DELETE Bucket life cycle Only the expiration part is supported in life cycle. Policies that are related to archiving
(AWS Glacier) are not supported. Lifecycle is not supported on file system-enabled
buckets.

DELETE Bucket policy -

GET Bucket (List Objects) For file system-enabled buckets, / is the only supported delimiter when listing objects

in the bucket.

GET Bucket (List Objects)
Version 2

For file system-enabled buckets, / is the only supported delimiter when listing objects

in the bucket.

GET Bucket cors -

GET Bucket acl -

S3

8 ECS Data Access Guide



Table 2 Supported S3 APIs (continued)

Feature Notes

GET Bucket life cycle Only the expiration part is supported in life cycle. Policies that are related to archiving
(AWS Glacier) are not supported. Lifecycle is not supported on file system-enabled
buckets.

GET Bucket policy -

GET Bucket Object
versions

-

GET Bucket versioning -

HEAD Bucket -

List Multipart Uploads -

PUT Bucket Where PUT is performed on an existing bucket, refer to Behavior where bucket already

exists.

PUT Bucket cors -

PUT Bucket acl -

PUT Bucket life cycle Only the expiration part is supported in life cycle. Policies that are related to archiving
(AWS Glacier) are not supported. Lifecycle is not supported on file system-enabled
buckets.

PUT Bucket policy Cannot configure the bucket policies for file system-enabled or CAS-enabled buckets.
Cannot configure the bucket policies for operations that ECS does not support. More
information about bucket policy support is provided in Bucket policy support.

PUT Bucket versioning -

DELETE Object -

Delete Multiple Objects -

GET Object -

GET Object ACL -

HEAD Object -

PUT Object Supports chunked PUT

PUT Object acl -

PUT Object - Copy -

OPTIONS object -

Initiate Multipart Upload -

Upload Part -

Upload Part - Copy -

Complete Multipart Upload ECS returns an ETag of 00 for this request, which differs from the Amazon S3
response.

Abort Multipart Upload -

List Parts -

S3

ECS Data Access Guide 9



Note:

l Creation of buckets using names with fewer than three characters fails with 400 Bad
Request, InvalidBucketName.

l When creating a bucket or object with empty content, ECS returns 400 invalid
content-length value, which differs from AWS which returns 400 Bad Request.

l Copying an object to another bucket that indexes the same user metadata index key but
with a different datatype is not supported and fails with 500 Server Error.

l When listing the objects in a bucket, if you use a prefix and delimiter but supply an invalid
marker, ECS throws 500 Server Error, or 400 Bad Request for a file system-enabled
bucket. However, AWS returns 200 OK and the objects are not listed.

The table lists the additional features

Table 3 Additional features

Feature Notes

Presigned URLs ECS supports use of presigned URLs to grant access to objects without needing
credentials. More information can be found at: https://docs.aws.amazon.com/
AmazonS3/latest/dev/PresignedUrlUploadObject.html.

Chunked PUT PUT operation can be used to upload objects in chunks, which enable content to be

sent before the total size of the payload is known. Chunked transfer uses the
Transfer-Encoding header (Transfer-Encoding: chunked) to specify that content is
transmitted in chunks.

Unsupported S3 APIs

The following table lists the unsupported S3 API methods:

Table 4 Unsupported S3 APIs

Feature Notes

DELETE Bucket tagging -

DELETE Bucket website -

GET Bucket location ECS is only aware of a single Virtual Data Center (VDC).

GET Bucket logging -

GET Bucket notification Notification is only defined for reduced redundancy feature in S3. ECS does not
support notifications.

GET Bucket tagging -

GET Bucket
requestPayment

ECS uses its own model for payments.

GET Bucket website -

PUT Bucket logging -

PUT Bucket notification Notification is only defined for the reduced redundancy feature in S3. ECS does not
support notifications.

PUT Bucket tagging -

S3

10 ECS Data Access Guide

https://docs.aws.amazon.com/AmazonS3/latest/dev/PresignedUrlUploadObject.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/PresignedUrlUploadObject.html


Table 4 Unsupported S3 APIs (continued)

Feature Notes

PUT Bucket
requestPayment

ECS uses its own model for payments.

PUT Bucket website -

Object APIs

GET Object torrent -

POST Object -

POST Object restore The POST Object restore operation is related to AWS Glacier, which is not supported
in ECS.

SELECT Object Content -

PUT Object legal hold -

GET Object legal hold -

PUT Object retention ECS does not support the new AWS API yet, but has support in its own extensions.
See S3 Extensions on page 26.

GET Object retention ECS does not support the new AWS API yet, but has support in its own extensions.
See S3 Extensions on page 26.

PUT Object tagging -

GET Object tagging -

Behavior where bucket already exists
When an attempt is made to create a bucket with a name that already exists, the behavior of ECS
can differ from AWS.

AWS always returns 409 Conflict when a user who has FULL CONTROL permissions on the
bucket, or any other permissions, attempts to recreate the bucket. When an ECS user who has
FULL_CONTROL or WRITE_ACP on the bucket attempts to recreate the bucket, ECS returns 200
OK and the ACL is overwritten, however, the owner is not changed. An ECS user with WRITE/
READ permissions will get 409 Conflict if they attempt to recreate a bucket.

Where an attempt to recreate a bucket is made by the bucket owner, ECS returns 200 OK and
overwrites the ACL. AWS behaves in the same way.

Where a user has no access privileges on the bucket, an attempt to recreate the bucket throws a
409 Conflict error. AWS behaves in the same way.

Bucket policy support

ECS supports the setting of S3 bucket access policies. Unlike ACLs, which either permit all actions
or none, access policies provides specific users, or all users, conditional and granular permissions
for specific actions. Policy conditions can be used to assign permissions for a range of objects that
match the condition and can be used to automatically assign permissions to newly uploaded
objects.

How access to resources is managed when using the S3 protocol is described in http://
docs.aws.amazon.com/AmazonS3/latest/dev/s3-access-control.html and you can use the

S3

ECS Data Access Guide 11

http://docs.aws.amazon.com/AmazonS3/latest/dev/s3-access-control.html
http://docs.aws.amazon.com/AmazonS3/latest/dev/s3-access-control.html


information as the basis for understanding and using S3 bucket policies in ECS. This section
provides basic information about the use of bucket policies, and to identify the differences when
using bucket policies with ECS.

The following provides an example of an ECS bucket policy:

{
     "Version": "2012-10-17",
     "Id": "S3PolicyIdNew2",
     "Statement":[
             {
             "Sid":"Granting PutObject permission to user2 ",
                "Effect":"Allow",
                "Principal": "user_n2",
                "Action":["s3:PutObject"],
                "Resource":["PolicyBuck1/*"],
                "Condition": {
                        "StringEquals": {"s3:x-amz-server-side-encryption": [ "AES256"]}
                        }
                }
                ]
}

Each policy is a JavaScript Object Notation (JSON) document that includes a version, an
identifier, and one or more statements.

Version

The Version field specifies the policy language version and can be either 2012-10-17 or
2008-10-17. If the version is not specified, 2008-10-17 is automatically inserted.

It is good practice to set the policy language for a new policy to the latest version,
2012-10-17.

Id

The Id field is optional.

Each statement includes the following elements:

SID

A statement ID is a string that describes what the statement does.

Resources

The bucket or object that is the subject of the statement. The resource can be associated
with a Resource or NotResource statement.

The resource name is the bucket and key name and is specified differently depending on
whether you are using virtual host style addressing or path style addressing, as shown:

Host Style: http://bucketname.ns1.emc.com/objectname
Path Style: http://ns1.emc.com/bucketname/objectname

In either case, the resource name is: bucketname/objectname .

You can use the (*) and (?) wildcard characters, where asterisk (*) represents any
combination of zero or more characters and a question mark (?) represents any single

S3

12 ECS Data Access Guide



character. For example, you can represent all objects in bucket that is called bucket name,
using:

bucketname/*

Actions

The set of operations that you want to assign permissions to (enable or deny). The supported
operations are listed in Supported bucket policy operations on page 15.

The operation can be associated with an Action or NotAction statement.

Effect

Can be set to Allow or Deny to determine whether you want to enable or deny the specified
actions.

Principal

The ECS object user who is enabled or denied the specified actions.

To grant permissions to everyone, as anonymous access, you can set the principal value to a
wildcard, "*", as shown:

"Principal":"*"

Conditions

The condition under which the policy is in effect. The condition expression is used to match a
condition that is provided in the policy with a condition that is provided in the request.

The following condition operators are not supported: Binary, ARN, IfExists, Check Key Exists.
The supported condition keys are listed in Supported bucket policy conditions on page 17.

Note: ECS bucket policies do not support federated users, nor do they support Amazon IAM
users and roles.

More information about the elements that you can use in a policy are described in the Amazon S3
documentation, http://docs.aws.amazon.com/IAM/latest/UserGuide/
reference_policies_elements.html.

Creating, Assigning, and Managing Bucket Policies

You can create a bucket policy for a bucket from the ECS Portal (see the ECS Administration
Guide which is available from the ECS Product Documentation page). It is also possible to create a
policy using another editor, and associate the policy with a bucket using the ECS Management
REST API or using the ECS S3 API.

The ECS Management REST API provides the following APIs to enable bucket policy subresources
to be added, retrieved, and deleted:

l PUT /object/bucket/{bucketName}/policy
l GET /object/bucket/{bucketName}/policy
l DELETE /object/bucket/{bucketName}/policy
To set a policy using the ECS Management REST API you must have either the ECS System
Administrator or Namespace Administrator role.

The ECS S3 API provides the following APIs:

S3

ECS Data Access Guide 13

HTTP://DOCS.AWS.AMAZON.COM/IAM/LATEST/USERGUIDE/REFERENCE_POLICIES_ELEMENTS.HTML
HTTP://DOCS.AWS.AMAZON.COM/IAM/LATEST/USERGUIDE/REFERENCE_POLICIES_ELEMENTS.HTML
https://community.emc.com/docs/DOC-62642


l PUT Bucket Policy
l GET Bucket Policy
l DELETE Bucket Policy

Note:
To set a policy using the S3 API you must be the bucket owner.

Details of these APIs can be found in the ECS API Reference.

Bucket policy scenarios

In general, the bucket owner has full control on a bucket and can grant permissions to other users
and can set S3 bucket policies using an S3 client. In ECS, it is also possible for an ECS System or
Namespace Administrator to set bucket policies using the Bucket Policy Editor from the ECS
Portal.

You can use bucket policies in the following typical scenarios:

l Grant bucket permissions to a user

l Grant bucket permissions to all users

l Automatically assign permissions to created objects

Grant bucket permissions to a user

To grant permission on a bucket to a user apart from the bucket owner, specify the resource that
you want to change the permissions for. Set the principal attribute to the name of the user, and
specify one or more actions that you want to enable.

The following example shows a policy that grants a user who is named user1 the permission to
update and read objects in the bucket that is named mybucket:

{
    "Version": "2012-10-17",
    "Id": "S3PolicyId1",
    "Statement": [
        {
            "Sid": "Grant permission to user1",
            "Effect": "Allow",
            "Principal": ["user1"],
            "Action": [ "s3:PutObject","s3:GetObject" ],
            "Resource":[ "mybucket/*" ]
        }
    ]
}

You can also add conditions. For example, if you only want the user to read and write object when
accessing the bucket from a specific IP address, add a IpAddress condition as shown in the
following policy:

{
    "Version": "2012-10-17",
    "Id": "S3PolicyId1",
    "Statement": [
        {
            "Sid": "Grant permission ",
            "Effect": "Allow",
            "Principal": ["user1"],
            "Action": [ "s3:PutObject","s3:GetObject" ],
            "Resource":[ "mybucket/*" ]
            "Condition": {"IpAddress": {"aws:SourceIp": "<Ip address>"}

S3

14 ECS Data Access Guide

http://doc.isilon.com/ECS/3.2/API/index.html


            }
     ]
}

Grant bucket permissions to all users

To grant permission on a bucket to a user apart from the bucket owner, specify the resource that
you want to change the permissions for. Set the principal attribute as anybody (*), and specify
one or more actions that you want to enable.

The following example shows a policy that grants anyone permission to read objects in the bucket
that is named mybucket:

{
    "Version": "2012-10-17",
    "Id": "S3PolicyId2",
    "Statement": [
        {
            "Sid": "statement2",
            "Effect": "Allow",
            "Principal": ["*"],
            "Action": [ "s3:GetObject" ],
            "Resource":[ "mybucket/*" ]
        }
    ]
}

Automatically assign permissions to created objects

You can use bucket policies to automatically enable access to ingested object data. In the following
example bucket policy, user1 and user2 can create subresources (that is, objects) in the bucket
that is named mybucket and can set object ACLs. With the ability to set ACLs, the users can then
set permissions for other users. If you set the ACL in the same operation, a condition can be set.
Such that a canned ACL public-read must be specified when the object is created. This ensures
anybody can read all the created objects.

{
    "Version": "2012-10-17",
    "Id": "S3PolicyId3",
    "Statement": [
        {
            "Sid": "statement3",
            "Effect": "Allow",
            "Principal": ["user1", "user2"],
            "Action": [ "s3:PutObject, s3:PutObjectAcl" ],
            "Resource":[ "mybucket/*" ]
            "Condition":{"StringEquals":{"s3:x-amz-acl":["public-read"]}}
        }
    ]
}

Supported bucket policy operations

The following tables show the supported permission keywords and the operations on bucket,
object, and sub-resource that they control.

S3

ECS Data Access Guide 15



Table 5  Permissions for Object Operations

Permission keyword Supported S3 operations

s3:GetObject applies to
latest version for a version-
enabled bucket

GET Object, HEAD Object

s3:GetObjectVersion GET Object, HEAD Object This permission supports requests that specify a version
number

s3:PutObject PUT Object, POST Object, Initiate Multipart Upload, Upload Part, Complete Multipart
Upload PUT Object - Copy

s3:GetObjectAcl GET Object ACL

s3:GetObjectVersionAcl GET ACL (for a Specific Version of the Object)

s3:PutObjectAcl PUT Object ACL

s3:PutObjectVersionAcl PUT Object (for a Specific Version of the Object)

s3:DeleteObject DELETE Object

s3:DeleteObjectVersion DELETE Object (a Specific Version of the Object)

s3:ListMultipartUploadPart
s

List Parts

s3:AbortMultipartUpload Abort Multipart Upload

The tabke lists the permissions for Bucket operations

Table 6  Permissions for Bucket Operations

Permission keyword Supported S3 operations

s3:DeleteBucket DELETE Bucket

s3:ListBucket GET Bucket (List Objects), HEAD Bucket

s3:ListBucketVersions GET Bucket Object versions

s3:GetLifecycleConfiguration GET Bucket lifecycle

s3:PutLifecycleConfiguration PUT Bucket lifecycle

The table lists the permissions for Bucket Sub-resource operations

Table 7  Permissions for Bucket Sub-resource Operations

Permission keyword Supported S3 operations

s3:GetBucketAcl GET Bucket acl

s3:PutBucketAcl PUT Bucket acl

s3:GetBucketCORS GET Bucket cors

s3:PutBucketCORS PUT Bucket cors

s3:GetBucketVersioning GET Bucket versioning

s3:PutBucketVersioning PUT Bucket versioning

s3:GetBucketPolicy GET Bucket policy

S3

16 ECS Data Access Guide



Table 7  Permissions for Bucket Sub-resource Operations (continued)

Permission keyword Supported S3 operations

s3:DeleteBucketPolicy DELETE Bucket policy

s3:PutBucketPolicy PUT Bucket policy

Supported bucket policy conditions
The condition element is used to specify conditions that determine when a policy is in effect.

The following tables show the condition keys that are supported by ECS and that can be used in
condition expressions.

The table lists the supported generic AWS condition keys

Table 8 Supported generic AWS condition keys

Key name Description Applicable operators

aws:CurrentTime Used to check for date/time conditions Date operator

aws:EpochTime Used to check for date/time conditions using a date in epoch or
UNIX time (see Date Condition Operators).

Date operator

aws:principalType Used to check the type of principal (user, account, federated user,
etc.) for the current request.

String operator

aws:SourceIp Used to check the requester's IP address. String operator

aws:UserAgent Used to check the requester's client application. String operator

aws:username Used to check the requester's user name. String operator

The table lists the supported S3-specific condition keys for object operations

Table 9 Supported S3-specific condition keys for object operations

Key name Description Applicable permissions

s3:x-amz-acl Sets a condition to require specific
access permissions when the user
uploads an object.

s3:PutObject, s3:PutObjectAcl,
s3:PutObjectVersionAcl

s3:x-amz-grant-permission (for
explicit permissions), where
permission can be:read, write, read-
acp, write-acp, full-control

Bucket owner can add conditions
using these keys to require certain
permissions.

s3:PutObject, s3:PutObjectAcl,
s3:PutObjectVersionAcl

s3:x-amz-server-side-encryption Requires the user to specify this
header in the request.

s3:PutObject, s3:PutObjectAcl

s3:VersionId Restrict the user to accessing data
only for a specific version of the
object

s3:PutObject, s3:PutObjectAcl,
s3:DeleteObjectVersion

The table lists the supported S3-specific condition keys for bucket operations

S3

ECS Data Access Guide 17



Table 10 Supported S3-specific condition keys for bucket operations

Key name Description Applicable permissions

s3:x-amz-acl Set a condition to require specific
access permissions when the user
uploads an object

s3:CreateBucket, s3:PutBucketAcl

s3:x-amz-grant-permission (for
explicit permissions), where
permission can be:read, write, read-
acp, write-acp, full-control

Bucket owner can add conditions
using these keys to require certain
permissions

s3:CreateBucket, s3:PutBucketAcl

s3:prefix Retrieve only the object keys with a
specific prefix.

s3:ListBucket, s3:ListBucketVersions

s3:delimiter Require the user to specify the
delimiter parameter in the Get
Bucket (List Objects) request.

s3:ListBucket, s3:ListBucketVersions

s3:max-keys Limit the number of keys ECS
returns in response to the Get
Bucket (List Objects) request by
requiring the user to specify the max-
keys parameter.

s3:ListBucket, s3:ListBucketVersions

Object lifecycle management
ECS supports S3 Lifecycle Configuration on both version-enabled buckets and non-version-
enabled buckets.

Where you need to modify objects and delete objects, but need to ensure that the objects are still
retained for a period, you can enable versioning on a bucket and use the lifecycle capability to
determine when deleted versions of objects will be removed from ECS.

Versioning and lifecycle are standard S3 features. However, lifecycle expiration is closely related
to retention, which is an ECS extension. If the lifecycle expires before the retention period expires,
the object will not be deleted until the retention period is over.

l Lifecycle cannot be enabled on FS enabled buckets.
l Lifecycle is a bucket level concept.
l Maximum of 1000 lifecycle rules per bucket is applicable.
l There may be a delay between the expiration date and the date at which S3 removes an object.
l Always round up the resulting time to the next day midnight UTC.
l For expiration, the days are calculated since the last modified date (= Creation date for the

objects not yet modified/deleted).
l For noncurrentexpiration, the days are calculated since the object became noncurrent.
l The date-based rules trigger action on all objects created on or before this date.

Example lifecycle configurations for ECS

The following are some lifecycle configurations examples.

Aborting old MPU's (versioning and non-versioning enabled buckets)

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<LifecycleConfiguration xmlns="http://s3.amazonaws.com/doc/2006-03-01/">

S3

18 ECS Data Access Guide



  <Rule>
    <ID>lifecycle-v2-expire-non-current-and-dmarkers-and-mpu</ID>
    <Filter/>
    <Status>Enabled</Status>
    <AbortIncompleteMultipartUpload>
      <DaysAfterInitiation>1</DaysAfterInitiation>
    </AbortIncompleteMultipartUpload>
  </Rule>
</LifecycleConfiguration>

Expiring objects after a certain # of days (versioning and non-versioning enabled buckets)

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<LifecycleConfiguration xmlns="http://s3.amazonaws.com/doc/2006-03-01/">
  <Rule>
    <ID>lifecycle-v2-expire-one-year</ID>
    <Filter/>
    <Status>Enabled</Status>
    <Expiration>
      <Days>365</Days>
    </Expiration>
  </Rule>
</LifecycleConfiguration>

Expiring NoncurrentVersions of objects after a certain # of days (versioning enabled buckets only)

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<LifecycleConfiguration xmlns="http://s3.amazonaws.com/doc/2006-03-01/">
  <Rule>
    <ID>lifecycle-v2-expire-non-current</ID>
    <Filter/>
    <Status>Enabled</Status>
    <NoncurrentVersionExpiration>
      <NoncurrentDays>1</NoncurrentDays>
    </NoncurrentVersionExpiration>
  </Rule>
</LifecycleConfiguration>

Removing expired object delete markers (versioning enabled buckets only)

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<LifecycleConfiguration xmlns="http://s3.amazonaws.com/doc/2006-03-01/">
  <Rule>
    <ID>lifecycle-v2-expire-dmarkers</ID>
    <Filter/>
    <Status>Enabled</Status>
    <Expiration>
      <ExpiredObjectDeleteMarker>true</ExpiredObjectDeleteMarker>
    </Expiration>
  </Rule>
</LifecycleConfiguration>

Expire all non-current versions, dmarkers and incomplete MPU's after 1 day

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<LifecycleConfiguration xmlns="http://s3.amazonaws.com/doc/2006-03-01/">
  <Rule>
    <ID>lifecycle-v2-expire-non-current-and-dmarkers-and-mpu</ID>
    <Filter/>
    <Status>Enabled</Status>

S3

ECS Data Access Guide 19



    <Expiration>
      <ExpiredObjectDeleteMarker>true</ExpiredObjectDeleteMarker>
    </Expiration>
    <AbortIncompleteMultipartUpload>
      <DaysAfterInitiation>1</DaysAfterInitiation>
    </AbortIncompleteMultipartUpload>
    <NoncurrentVersionExpiration>
      <NoncurrentDays>1</NoncurrentDays>
    </NoncurrentVersionExpiration>
  </Rule>
</LifecycleConfiguration>

PUT/GET lifecycle with s3curl examples

The following are PUT and GET lifecycle with s3curl examples. See Using s3curl with ECS for more
information.

PUT lifecycle

admin@:/usr/share/s3curl> cat lifecycle.xml
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<LifecycleConfiguration xmlns="http://s3.amazonaws.com/doc/2006-03-01/">
  <Rule>
    <ID>lifecycle-v2-non-current-expiration</ID>
    <Filter/>
    <Status>Enabled</Status>
    <NoncurrentVersionExpiration>
      <NoncurrentDays>1</NoncurrentDays>
    </NoncurrentVersionExpiration>
  </Rule>
</LifecycleConfiguration>
admin@:/usr/share/s3curl>
admin@:/usr/share/s3curl> sudo perl ./s3curl.pl --debug --id=emc --
put=lifecycle.xml --calculateContentMd5 -- "http://192.0.2.0:9020/
emc_lifecycle?lifecycle" -v
s3curl: Found the url: host=10.32.169.121; port=9020; uri=/emc_lifecycle; 
query=lifecycle;
s3curl: replaced string: lifecycle
s3curl: ordinary endpoint signing case
s3curl: StringToSign='PUT\nFjZKcAgVegBUaGdqfEh/Ig==\n\nTue, 06 Nov 2018 
17:28:58 +0000\n/tom_lifecycle?lifecycle'
s3curl: exec curl -v -H 'Date: Tue, 06 Nov 2018 17:28:58 +0000' -H 
'Authorization: AWS emc:xDTXdXSF+qVIQ4EreEe+iqlHRns=' -L -H 'content-type: ' -
H 'Content-MD5: FjZKcAgVegBUaGdqfEh/Ig==' -T lifecycle.xml http://
192.0.2.0:9020/tom_lifecycle?lifecycle -v
* Hostname was NOT found in DNS cache
*   Trying 192.0.2.0...
* Connected to 192.0.2.0 (192.0.2.0) port 9020 (#0)
> PUT /emc_lifecycle?lifecycle HTTP/1.1
> User-Agent: curl/7.37.0
> Host: 192.0.2.0:9020
> Accept: */*
> Date: Tue, 06 Nov 2018 17:28:58 +0000
> Authorization: AWS emc:xDTXdXSF+qVIQ4EreEe+iqlHRns=
> Content-MD5: FjZKcAgVegBUaGdqfEh/Ig==
> Content-Length: 376
> Expect: 100-continue
>
< HTTP/1.1 100 Continue
* We are completely uploaded and fine
< HTTP/1.1 200 OK
< Date: Tue, 06 Nov 2018 17:28:58 GMT
* Server ViPR/1.0 is not blacklisted
< Server: ViPR/1.0
< x-amz-request-id: 0a20a979:166c6842ba5:82ba:5
< x-amz-id-2: 6687ce5967202724ed9a94d44c939438d39cabae9abc5a2c48a60c2c5355f95e

S3

20 ECS Data Access Guide



< Content-Length: 0
<
* Connection #0 to host 10.32.169.121 left intact
 

Troubleshooting LDS:
Enabling debug logging for LDS
LDS log is in resourcesvc-log4j2.xml
<Logger 
name="com.emc.storageos.data.object.impl.resource.LifeCycleDeleteScanner" 
level="DEBUG"/>
 
 
Other relevant classes for troubleshooting lifecycle issues from blobsvc-
log4j2.xml   
<Logger name="com.emc.storageos.data.object.impl.gc.DeleteJobScanner" 
level="DEBUG"/>
<Logger 
name="com.emc.storageos.data.object.impl.file.directoryTable.ObjectDirectoryOp
eration" level="DEBUG"/>
<Logger 
name="com.emc.storageos.data.object.impl.file.directoryTable.BlobsvcOperationB
ase" level="DEBUG"/>
<Logger name="com.emc.storageos.data.object.impl.file.ObjectExpirationHelper" 
level="DEBUG"/>
         
dataheadsvc-log4j2.xml
<Logger name="com.emc.storageos.data.object.RESTAccess.ObjectListingHelper" 
level="DEBUG"/>

GET lifecycle

:/usr/share/s3curl # perl ./s3curl.pl --id=EMC -- "http://192.0.2.0:9020/test-
bucket/?lifecycle" -s | xmllint --format -
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<LifecycleConfiguration xmlns="http://s3.amazonaws.com/doc/2006-03-01/">
  <Rule>
    <ID>lifecycle-v2-abortmpu-one-week</ID>
    <Filter/>
    <Status>Enabled</Status>
    <NoncurrentVersionExpiration>
      <NoncurrentDays>1</NoncurrentDays>
    </NoncurrentVersionExpiration>
  </Rule>
</LifecycleConfiguration>
:/usr/share/s3curl #

Supported lifecycle configuration elements

This table describes the supported lifecycle configuration elements

Table 11 Supported lifecycle configuration elements

Name Description Required

AbortIncomplete
MultipartUpload

l Container for specifying when an
incomplete multipart upload becomes
eligible for an abort operation.

l When you specify this lifecycle action,
the rule cannot specify a tag-based filter.

l Child: DaysAfterInitiation

l Type: Container

Yes, if no other action is specified for the
rule.

S3

ECS Data Access Guide 21



Table 11 Supported lifecycle configuration elements (continued)

Name Description Required

l Ancestor: Rule

And l Container for specify rule filters. These
filters determine the subset of objects to
which the rule applies.

l Type: String

l Ancestor: Rule

Yes, if you specify more than one filter
condition (for example, one prefix and one or
more tags).

Date l Date when you want S3 to take the
action.

l The date value must conform to the ISO
8601 format. The time is always midnight
UTC.

l Type: String

l Ancestor: Expiration or Transition

Yes, if Days and

ExpiredObjectDeleteMarker are

absent.

Days l Specifies the number of days after
object creation when the specific rule
action takes effect.

l Type: Nonnegative Integer when used
with Transition, Positive Integer when
used with Expiration.

l Ancestor: Expiration, Transition

Yes, if Date and

ExpiredObjectDeleteMarker are

absent.

DaysAfterInitia
tion

l Specifies the number of days after
initiating a multipart upload when the
multipart upload must be completed. If it
does not complete by the specified
number of days, it becomes eligible for
an abort operation and S3 aborts the
incomplete multipart upload.

l Type: Positive Integer.

l Ancestor:
AbortIncompleteMultipartUpload

Yes, if ancestor is specified.

Expiration l This action specifies a period in an
object's lifetime when S3 should take the
appropriate expiration action. The action
S3 takes depends on whether the bucket
is versioning-enabled.

l If versioning has never been enabled on
the bucket, S3 deletes the only copy of
the object permanently. Otherwise, if
your bucket is versioning-enabled (or
versioning is suspended), the action
applies only to the current version of the
object. A versioning-enabled bucket can

Yes, if no other action is present in the Rule.

S3

22 ECS Data Access Guide



Table 11 Supported lifecycle configuration elements (continued)

Name Description Required

have many versions of the same object,
one current version, and zero or more
noncurrent versions.

l Instead of deleting the current version,
S3 makes it a noncurrent version by
adding a delete marker as the new
current version.

Note:

n If your bucket state is versioning-
suspended, S3 creates a delete
marker with version ID null. If you
have a version with version ID
null, then S3 overwrites that
version.

n To set expiration for noncurrent
objects, you must use the
NoncurrentVersionExpirat
ion action.

l Type: Container

l Children: Days or Date

l Ancestor: Rule

Filter l Container for elements that describe the
filter identifying a subset of objects to
which the lifecycle rule applies. If you
specify an empty filter (<Filter></
Filter>), the rule applies to all objects in
the bucket.

l Type: String

l Children: Prefix, Tag

l Ancestor: Rule

Yes

ID l Unique identifier for the rule. The value
cannot be longer than 255 characters.

l Type: String

l Ancestor: Rule

No

Key l Specifies the key of a tag. A tag key can
be up to 128 Unicode characters in
length.

l Tag keys that you specify in a lifecycle
rule filter must be unique.

l Type: String

l Ancestor: Tag

Yes, if <Tag> parent is specified.

S3

ECS Data Access Guide 23



Table 11 Supported lifecycle configuration elements (continued)

Name Description Required

LifecycleConfig
uration

l Container for lifecycle rules. You can add
as many as 1,000 rules.

l Type: Container

l Children: Rule

l Ancestor: None

Yes

ExpiredObjectDe
leteMarker

l On a versioned bucket (versioning-
enabled or versioning-suspended
bucket), you can add this element in the
lifecycle configuration to direct S3 to
delete expired object delete markers. On
a nonversioned bucket, adding this
element in a policy is meaningless
because you cannot have delete markers
and the element does not do anything.

l When you specify this lifecycle action,
the rule cannot specify a tag-based filter.

l Type: String

l Valid values: true | false (the value false
is allowed, but it is no-op and S3 does
not take action if the value is false)

l Ancestor: Expiration.

Yes, if Date and Days are absent.

NoncurrentDays l Specifies the number of days an object is
noncurrent before S3 can perform the
associated action.

l Type: Nonnegative Integer when used
with
NoncurrentVersionTransition,

Positive Integer when used with
NoncurrentVersionExpiration.

l Ancestor:
NoncurrentVersionExpiration or
NoncurrentVersionTransition

Yes

NoncurrentVersi
onExpiration

l Specifies when noncurrent object
versions expire. Upon expiration, S3
permanently deletes the noncurrent
object versions.

l You set this lifecycle configuration action
on a bucket that has versioning enabled
(or suspended) to request that S3 delete
noncurrent object versions at a specific
period in the object's lifetime.

l Type: Container

l Children: NoncurrentDays

Yes, if no other action is present in the Rule.

S3

24 ECS Data Access Guide



Table 11 Supported lifecycle configuration elements (continued)

Name Description Required

l Ancestor: Rule

Prefix l Object key prefix identifying one or more
objects to which the rule applies. Empty
prefix (<Prefix></Prefix>) indicates
there is no filter based on key prefix.

Note: ECS supports <Prefix> with
and without <Filter>.
PUT Bucket lifecycle with <Filter>

<Filter>
    <Prefix>value</Prefix>
</Filter>

PUT Bucket lifecycle (Deprecated)
without <Filter>

<Prefix>value</Prefix>
                          

l There can be at most one Prefix in a
lifecycle rule Filter.

l Type: String

l Ancestor: Filter or And (if you specify
multiple filters such as a prefix and one
or more tags)

No

Rule l Container for a lifecycle rule. A lifecycle
configuration can contain as many as
1,000 rules.

l Type: Container

l Ancestor: LifecycleConfiguration

Yes

Status l If Enabled, S3 executes the rule as
scheduled. If Disabled, S3 ignores the
rule.

l Type: String

l Ancestor: Rule

l Valid values: Enabled, Disabled.

Yes

Value l Specifies the value for a tag key. Each
object tag is a key-value pair.

l Tag value can be up to 256 Unicode
characters in length.

l Type: String

Yes, if <Tag> parent is specified.

S3

ECS Data Access Guide 25



Table 11 Supported lifecycle configuration elements (continued)

Name Description Required

l Ancestor: Tag

Enabling Lifecycle Delete Scanner (LDS)

The purpose of the LDS scanner is to initiate expiration of objects/versions created before the
lifecycle is applied. So for instance, if there is a bucket created sometime ago and has been in use
and now there is a requirement to apply lifecycle, in such cases LDS must be enabled for lifecycle
policies to cover previous objects/versions.

Note: LDS is disabled by default. For enabling pre 3.2.1, contact ECS Remote Support.

For enabling 3.2.1 and higher versions, set the
com.emc.ecs.resource.lifecycledeletescanner.enable parameter value as true.

svc_param set com.emc.ecs.resource.lifecycledeletescanner.enable -v "true" -r 
"Enable LDS"

S3 Extensions
ECS supports a number of extensions to the S3 API.

The extensions and the APIs that support them are listed below.

l Byte range extensions on page 26

l Retention on page 30

l File system enabled on page 31

l Metadata Search on page 35

l S3A support on page 34

Byte range extensions

The following byte range extensions are provided:

l Updating a byte range within an object

l Overwriting part of an object

l Appending data to an object

l Reading multiple byte ranges within an object

Note: A byte range operation (update/append/overwrite) on a versioned object does not
create a version and latest version itself is updated.
A byte range operation (update/append/overwrite) on an old version of an object updates the
latest version.

Updating a byte range within an object
You can use ECS extensions to the S3 protocol to update a byte range within an object.

Partially updating an object can be very useful in many cases. For example, to modify a binary
header that is stored at the beginning of a large file. On Amazon or other S3 compatible platforms,
it is necessary to send the full file again.

S3

26 ECS Data Access Guide



The following example demonstrates use of the byte range update. In the example, object1 has
the value The quick brown fox jumps over the lazy dog.

GET /bucket1/object1 HTTP/1.1
Date: Mon, 12 Mar 2018 20:04:40 -0000
x-emc-namespace: emc
Content-Type: application/octet-stream
Authorization: AWS wuser1:9qxKiHt2H7upUDPF86dvGp8VdvI=
Accept-Encoding: gzip, deflate, compress
 
HTTP/1.1 200 OK
Date: Mon, 12 Mar 2018 20:04:40 GMT
Content-Type: application/octet-stream
Last-Modified: Mon, 12 Mar 2018 20:04:28 GMT
ETag: 6
Content-Type: application/json
Content-Length: 43
 
The quick brown fox jumps over the lazy dog.

To update a specific byte range within this object, the Range header in the object data request
must include the start and end offsets of the object that you want to update.
The format is: Range: bytes=<startOffset>-<endOffset>.

In the example, the PUT request includes the Range header with the value bytes=10-14
indicating to replace the bytes 10,11,12,13,14 by the value that is sent in the request. Here, the new
value green is being sent.

PUT /bucket1/object1 HTTP/1.1
Content-Length: 5
Range: bytes=10-14
ACCEPT: application/json,application/xml,text/html,application/octet-stream
Date: Mon, 12 Mar 2018 20:15:16 -0000
x-emc-namespace: emc
Content-Type: application/octet-stream
Authorization: AWS wuser1:xHJcAYAEQansKLaF+/4PdLBHyaM=
Accept-Encoding: gzip, deflate, compress
 
green
 
HTTP/1.1 204 No Content
ETag: 10
x-amz-id-2: object1
x-amz-request-id: 027f037c-29ea-4670-8670-de82d0e9f52a
Content-Length: 0
Date: Mon, 12 Mar 2018 20:15:16 GMT

When reading the object again, the new value is now The quick green fox jumps over
the lazy dog. A specific byte range within the object is updated, replacing the word brown
with the word green.

GET /bucket1/object1 HTTP/1.1
Cookie: JSESSIONID=wdit99359t8rnvipinz4tbtu
ACCEPT: application/json,application/xml,text/html,application/octet-stream
Date: Mon, 12 Mar 2018 20:16:00 -0000
x-emc-namespace: emc
Content-Type: application/octet-stream
Authorization: AWS wuser1:OGVN4z8NV5vnSAilQTdpv/fcQzU=
Accept-Encoding: gzip, deflate, compress
 
HTTP/1.1 200 OK
Date: Mon, 12 Mar 2018 20:16:00 GMT

S3

ECS Data Access Guide 27



Content-Type: application/octet-stream
Last-Modified: Mon, 12 Mar 2018 20:15:16 GMT
ETag: 10
Content-Type: application/json
Content-Length: 43
 
The quick green fox jumps over the lazy dog.

Overwriting part of an object
You can use ECS extensions to the S3 protocol to overwrite part of an object.

To overwrite part of an object, provide the data to be written and the starting offset. The data in
the request is written starting at the provided offset. The format is: Range:
<startingOffset>- .

For example, to write the data brown cat starting at offset 10, you issue this PUT request:

PUT /bucket1/object1 HTTP/1.1
Content-Length: 9
Range: bytes=10-
ACCEPT: application/json,application/xml,text/html,application/octet-stream
Date: Mon, 12 Mar 2018 20:51:41 -0000
x-emc-namespace: emc
Content-Type: application/octet-stream
Authorization: AWS wuser1:uwPjDAgmazCP5lu77Zvbo+CiT4Q=
Accept-Encoding: gzip, deflate, compress
 
brown cat
 
HTTP/1.1 204 No Content
ETag: 25
x-amz-id-2: object1
x-amz-request-id: 65be45c2-0ee8-448a-a5a0-fff82573aa3b
Content-Length: 0
Date: Mon, 12 Mar 2018 20:51:41 GMT

When the object is retrieved, part of the data is replaced at the provided starting offset (green
fox is replaced with brown cat) and the final value is: The quick brown cat jumps over
the lazy dog and cat.

GET /bucket1/object1 HTTP/1.1
Date: Mon, 12 Mar 2018 20:51:55 -0000
x-emc-namespace: emc
Content-Type: application/octet-stream
Authorization: AWS wuser1:/UQpdxNqZtyDkzGbK169GzhZmt4=
Accept-Encoding: gzip, deflate, compress
 
HTTP/1.1 200 OK
Date: Mon, 12 Mar 2018 20:51:55 GMT
Content-Type: application/octet-stream
Last-Modified: Mon, 12 Mar 2018 20:51:41 GMT
ETag: 25
Content-Type: application/json
Content-Length: 51
 
The quick brown cat jumps over the lazy dog and cat.

Note that when you overwrite existing parts of an object, the size and numbers of the new parts is
added to the size and numbers of the existing parts you overwrote. For example, in a bucket that
has one part that is 20 KB in size, you overwrite 5 KB. When you query the bucket using GET /

S3

28 ECS Data Access Guide



object/billing/buckets/{namespace}/{bucketName}/info, the output will show
total_mpu_size = 25 KB (not 20 KB) and total_mpu_parts = 2 (not 1) .

Appending data to an object
You can use ECS extensions to the S3 protocol to append data to an object.

There may be cases where you append to an object, but determining the exact byte offset is not
efficient or useful. For this scenario, ECS provides the ability to append data to the object without
specifying an offset (the correct offset is returned to you in the response). For example, in order
to append lines a log file, on Amazon or other S3 compatible platforms, you must send the full log
file again.

A Range header with the special value bytes=-1- can be used to append data to an object. In
this way, the object can be extended without knowing the existing object size. The format is:
Range: bytes=-1-
A sample request showing appending to an existing object using a Range value of bytes=-1- is
shown in the following example. Here the value and cat is sent in the request.

PUT /bucket1/object1 HTTP/1.1
Content-Length: 8
Range: bytes=-1-
ACCEPT: application/json,application/xml,text/html,application/octet-stream
Date: Mon, 12 Mar 2018 20:46:01 -0000
x-emc-namespace: emc
Content-Type: application/octet-stream
Authorization: AWS wuser1:/sqOFL65riEBSWLg6t8hL0DFW4c=
Accept-Encoding: gzip, deflate, compress
 
and cat
 
HTTP/1.1 204 No Content
ETag: 24
x-amz-id-2: object1
x-amz-request-id: 087ac237-6ff5-43e3-b587-0c8fe5c08732
Content-Length: 0
Date: Mon, 12 Mar 2018 20:46:01 GMT

When the object is retrieved, and cat has been appended, and you can see the full value: The
quick green fox jumps over the lazy dog and cat.

GET /bucket1/object1 HTTP/1.1
ACCEPT: application/json,application/xml,text/html,application/octet-stream
Date: Mon, 12 Mar 2018 20:46:56 -0000
x-emc-namespace: emc
Content-Type: application/octet-stream
Authorization: AWS wuser1:D8FSE8JoLl0MTQcFmd4nG1gMDTg=
Accept-Encoding: gzip, deflate, compress
 
HTTP/1.1 200 OK
Date: Mon, 12 Mar 2018 20:46:56 GMT
Content-Type: application/octet-stream
Last-Modified: Mon, 12 Mar 2018 20:46:01 GMT
ETag: 24
Content-Type: application/json
Content-Length: 51
 
The quick green fox jumps over the lazy dog and cat.

S3

ECS Data Access Guide 29



Reading multiple byte ranges within an object
You can use ECS extensions to the S3 protocol to read multiple byte ranges within an object.

Reading multiple parts of an object can be very useful in many cases. For example, to get several
video parts. On Amazon or other S3 compatible platforms, it is necessary to send a different
request for each part.

To read two specific byte ranges within the object that is named object1, you issue the following
GET request for Range: bytes==4-8,41-44. The read response is words quick and lazy.

GET /bucket1/object1 HTTP/1.1
Date: Mon, 12 Mar 2018 20:51:55 -0000
x-emc-namespace: emc
Range: bytes==4-8,41-44
Content-Type: application/octet-stream
Authorization: AWS wuser1:/UQpdxNqZtyDkzGbK169GzhZmt4=
Accept-Encoding: gzip, deflate, compress
 
HTTP/1.1 206 Partial Content
Date: Mon, 12 Mar 2018 20:51:55 GMT
Content-Type: multipart/byteranges;boundary=bound04acf7f0ae3ccc
Last-Modified: Mon, 12 Mar 2018 20:51:41 GMT
Content-Length: 230
 
--bound04acf7f0ae3ccc
Content-Type: application/octet-stream
Content-Range: bytes 4-8/50
quick
--bound04acf7f0ae3ccc
Content-Type: application/octet-stream
Content-Range: bytes 41-44/50
lazy
--bound04acf7f0ae3ccc--

Retention

The ECS S3 head supports retention of objects to prevent them being deleted or modified for a
specified period. The ECS S3 is an ECS extension and is not available in the standard S3 API.

Retention can be set in the following ways:

Retention period on object

Stores a retention period with the object. The retention period is set using an x-emc-
retention-period header on the object.

Retention policy on object

A retention policy can be set on the object and the period that is associated with the policy
can be set for the namespace. The retention policy enables the retention period for a group of
objects to be set to the same value using a policy and can be changed for all objects by
changing the policy. The use of a policy provides much more flexibility than applying the
retention period to an object. In addition, multiple retention policies can be set for a
namespace to allow different groups of objects to have different retention periods.

When applying a retention policy to an object using a x-emc-retention-policy header on
the object, the policy retention period must be set. The ECS administrator must set the policy
retention period from the ECS Portal or using the ECS Management REST API.

Retention period on bucket

A retention period that is stored against a bucket sets a retention period. The retention period
is set for all objects with the object level retention period or policy that is used to provide an

S3

30 ECS Data Access Guide



object-specific setting, where a longer retention is required. The retention period is set using
an x-emc-retention-period header on the bucket.

When an attempt is made to modify or delete the object, the larger of the bucket retention period
or the object period is used to determine whether the operation can be performed. The object
period is set directly on the object or using the object retention policy.

S3 buckets can also be created from the ECS Management REST API or from the ECS Portal and
the retention period for a bucket can be set from there.

File system enabled

S3 buckets can be File System (FS) enabled so that the files that are written using the S3 protocol
can be read using the file protocols, such as Network File system (NFS) and Hadoop Distributed
File System (HDFS), and the opposite way.

Enabling FS access

You can enable FS access using the x-emc-file-system-access-enabled header when
creating a bucket using the S3 protocol. File system access can also be enabled when creating a
bucket from the ECS Portal (or using the ECS Management REST API).

Limitation on FS support

When a bucket is FS enabled S3 life cycle management cannot be enabled.

Cross-head support for FS

Cross-head support is accessing objects written using one protocol using a different, ECS-
supported protocol. Objects written using the S3 head can be read and written using NFS and
HDFS file system protocols.

An important aspect of cross-head support is how object and file permissions translate between
protocols and for file system access how user and group concepts translate between object and
file protocols.

You can find more information about the cross-head support with file systems in the ECS
Administration Guide which is available from the ECS Product Documentation page.

NFS WORM (Write Once, Read Many)

NFS data become Write Once Read Many (WORM) compliant when autocommit is implemented
on it.
In detail, creating files through NFS is a multi step process. To write to a new file, NFS client first
sends the CREATE request with no payload to NFS server. After receiving a response, the server
issues a WRITE request. It is a problem for FS enabled buckets under retention as the file created
with 0 bytes blocks any writes to it. Due to this reason, until ECS 3.3, retention on FS enabled
bucket makes the whole mounted file-system read-only. There is no End of File (EOF) concept in
NFS. Setting a retention for files, on the FS enabled buckets, after writing to them does not work
as expected.

To remove the constraints that are placed on NFS files in a retention enabled bucket, the
autocommit period is implemented on NFS data. For this reason, it is decided to introduce the
autocommit period during which certain types of updates (for now identified as writes, Acl updates
and deletes that are required for rsync, and rename that is required for Vim editor) are allowed,
which removes the retention constraints for that period alone.

Note:

l The autocommit and the Atmos retention start delay are the same. See Retention start
delay window on page 94.

l Autocommit period is a bucket property like retention period.

S3

ECS Data Access Guide 31

https://community.emc.com/docs/DOC-62642


l Autocommit period is:

n Applicable only for the file system enabled buckets with retention period

n Applicable to the buckets in noncompliant namespace

n Applies to only requests from NFS and Atmos

Seal file

The seal file functionality helps to commit the file to WORM state when the file is written ignoring
the remaining autocommit period. The seal function is performed through the command: chmod
ugo-w <file> on the file.

Note: The seal functionality does not have any effect outside the retention period.

High level overview

This table describes the Autocommit terms

Table 12 Autocommit terms

Term Description

Autocommit period Time interval relative to the object's last modified time during which
certain retention constraints (example: file modifications, file
deletions, and so on) are not applied. It does not have any effect
outside of the retention period.

Retention Start Delay Atmos head uses the start delay to indicate the autocommit period.

The following diagram provides an overview of the autocommit period behavior.

Autocommit configuration

The autocommit period can be set from the user interface or bucket REST API or S3 head or
Atmos subtenant API.

User Interface

The user interface has the following support during bucket create and edit:

l When the File System is not enabled, no autocommit option is displayed.

l When the File System is enabled /no retention value that is specified, autocommit is displayed
but disabled.

l When the File System is enabled/retention value selected/autocommit is displayed and
enabled for selection.

Note: Maximum autocommit period is limited to the smaller of the Bucket Retention period or
the default maximum period of one day.

S3

32 ECS Data Access Guide



REST API

Create bucket REST API is modified with the new header, x-emc-autocommit-period.

lglou063:~ # curl -i -k -T /tmp/bucket -X POST https://10.247.99.11:4443/
object/bucket -H "$token" -H "Content-Type: application/xml" -v

The contents of /tmp/bucket
<object_bucket_create>
    <name>bucket2</name>
    <namespace>s3</namespace>
    <filesystem_enabled>true</filesystem_enabled>
    <autocommit_period>300</autocommit_period>
    <retention>1500</retention>
</object_bucket_create>

S3 head

Bucket creation
Bucket creation flow through s3 head can make use of optional request header, x-emc-auto-
commit-period:seconds to set the autocommit period. The following checks are made in this
flow:

l Allow only positive integers

l Settable only for file system buckets

l Settable only when the retention value is present

./s3curl.pl --ord --id=naveen --key=+1Zh4YC2r2puuUaj3Lbnj3u0G9qgPRj0RIWJhPxH 
--createbucket -- -H 'x-emc-autocommit-period:600' -H 'x-emc-file-system-
access-enabled:true' -H 'x-emc-namespace:ns1' http://10.249.245.187:9020/
bucket5 -v

Atmos
Atmos creates a subtenant request header, x-emc-retention-start-delay, captures the
autocommit interval.

./atmoscurl.pl -user USER1 -action PUT -pmode TID -path / -header "x-emc-
retention-period:300" -header "x-emc-retention-start-delay:120" -include

Behavior of file operations

This table describes the behavior of file operations

Table 13 Behavior of file operations

File Operation Expected within
autocommit period

Expected within retention period
(after autocommit period)

Change permission of file Allowed Denied

Change ownership of file Allowed Denied

Write to existing file Allowed Denied

Create empty file Allowed Allowed

Create non-empty file Allowed Denied

Remove file Allowed Denied

S3

ECS Data Access Guide 33



Table 13 Behavior of file operations (continued)

File Operation Expected within
autocommit period

Expected within retention period
(after autocommit period)

Move file Allowed Denied

Rename file Allowed Denied

Make dir Allowed Allowed

Remove directory Denied Denied

Move directory Denied Denied

Rename directory Denied Denied

Change permission on
directory

Denied Denied

list Allowed Allowed

Read file Allowed Allowed

Truncate file Allowed Denied

Copy of local read-only
files to NFS share

Allowed Allowed

Copy of read-only files
from NFS share to NFS
share

Allowed Allowed

Change atime/mtime of
file/ directory

Allowed Denied

S3A support

The AWS S3A client is a connector for AWS S3, which enables you to run MapReduce jobs with
ECS S3.

Note:

l ECS does not enable you to run S3A client on FS enabled buckets.

l S3A support is available on Hadoop 2.7 or later version.

Geo-replication status

The ECS S3 head supports Geo replication status of an object with replicationInfo. It API retrieves
Geo replication status of an object using replicationInfo. This automates their capacity
management operations, enable site reliability operations and ensures that the critical date is not
deleted accidently.

Retrieves Geo replication status of an object by API to confirm that the object has been
successfully replicated.

Request:
GET  /bucket/key?replicationInfo

S3

34 ECS Data Access Guide



Response:

<ObjectReplicationInfo xmlns="http://s3.amazonaws.com/doc/
2006-03001/"
  <IndexReplicated>false</IndexReplicated>
  <ReplicatedDataPercentage>64.0</ReplicatedDataPercentage>
</ObjectReplicationInfo>

Metadata Search
The ECS S3-compatible API provides a metadata search extension. The search enables objects
within a bucket to be indexed based on their metadata, and for the metadata index to be queried to
find objects and their associated data.

Metadata can be associated with objects using the ECS S3 API. If you know the identity of an
object, you can read an object's metadata. Without the ECS metadata search feature, it is not
possible to find an object using its metadata without iterating through the set of object in a bucket.

Metadata can be either user metadata or system metadata. System metadata is defined and
automatically written to objects by ECS, clients write the user metadata with reference to the user
requirements. Both system and user metadata can be indexed and used as the basis for metadata
searches. The number of metadata values that can be indexed is limited to 30 and must be defined
when the bucket is created.

Note: In the case of small objects (100KB and below), the ingest rate for data slightly reduces
on increasing the number of index keys. Performance testing data showing the impact of using
metadata indexes for smaller objects is available in the ECS Performance white paper.

When querying objects based on their indexed metadata, the objects that match the query and the
values of their indexed metadata are returned. You can also choose to return all of the system
and/or user metadata that is associated with the returned objects. In addition to system metadata,
objects also have attributes which can be returned as part of metadata search results. The system
metadata values that are available and can be indexed, and the metadata values that can optionally
be returned with search query results, are listed ECS system metadata and optional attributes.

The following topics cover the steps involves in setting up and using the metadata search feature:

l Assign metadata index values to a bucket

l Assign metatdata to objects using S3 protocol

l Use metadata search queries

Assign metadata index values to a bucket
You can set metadata index values on a bucket using the ECS Portal or ECS Management REST
API, or using the S3 protocol. The index values must reflect the name of the metadata that they
are indexing and can be based on system metadata or user metadata.

A list of the available system metadata is provided in ECS System metadata and optional
attributes.

Index values are set when a bucket is created. You can disable the use of indexing on a bucket, but
you cannot change or delete individual index values.

Setting index values using the Portal
You can set index values using the portal

The Manage > Bucket page enables buckets to be created and for index values to be assigned
during the creation process.

S3

ECS Data Access Guide 35



Setting index values using the ECS Management REST API
You can set index values using the ECS Management REST API

The ECS Management REST API provides the methods for working with indexes that are listed in
the following table and links are provided to the API reference.

Table 14 ECS Management REST API methods

API Path Description

GET /object/bucket/
searchmetadata

Lists the names of all system metadata keys available for assigning to a new
bucket.

POST /object/bucket Assigns the metadata index names that are indexed for the specified bucket.
The index names are supplied in the method payload.

GET /object/bucket Gets a list of buckets. The bucket information for each bucket shows the
metadata search details.

GET /object/bucket/{bucketname}/
info

Gets the bucket details for the selected bucket. The information for the
bucket includes the metadata search details.

DELETE /object/bucket/
{bucketname}/searchmetadata

Stops indexing using the metadata keys.

Example: Get the list of available metadata names

The following example gets the entire list of metadata names available for indexing and that can be
returned in queries.

s3curl.pl --id myuser -- http://{host}:9020/?searchmetadata

The results of the query are as follows.

<MetadataSearchList xmlns="http://s3.amazonaws.com/doc/2006-03-01/">
  <IndexableKeys>
    <Key>
      <Name>LastModified</Name>
      <Datatype>datetime</Datatype>
    </Key>
    <Key>
      <Name>Owner</Name>
      <Datatype>string</Datatype>
    </Key>
    <Key>
      <Name>Size</Name>
      <Datatype>integer</Datatype>
    </Key>
    <Key>
      <Name>CreateTime</Name>
      <Datatype>datetime</Datatype>
    </Key>
    <Key>
      <Name>ObjectName</Name>
      <Datatype>string</Datatype>
    </Key>
  </IndexableKeys>
  <OptionalAttributes>
    <Attribute>
      <Name>ContentType</Name>
      <Datatype>string</Datatype>

S3

36 ECS Data Access Guide



    </Attribute>
    <Attribute>
      <Name>Expiration</Name>
      <Datatype>datetime</Datatype>
    </Attribute>
    <Attribute>
      <Name>ContentEncoding</Name>
      <Datatype>string</Datatype>
    </Attribute>
    <Attribute>
      <Name>Expires</Name>
      <Datatype>datetime</Datatype>
    </Attribute>
    <Attribute>
      <Name>Retention</Name>
      <Datatype>integer</Datatype>
    </Attribute>
  </OptionalAttributes>
</MetadataSearchList>

Example: Get the list of keys being indexed for a bucket

The following example gets the list of metadata keys currently being indexed for a bucket.

s3curl.pl --id myuser -- http://{host}:9020/mybucket/?searchmetadata

The results of this example are as follows.

<MetadataSearchList xmlns="http://s3.amazonaws.com/doc/2006-03-01/">
  <MetadataSearchEnabled>true</MetadataSearchEnabled>
  <IndexableKeys>
    <Key>
      <Name>Size</Name>
      <Datatype>integer</Datatype>
    </Key>
    <Key>
      <Name>x-amz-meta-DAT</Name>
      <Datatype>datetime</Datatype>
    </Key>
  </IndexableKeys>
</MetadataSearchList>

Setting values using the S3 API

The S3 API provides methods for working with indexes that are listed in the following table and
links are provided to the API reference.

Table 15 ECS Management REST API methods

API Path Description

GET /?searchmetadata Lists the names of all system metadata available for indexing on new
buckets.

PUT /{bucket} -H x-emc-metadata-
search: {name[;datatype],...}

Creates a bucket with the search metadata key that is indicated in the
header.

Note: A datatype must be associated with a user metadata key, but is
not necessary for a system metadata key.

S3

ECS Data Access Guide 37



Table 15 ECS Management REST API methods (continued)

API Path Description

GET /{bucket}/?searchmetadata Gets the list of metadata keys that are currently being indexed for the
bucket.

Example

The following example shows how to create a bucket with metadata indexes for three system
metadata keys and two user metadata keys.

s3curl.pl --id myuser --createbucket -- http://{host}:9020/mybucket 
-H "x-emc-metadata-search:Size,CreateTime,LastModified,x-amz-meta-STR;String,x-amz-meta-
INT;Integer"

Note: When adding an object with x-amz-meta-, values containing special characters do not
have to be url-encoded.

Using encryption with metadata search

When encryption is used on a bucket, object metadata keys that are indexed are stored in non-
encrypted form, so it is always possible to perform metadata searches on encrypted buckets.

Where the encryption was performed using system-supplied keys, the object metadata returned
by a query will be decrypted and shown in text form. However, if the data was encrypted using a
user-supplied encryption key, metadata that is not indexed will still be encrypted when returned by
a metadata search query as the user encrypted keys cannot be provided via the query.

Assign metadata to objects using the S3 protocol
End users can assign user metadata to objects using the x-amz-meta- header. The value
assigned can be any text string and is case sensitive, but the metadata names are case insensitive,
so x-emc-meta-FOO, x-emc-meta-foo are referring to the same field foo.

Note: When defining the fields to index and searching, ensure that you use all lowercase.

When the metadata is indexed so that it can be used as the basis of object searches (the metadata
search feature), a datatype is assigned to the data. When writing metadata to objects, clients
should write data in the appropriate format so that it can be used correctly in searches.

The datatypes are:

String

If the search index term is marked as text, the metadata string is treated as a string in all
search comparisons.

Integer

If the search index term is marked as integer, the metadata string is converted to an integer in
search comparisons.

Decimal

If a search index term is marked as decimal, the metadata string is converted to a decimal
value so that the "." character is treated as a decimal point.

S3

38 ECS Data Access Guide



Datetime

If the search index term is marked as datetime, the metadata string is treated as a date time
with the expected format: yyyy-MM-ddTHH:mm:ssZ If you want the string to be treated as
datetime, you need to use the format yyyy-MM-ddTHH:mm:ssZ when specifying the
metadata.

Example

The example below uses the S3 API to upload an object and two user metadata values on the
object.

s3curl.pl --id myuser --put myfile -- http://{host}:9020/mybucket/file4 -i -H x-amz-meta-
STR:String4 -H x-amz-meta-INT:407

Use metadata search queries
The metadata search feature provides a rich query language that enables objects that have
indexed metadata to be searched.

The syntax is shown in the table below.

Table 16 API Syntax

API Syntax Response Body

GET /{bucket}/?
query={expression}
&attributes={fieldname,…}
&sorted={selector}
&include_older_version={tru
e|false}
&max-keys=(num_keys)
&marker=(marker value)

Note: Prefix capability is added
to the metadata search. See 
Prefix capability in metadata
search.

<BucketQueryResult xmlns:ns2="http://
s3.amazonaws.com/doc/2006-03-01/">
  <Name>mybucket</Name>
  <Marker/>
  <NextMarker>NO MORE PAGES</NextMarker>
  <MaxKeys>0</MaxKeys>
  <ObjectMatches>
    <object>
      <objectName>file4</objectName>
      
<objectId>09998027b1b7fbb21f50e13fabb481a237ba
2f60f352d437c8da3c7c1c8d7589</objectId>
      <versionId>0</versionId>
      <queryMds>
        <type>SYSMD</type>
        <mdMap>
          <entry>
            <key>createtime</key>
            <value>1449081778025</value>
          </entry>
          <entry>
            <key>size</key>
            <value>1024</value>
          </entry>
          <entry>
            <key>mtime</key>
            <value>1449081778025</value>
          </entry>
        </mdMap>
      </queryMds>
      <queryMds>
        <type>USERMD</type>
        <mdMap>
          <entry>
            <key>x-amz-meta-INT</key>
            <value>407</value>
          </entry>
          <entry>
            <key>x-amz-meta-STR</key>
            <value>String4</value>

S3

ECS Data Access Guide 39



Table 16 API Syntax

API Syntax Response Body

          </entry>
        </mdMap>
      </queryMds>
      <indexKey/>
    </object>
    <object
    ...
    </object>
  </ObjectMatches>
</BucketQueryResult>

The expression keywords and their meanings are listed below:

expression

An expression in the form:

[(]{condition1}[%20[and/or]%20{condition2}][)][%20[and/or]%20…]

Where "condition" is a metadata key name filter in the form:

{selector} {operator}
{argument},

For example:

LastModified > 2018-03-01T11:22:00Z

selector

A searchable key name associated with the bucket.

operator

An operator. One of: ==, >, <, <=, >=

argument

A value that the selector is tested against.

attributes=[fieldname,...]

Specifies any optional object attributes that should be included in the report. Attribute values
will be included in the report where that attribute is present on the object. The optional
attribute values comprise:

l ContentEncoding

l ContentType

l Retention

l Expiration

l Expires

S3

40 ECS Data Access Guide



In addition, it is possible to return the non-indexed metadata associated with objects that are
returned by the search query. The following:

ALL

Lists both system and user metadata associated with the returned objects.

ALL_SMD

Lists the system metadata associated with the returned objects.

ALL_UMD

Lists the user metadata associated with the returned objects.

sorted=[selector]

Specifies one searchable key name associated with the bucket. The key name must be a key
that appears in the expression. In the absence of &sorted=keyname, the output will be sorted
according to the first key name that appears in the query expression.

Note: If "or" operators are used in the expression, the sort order is indeterminate.

include-older-versions=[true|false]

When S3 versioning is enabled on a bucket, setting this to true will return current and older
versions of objects that match the expression. Default is false.

max-keys

The maximum number of objects that match the query that should be returned. If there are
more objects than the max-keys, a marker will be returned that can be used to retrieve more
matches.

marker

The marker that was returned by a previous query and that indicates the point from which
query matches should be returned.

Datetime queries

Datetime values in user metadata are specified in ISO-8601 format yyyy-MM-dd'T'HH:mm:ssZ
and are persisted by ECS in that format. Metadata queries also use this format. However, ECS
persists datetime values for system metadata as epoch time, the number of milliseconds since the
beginning of 1970.

When a query returns results, it returns the datetime format persisted by ECS. An example of the
two formats is shown below.

User metadata upload header example:

-H x-amz-meta-Foo:2018-03-06T12:00:00Z

User and System query expression format:

?query=CreateTime>2018-01-01T00:00:00Z and x-amz-meta-Foo==2018-03-06T12:00:00Z

S3

ECS Data Access Guide 41



Query results fragment - system metadata

<key>createtime</key> <value>1449081777620</value>

Query results fragment - user metadata

<key>x-amz-meta-Foo</key> <value>2018-03-06T12:00:00Z</value>

Using markers and max-keys to paginate results

You can specify the maximum number of objects that will be returned by a query using the max-
keys query parameter.

The example below specified a maximum number of objects as 3.

?query=CreateTime>2018-01-01T00:00:00Z and x-amz-meta-Foo==2018-03-06T12:00:00Z&max-keys=3

Where a query matches more objects than the max-keys that has been specified, a marker will also
be returned that can be used to return the next page objects that match the query but were not
returned.

The query below specifies a marker that has been retrieved from a previous query:

?query=CreateTime>2018-01-01T00:00:00Z and x-amz-meta-Foo==2018-03-06T12:00:00Z&max-
keys=3&marker=rO0ABXNyAD...

When the objects that are returned are the final page of objects, NO MORE PAGES is returned in
the NextMarker of the response body.

<NextMarker>NO MORE PAGES</NextMarker>

Using special characters in queries
You can use special characters in queries

The use of url-encoding is required to ensure that special characters are received correctly by the
ECS REST service and quoting can be required to ensure that when ECS parses the query it does
not mis-interpret symbols. For example:

l When querying on x-amz-meta values, special characters must be url-encoded. For example:
when using "%" (ASCII 25 hex), or "/" ( ASCII 2F), they must be encoded as %25 and 2F,
respectively.

l When querying on x-amz-meta values that have SQL-reserved characters the reserved
characters must be escaped. This is to ensure that the SQL parser used by ECS does not
consider them operators. For example: 'ab < cd' (that is, make sure a pair of quotes is passed
into the service so that the SQL parser used by ECS does not consider them operators). The
SQL-reserved characters include comparison operators (=, <, >, +, -, !, ~) and syntax
separators (comma, semicolon).

S3

42 ECS Data Access Guide



Different ways of quoting are possible and depend on the client being used. An example for
Unix command-line tools like S3curl.pl, would be:

?query="'ab+cd<ed;ef'"

In this case, the search value is single-quoted and that is wrapped in double quotes.

Prefix capability in metadata search
You can use prefix capability in metadata search

S3 API metadata search supports the prefix and delimiter parameters. It follows the standard S3
definition of these parameters. Prefix capability effectively transforms every single metadata
query into a multi query request with AND operation between prefix and the query string. In other
words, it is possible to combine the AND and OR predicates in the queries.

S3 API metadata is modified to support prefix and delimiter parameters as described below:

 GET /bucketName/?prefix={prefix}&delimiter={delimiter}&query={queryString}
          

Limitations

l A prefix is always applied before the actual query.

l Custom sorting is not supported with prefixes. If sorting is specified together with a prefix, the
API returns 400 Bad Request.

l Objects are returned in lexicographical order.

l Using ObjectName in a query string together with a prefix is not allowed. It creates ambiguity
as both filter objects based on name. If both are specified, the API returns 400 Bad Request.

Metadata search example
You can use metadata search example

The example below uses the S3 API to search a bucket for a particular object size and user
metadata value match.

Note: Some REST clients may require that you encode "spaces" with url code %20.

s3curl.pl --id myuser 
-- "http://{host}:9020.mybucket?query=Size>1000%20and%20x-amz-meta-STR>=String4

The result shows three objects that match the search.

<BucketQueryResult xmlns:ns2="http://s3.amazonaws.com/doc/2006-03-01/">
  <Name>mybucket</Name>
  <Marker/>
  <NextMarker>NO MORE PAGES</NextMarker>
  <MaxKeys>0</MaxKeys>
  <ObjectMatches>
    <object>
      <objectName>file4</objectName>
      <objectId>09998027b1b7fbb21f50e13fabb481a237ba2f60f352d437c8da3c7c1c8d7589</objectId>
      <versionId>0</versionId>
      <queryMds>
        <type>SYSMD</type>
        <mdMap>

S3

ECS Data Access Guide 43



          <entry>
            <key>createtime</key>
            <value>1449081778025</value>
          </entry>
          <entry>
            <key>size</key>
            <value>1024</value>
          </entry>
          <entry>
            <key>mtime</key>
            <value>1449081778025</value>
          </entry>
        </mdMap>
      </queryMds>
      <queryMds>
        <type>USERMD</type>
        <mdMap>
          <entry>
            <key>x-amz-meta-INT</key>
            <value>407</value>
          </entry>
          <entry>
            <key>x-amz-meta-STR</key>
            <value>String4</value>
          </entry>
        </mdMap>
      </queryMds>
      <indexKey/>
    </object>
    <object>
      <objectName>file5</objectName>
      <objectId>1ad87d86ef558ca0620a26855662da1030f7d9ff1d4bbc7c2ffdfe29943b9150</objectId>
      <queryMds>
        <type>SYSMD</type>
        <mdMap>
          <entry>
            <key>createtime</key>
            <value>1449081778396</value>
          </entry>
          <entry>
            <key>size</key>
            <value>1024</value>
          </entry>
          <entry>
            <key>mtime</key>
            <value>1449081778396</value>
          </entry>
        </mdMap>
      </queryMds>
      <queryMds>
        <type>USERMD</type>
        <mdMap>
          <entry>
            <key>x-amz-meta-INT</key>
            <value>507</value>
          </entry>
          <entry>
            <key>x-amz-meta-STR</key>
            <value>Sring5</value>
          </entry>
        </mdMap>
      </queryMds>
      <indexKey/>
    </object>
  </ObjectMatches>
</BucketQueryResult>

S3

44 ECS Data Access Guide



Using Metadata Search from the ECS Java SDK

In the 3.0 SDK, there is an option to exclude the "search" and "searchmetadata" parameters from
the signature if you are connecting to a pre-3.0 ECS. These parameters were not part of the
signature computation in ECS 2.x, but are now part of the computation to enhance security.

The following compatibility table is provided to show SDK support for the Metadata Search
feature:

Table 17 SDK Support for Metadata Search

- ECS Version

2.x 3.x

SDK 2.x Yes No

SDK 3.x Yes Yes

ECS system metadata and optional attributes
System metadata is automatically associated with each object stored in the object store. Some
system metadata is always populated and can be used as index keys, other metadata is not always
populated but, where present, can be returned with metadata search query results.

System metadata

The system metadata listed in the table below can be used as keys for metadata search indexes.

Table 18 System Metadata

Name (Alias) Type Description

ObjectName string Name of the object.

Owner string Identity of the owner of the object.

Size integer Size of the object.

CreateTime datetime Time at which the object was created.

LastModified datetime Time and date at which the object was last
modified.

Note: Modification supported by ECS S3 byte-
range update extensions, not by pure S3 API.

Optional metadata attributes

Optional system metadata attributes may or may not be populated for an object, but can be
optionally returned along with search query results. The optional system metadata attributes are
listed in the table below.

The Table lists the Optional Metadata attributes

Table 19 Optional metadata attributes

Name (Alias) Type

ContentType string

Expiration datetime

S3

ECS Data Access Guide 45



Table 19 Optional metadata attributes (continued)

Name (Alias) Type

ContentEncoding string

Expires datetime

Retention integer

S3 and Swift Interoperability
S3 and Swift protocols can interoperate so that S3 applications can access objects in Swift
buckets and Swift applications can access objects in S3 buckets.

When considering whether objects created using the S3 head is accessible using the Swift head,
and conversely, you should first consider whether users can access the bucket (called a container
in Swift). A bucket is assigned a bucket type (S3 or Swift, for example) based on the ECS head
that created it. The object users must have appropriate permissions for the type of bucket, for an
application to access both Swift and S3 buckets. Consider giving the permissions, because of the
way in which permissions are determined for Swift and S3 buckets is different.

Note: S3 and Swift interoperability is not compatible with the use of bucket policies. Bucket
policies apply only to bucket access using the S3 head and are not enforced when accessing a
bucket using the Swift API.

In ECS, the same object user name can be given both S3 and Swift credentials. So, as far as ECS
is concerned, a user who is called john who authenticates as a Swift user, can then access any S3
resources that john is allowed to access.

Access to a resource is determined either by being the bucket owner, or by being assigned
permission on the bucket using ACLs. When a S3 user creates a bucket, for example, that bucket
is owned by the S3 user name. That user has full permissions on the bucket, and a Swift user with
the same name similarly has full permissions on the bucket.

Where you want users other than the owner to be able to access a bucket, permissions can be
assigned using ACLs. Access to Swift containers can be granted using group ACLs (Custom Group
ACLs, in ECS), and the Swift head performs a check on group membership before checking group
ACL permissions. Swift containers add the admin group implicitly, and any user that is a member
of the admin group (an admin user) can access any other admin user’s containers. Only admin
users have permissions to create, delete, and list-all containers. The admin user’s permissions only
apply to the namespace to which the user belongs. Access to S3 buckets depends on user
permissions (User ACLs), not group permissions. To determine access to a bucket, the S3 head
checks if the user has ACL permissions on the bucket. See the illustration in the following
illustration.

S3

46 ECS Data Access Guide



Figure 1 S3 user access checks

S3 HEAD SWIFT HEAD

S3 APPLICATION

S3 BUCKET ACCESS SWIFT BUCKET ACCESS

GROUP ACLUSER ACL

SWIFT  
APPLICATION

ECS OBJECT  
USER

S3 KEY

SWIFT PASSWORD
SWIFT GROUP

Swift user access
to Swift containerS3 user access 

to S3 bucket

check Swift 
group ACL
permissions

Swift user access 
to S3 bucket

S3 user access 
to Swift container

check S3
user ACL

CROSSHEAD

Swift uses groups to enable access to resources, for an S3 user to be able to access a Swift
container. The S3 user must be assigned to a Swift group, either the admin group, or a group that
has been given Custom Group ACLs on the container.

In summary, one of the following conditions should be met for access to S3 buckets:

l The Swift or S3 user must be the bucket owner.

l The Swift or S3 user must have been added to the user ACL for the bucket.

One of the following conditions should be met for access to Swift containers:

l The S3 or Swift user must be the container owner.

l The S3 user must also be a Swift user and must have been added to a Swift group. The Swift
group must be added as a custom group, unless the user is a member of the Swift admin
group, which is added automatically to the custom groups.

l The Swift user must have been added to a group ACL for the container, or the user must be in
the Swift admin group, which is added automatically to the custom groups.

Note:
Reading a Swift DLO object through the S3 API does not work. The request follows a generic
code path for the read without acknowledging the presence of the X-Object-Manifest
metadata key, to stitch the object back from its individual paths.

Note:
For an MPU upload, the Swift list parts operation fails since it does not understand the '?
uploadId=<uploadId>' sub-resource.

S3

ECS Data Access Guide 47



Create and manage secret keys
Users of the ECS object services require a secret key in order to authenticate with a service.

Secret keys can be created and made available to the object user in the following ways:

l An administrator creates a key and distributes to the object user (Create a key for an object
user).

l A domain user creates an object user account by creating a new secret key using the self-
service API provided by the self-service API (Create an S3 secrte key: self-service).

It is possible to have two secret keys for a user. When changing (sometimes referred to as "rolling
over") a secret key, an expiration time in minutes can be set for the old key. During the expiration
interval, both keys are accepted for requests. This provides a grace period where an application
can be updated to use the new key.

Create a key for an object user
ECS Management users can create a secret key for an object user.

l Generate a secret key from the ECS Portal

l Create an S3 secret key using the ECS Management REST API

For more information about ECS users, see the ECS Administration Guide which is available from
the ECS Product Documentation page.

Generate a secret key from the ECS Portal
You can generate a secret key at the ECS Portal.

Before you begin

l You must be an ECS System Administrator or Namespace Administrator.

About this task

If you are a System Administrator, you can create a secret key for an object user belonging to any
namespace. If you are a Namespace Administrator, you can create a secret key for an object user
who belongs to your namespace.

Procedure

1. In the ECS Portal, select the Manage > Users page.

2. In the Object Users table, select New Object User or select Edit for an existing user to
which you want to assign a secret key.

3. For S3, select Generate & Add Password.

To change a secret key for a user, you can generate a second secret key and specify when
the first key expires.

4. Copy the generated key and email to the object user.

Create an S3 secret key using the ECS Management REST API
The ECS Management REST API enables a management user to create a secret key for an S3
object user.

The API is as follows:

S3

48 ECS Data Access Guide

https://community.emc.com/docs/DOC-62642


Table 20 API Path

API Path Description

/object/user-secret-
keys/{uid}

API to allow secret keys to be assigned to object users and enable secret
keys to be managed. A Namespace Administrator can create keys for users
in their namespace. A System Administrator can assign keys to users in any
namespace. To change a key, a second key can be assigned and the time at
which the first key expires can be specified.

You can find out more information about the API call in the ECS API Reference.

Create an S3 secret key: self-service
The ECS Management REST API provides the ability to allow authenticated domain users to
request a secret key to enable them to access the object store.

The ECS API Reference can be used where you want to create a custom client to perform certain
ECS management operations. For simple operations domain users can use curl or a browser-based
HTTP client to execute the API to create a secret key.

When a user runs the object/secret-keys API, ECS automatically creates an object user and
assigns a secret key.

The following table describes the Object secret keys

Table 21 Object Secret Keys

API Path Description

/object/secret-keys API to allow S3 client users to create a new secret key that enables them to
access objects and buckets within their namespace. This is also referred to
as a self-service API.

The payload for the /object/secret-keys can include an optional existing key expiry time.

<secret_key_create_param>
    <existing_key_expiry_time_mins></existing_key_expiry_time_mins>
  </secret_key_create_param>

If you are creating a secret key for the first time, you can omit the existing_key_expiry_time_mins
parameter and a call would be:

POST object/secret-keys

Request body
  <?xml version="1.0" encoding="UTF-8"?> 
  <secret_key_create_param/>
    

Response
  <user_secret_key>
    <secret_key>...</secret_key>
    <key_timestamp>...</key_timestamp>
    <link rel="..." href="..." />
  </user_secret_key>

S3

ECS Data Access Guide 49

http://doc.isilon.com/ECS/3.2/API/index.html
http://doc.isilon.com/ECS/3.2/API/index.html


Working with self-service keys
Examples provided here help you use the ECS Management REST API to create, read, and manage
secret keys.

To perform operations with secret keys you must first authenticate with the Management API. The
examples provided use the curl tool.

l Log in as domain user

l Generate first key

l Generate second key

l Check keys

l Delete all secret keys

Log in as a domain user

You can log in as a domain user and obtain an authentication token that can be used to
authenticate subsequent requests.

curl -ik -u user@mydomain.com:<Password> https://10.241.48.31:4443/login
HTTP/1.1 200 OK
Date: Mon, 05 Mar 2018 17:29:38 GMT
Content-Type: application/xml
Content-Length: 107
Connection: keep-alive
X-SDS-AUTH-TOKEN: BAAcaVAzNU16eVcwM09rOWd2Y1ZoUFZ4QmRTK2JVPQMAQQIADTE0MzAwNzQ4ODA1NTQDAC
51cm46VG9rZW46YWJmODA1NTEtYmFkNC00ZDA2LWFmMmMtMTQ1YzRjOTdlNGQ0AgAC0A8=

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<loggedIn>
<user>tcas@corp.sean.com</user>
</loggedIn>

Generate first key

You can generate a secret key.

curl -ks -H "X-SDS-AUTH-TOKEN: BAAcaVAzNU16eVcwM09rOWd2Y1ZoUFZ4QmRTK2JVPQMAQQIADTE0MzAw
NzQ4ODA1NTQDAC51cm46VG9rZW46YWJmODA1NTEtYmFkNC00ZDA2LWFmMmMtMTQ1YzRjOTdlNGQ0AgAC0A8=" 
-H "Content-Type: application/json" -X POST -d "{}" 
https://10.241.48.31:4443/object/secret-keys | xmllint --format -

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<user_secret_key>
  <link rel="self" href="/object/user-secret-keys/tcas@corp.sean.com"/>
  <secret_key>7hXZ9/EHTVvmFuYly/z3gHpihXtEUX/VZxdxDDBd</secret_key>
  <key_expiry_timestamp/>
  <key_timestamp>2018-03-05 17:39:13.813</key_timestamp>
</user_secret_key>

Generate second key

You can generate a second secret key and set the expiration for the first key.

curl -ks -H "X-SDS-AUTH-TOKEN: BAAcaVAzNU16eVcwM09rOWd2Y1ZoUFZ4QmRTK2JVPQMAQQIADTE0MzAwN
zQ4ODA1NTQDAC51cm46VG9rZW46YWJmODA1NTEtYmFkNC00ZDA2LWFmMmMtMTQ1YzRjOTdlNGQ0AgAC0A8=" 
-H "Content-Type: application/json" -X POST -d "{\"existing_key_expiry_time_mins\": \"10\"}" 
https://10.241.48.31:4443/object/secret-keys | xmllint --format -

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

S3

50 ECS Data Access Guide



<user_secret_key>
  <link rel="self" href="/object/user-secret-keys/tcas@corp.sean.com"/>
  <secret_key>l3fPCuFCG/bxoOXCPZoYuPwhXrSTwU0f1kFDaRUr</secret_key>
  <key_expiry_timestamp/>
  <key_timestamp>2018-03-05 17:40:12.506</key_timestamp>
</user_secret_key>

Check keys

You can check the keys that you have been assigned. In this case, there are two keys with the first
having an expiration date/time.

curl -ks -H "X-SDS-AUTH-TOKEN: BAAcaVAzNU16eVcwM09rOWd2Y1ZoUFZ4QmRTK2JVPQMAQQIADTE0MzAw
NzQ4ODA1NTQDAC51cm46VG9rZW46YWJmODA1NTEtYmFkNC00ZDA2LWFmMmMtMTQ1YzRjOTdlNGQ0AgAC0A8=" 
https://10.241.48.31:4443/object/secret-keys | xmllint --format -
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<user_secret_keys>
  <secret_key_1>7hXZ9/EHTVvmFuYly/z3gHpihXtEUX/VZxdxDDBd</secret_key_1>
  <secret_key_2>l3fPCuFCG/bxoOXCPZoYuPwhXrSTwU0f1kFDaRUr</secret_key_2>
  <key_expiry_timestamp_1>2018-03-05 17:50:12.369</key_expiry_timestamp_1>
  <key_expiry_timestamp_2/>
  <key_timestamp_1>2018-03-05 17:39:13.813</key_timestamp_1>
  <key_timestamp_2>2018-03-05 17:40:12.506</key_timestamp_2>
  <link rel="self" href="/object/secret-keys"/>
</user_secret_keys>

Delete all secret keys

If you need to delete your secret keys before regenerating them. You can use the following.

curl -ks -H "X-SDS-AUTH-TOKEN: BAAcaVAzNU16eVcwM09rOWd2Y1ZoUFZ4QmRTK2JVPQMAQQIADTE0MzAw
NzQ4ODA1NTQDAC51cm46VG9rZW46YWJmODA1NTEtYmFkNC00ZDA2LWFmMmMtMTQ1YzRjOTdlNGQ0AgAC0A8=" 
-H "Content-Type: application/json" -X POST -d "{}" https://10.241.48.31:4443/object/secret-
keys/deactivate

Authenticating with the S3 service
The ECS S3 service enables authentication using Signature Version 2 and Signature Version 4. This
topic identifies any ECS-specific aspects of the authentication process.

Amazon S3 uses an authorization header that must be present in all requests to identify the user
and provide a signature for the request. The format of the authorization header differs between
Signature Version 2 and Signature Version 4 authentication.

In order to create an authorization header, you need an AWS Access Key Id and a Secret Access
Key. In ECS, the AWS Access Key Id maps to the ECS user id (UID). An AWS Access Key ID has 20
characters (some S3 clients, such as the S3 Browser, check this), but ECS data service does not
have this limitation.

Authentication using Signature V2 and Signature V4 are introduced in:

l Authenticating using Signature V2

l Authenticating using Signature V4

The following notes apply:

l In the ECS object data service, the UID can be configured (through the ECS REST API or the
ECS Portal with two secret keys. The ECS data service tries to use the first secret key, and if
the calculated signature does not match, it tries to use the second secret key. If the second
key fails, it rejects the request. When users add or change the secret key, they should wait two

S3

ECS Data Access Guide 51



minutes so that all data service nodes can be refreshed with the new secret key before using
the new secret key.

l In the ECS data service, namespace is also taken into HMAC signature calculation.

Authenticating using Signature V2

The Authorization header when using Signature V2 looks like this:

Authorization: AWS <AWSAccessKeyId>:<Signature>

For example:

GET /photos/puppy.jpg
?AWSAccessKeyId=user11&Expires=1141889120&Signature=vjbyPxybdZaNmGa%2ByT272YEAiv4%3D HTTP/1.1
Host: myco.s3.amazonaws.com
Date: Mon, 26 Mar 2007 19:37:58 +0000

Authentication using Signature V2 is described in:

l http://docs.aws.amazon.com/AmazonS3/latest/dev/RESTAuthentication.html

Authenticating using Signature V4

The Authorization header when using Signature V4 looks like this:

Authorization: AWS4-HMAC-SHA256 
Credential=user11/20130524/us/s3/aws4_request, 
SignedHeaders=host;range;x-amz-date,
Signature=fe5f80f77d5fa3beca038a248ff027d0445342fe2855ddc963176630326f1024

The Credential component comprises your Access Key Id followed by the Credential Scope. The
Credential Scope comprises Date/Region/Service Name/Termination String. For ECS, the Service
Name is always s3 and the Region can be any string. When computing the signature, ECS uses the
Region string passed by the client.

Authentication using Signature V4 is described in:

l http://docs.aws.amazon.com/AmazonS3/latest/API/sig-v4-authenticating-requests.html ,
and

l http://docs.aws.amazon.com/AmazonS3/latest/API/sig-v4-header-based-auth.html

An example of a PUT bucket request using Signature V4 is provided below:

PUT /bucket_demo HTTP/1.1
x-amz-date: 20160726T033659Z
Authorization: AWS4-HMAC-SHA256 Credential=user11/20160726/us/s3/
aws4_request,SignedHeaders=host;x-amz-date;x-emc-
namespace,Signature=e75a150daa28a2b2f7ca24f6fd0e161cb58648a25121d3108f0af5c9451b09ce
x-emc-namespace: ns1
x-emc-rest-client: TRUE
x-amz-content-sha256: e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855
Content-Length: 0
Host: 10.247.195.130:9021
Connection: Keep-Alive
User-Agent: Apache-HttpClient/4.2.1 (java 1.5)

S3

52 ECS Data Access Guide

http://docs.aws.amazon.com/AmazonS3/latest/dev/RESTAuthentication.html
http://docs.aws.amazon.com/AmazonS3/latest/API/sig-v4-authenticating-requests.html
http://docs.aws.amazon.com/AmazonS3/latest/API/sig-v4-header-based-auth.html


Response:

HTTP/1.1 200 OK
Date: Tue, 26 Jul 2016 03:37:00 GMT
Server: ViPR/1.0
x-amz-request-id: 0af7c382:156123ab861:4192:896
x-amz-id-2: 3e2b2280876d444d6c7215091692fb43b87d6ad95b970f48911d635729a8f7ff
Location: /bucket_demo_2016072603365969263
Content-Length: 0

Using s3curl with ECS
A modified version of s3curl is required for use with ECS.

When using ECS custom headers (x-emc), the signature element of the Authorization header must
be constructed to include the custom headers. In addition, when connecting to ECS 3.0 and later,
the "search" and "searchmetadata" parameters are part of the signature computation.

You can obtain an ECS-specific version of s3curl that is modified to handle these conditions from
the EMCECS Git Repository.

Use SDKs to access the S3 service
When developing applications that talk to the ECS S3 service, there are a number of SDKs that
support your development activity.

The ECS Community provides information about the various clients that are available and provides
guidance on their use: ECS Community: Developer Resources.

The following topics describe the use of the Amazon S3 SDK and the use of the ECS Java SDK.

l Using the Java Amazon SDK>

l Java SDK client for ECS

Note: If you want to make use of the ECS REST API Extensions, support for these extensions
is provided in the ECS Java SDK. If you do not need support for the ECS extensions, or you
have existing applications that use it, you can use the Amazon Java SDK.

Note: Compatibility of the ECS Java SDK with the metadata search extension is described in 
Using Metadata Search from the ECS Java SDK.

Using the Java Amazon SDK
You can access ECS object storage using the Java S3 SDK.

By default the AmazonS3Client client object is coded to work directly against amazon.com. This
section shows how to set up the AmazonS3Client to work against ECS.

In order to create an instance of the AmazonS3Client object, you need to pass it credentials. This
is achieved through creating an AWSCredentials object and passing it the AWS Access Key (your
ECS username) and your generated secret key for ECS.

The following code snippet shows how to set this up.

AmazonS3Client client = new AmazonS3Client(new BasicAWSCredentials(uid, secret));

By default the Amazon client attempts to contact Amazon WebServices. In order to override this
behavior and contact ECS you need to set a specific endpoint.

S3

ECS Data Access Guide 53

https://github.com/EMCECS/s3curl
https://community.emc.com/community/products/ecs#developer


You can set the endpoint using the setEndpoint method. The protocol specified on the endpoint
dictates whether the client should be directed at the HTTP port (9020) or the HTTPS port (9021).

Note: If you intend to use the HTTPS port, the JDK of your application must be set up to
validate the ECS certificate successfully; otherwise the client will throw SSL verification errors
and fail to connect.

In the snippet below, the client is being used to access ECS over HTTP:

AmazonS3Client client = new AmazonS3Client(new BasicAWSCredentials(uid, secret));
client.setEndpoint("http://ecs1.emc.com:9020");

When using path-style addressing ( ecs1.emc.com/mybucket ), you will need to set the
setPathStyleAccess option, as shown below:

S3ClientOptions options = new S3ClientOptions();
options.setPathStyleAccess(true);

AmazonS3Client client = new AmazonS3Client(new BasicAWSCredentials(uid, secret));
client.setEndpoint("http://ecs1.emc.com:9020");
client.setS3ClientOptions(options);

The following code shows how to list objects in a bucket.

ObjectListing objects = client.listObjects("mybucket");
for (S3ObjectSummary summary : objects.getObjectSummaries()) {
    System.out.println(summary.getKey()+ "   "+summary.getOwner());
}

The CreateBucket operation differs from other operations in that it expects a region to be
specified. Against S3 this would indicate the data center in which the bucket should be created.
However, ECS does not support regions. For this reason, when calling the CreateBucket operation,
we specify the standard region, which stops the AWS client from downloading the Amazon Region
configuration file from Amazon CloudFront.

client.createBucket("mybucket", "Standard");

The complete example for communicating with the ECS S3 data service, creating a bucket, and
then manipulating an object is provided below:

public class Test {
    public static String uid = "root";
    public static String secret = "KHBkaH0Xd7YKF43ZPFbWMBT9OP0vIcFAMkD/9dwj";
    public static String viprDataNode = "http://ecs.yourco.com:9020";

    public static String bucketName = "myBucket";
    public static File objectFile = new File("/photos/cat1.jpg");

    public static void main(String[] args) throws Exception {

        AmazonS3Client client = new AmazonS3Client(new BasicAWSCredentials(uid, secret));

        S3ClientOptions options = new S3ClientOptions();
        options.setPathStyleAccess(true);

        AmazonS3Client client = new AmazonS3Client(credentials);
        client.setEndpoint(viprDataNode);

S3

54 ECS Data Access Guide



        client.setS3ClientOptions(options);

        client.createBucket(bucketName, "Standard");
        listObjects(client);

        client.putObject(bucketName, objectFile.getName(), objectFile);
        listObjects(client);

        client.copyObject(bucketName,objectFile.getName(),bucketName, "copy-" + 
objectFile.getName());
        listObjects(client);
    }

    public static void listObjects(AmazonS3Client client) {
        ObjectListing objects = client.listObjects(bucketName);
        for (S3ObjectSummary summary : objects.getObjectSummaries()) {
            System.out.println(summary.getKey()+ "   "+summary.getOwner());
        }
    }
}

Java SDK client for ECS
The ECS Java SDK builds on the Amazon S3 Java SDK and supports the ECS API extensions.

An example of using the ViPRS3client is shown below.

package com.emc.ecs.sample;

import com.amazonaws.util.StringInputStream;
import com.emc.vipr.services.s3.ViPRS3Client;

public class BucketCreate {

    private ViPRS3Client s3;
    

 public BucketCreate() {

    URI endpoint = new URI(“http://ecs.yourco.com:9020”);
    String accessKey = “fred@yourco.com”;
    String secretKey = “pcQQ20rDI2DHZOIWNkAug3wK4XJP9sQnZqbQJev3”;
    BasicAWSCredentials creds = new BasicAWSCredentials(accessKey, secretKey);
    ViPRS3Client client = new ViPRS3Client(endpoint, creds);

  }

    public static void main(String[] args) throws Exception {
            BucketCreate instance = new BucketCreate();
            instance.runSample();
    }
    
    public void runSample() {
        
        String bucketName="mybucket";
        String key1 = "test1.txt";
        String content = "Hello World!";
        
        try {
            s3.createBucket(bucketName);
            s3.putObject(bucketName, key1, new StringInputStream(content), null);
        }
        
        catch (Exception e) {

S3

ECS Data Access Guide 55



            
        }
        
    }
}

ECS S3 error codes
The error codes that can be generated by the ECS S3 head are listed in the following table.

The following table describes the error codes

Table 22 Error Codes

Error Code HTTP
Status
Code

Generic Error Code Description Error

AccessDenied 403 AccessDenied Access Denied

BadDigest 400 BadDigest The Content-MD5 you specified
did not match that received.

BucketAlreadyExists 409 BucketAlreadyExists The requested bucket name is not
available. The bucket namespace
is shared by all users of the
system. Please select a different
name and try again.

BucketNotEmpty 409 BucketNotEmpty The bucket you tried to delete is
not empty.

ContentMD5Empty 400 InvalidDigest The Content-MD5 you specified
was invalid.

ContentMD5Missing 400 InvalidRequest The required Content-MD5
header for this request is missing.

EntityTooSmall 400 EntityTooSmall The proposed upload is smaller
than the minimum allowed object
size.

EntityTooLarge 400 EntityTooLarge The proposed upload exceeds the
maximum allowed object size.

IncompleteBody 400 IncompleteBody The number of bytes specified by
the Content-Length HTTP

header were not provided.

InternalError 500 InternalError An internal error was
encountered. Please try again.

ServerTimeout 500 ServerTimeout An internal timeout error was
encountered. Please try again.

InvalidAccessKeyId 403 InvalidAccessKeyId The Access Key Id you provided
does not exist.

InvalidArgument 400 InvalidArgument Invalid Argument.

S3

56 ECS Data Access Guide



Table 22 Error Codes (continued)

Error Code HTTP
Status
Code

Generic Error Code Description Error

NoNamespaceForAnonymous
Request

403 AccessDenied ECS could not determine the
namespace from the anonymous
request. Please use a namespace
BaseURL or include an x-emc-
namespace header.

InvalidBucketName 400 InvalidBucketName The specified bucket is not valid.

InvalidDigestBadMD5 400 InvalidDigest The Content-MD5 you specified
was invalid.

InvalidDigest 403 SignatureDoesNotMatch The Content-MD5 you specified
was an invalid.

InvalidRequest 400 InvalidRequest Invalid Request.

InvalidPart 400 InvalidPart One or more of the specified parts
could not be found. The part
might not have been uploaded.

InvalidPartOrder 400 InvalidPartOrder The list of parts was not in
ascending order. Parts list must
specified in order by part number.

InvalidPartSizeZero 400 InvalidPartSizeZero The upload part size cannot be
zero.

MissingEncryption 400 InvalidRequest The multipart upload initiate
requested encryption. Subsequent
part requests must include the
appropriate encryption
parameters.

NoEncryptionNeed 400 InvalidRequest The multipart initiate request did
not request encryption. Please
resend the request without
sending encryption parameters.

BadMD5 400 InvalidRequest The calculated MD5 hash of the
key did not match the hash that
was provided.

BadEncryptKey 400 InvalidRequest The provided encryption
parameters did not match the
ones used originally.

InvalidRange 416 InvalidRange The requested range cannot be
satisfied.

KeyTooLong 400 KeyTooLong The specified key is too long.

MalformedACLError 400 MalformedACLError The XML provided was not well-
formed or did not validate against
the ECS published schema.

S3

ECS Data Access Guide 57



Table 22 Error Codes (continued)

Error Code HTTP
Status
Code

Generic Error Code Description Error

MalformedXML 400 MalformedXML Malformed xml (that does not
conform to the published xsd) for
the configuration was sent.

MaxMessageLengthExceeded 400 MaxMessageLengthExceeded The request was too big.

MetadataTooLarge 400 MetadataTooLarge The metadata headers exceed the
maximum allowed metadata size.
*

InvalidProject 400 InvalidProject The specified project is Invalid.

InvalidVPool 400 InvalidVPool The specified vPool (Replication
Group) is Invalid.

InvalidNamespace 400 InvalidNamespace The specified namespace is
Invalid.

MethodNotAllowed 405 MethodNotAllowed The specified method is not
allowed against this resource.

MissingContentLength 411 MissingContentLength The Content-Length HTTP header
must be provided.

MissingRequestBodyError 400 MissingRequestBodyError An empty XML document was
sent. The error message is:
Request body is empty.

MissingSecurityHeader 400 MissingSecurityHeader The equest was missing a required
header.

IncompleteLifecycleConfig 400 IncompleteLifecycleConfig At least one action needs to be
specified in a rule.

MalformedLifecycleConfig 400 MalformedLifecycleConfig The XML provided was not well-
formed or did not validate against
the published schema.

MalformedDateLifecycleConfig 400 MalformedDateLifecycleConfig The XML provided was not well-
formed or did not validate against
the published schema. Invalid Date
or Days.

NoSuchBucket 404 NoSuchBucket The specified bucket does not
exist.

NoSuchBucketPolicy 404 NoSuchBucketPolicy The bucket policy does not exist.

NoSuchKey 404 NoSuchKey The specified key does not exist.

NoSuchRetention 404 NoSuchRetention The specified retention does not
exist.

ObjectUnderRetention 409 ObjectUnderRetention The object is under retention and
cannot be deleted or modified.

S3

58 ECS Data Access Guide



Table 22 Error Codes (continued)

Error Code HTTP
Status
Code

Generic Error Code Description Error

NoSuchUpload 404 NoSuchUpload The specified multipart upload
does not exist. The upload ID
might be invalid.

NotImplemented 501 NotImplemented The requested functionality is not
implemented.

OperationAborted 409 OperationAborted A conflicting conditional operation
is currently in progress against
this resource. Please try again.

PermanentRedirect 301 PermanentRedirect The bucket you are attempting to
access must be addressed using
the specified endpoint. Please
send all future requests to this
endpoint.

PreconditionFailed 412 PreconditionFailed At least one of the preconditions
you specified did not hold.

RequestIsNotMultiPartContent 400 RequestIsNotMultiPartContent Bucket POST must be of the
enclosure type multipart/
form-data.

RequestTimeout 400 RequestTimeout The socket connection to the
server was not read from or
written to within the timeout
period.

RequestTimeTooSkewed 403 RequestTimeTooSkewed The difference between the
request time and the server's time
is too large.

DateIsRequired 403 AccessDenied A valid Date or x-amz-date
header is required.

SignatureDoesNotMatch 403 SignatureDoesNotMatch The request signature calculated
does not match the signature
provided. Check the Secret
Access Key and signing method.

ZeroAmzExpires 403 Forbidden Zero value specified for x-amz-
expires.

InvalidAmzExpires 400 Bad Request Invalid value specified for x-amz-
expires.

ServiceUnavailable 503 ServiceUnavailable Please reduce your request rate.

TemporaryRedirect 307 TemporaryRedirect Requests are being redirected to
the bucket while DNS updates.

TooManyBuckets 400 TooManyBuckets The request attempted to create
more buckets than allowed.

S3

ECS Data Access Guide 59



Table 22 Error Codes (continued)

Error Code HTTP
Status
Code

Generic Error Code Description Error

UnexpectedContent 400 UnexpectedContent The request does not support this
content.

UnresolvableGrantByEmailAddres
s

400 UnresolvableGrantByEmailAddres
s

The email address you provided
does not match any account on
record.

InvalidBucketState 409 InvalidBucketState The request is not valid with the
current state of the bucket.

SlowDown 503 SlowDown Please reduce your request rate.

AccountProblem 403 AccountProblem There is a problem with the
specified account that prevents
the operation from completing
successfully.

CrossLocationLoggingProhibited 403 CrossLocationLoggingProhibited Cross location logging is not
allowed. Buckets in one
geographic location cannot log
information to a bucket in another
location.

ExpiredToken 400 ExpiredToken The provided token has expired.

IllegalVersioningConfiguration
Exception

400 IllegalVersioningConfiguration
Exception

The Versioning configuration
specified in the request is invalid.

IncorrectNumberOfFilesInPost
Request

400 IncorrectNumberOfFilesInPost
Request

POST requires exactly one file
upload per request.

InvalidAddressingHeader 500 InvalidAddressingHeader The specified role must be
Anonymous role.

InvalidLocationConstraint 400 InvalidLocationConstraint The specified location constraint
is not valid.

InvalidPolicyDocument 400 InvalidPolicyDocument The content of the form does not
meet the conditions specified in
the policy document.

InvalidStorageClass 400 InvalidStorageClass The storage class you specified is
not valid.

InvalidTargetBucketForLogging 400 InvalidTargetBucketForLogging The target bucket for logging
does not exist, is not owned by
you, or does not have the
appropriate grants for the log
delivery group.

InvalidToken 400 InvalidToken The provided token is malformed
or otherwise invalid.

InvalidURI 400 InvalidURI Unable to parse the specified URI.

S3

60 ECS Data Access Guide



Table 22 Error Codes (continued)

Error Code HTTP
Status
Code

Generic Error Code Description Error

MalformedPOSTRequest 400 MalformedPOSTRequest The body of the POST request is
not well-formed multipart/
form-data.

MaxPostPreDataLengthExceeded
Error

400 MaxPostPreDataLengthExceeded
Error

The POST request fields
preceding the upload file were too
large.

NoLoggingStatusForKey 400 NoLoggingStatusForKey There is no such thing as a logging
status subresource for a key.

NoSuchLifecycleConfiguration 404 NoSuchLifecycleConfiguration The lifecycle configuration does
not exist.

NoSuchVersion 404 NoSuchVersion Indicates that the version ID
specified in the request does not
match an existing version.

RequestTorrentOfBucketError 400 RequestTorrentOfBucketError Requesting the torrent file of a
bucket is not permitted.

UserKeyMustBeSpecified 400 UserKeyMustBeSpecified The bucket POST must contain
the specified field name. If it is
specified please check the order
of the fields.

AmbiguousGrantByEmailAddress 400 AmbiguousGrantByEmailAddress The email address you provided is
associated with more than one
account.

BucketAlreadyOwnedByYou 409 BucketAlreadyOwnedByYou The previous request to create
the named bucket succeeded and
you already own it.

CredentialsNotSupported 400 CredentialsNotSupported The request does not support
credentials.

InlineDataTooLarge 400 InlineDataTooLarge The inline data exceeds the
maximum allowed size.

InvalidPayer 403 InvalidPayer All access to this object has been
disabled.

TokenRefreshRequired 400 TokenRefreshRequired The provided token must be
refreshed.

AccessModeNotSupported 409 AccessModeNotSupported The bucket does not support file
access or the requested access
mode is not allowed.

AccessModeInvalidToken 409 AccessModeInvalidToken The token for the file access
switch request is invalid.

NoSuchBaseUrl 400 NoSuchBaseUrl The specified BaseUrl does not
exist.

S3

ECS Data Access Guide 61



Table 22 Error Codes (continued)

Error Code HTTP
Status
Code

Generic Error Code Description Error

NoDataStoreForVirtualPool 404 NoDataStoreForVirtualPool No Data Store found for
Replication Group of the bucket.

VpoolAccessNotAllowed 400 Cannot Access Vpool Bucket is hosted on a Replication
Group that is not accessible from
S3.

InvalidCorsRequest 403 InvalidCorsRequest Invalid CORS request.

InvalidCorsRule 400 InvalidCorsRule Invalid CORS rule.

NoSuchCORSConfiguration 404 NoSuchCORSConfiguration The CORS configuration does not
exist.

InvalidAclRequest 404 NoACLFound The ACL does not exist.

InsufficientStorage 507 Insufficient Storage The server cannot process the
request because there is not
enough space on disk.

BadMaxParts 400 InvalidArgument Argument max-parts must be an
integer between 0 and
2147483647.

BucketNotFound 404 NoSuchBucket The specified bucket does not
exist.

NotSupported 400 Not Supported The bucket may be locked.

InvalidContentLength 400 Invalid content length The content length has invalid
value.

InvalidVersioningRequest 403 Invalid request for version control The bucket is in compliance mode.

InvalidLifeCycleRequest 403 Invalid request for life cycle The bucket is in compliance mode.

RetentionPeriodRequired 400 Invalid request for bucket with
compliance

The bucket requires a retention
period.

Conflict 409 Conflict The bucket may be locked.

MethodForbidden 403 Forbidden Check if quota has been
exceeded.

NotAcceptable 406 Content encoding not acceptable The object Content-Encoding
does not match requested
Accept-Content.

InvalidEncoding 400 Invalid URL enconding The URL encoding used is invalid.

InvalidMetadataQuery 400 Invalid metadata query entered The metadata query entered does
not conform to valid syntax

InvalidMetadataSearchList 400 Invalid metadata search list
entered

A keyname on the request is not a
valid indexable key, or the format
of the request list is incorrect.

S3

62 ECS Data Access Guide



Table 22 Error Codes (continued)

Error Code HTTP
Status
Code

Generic Error Code Description Error

MetadataSearchNotEnabled 405 Metadata search not enabled Metadata search is not enabled
for this bucket.

MetadataSearchBadParameter 400 Metadata search invalid
parameter used in query

Invalid search index key name,
sort key name or attribute name
value.

MetadataSearchInvalidArgument 400 Metadata search invalid
parameter used in query

Invalid search index value format
or operator used.

MetadataSearchInvalidValuefor
Datatype

400 Metadata search key indexing
found invalid input value

Object operation failed because a
user metadata value cannot be
converted to its defined datatype.

MetadataOperationNotSupported 405 Metadata search operation not
supported

Metadata query with both AND
and OR logical operators not
supported.

MetadataSearchBadSortParamete
r

400 Metadata search invalid sort
parameter

The sort parameter has to be
present in the query as a search
parameter.

MetadataSearchRestriction 400 Buckets that are encrypted or
within an encrypted namespace
cannot have metadata search
enabled

Metadata search is mutually
exclusive with bucket/namespace
encryption.

MetadataSearchTooManyIndexKe
ys

400 The number of Index keys exceeds
the maximum allowed

The number of keys to be indexed
exceeds the maximum number
allowed, try with fewer keys.

InvalidOrNoCustomerProvided
EncryptionKey

400 Invalid or no customer provided
encryption key

No encryption key, or an
encryption key that did not match
the one in the system, was
provided.

DareUnavailable 403 Server side encryption (D@RE) is
not supported

D@RE JAR/license is unavailable
hence server side encryption
requests are not supported.

SelfCopyInvalidRequest 400 InvalidRequest The copy request is illegal because
it is trying to copy an object to
itself without changing the
object's metadata or encryption
attributes.

OverLappingPrefixes 400 Invalid Request Found overlapping prefixes.

SamePrefix 400 Invalid Request Found two rules with same prefix.

XAmzContentSHA256Mismatch 400 XAmzContentSHA256Mismatch The Content-SHA256 you
specified did not match what we
received

S3

ECS Data Access Guide 63



Table 22 Error Codes (continued)

Error Code HTTP
Status
Code

Generic Error Code Description Error

InvalidJSON 400 InvalidJSON Policies must be valid JSON and
the first byte must be {.

InvalidBucketPolicy 400 InvalidBucketPolicy Invalid Bucket Policy.

MalformedPolicy 400 MalformedPolicy Malformed Policy.

MaxIDLengthExceeded 400 InvalidArgument ID length should not exceed
allowed limit of 255.

CrossHeadAccessBeforeUpgrade 400 InvalidRequest Cross head access is not
supported.

InvalidDate 400 InvalidArgument Date must be no earlier than
1970-01-01T00:00:00.000Z.

BadContentLengthRequest 400 RequestTimeout Content-Length specified is not
matching with Length of the
Content in the body.

Note: The PUT request header is limited to 8 KB in size. Within the PUT request header, the
user-defined metadata is limited to 2 KB in size. User-defined metadata is a set of key-value
pairs. The size of user-defined metadata is measured by taking the sum of the number of bytes
in each key and value plus four: a colon and space to separate the name and value and two
bytes for carriage return-linefeed.

S3

64 ECS Data Access Guide



CHAPTER 2

OpenStack Swift

ECS supports the OpenStack Swift API and can be used with applications that support that API.
This section describes supported methods, the ECS extensions, and the mechanism for
authentication.

l OpenStack Swift support in ECS.......................................................................................... 66
l OpenStack Swift supported operations.................................................................................66
l Swift extensions....................................................................................................................68
l Swift byte range extensions.................................................................................................. 68
l Retention...............................................................................................................................72
l File system enabled............................................................................................................... 73
l S3 and Swift interoperability................................................................................................. 73
l OpenStack Swift authentication............................................................................................73
l Authorization on Container....................................................................................................80
l ECS Swift error codes...........................................................................................................82

ECS Data Access Guide 65



OpenStack Swift support in ECS
ECS includes support for the OpenStack Swift API and can replace Swift in an OpenStack
environment. This part describes the supported operations and the mechanisms for authorization
and authentication.

The OpenStack Swift Service is made available on the following ports.

The following table describes the Port details

Table 23 Port details

Protocol Ports

HTTP 9024

HTTPS 9025

Examples showing the use of the OpenStack Swift API can be found in OpenStack API Examples.

In an OpenStack environment, ECS can be used as a replacement for the OpenStack Swift
component or alongside an existing OpenStack Swift installation. While ECS can be used with any
OpenStack distribution, it has been tested with Mirantis OpenStack 9.1. Please note that ECS has
been tested as a Swift replacement for user object storage and not as a Glance backend.

Using OpenStack with ECS requires you to configure ECS so that it can authenticate OpenStack
users. You can see Authentication using ECS Keystone V3 integration for information about
configuring authentication.

OpenStack Swift supported operations
The following sections list the OpenStack REST API requests that are supported, and unsupported
by ECS.

This information is taken from the Object Storage API V1 section of the OpenStack API Reference
documentation.

Supported OpenStack Swift calls

The following OpenStack Swift REST API calls are supported in ECS.

Table 24 OpenStack Swift supported calls

Method Path Description

GET v1/{account} Retrieve a list of existing storage containers ordered by
names.

POST v1/{account} Create or update an account metadata by associating
custom metadata headers with the account level URI.
These headers must take the format X-Account-Meta-*.

GET v1/{account}/{container} Retrieve a list of objects stored in the container.

PUT v1/{account}/{container} Create a container.

DELETE v1/{account}/{container} Delete an empty container.

POST v1/{account}/{container} Create or update the arbitrary container metadata by
associating custom metadata headers with the container

OpenStack Swift

66 ECS Data Access Guide

http://docs.openstack.org/api/openstack-object-storage/1.0/content/ch_object-storage-dev-troubleshooting.html
http://developer.openstack.org/api-ref-objectstorage-v1.html


Table 24 OpenStack Swift supported calls (continued)

Method Path Description

level URI. These headers must take the format X-
Container-Meta-*.

HEAD v1/{account}/{container} Retrieve the container metadata. Currently does not
include object count and bytes used. User requires
administrator privileges.

GET v1/{account}/{container}/{object} Retrieve the object's data.
Note: GET range on a Static Large Object (SLO) will
not work if the segments were created prior to ECS
3.0.

PUT v1/{account}/{container}/{object} Write, or overwrite, an object's content and metadata.
Used to copy existing object to another object using X-
Copy-From header to designate source. For a Dynamic
Large Object (DLO) or a SLO the object can be a
manifest. Refer to Swift's documentation for details.

DELETE v1/{account}/{container}/{object} Remove an object from the storage system permanently.
In combination with the COPY command you can use
COPY then DELETE to effectively move an object.

HEAD v1/{account}/{container}/{object} Retrieve object metadata and other standard HTTP
headers.

POST v1/{account}/{container}/{object} Set and overwrite arbitrary object metadata. These
metadata must take the format X-Object-Meta-*. X-
Delete-At or X-Delete-After for expiring objects can also
be assigned by this operation. But other headers such as
Content-Type cannot be changed by this operation.

The following table lists the additional features

Table 25 Additional features

Feature Notes

Temporary URLs ECS supports the use of temporary URLs to enable users to be given access
to objects without needing credentials. More information can be found 
Swift's documentation.

Unsupported OpenStack Swift calls

The following OpenStack Swift REST API calls are not supported in ECS .

Table 26 OpenStack Swift unsupported calls

Method Path Description

COPY v1/{account}/{container}/{object} Copy operation can be achieved using PUT v1/
{account}/{container}/{object} with X-Copy-From
header.

HEAD v1/{account} Retrieve the account metadata. Not fully supported as
returns zero for the bytes stored (X-Account-Bytes-
Used).

OpenStack Swift

ECS Data Access Guide 67

http://docs.openstack.org/developer/swift/api/large_objects.html#static-large-objects
https://docs.openstack.org/kilo/config-reference/content/object-storage-tempurl.html


Swift extensions
ECS supports a number of extensions to the Swift API.

The extensions and the APIs that support them are listed below.

l Swift byte range extensions

l Retention

l File system enabled

Swift byte range extensions

The following ECS extensions are provided for performing the following operations on Swift byte
ranges:

l Updating a byte range within an object

l Overwriting part of an object

l Appending data to an object

l Reading multiple byte ranges within an object

Updating a byte range within an object
You can use ECS extensions to the Swift protocol to update a byte range within an object.

Partially updating an object is useful in many cases. For example, to modify a binary header stored
at the beginning of a large file. On Swift or other Swift compatible platforms, it is necessary to
send the full file again.

The following example demonstrates use of the byte range update. In the example, object1 has
the value The quick brown fox jumps over the lazy dog.

GET /container1/object1 HTTP/1.1
Date: Mon, 12 Mar 2018 20:04:40 -0000
x-emc-namespace: emc
Content-Type: application/octet-stream
Authorization: AWS wuser1:9qxKiHt2H7upUDPF86dvGp8VdvI=
Accept-Encoding: gzip, deflate, compress
 
HTTP/1.1 200 OK
Date: Mon, 12 Mar 2018 20:04:40 GMT
Content-Type: application/octet-stream
Last-Modified: Mon, 12 Mar 2018 20:04:28 GMT
ETag: 6
Content-Type: application/json
Content-Length: 43
 
The quick brown fox jumps over the lazy dog.
 
     

To update a specific byte range within this object, the Range header in the object data request
must include the start and end offsets of the object that you are updating.
The format is: Range: bytes=<startOffset>-<endOffset>.

OpenStack Swift

68 ECS Data Access Guide



In the example below, the PUT request includes the Range header with the value bytes=10-14
indicating that bytes 10,11,12,13,14 are replaced by the value sent in the request. Here, the new
value green is being sent.

PUT /container1/object1 HTTP/1.1
Content-Length: 5
Range: bytes=10-14
ACCEPT: application/json,application/xml,text/html,application/octet-stream
Date: Mon, 12 Mar 2018 20:15:16 -0000
x-emc-namespace: emc
Content-Type: application/octet-stream
Authorization: AWS wuser1:xHJcAYAEQansKLaF+/4PdLBHyaM=
Accept-Encoding: gzip, deflate, compress
 
green
 
HTTP/1.1 204 No Content
ETag: 10
x-amz-id-2: object1
x-amz-request-id: 027f037c-29ea-4670-8670-de82d0e9f52a
Content-Length: 0
Date: Mon, 12 Mar 2018 20:15:16 GMT

When reading the object again, the new value is now The quick green fox jumps over
the lazy dog. A specific byte range within the object is updated, replacing the word brown
with the word green.

GET /container1/object1 HTTP/1.1
Cookie: JSESSIONID=wdit99359t8rnvipinz4tbtu
ACCEPT: application/json,application/xml,text/html,application/octet-stream
Date: Mon, 12 Mar 2018 20:16:00 -0000
x-emc-namespace: emc
Content-Type: application/octet-stream
Authorization: AWS wuser1:OGVN4z8NV5vnSAilQTdpv/fcQzU=
Accept-Encoding: gzip, deflate, compress
 
HTTP/1.1 200 OK
Date: Mon, 12 Mar 2018 20:16:00 GMT
Content-Type: application/octet-stream
Last-Modified: Mon, 12 Mar 2018 20:15:16 GMT
ETag: 10
Content-Type: application/json
Content-Length: 43
 
The quick green fox jumps over the lazy dog.

Overwriting part of an object
You can use ECS extensions to the Swift protocol to overwrite part of an object.

To overwrite part of an object, you provide the data to be written and the starting offset. The data
in the request is written starting at the provided offset. The format is: Range:
<startingOffset>-
For example, to write the data brown cat starting at offset 10, you issue the following PUT
request:

PUT /container1/object1 HTTP/1.1
Content-Length: 9
Range: bytes=10-
ACCEPT: application/json,application/xml,text/html,application/octet-stream

OpenStack Swift

ECS Data Access Guide 69



Date: Mon, 12 Mar 2018 20:51:41 -0000
x-emc-namespace: emc
Content-Type: application/octet-stream
Authorization: AWS wuser1:uwPjDAgmazCP5lu77Zvbo+CiT4Q=
Accept-Encoding: gzip, deflate, compress
 
brown cat
 
HTTP/1.1 204 No Content
ETag: 25
x-amz-id-2: object1
x-amz-request-id: 65be45c2-0ee8-448a-a5a0-fff82573aa3b
Content-Length: 0
Date: Mon, 12 Mar 2018 20:51:41 GMT

When the object is retrieved, part of the data is replaced at the provided starting offset (green
fox is replaced with brown cat) and the final value is: The quick brown cat jumps over
the lazy dog and cat.

GET /container1/object1 HTTP/1.1
Date: Mon, 12 Mar 2018 20:51:55 -0000
x-emc-namespace: emc
Content-Type: application/octet-stream
Authorization: AWS wuser1:/UQpdxNqZtyDkzGbK169GzhZmt4=
Accept-Encoding: gzip, deflate, compress
 
HTTP/1.1 200 OK
Date: Mon, 12 Mar 2018 20:51:55 GMT
Content-Type: application/octet-stream
Last-Modified: Mon, 12 Mar 2018 20:51:41 GMT
ETag: 25
Content-Type: application/json
Content-Length: 51
 
The quick brown cat jumps over the lazy dog and cat.

Note that when you overwrite existing parts of an object, the size and numbers of the new parts is
added to the size and numbers of the existing parts you overwrote. For example, in a bucket that
has one part that is 20 KB in size, you overwrite 5 KB. When you query the bucket using GET /
object/billing/buckets/{namespace}/{bucketName}/info, the output shows
total_mpu_size = 25 KB (not 20 KB) and total_mpu_parts = 2 (not 1).

Appending data to an object
You can use ECS extensions to the Swift protocol to append data to an object.

There may be cases where you need to append to an object, but determining the exact byte offset
is not efficient or useful. For this scenario, ECS provides the ability to append data to the object
without specifying an offset (the correct offset is returned to you in the response). For example,
to append lines to a log file, on Swift or other Swift compatible platforms, you must send the full
log file again.

A Range header with the special value bytes=-1- is used to append data to an object. In this
way, the object is extended without knowing the existing object size. The format is: Range:
bytes=-1-

OpenStack Swift

70 ECS Data Access Guide



A sample request showing appending to an existing object using a Range value of bytes=-1- is
shown in the following example. Here the value and cat is sent in the request.

PUT /container1/object1 HTTP/1.1
Content-Length: 8
Range: bytes=-1-
ACCEPT: application/json,application/xml,text/html,application/octet-stream
Date: Mon, 12 Mar 2018 20:46:01 -0000
x-emc-namespace: emc
Content-Type: application/octet-stream
Authorization: AWS wuser1:/sqOFL65riEBSWLg6t8hL0DFW4c=
Accept-Encoding: gzip, deflate, compress
 
and cat
 
HTTP/1.1 204 No Content
ETag: 24
x-amz-id-2: object1
x-amz-request-id: 087ac237-6ff5-43e3-b587-0c8fe5c08732
Content-Length: 0
Date: Mon, 12 Mar 2018 20:46:01 GMT

When the object is retrieved, and cat is appended, and you see the full value: The quick
green fox jumps over the lazy dog and cat.

GET /container1/object1 HTTP/1.1
ACCEPT: application/json,application/xml,text/html,application/octet-stream
Date: Mon, 12 Mar 2018 20:46:56 -0000
x-emc-namespace: emc
Content-Type: application/octet-stream
Authorization: AWS wuser1:D8FSE8JoLl0MTQcFmd4nG1gMDTg=
Accept-Encoding: gzip, deflate, compress
 
HTTP/1.1 200 OK
Date: Mon, 12 Mar 2018 20:46:56 GMT
Content-Type: application/octet-stream
Last-Modified: Mon, 12 Mar 2018 20:46:01 GMT
ETag: 24
Content-Type: application/json
Content-Length: 51
 
The quick green fox jumps over the lazy dog and cat.

Reading multiple byte ranges within an object
You can use ECS extensions to the Swift protocol to read multiple byte ranges within an object.

Reading multiple parts of an object is very useful in many cases. For example, to get several video
parts. On Swift or other Swift compatible platforms, it is necessary to send a different request for
each part

To read two specific byte ranges within the object named object1, you issue the following GET
request for Range: bytes==4-8,41-44. The read response is the words quick and lazy.

GET /container1/object1 HTTP/1.1
Date: Mon, 12 Mar 2018 20:51:55 -0000
x-emc-namespace: emc
Range: bytes==4-8,41-44
Content-Type: application/octet-stream
Authorization: AWS wuser1:/UQpdxNqZtyDkzGbK169GzhZmt4=
Accept-Encoding: gzip, deflate, compress
 

OpenStack Swift

ECS Data Access Guide 71



HTTP/1.1 206 Partial Content
Date: Mon, 12 Mar 2018 20:51:55 GMT
Content-Type: multipart/byteranges;boundary=bound04acf7f0ae3ccc
Last-Modified: Mon, 12 Mar 2018 20:51:41 GMT
Content-Length: 230
 
--bound04acf7f0ae3ccc
Content-Type: application/octet-stream
Content-Range: bytes 4-8/50
quick
--bound04acf7f0ae3ccc
Content-Type: application/octet-stream
Content-Range: bytes 41-44/50
lazy
--bound04acf7f0ae3ccc--

Retention

The ECS Swift head supports retention of objects to prevent them being deleted or modified for a
specified period of time. This is an ECS extension and is not available in the standard Swift API.

Retention can be set in the following ways:

Retention period on object

Stores a retention period with the object. The retention period is set using an x-emc-
retention-period header on the object.

Retention policy on object

A retention policy can be set on the object and the period associated with the policy can be
set for the namespace. This enables the retention period for a group of objects to be set to
the same value using a policy and can be changed for all objects by changing the policy. The
use of a policy provides much more flexibility than applying the retention period to an object.
In addition, multiple retention policies can be set for a namespace to allow different groups of
objects to have different retention periods.

The retention policy applied to an object using an x-emc-retention-policy header on the
object and the policy retention period must be set using the ECS Management REST API (or
from the ECS Portal).

Retention period on bucket

A retention period stored against a bucket sets a retention period for all objects, with the
object level retention period or policy used to provide an object-specific setting where a
longer retention is required. The retention period is set using an x-emc-retention-period
header on the bucket.

When an attempt is made to modify or delete the object, the larger of the bucket retention period
or the object period, set directly on the object or using the object retention policy, is used to
determine whether the operation can be performed.

OpenStack Swift

72 ECS Data Access Guide



File system enabled
Swift buckets can also be file system (FS) enabled so that files written using the Swift protocol
can be read using file protocols, such as NFS and HDFS, and vice-versa.

Enabling FS access

You can enable file system access using the x-emc-file-system-access-enabled header
when creating a bucket using the Swift protocol. File system access can also be enabled when
creating a bucket from the ECS Portal (using the ECS Management REST API).

Cross-head support for FS

Cross-head support refers to accessing objects written using one protocol using a different, ECS-
supported protocol. Objects written using the Swift head can be read and written using NFS and
HDFS file system protocols.

An important aspects of cross-head support is how object/file permissions translate between
protocols and, in the case of file system access, how user and group concepts translate between
object and file protocols.

You can find more information on the cross-head support with file systems in the ECS
Administration Guide which is available from the ECS Product Documentation page.

S3 and Swift interoperability
S3 and Swift protocols can interoperate so that S3 applications can access objects in Swift
buckets and Swift applications can access objects in S3 buckets.

For details, see S3 and Swift interoperability.

Note: S3 and Swift interoperability is not compatible with the use of bucket policies. Bucket
policies apply only to access using the S3 head and are not enforced when accessing a bucket
using the Swift API.

OpenStack Swift authentication
ECS provides support for different versions of the OpenStack Swift Authentication protocol.

v1

ECS enables object users to authenticate with the ECS Swift service and obtain an
authentication token that can be used when making subsequent API calls to the ECS Swift
service. See OpenStack Version 1 authentication.

v2

ECS enables object users to authenticate with the ECS Swift service to obtain a scoped
token, that is, a token associated with a tenant (equivalent to a project), that can be used
when making subsequent API calls to the ECS Swift service. See OpenStack Version 2
authentication

v3

ECS validates Keystone V3 users that present tokens scoped to a Keystone project. See 
Authentication using ECS Keystone V3 integration.

For v1 and v2 protocols, access to the ECS object store using the OpenStack Swift protocol
requires an ECS object user account and a Swift password.

OpenStack Swift

ECS Data Access Guide 73

https://community.emc.com/docs/DOC-62642


For v3, users are created, and assigned to projects and roles, outside of ECS using a Keystone V3
service. ECS does not perform authentication, but validates the authentication token with the
Keystone V3 service.

Assigning Swift credentials to ECS object users is described in Create Swift users in the ECS
Portal.

Create Swift users in the ECS Portal
ECS object users can be given credentials to access the ECS object store using the OpenStack
Swift protocol.

Before you begin

l This operation requires the System Administrator or Namespace Administrator role in ECS.

l A System Administrator can assign new object users into any namespace.

l A Namespace Administrator can assign new object users into the namespace in which they are
the administrator.

l The Swift user must belong to an OpenStack group. A group is a collection of Swift users that
have been assigned a role by an OpenStack administrator. Swift users that belong to the
admin group can perform all operations on Swift buckets (containers) in the namespace to
which they belong. You should not add ordinary Swift users to the admin group. For Swift
users that belong to any group other than the admin group, authorization depends on the
permissions that are set on the Swift bucket. You can assign permissions on the bucket from
the OpenStack Dashboard UI or in the ECS Portal using the Custom Group ACL for the bucket.
For more information on custom group ACLs and adding object users to ECS, see the ECS
Administration Guide which is available from the ECS Product Documentation page .

Procedure

1. In the ECS Portal, select Manage > Users.

2. On the User Management page, you can create a new object user who will access the ECS
object store through the Swift object protocol in one of two ways:

a. Click New Object User to create a new object user.

l On the New Object User page, in the Name field, type a name for the object user.

l In the Namespace field, select the namespace to which the user belongs.

l Click Next to Add Passwords.

b. Click Edit in the Actions column beside an existing user and add a Swift password to the
existing user.

3. On the Update Passwords for User <username> page, in the Swift Groups field, enter
the Swift group to which the user belongs.

If you specify the admin group, users will automatically be able to perform all container
operations. If you specify a different group, that group must be given permissions on the
container. Refer to Authorization on Container for more information on container
authorization.

4. In the Swift password field, type a password for the Swift user.

5. Click Set Groups & Password.

OpenStack Swift

74 ECS Data Access Guide

https://community.emc.com/docs/DOC-62642


OpenStack Version 1 authentication
You can authenticate with the ECS OpenStack Swift service using V1 of the authentication
protocol.

Procedure

1. Acquire a UID and password for an ECS object user.

You can do this from the ECS Portal (see Create Swift users in the ECS Portal) or you can
call the following ECS REST API to generate a password.

Request:

PUT /object/user-password/myUser@emc.com
    <user_password_create>
    <password>myPassword</password>
    <namespace>EMC_NAMESPACE</namespace>
    </user_password_create>

Response:

HTTP 200

2. Call the OpenStack authentication REST API shown below. Use port 9024 for HTTP, or port
9025 for HTTPS.

Request:

GET /auth/v1.0
  X-Auth-User: myUser@emc.com
  X-Auth-Key: myPassword

Response:

HTTP/1.1 
   204 No
   Content
   Date: Mon, 12 Nov 2010 15:32:21 GMT
   Server: Apache

   X-Storage-Url: https://{hostname}/v1/account
   X-Auth-Token: ECS_e6384f8ffcd849fd95d986a0492ea9a6
   Content-Length: 0

Results

If the UID and password are validated by ECS, the storage URL and token are returned in the
response header. Further requests are authenticated by including this token. The storage URL
provides the host name and resource address. You can access containers and objects by providing
the following X-Storage-Url header:

X-Storage-Url: https://{hostname}/v1/{account}/{container}/{object}

OpenStack Swift

ECS Data Access Guide 75



The generated token expires 24 hours after creation. If you repeat the authentication request
within the 24 hour period using the same UID and password, OpenStack will return the same
token. Once the 24 hour expiration period expires, OpenStack will return a new token.

In the following simple authentication example, the first REST call returns an X-Auth-
Token. The second REST call uses that X-Auth-Token to perform a GET request on an
account.

$ curl -i -H "X-Storage-User: tim_250@sanity.local" -H "X-Storage-Pass: 
1fO9X3xyrVhfcokqy3U1UyTY029gha5T+k+vjLqS" 
                                                                           http://
ecs.yourco.com:9024/auth/v1.0

 HTTP/1.1 204 No Content
    X-Storage-Url: http://ecs.yourco.com:9024/v1/s3
    X-Auth-Token: ECS_8cf4a4e943f94711aad1c91a08e98435
    Server: Jetty(7.6.4.v20120524)

$ curl -v -X GET -s -H "X-Auth-Token: 8cf4a4e943f94711aad1c91a08e98435" 
                                                      http://
ecs.yourco.com:9024/v1/s3

* About to connect() to ecs.yourco.com port 9024 (#0)
    * Trying 203.0.113.10...
    * Adding handle: conn: 0x7f9218808c00
    * Adding handle: send: 0
    * Adding handle: recv: 0
    * Curl_addHandleToPipeline: length: 1
    * - Conn 0 (0x7f9218808c00) send_pipe: 1, recv_pipe: 0
    * Connected to ecs.yourco.com (203.0.113.10) port 9024 (#0)

    > GET /v1/s3 HTTP/1.1
    > User-Agent: curl/7.31.0
    > Host: ecs.yourco.com:9024
    > Accept: */*
    > X-Auth-Token: 8cf4a4e943f94711aad1c91a08e98435
    >
    < HTTP/1.1 204 No Content
    < Date: Mon, 16 Sep 2013 19:31:45 GMT
    < Content-Type: text/plain
    * Server Jetty(7.6.4.v20120524) is not blacklisted
    < Server: Jetty(7.6.4.v20120524)
    <

    * Connection #0 to host ecs.yourco.com left intact

OpenStack Version 2 authentication
ECS includes limited support for OpenStack Version 2 (Keystone) authentication.

Before you begin

About this task

ECS provides an implementation of the OpenStack Swift V2 identity service which enables a Swift
application that uses V2 authentication to authenticate users. Users must be ECS object users

OpenStack Swift

76 ECS Data Access Guide



who have been assigned OpenStack Swift credentials which enable them to access the ECS object
store using the Swift protocol.

Only tokens that are scoped to an ECS namespace (equivalent to a Swift project) can be used to
make Swift API calls. An unscoped token can be obtained and used to access the identity service
in order to retrieve the tenant identity before obtaining a token scoped to a tenant and a service
endpoint.

The scoped token and service endpoint can be used to authenticate with ECS as described in the
previous section describing V1 authentication.

The two articles listed below provide important background information.

l OpenStack Keystone Workflow and Token Scoping

l Authenticate for Admin API

Procedure

1. To obtain an unscoped token from ECS you can use the /v2.0/tokens API and supply a
username and password for the ECS Swift service.

curl -v -X POST -H 'ACCEPT: application/json' -H "Content-Type: 
application/json" -d '{"auth": 
{"passwordCredentials" : {"username" : "swift_user", "password" : 
"123"}}}' http://203.0.113.10:9024/v2.0/tokens 
          

The response looks like the following. The unscoped token is preceded by id and tokens
generated by ECS are preceded by the "ecs_" prefix.

{"access": {"token": 
{"id":"ecs_d668b72a011c4edf960324ab2e87438b","expires":"1376633127950"l}
,"user": 
                 {"name": "sysadmin", "roles":[ ], "role_links":
[ ] },"serviceCatalog":[ ] }} , } 
          

2. Retrieve tenant information associated with the unscoped token.

curl -v http://203.0.113.10:9024/v2.0/tenants -H 'X-Auth-Token: 
d668b72a011c4edf960324ab2e87438b' 
          

The response looks like the following.

{"tenants_links":[], "tenants":[{"description":"s3","enabled":true, 
"name": "s3"}]}
 
          

3. Retrieve the scoped token along with the storageUrl.

curl -v -X POST -H 'ACCEPT: application/json' -H "Content-Type: 
application/json" -d '{"auth": {"tenantName" : "s3", 

OpenStack Swift

ECS Data Access Guide 77

http://bodenr.blogspot.com/2014/03/openstack-keystone-workflow-token.html
http://docs.openstack.org/api/openstack-identity-service/2.0/content/POST_authenticate_v2.0_tokens_.html


                          "token":{"id" : 
ecs_d668b72a011c4edf960324ab2e87438b"}}}' http://203.0.113.10:9024/v2.0/
tokens 
          

An example response follows. The scoped token is preceded by id.

{"access":{"token":{"id":"ecs_baf0709e30ed4b138c5db6767ba76a4e
","expires":"1376633255485","tenant":
{"description":"s3","enabled":true,"name":"s3"}},
"user":{"name":"swift_admin","roles":[{"name":"member"},
{"name":"admin"}],"role_links":[]},
      "serviceCatalog":[{"type":"object-store", 
"name":"Swift","endpoints_links":[],"endpoint":[{"internalURL":
       "http://203.0.113.10:9024/v1/s3","publicURL":"http://
203.0.113.10:9024/v1/s3"}]}]}}

4. Use the scoped token and the service endpoint URL for Swift authentication. This step is
the same as in V1 of OpenStack.

curl -v -H "X-Auth-Token: baf0709e30ed4b138c5db6767ba76a4e" http://
203.0.113.10:9024/v1/s3/{container}/{object} 
          

Authentication using ECS Keystone V3 integration
ECS provides support for Keystone V3 by validating authentication tokens provided by OpenStack
Swift users. For Keystone V3, users are created outside of ECS using a Keystone V3 service. ECS
does not perform authentication, but validates the authentication token with the Keystone V3
service.

Note: In the Keystone domain, a project can be thought of as an equivalent to an ECS tenant/
namespace. An ECS namespace can be thought of as a tenant.

Keystone V3 enables users to be assigned to roles and for the actions that they are authorized to
perform to be based on their role membership. However, ECS support for Keystone V3 does not
currently support Keystone policies, so users must be in the admin group (role) to perform
container operations.

Authentication tokens must be scoped to a project; unscoped tokens are not allowed with ECS.
Operations related to unscoped tokens, such as obtaining a list of projects (equivalent to a tenant
in ECS) and services, must be performed by users against the Keystone service directly, and users
must then obtain a scoped token from the Keystone service that can then be validated by ECS
and, if valid, used to authenticate with ECS.

To enable ECS validation, an authentication provider must have been configured in ECS so that
when a project-scoped token is received from a user, ECS can validate it against the Keystone V3
authentication provider. In addition, an ECS namespace corresponding to the Keystone project
must be created. More information is provided in Configure OpenStack Swift and ECS integration.

Authorization Checks

ECS uses the information provided by the Keystone tokens to perform authorization decisions. The
authorization checks are as follows:

1. ECS checks whether the project that the token is scoped to match the project in the URI.

2. If the operation is an object operation, ECS evaluates the ACLs associated with the object to
determine if the operation is allowed.

OpenStack Swift

78 ECS Data Access Guide



3. If the operation is a container operation, ECS evaluates the requested operation. If the user
has the admin role they can perform the following container operations: list, create, update,
read, and delete.

Domains

in Keystone V3 all users belong to a domain and a domain can have multiple projects. Users have
access to projects based on their role. If a user is not assigned to a domain, their domain will be
default.

Objects and containers created using Swift Keystone V3 users will be owned by
<user>@<domain.com>. If the user was not assigned to a domain, their username assigned to
containers and objects will be <user>@default.

Configure OpenStack Swift and ECS integration
To ensure that an OpenStack Swift service that uses Keystone V3 can authenticate with ECS, you
must ensure that the Swift and ECS configurations are consistent.

Before you begin

The following prerequisites apply:

l Ensure that you have credentials for the Swift service administrator account. These
credentials are required so that ECS can authenticate with the Keystone service.

l Ensure that you have the identity of the Keystone project to which Swift users access ECS
belong.

l Ensure that you have the credentials for an ECS System Administrator account.

Procedure

1. Ensure that the ECS endpoint has been added to the Swift service catalog and is correctly
formatted.

You must ensure that the endpoints are located in the "default" Keystone domain.

2. Log into the ECS Portal as a System Administrator.

3. Create an authentication provider that specifies the Keystone V3 service endpoint and the
credentials of an administrator account that can be used to validate tokens.

See Add a Keystone authentication provider.

4. Create an ECS namespace that has the same ID as the Keystone project/account that the
users want to authenticate belong to.

Obtain the Keystone project ID.

a. In the ECS Portal, select Manage > Namespace > New Namespace

b. Enter the name of the namespace.

This should be the name of the Swift project.

c. Enter the namespace administrator account as the User Admin.

This should be the name of a management user that has previously been created.

d. Configure any other namespace settings that you require.

For more information about Namespace settings and about creating users in ECS, see
the ECS Administration Guide which is available from the ECS Product Documentation
page.

Results

Once the namespace is created, users belonging to the corresponding Keystone project, and who
have a token that is scoped to that project, can authenticate with ECS (through ECS

OpenStack Swift

ECS Data Access Guide 79

https://community.emc.com/docs/DOC-62642
https://community.emc.com/docs/DOC-62642


communicating with the Keystone authentication provider) and use the Swift API to access the
ECS object store.

Add a Keystone authentication provider
You can add a Keystone authentication provider to authenticate OpenStack Swift users.

Before you begin

l This operation requires the System Administrator role in ECS.

l You can add only one Keystone authentication provider.

l Obtain the authentication provider information listed in Keystone authentication provider
settings.

Procedure

1. In the ECS Portal, select Manage > Authentication.

2. On the Authentication Provider Management page, click New Authentication Provider.

3. On the New Authentication Provider page, in the Type field, select Keystone V3.

The required fields are displayed.

4. Type values in the Name, Description, Server URL, Keystone Administrator, and Admin
Password fields. For more information about these fields, see Keystone authentication
provider settings.

5. Click Save.

Keystone authentication provider settings

You must provide authentication provider information when you add or edit a Keystone
authentication provider.

The table lists the Keystone authentication provider settings

Table 27 Keystone authentication provider settings

Field Description

Name The name of the Keystone authentication provider. This name is used to
identify the provider in ECS.

Description Free text description of the authentication provider.

Type Keystone V3.

Server URL URl of the Keystone system that ECS connects to in order to validate Swift
users.

Keystone Administrator Username for an administrator of the Keystone system. ECS connects to the
Keystone system using this username.

Admin Password Password of the specified Keystone administrator.

Authorization on Container
OpenStack Swift authorization targets only containers.

Swift currently supports two types of authorization:

l Referral style authorization

OpenStack Swift

80 ECS Data Access Guide



l Group style authorization

ECS supports only group-based authorization.

Admin users can perform all operations within the account. Non-admin users can only perform
operations for each container based on the container's X-Container-Read and X-Container-Write
Access Control Lists. The following operations can be granted to non-admin users:

Admin assigns read access to the container

The "admin" user can assign read permissions to a group using:

curl -X PUT -v -H 'X-Container-Read: {GROUP LIST}' 
                 -H 'X-Auth-Token: {TOKEN}' 
                 http://127.0.0.1:8080/v1/{account}/{container1}" 

This command enables users belonging to the GROUP LIST to have read access rights to
container1. For example, to assign read permissions to the group "Member":

curl –X PUT -v –H  'X-Container-Read: Member' –H 'X-Auth-Token: 
{ADMIN_TOKEN}'  
 http://127.0.0.1:8080/v1/{account}/{container1}

After read permission is granted, users who belong to target group(s) can perform the following
operations:

l HEAD container - Retrieve container metadata. Only allowed if user is assigned to group that
has Tenant Administrator privileges.

l GET container - List objects within a container.

l GET objects with container - Read contents of the object within the container.

Admin assigns write access to the container

The "admin" user can assign read permissions to a group using:

curl -XPUT -v -H 'X-Container-Write: {GROUP LIST}' 
                 -H 'X-Auth-Token: {TOKEN}' 
                 http://127.0.0.1:8080/v1/{account}/{container1}" 

This command enables users belonging to the GROUP LIST to have write access rights to
container1. For example, to assign write permissions to the group "Member":

curl –X PUT -v –H  'X-Container-Write: Member' –H 'X-Auth-Token: 
{ADMIN_TOKEN}'  
 http://127.0.0.1:8080/v1/{account}/{container1}

The users in the group GROUP LIST are granted write permission. Once write permission is
granted, users who belong to the target group(s) can perform the following operations:

l POST container - Set metadata. Start with prefix "X-Container-Meta".

l PUT objects within container - Write/override objects within container.

Additional information about authorization can be found in: Container Operations.

OpenStack Swift

ECS Data Access Guide 81

http://ceph.com/docs/master/radosgw/swift/containerops/


ECS Swift error codes
The error codes that can be generated by the OpenStack Swift head are listed in the following
table. All errors are of type: ObjectAccessException.

The following table lists the error codes

Table 28 Error Codes

Error Code HTTP
Status
Code

HTTP Status Description

ERROR_NAMESPACE_NOT_FOUND 400 BAD_REQUEST Namespace not found.

ERROR_KEYPOOL_NOT_FOUND 404 NOT_FOUND Keypool not found.

ERROR_KEYPOOL_NOT_EMPTY 409 CONFLICT Keypool not empty.

ERROR_OBJECT_NOT_FOUND 404 NOT_FOUND Object not found.

ERROR_VERSION_NOT_FOUND 404 NOT_FOUND Version not found.

ERROR_ACCESS_DENIED 403 FORBIDDEN null

ERROR_SERVICE_BUSY 503 SERVICE_UNAVAILABLE null

ERROR_PRECONDITION_FAILED 412 PRECONDITION_FAILED null

ERROR_INVALID_ARGUMENT 400 BAD_REQUEST Invalid argument.

ERROR_BAD_ETAG 422 SC_UNPROCESSABLE_ENTITY Bad etag.

ERROR_PROJECT_NOT_FOUND 404 NOT_FOUND SwiftException.
NO_PROJECT_FOUND.

ERROR_NO_DEVICE 404 NOT_FOUND SwiftException.
NO_DATA_STORE_FOUND. //
add 416- Requested Range Not
Satisfiable to errorMap.

ERROR_INVALID_RANGE 422 SC_REQUESTED_RANGE_NOT_
SATISFIABLE

Requested range cannot be
satisfied.

ERROR_INSUFFICIENT_STORAGE 507 SC_INSUFFICIENT_STORAGE The server cannot process the
request because there is not
enough space on disk.

ERROR_RETENTION_INCORRECT 404 SC_NOT_FOUND The specified retention does not
exist.

ERROR_OBJECT_UNDER_RETENTIO
N

409 SC_CONFLICT The object is under retention
and cannot be deleted or
modified.

ERROR_METHOD_NOT_ALLOWED 403 SC_FORBIDDEN Quota may have been exceeded.

ERROR_BUCKET_NOT_FOUND 404 NOT_FOUND Bucket not found.

ERROR_KEYPOOL_OPERATION_NOT
_SUPPORTED

400 BAD_REQUEST VersionEnabled and
FileSystemEnabled functionality
is not supported.

OpenStack Swift

82 ECS Data Access Guide



Table 28 Error Codes (continued)

Error Code HTTP
Status
Code

HTTP Status Description

ERROR_REP_GROUP_NOT_FOUND 400 BAD_REQUEST Specified Replication Group is
Invalid.

ERROR_OBJECT_METADATA_REACH
_MAXIMUM

400 BAD_REQUEST Metadata exceeds max allowed
length.

ERROR_KEYPOOL_LOCKED 409 CONFLICT Bucket may be locked.

ERROR_INVALID_PART 409 CONFLICT Segment eTag differs from that
of the manifest.

ERROR_DELETE_DIRECTORY_NOT
_EMPTY

409 CONFLICT Directory is not empty.

ERROR_API_INVALID 400 BAD_REQUEST Cross head access is not
supported.

OpenStack Swift

ECS Data Access Guide 83



OpenStack Swift

84 ECS Data Access Guide



CHAPTER 3

EMC Atmos

This section describes the support that ECS provides for EMC Atmos.

l EMC Atmos API support in ECS............................................................................................ 86
l Supported EMC Atmos REST API Calls.................................................................................86
l Unsupported EMC Atmos REST API Calls............................................................................. 88
l Subtenant Support in EMC Atmos REST API Calls................................................................88
l API Extensions...................................................................................................................... 89
l ECS Atmos error codes......................................................................................................... 94

ECS Data Access Guide 85



EMC Atmos API support in ECS
ECS supports a subset of the EMC Atmos API. This part details the supported operations and the
ECS extensions.

The Atmos Object Service is made available on the following ports.

The following tale lists the port details

Table 29 Port Details

Protocol Ports

HTTP 9022

HTTPS 9023

The Atmos Programmer's Guide provides more information about the supported operations such as:

l Wire format compatibility for all supported operations, which also applies to the API operations
exposed by ECS.

l Authenticating with the Atmos API and provides comprehensive examples for many of the
supported features.

The Atmos Programmer’s Guide is available from http://support.emc.com.

Supported EMC Atmos REST API Calls
ECS supports a subset of the EMC Atmos API.

The following Atmos REST API calls are supported. Calls for both the object and namespace
interfaces are shown.

Table 30 Supported Atmos REST API calls

Method Path Description

Service Operations

GET /rest/service Get information about the
system

Object Operations

POST /rest/objects /rest/namespace/<path> Create an object (See notes
below)

DELETE /rest/objects/<ObjectID> /rest/namespace/<path> Delete object

PUT /rest/objects/<ObjectID> /rest/namespace/<path> Update object (See notes
below)

GET /rest/objects/<ObjectID> /rest/namespace/<path> Read object (or directory list)

POST /rest/namespace/<path>?rename Rename an object

MetaData Operations

GET /rest/objects/<ObjectID>?metadata/user /rest/namespace/
<path>?metadata/user

Get user metadata for an object

EMC Atmos

86 ECS Data Access Guide

http://support.emc.com


Table 30 Supported Atmos REST API calls (continued)

Method Path Description

POST /rest/objects/<ObjectID>?metadata/user /rest/namespace/
<path>?metadata/user

Set user metadata

DELETE /rest/objects/<objectID>?metadata/user /rest/namespace/
<path>?metadata/user

Delete user metadata

GET /rest/objects/<ObjectID>?metadata/system /rest/namespace/
<path>?metadata/system

Get system metadata for an
object

GET /rest/objects/<ObjectID>?acl /rest/namespace/<path>?acl Get ACL

POST /rest/objects/<ObjectID>?acl /rest/namespace/<path>?acl Set ACL

GET /rest/objects/<ObjectID>?metadata/tags /rest/namespace/
<path>?metadata/tags

Get metadata tags for an object

GET /rest/objects/<ObjectID>?info /rest/namespace/<path>?info Get object info

Head /rest/objects/<ObjectID> /rest/namespace/<path> Get all object metadata

Object-space Operations

GET /rest/objects List objects

GET /rest/objects?listabletags Get listable tags

Anonymous Access

GET /rest/objects/<ObjectId>?
uid=<uid>&expires=<exp>&signature=<sig> /rest/namespace/
<path>?uid=<uid>&expires=<exp>&signature=<sig>

Shareable URL

Note:

l The x-emc-wschecksum header is supported in ECS.

l HTML form upload is not supported.

l GET /rest/objects does not support different response types with x-emc-accept. For
example, text/plain is not supported.

l Read, Write, and Delete ACLs work in ECS the same as Atmos.

l POST /rest/objects supports the x-emc-object-id header to enable legacy (44 character)
object Ids.

Atmos listable tags

Listable tags are special user-defined tags used to list or filter objects. For example, an application
could enable the user to tag a group of illustrations (objects) with a tag like "Vacation2016". Later
the application can respond to a query of "Vacation2016" by listing only the objects tagged with
this listable tag.

Using the Atmos protocol with ECS, a user cannot delete or modify another user's listable tags.
Under some conditions, this ability is enabled in native Atmos.

Listable tags are indexed in ECS, increasing the performance and scalability of the retrieval of
tagged objects.

In ECS, the EMC_TAGS metadata tag is used to persist listable tags. This tag name should not be
used in user-defined metadata tags.

EMC Atmos

ECS Data Access Guide 87



Object ID length

Support for the Atmos API in ECS expands the length of the object Id from 44 characters to 101
characters. Hence, when moving applications from Atmos to ECS you need to be aware that the
object Id length will be different.

To create an object with the legacy 44 character Id length, you can use the x-emc-object-id
header. This enables objects to be migrated to Atmos.

Unsupported EMC Atmos REST API Calls

The following Atmos REST API calls are not supported.

Table 31 Unsupported Atmos REST API calls

Method Path Description

Object Versioning

POST /rest/objects/<objectID>?versions Create a version of an object

DELETE /rest/objects/<objectID>?versions Delete an object version

GET /rest/objects/<objectID>?versions List versions of an object

PUT /rest/objects/<objectID>?versions Restore object version

Anonymous Access

POST /rest/accesstokens Create an access token

GET /rest/accesstokens/<token_id>?info Get access token detail

DELETE /rest/accesstokens/<token_id> Delete access token

GET /rest/accesstokens List access tokens

GET /rest/accesstokens/<token_id> Download content anonymously

Subtenant Support in EMC Atmos REST API Calls
ECS includes two native REST API calls that are specifically to add ECS subtenant support to
Atmos applications.

These calls are as follows:

Table 32 Call Details

API Call Example

Subtenant create PUT Http url: /rest/subtenant Required headers: x-emc-
uid (for example, x-emc-uid=wuser1@example.com ) and
x-emc-signature. The subtenantID is set in the header
"subtenantID" of the response.

Subtenant delete DELETE Http url: /rest/subtenants/{subtenantID}
Required headers: x-emc-uid (for example, x-emc-
uid=wuser1@example.com) and x-emc-signature.

EMC Atmos

88 ECS Data Access Guide



Note: Subtenant IDs are preserved in ECS after migration: The header is x-emc-subtenant-
id: {original_subt_id}.

API Extensions
ECS supports a number of extensions to the Atmos API.

The extensions and the APIs that support them are listed below:

l Appending data to an object

l ECS support for retention and retention expiration periods for Atmos objects

Appending data to an object
You can use ECS extensions to the EMC Atmos protocol to append data to an object.

There may be cases where you need to append to an object, but determining the exact byte offset
is not efficient or useful. For this scenario, ECS provides the ability to atomically append data to
the object without specifying an offset (the correct offset is returned to you in the response).

A Range header with the special value bytes=-1- is used to append data to an object. In this
way, the object can be extended without knowing the existing object size. The format is: Range:
bytes=-1-
A sample request showing appending to an existing object using a Range value of bytes=-1- is
shown in the following example. Here the value and cat is sent in the request.

PUT /rest/namespace/myObject HTTP/1.1
Content-Length: 8
Range: bytes=-1-
ACCEPT: application/json,application/xml,text/html,application/octet-stream
Date: Mon, 17 Jun 2013 20:46:01 -0000
x-emc-date: Mon, 17 Jun 2013 20:46:01 -0000
x-emc-namespace: emc
x-emc-uid: fa4e31a68d3e4929bec2f964d4cac3de/wuser1@sanity.local
x-emc-signature: ZpW9KjRb5+YFdSzZjwufZUqkExc=
Content-Type: application/octet-stream
Accept-Encoding: gzip, deflate, compress

and cat 

HTTP/1.1 200 OK
x-emc-mtime: 1431626712933
Date: Mon, 17 Jun 2013 20:46:01 GMT
x-emc-policy: default
x-emc-utf8: true
x-emc-request-id: 0af9ed8d:14cc314a9bc:112f6:9
x-emc-delta: 8
x-emc-append-offset: 24
Content-Length: 0
Server: Jetty(7.6.4.v20120524)

The offset position at which the data was appended is returned in the x-emc-append-offset
header.

When the object is retrieved, and cat has been appended, and you can see the full value: The
quick green fox jumps over the lazy dog and cat.

EMC Atmos

ECS Data Access Guide 89



ECS support for retention and retention expiration periods for Atmos objects
ECS supports setting retention periods, and retention expiration periods on Atmos objects.

Retention periods

Retention periods define how long ECS retains an object before it can be edited or deleted. During
the retention period, the object cannot be edited or deleted from the system until the retention
period has expired.

While creating an Atmos object in ECS, the object retention can be:

l Defined directly on the object

l Inherited from the retention period set on the ECS bucket in which the object is created

When a retention policy is set on the ECS namespace, set the retention period directly on the
object. The object does not inherit the retention policy in the namespace.

The table shows the Atmos retention periods

Table 33 Atmos retention periods

Retention set on the Using the Notes

Object Atmos API through the

l Header retention period in
seconds: 'x-emc-
retention-period:60'

l User meta data (UMD), end
date: 'x-emc-
meta:user.maui.retentio
nEnable=true,user.maui.
retentionEnd=2016-10-21
:10:00Z'

l Both header, and UMD: 'x-
emc-
meta:user.maui.retentio
nEnable =
true,user.maui.retentio
nEnd=2016-10-21T18:14:3
0Z' -header 'x-emc-
retention-period:60'

l Retention can be set on the object while creating,
or updating the object settings.

l Header retention period is defined in seconds.

l End date defines the UMD retention.

l If retention period is set from both the header and
the UMD, the UMD attribute is checked first and
takes precedence over the setting in the header.

l You cannot modify the retention period after it
has been set on the object until the period has
expired.

l When using the x-emc header to set retention

n If one is defined, -1 sets an infinite retention
period and disable the expiration period.

n -2 disables the retention period set on the
object.

ECS namespace ECS Portal from the New
Namespace or Edit Namespace
page.

l If you want to set a retention period for an object,
and a retention policy has been defined on the
object user's namespace, you must still define a
retention period directly on the object as
described earlier.

l If a retention policy is set on the ECS namespace,
and/or a retention period is set on a bucket within
the namespace, and an object is created within
the bucket, ECS retains the namespace, bucket,
and object for the longest retention periods set
for either the namespace, or bucket.

l If a retention period has been set on the object
itself through the object header, ECS retains the

ECS REST API POST /object/
namespaces/namespace/
{namespace}/retention

ECS bucket ECS Portal from the New Bucket,
or Edit Bucket page.

ECS REST API PUT /object/
bucket/{bucketName}/
retention

EMC Atmos

90 ECS Data Access Guide



Table 33 Atmos retention periods (continued)

Retention set on the Using the Notes

object for the longest time set on the namespace,
bucket, or object.

l If a retention end date is defined on an object
through the Atmos API, ECS uses the Atmos API
retention end date set on the object, and ignores
the namespace retention policy, and bucket
retention periods when creating the object.

l While applying a retention policy on a subtenant
(bucket) containing Atmos objects, the retention
policy is applied to both objects created in the
subtenant after the retention policy was set, and
objects that were created in the subtenant before
the retention policy was set.

Note: For further details about Namespace Retention Policies and Bucket Retention Periods,
see the ECS Administration Guide that is available on ECS Product Documentation page.

Example: Request and response to create an object with retention set:

POST /rest/namespace/file1 HTTP/1.1
User-Agent: curl/7.37.0
Host: 10.247.179.228:9022
Accept: */*
x-emc-date:Thu, 16 Feb 2017 19:28:13 GMT
x-emc-meta:user.maui.retentionEnable=true,user.maui.retentionEnd=2017-06-30T06%3A38%3A44Z
x-emc-uid:f082110e13f249649340e172fb7b4956/u1
x-emc-utf8:true
Content-Type:plain/text
x-emc-signature:2Gz51WT+jQdMjlobDV0mz7obsXM=
Content-Length: 774

Response

HTTP/1.1 201 Created
Date: Thu, 16 Feb 2017 19:28:17 GMT
x-emc-policy: default
x-emc-utf8: true
x-emc-request-id: 0af7b3e4:15a4849d95e:37c:0
x-emc-delta: 774
Location: /rest/objects/
0a40bd045f7373d367639f095d1db0d15acadb82d5d2cd108e2142f4be04635c-59bdb9b6-20c0-4f55-
bc91-9db728a58854
x-emc-mtime: 1487273295379
Content-Length: 0
Server: ViPR/1.0

Example: Request and response to get object metadata:

curl --head  -H "x-emc-date:Mon, 30 Jan 2017 16:56:35 GMT"  
-H "x-emc-uid:7a2593be81374744adbf8e3983e7bd84/u1"   
-H "x-emc-signature:CQgfoiIQ/DCif7TafcIskWyVpME=" 
http://10.247.179.228:9022/rest/objects/
d1bced53f2ebbcbc51af1d84747bd198d123d3b8585293a5bf0d32bb73c6cf4b-365f4482-c24a-4eca-
b24a-070efe29bf63

Response

EMC Atmos

ECS Data Access Guide 91

https://community.emc.com/docs/DOC-62642


HTTP/1.1 200 OK
Date: Mon, 30 Jan 2017 16:56:35 GMT
x-emc-mtime: 1485795387838
x-emc-retention-period: 21798212
x-emc-meta: user.maui.retentionEnd=2017-10-10T00:00:00Z,user.maui.retentionEnable=true,allow-
inline-update=false,atime=2017-01-30T16:45:48Z,ctime=2017-01-30T16:56:27Z,ctype=plain/
text,data-range=CAAQgFA=,dek=kq/W1Rg/
7qbmaCcLF8pFvqlDJ8+suPTdVddBBZFwZA86muG3P0Pb7w==,dekAlgo=AESKeyWrapRFC5649,etag=0-,fs-mtime-
millisec=1485795387838,itime=2017-01-30T16:45:48Z,kekId=s3.7a2593be81374744adbf8e3983e7bd843cd
da755061bac6c12c06eb02800a7fee4b11ac2e03f62bb01eee02995068e56,keypoolid=s3.7a2593be81374744adb
f8e3983e7bd84,keypoolname=7a2593be81374744adbf8e3983e7bd84,keyversion=0,mtime=2017-01-30T16:56
:27Z,namespace=s3,nlink=1,object-
name=,objectid=d1bced53f2ebbcbc51af1d84747bd198d123d3b8585293a5bf0d32bb73c6cf4b-365f4482-
c24a-4eca-
b24a-070efe29bf63,objname=file,parentOid=53ae036bfcfb46f5580b912222f3026835e3ef972c7e3e532ba4a
5de30b1946e,parentZone=urn:storageos:VirtualDataCenterData:365f4482-c24a-4eca-
b24a-070efe29bf63,policyname=default,retention=CgYIoKOZmlE=,size=0,type=regular,uid=u1,parent=
apache,gid=apache
x-emc-useracl: u1=FULL_CONTROL
x-emc-groupacl: other=READ
x-emc-policy: default
x-emc-request-id: 0af7b3e4:159f0185cf7:957:4
Content-Type: plain/text
Content-Length: 0
Server: ViPR/1.0

Example: Update an object with retention values.

POST /rest/namespace/file2?metadata/user HTTP/1.1
User-Agent: curl/7.37.0
Host: 10.247.179.228:9022
Accept: */*
x-emc-date:Thu, 16 Feb 2017 19:37:15 GMT
x-emc-meta:user.maui.retentionEnable=true,user.maui.retentionEnd=2017-07-30T06%3A38%3A44Z
x-emc-uid:f082110e13f249649340e172fb7b4956/u1
x-emc-utf8:true
Content-Type:plain/text
x-emc-signature:5UPpZcCfO0vtxMTW62fa2/2SmLg=

Response

HTTP/1.1 200 OK

Date: Thu, 16 Feb 2017 19:37:16 GMT
x-emc-policy: _int
x-emc-utf8: true
x-emc-request-id: 0af7b3e4:15a4849d95e:582:0
Content-Length: 0
Server: ViPR/1.0

Expiration period

When a retention period end date is defined for an Atmos object, and the expiration period is also
set on the object, ECS automatically deletes the object at the date that is defined in the expiration
period. The expiration period:

l Can be set on objects using the Atmos API, or the x-emc header.

l The expiration period must be later than the retention end date.

l The expiration period is disabled by default.

l When using the x-emc header to set retention and expiration, a -1 value disables the expiration
period.

EMC Atmos

92 ECS Data Access Guide



Example: Set the expiration period using the x-emc header:

POST /rest/namespace/file2 HTTP/1.1
User-Agent: curl/7.37.0
Host: 10.247.179.228:9022
Accept: */*
x-emc-date:Tue, 31 Jan 2017 19:38:00 GMT
x-emc-expiration-period:300
x-emc-uid:a2b85977fd08488b80e646ea875e990b/u1
Content-Type:plain/text
x-emc-signature:krhYBfKSiM3mFOT6FtRB+2/xZnw=
Content-Length: 10240
Expect: 100-continue

Example: Request and response using the Atmos API:

POST /rest/namespace/file2 HTTP/1.1
User-Agent: curl/7.37.0
Host: 10.247.179.228:9022
Accept: */*
x-emc-date:Thu, 02 Feb 2017 02:47:32 GMT
x-emc-meta:user.maui.expirationEnable=true,user.maui.expirationEnd=2017-03-30T20:20:00Z
x-emc-uid:239e20dec7a54301a0b02f6090edcace/u1
Content-Type:plain/text
x-emc-signature:5tGEyK/9qUZCPSnQ9OPOdktN+Zo=
Content-Length: 10240
Expect: 100-continue

Response

HTTP/1.1 100 Continue
HTTP/1.1 201 Created
Date: Thu, 02 Feb 2017 02:47:33 GMT
x-emc-policy: default
x-emc-request-id: 0af7b3e4:159fb81ddae:345e:0
x-emc-delta: 10240
Location: /rest/objects/5c3abaf60e0e207abec96baf0618c0461b7cd716898f8a12ee236aed1ec94bea-
c86ee0e9-8709-4897-898e-c3d1895e1d93
x-emc-mtime: 1486003652813
Content-Length: 0
Server ViPR/1.0 is not blacklisted
Server: ViPR/1.0

Example: Request and response for update meta data with Atmos API:

POST /rest/namespace/file?metadata/user HTTP/1.1
User-Agent: curl/7.37.0
Host: 10.247.179.228:9022
Accept: */*
x-emc-date:Thu, 02 Feb 2017 02:44:13 GMT
x-emc-meta:user.maui.expirationEnable=true,user.maui.expirationEnd=2017-03-30T20:20:00Z
x-emc-uid:239e20dec7a54301a0b02f6090edcace/u1
Content-Type:plain/text
x-emc-signature:9pzcc/Ce4Lq3k52QKdfWLYlZ1Yc=

Response

HTTP/1.1 200 OK
Date: Thu, 02 Feb 2017 02:44:14 GMT
x-emc-policy: _int
x-emc-request-id: 0af7b3e4:159fb81ddae:339e:0
Content-Length: 0

EMC Atmos

ECS Data Access Guide 93



Server ViPR/1.0 is not blacklisted
Server: ViPR/1.0

Retention start delay window

Atmos enables you to specify a start delay window when creating a retention period, which enables
you to migrate to ECS. Also, this feature prevents the objects from getting into retention after
initial upload of an object.

Atmos creates subtenant request header, x-emc-retention-start-delay that captures the
autocommit interval.

 ./atmoscurl.pl -user USER1 -action PUT -pmode TID -path / -header "x-emc-
retention-period:300" -header "x-emc-retention-start-delay:120" -include

Retention start delay applied on object mtime

In Atmos object creation, if retention start delay is set on the bucket (x-emc-retention-
start-delay), the start delay for the object is calculated based on time-since-mtime of the
object.

Note: The time-since-mtime is considered to calculate the start delay as it does not give
an exact time to complete an upload and x-emc-retention-start-delay could be shorter
even as a few minutes.

Override bucket-level retention for migrated objects

l If the user decides to migrate data through Atmos API to an ECS bucket in a compliant
namespace with maui retention headers and if there are any conflicting retentions, the longest
retention wins.

l On noncompliant buckets, for Atmos migrated objects, the user.maui*headers specifies
the final retention value on an object. If there are no user.maui*headers available, the
longest retention wins.

l On object creation in ECS through Atmos API, the user.maui*headers cannot be combined
with any of x-emc-retention headers.

Atmos API supports GeoDrive

Atmos API supports GeoDrive on ECS. GeoDrive is a windows application that enables Atmos data
to be mirrored to the local Windows file system, and it is the same as CIFS-ECS.

ECS Atmos error codes
The error codes that can be generated by the EMC Atmos head are listed in the following table.

The table lists the error codes

Table 34 Error Codes

Error Code Error Message HTTP Status
Code

HTTP Status Description

1001 The server encountered an internal error. Please
try again.

500 Internal Server Error

1002 One or more arguments in the request were
invalid.

400 Bad Request

EMC Atmos

94 ECS Data Access Guide



Table 34 Error Codes (continued)

1003 The requested object was not found. 404 Not Found

1004 The specified range cannot be satisfied. 416 Requested Range Not
Satisfiable

1005 One or more metadata tags were not found for
the requested object.

400 Bad Request

1006 Operation aborted because of a conflicting
operation in process against the resource.

Note: This error code may indicate that the
system is temporarily too busy to process the
request. This is a non-fatal error; you can re-
try the request later.

409 Conflict

1007 The server encountered an internal error. Please
try again.

500 Internal Server Error

1008 The requested resource was not found on the
server.

400 Bad Request

1009 The method specified in the Request is not
allowed for the resource identified.

405 Method Not Allowed

1010 The requested object size exceeds the maximum
allowed upload/download size.

400 Bad Request

1011 The specified object length does not match the
actual length of the attached object.

400 Bad Request

1012 There was a mismatch between the attached
object size and the specified extent size.

400 Bad Request

1013 The server encountered an internal error. Please
try again.

500 Internal Server Error

1014 The maximum allowed metadata entries per
object has been exceeded.

400 Bad Request

1015 The request could not be finished due to
insufficient access privileges.

401 Unauthorized

1016 The resource you are trying to create already
exists.

400 Bad Request

1019 The server encountered an I/O error. Please try
again.

500 Internal Server Error

1020 The requested resource is missing or could not be
found.

500 Internal Server Error

1021 The requested resource is not a directory. 400 Bad Request

1022 The requested resource is a directory. 400 Bad Request

1023 The directory you are attempting to delete is not
empty.

400 Bad Request

1024 The server encountered an internal error. Please
try again.

500 Internal Server Error

EMC Atmos

ECS Data Access Guide 95



Table 34 Error Codes (continued)

1025 The server encountered an internal error. Please
try again.

500 Internal Server Error

1026 The server encountered an internal error. Please
try again.

500 Internal Server Error

1027 The server encountered an internal error. Please
try again.

500 Internal Server Error

1028 The server encountered an internal error. Please
try again.

500 Internal Server Error

1029 The server encountered an internal error. Please
try again.

500 Internal Server Error

1031 The request timestamp was outside the valid time
window.

403 Forbidden

1032 There was a mismatch between the signature in
the request and the signature as computed by
the server.

403 Forbidden

1033 Unable to retrieve the secret key for the
specified user.

403 Forbidden

1034 Unable to read the contents of the HTTP body. 400 Bad Request

1037 The specified token is invalid. 400 Bad Request

1040 The server is busy. Please try again 500 Internal Server Error

1041 The requested filename length exceeds the
maximum length allowed.

400 Bad Request

1042 The requested operation is not supported. 400 Bad Request

1043 The object has the maximum number of links 400 Bad Request

1044 The specified parent does not exist. 400 Bad Request

1045 The specified parent is not a directory. 400 Bad Request

1046 The specified object is not in the namespace. 400 Bad Request

1047 Source and target are the same file. 400 Bad Request

1048 The target directory is not empty and may not be
overwritten

400 Bad Request

1049 The checksum sent with the request did not
match the checksum as computed by the server

400 Bad Request

1050 The requested checksum algorithm is different
than the one previously used for this object.

400 Bad Request

1051 Checksum verification may only be used with
append update requests

400 Bad Request

1052 The specified checksum algorithm is not
implemented.

400 Bad Request

EMC Atmos

96 ECS Data Access Guide



Table 34 Error Codes (continued)

1053 Checksum cannot be computed for an object on
update for which one wasn't computed at create
time.

400 Bad Request

1054 The checksum input parameter was missing from
the request.

400 Bad Request

1056 The requested operation is not supported for
symlinks.

400 Bad Request

1057 If-Match precondition failed. 412 Precondition failed

1058 If-None-Match precondition failed. 412 Precondition failed

1059 The key you are trying to create already exists. 400 Bad Request

1060 The requested key was not found. 404 Not found

1061 The requested pool already exists. 400 Bad Request

1062 The requested pool was not found. 404 Not found

1063 The maximum number of pools has been reached. 400 Bad request

1064 The request could not be completed because the
subtenant is over quota

403 Forbidden

1065 The request could not be completed because the
UID is over quota

403 Forbidden

1070 Did not receive the expected amount of data. 400 Bad request

1071 Client closed connection before reading all data. 499 Client Closed Request

1072 Could not write all bytes to the client. 499 Client Closed Request

1073 Timeout writing data to the client. 499 Client Closed Request

EMC Atmos

ECS Data Access Guide 97



EMC Atmos

98 ECS Data Access Guide



CHAPTER 4

CAS

This section describes the support that ECS provides for CAS.

l Setting up CAS support in ECS............................................................................................100
l Cold Storage........................................................................................................................100
l Compliance...........................................................................................................................101
l CAS retention in ECS...........................................................................................................102
l Advanced retention for CAS applications: event-based retention, litigation hold, and the

min/max governor................................................................................................................104
l Set up namespace retention policies....................................................................................108
l Create and set up a bucket for a CAS user.......................................................................... 109
l Set up a CAS object user......................................................................................................110
l Set up bucket ACLs for CAS................................................................................................ 110
l ECS Management APIs that support CAS users....................................................................111
l Content Addressable Storage (CAS) SDK API support.........................................................112
l ECS CAS error codes........................................................................................................... 112

ECS Data Access Guide 99



Setting up CAS support in ECS
This chapter describes how to modify your basic configuration to support CAS.

ECS CAS enables CAS SDK-based client applications to store, retrieve, and delete fixed content
objects from ECS storage.

The underlying ECS storage must be provisioned before you can configure your ECS set up.
Provisioning is usually completed when a new ECS rack is installed. This includes setting up a
storage pool, VDC, and replication group.

For your storage pools, you might consider setting up a cold archive. See Cold Storage.

Next, set up your namespaces, users, and buckets using the standard documentation. See the ECS
Administration Guide which is available from the ECS Product Documentation page for these steps
as well as provisioning steps.

Cold Storage
Describes cold storage archives.

Cold archives store objects that do not change frequently and do not require the robust default EC
scheme. The EC scheme used for a cold archive is 10 data fragments plus two coding fragments
(10/12). The efficiency is 1.2x.

You can specify a cold archive (Cold Storage) when creating a new storage pool. After the storage
pool is created, the EC scheme cannot be changed. This scheme can support the loss of a single
node. It also supports loss of one drive out of six or two drives out of 12 on two separate nodes.

EC requirements

The table shows the description for regular and cold archives comparison

Table 35 Requirements for regular and cold archives compared

Use case How enabled Minimum
required
nodes

Minimum
required
disks

Recommend
ed disks

EC
efficiency

EC scheme

Regular
archive

Default 4 16* 32 1.33x 12/16

Cold archive Configured by
System Administrator

8 12* 24 1.2x 10/12

Note: *Since the minimum deployable configuration for the C-Series appliance is two
appliances with 12 disks each, 24 disks is the effective minimum.

Storage pool configuration

To establish a cold archive from the portal, Select Cold Storage when you create a storage pool.
Once a storage pool has been created, this setting cannot be changed.

CAS

100 ECS Data Access Guide

https://community.emc.com/docs/DOC-62642


Compliance
Describes ECS features that support government and industry standards for the storage of
electronic records.

ECS meets the storage requirements of the following standards, as certified by Cohasset
Associates Inc:

l Securities and Exchange Commission (SEC) in regulation 17 C.F.R. § 240.17a-4(f)

l Commodity Futures Trading Commission (CFTC) in regulation 17 C.F.R. § 1.31(b)-(c)

Compliance has three components:

l Platform hardening: addressing common security vulnerabilities.

l Policy-based record retention: limiting the ability to change retention policies for records under
retention.

l Compliance reporting: periodic reporting by a system agent records the system's compliance
status.

Platform hardening and Compliance
The following ECS security features support Compliance standards.

ECS platform security features:

l User root access to nodes is disabled (no user root logins permitted).

l ECS customers can access nodes through the admin user set up during first-time installations.

l The admin user runs commands on nodes using sudo.

l There is full audit logging for sudo commands.

l ESRS provides the ability to shut down all remote access to nodes. In ESRS Policy Manager,
set the Start Remote Terminal action to Never Allow.

l All unnecessary ports (ftpd, sshd) are closed.

l The emcsecurity user with the Lock Administrator role can lock nodes in a cluster. This
means that remote access over the network by SSH is disabled. The Lock Administrator can
then unlock a node to allow for remote maintenance activities or other authorized access.

Note: Node locking does not affect authorized ECS Portal or ECS Management API users.

Compliance and retention policy
Describes enhanced rules for record retention on a Compliance-enabled ECS system. ECS sets
object retention features to On at the object, bucket, and namespace levels. Compliance
strengthens these features by limiting changes that can be made to retention settings on objects
under retention. Rules include:

l Compliance is set at the namespace level. This means that all buckets in the namespace must
have a retention period greater than zero. For CAS, buckets with zero retention can be
created, as long as the Enforce Retention Information in Object setting is turned On.

l You can only turn Compliance on when you create a namespace. (You cannot add Compliance
to an existing namespace.)

l You cannot turn Compliance off once it is turned on.

l All buckets in a namespace must have a retention period greater than zero.

CAS

ECS Data Access Guide 101



Note: If you have an application that assigns object-level retention periods, do not use ECS
to assign a retention period greater than the application retention period. This action
causes application errors.

l A bucket with data in it cannot be deleted regardless of its retention value.

l Applying the Infinite option to a bucket means that objects in the bucket in a Compliance-
enabled namespace cannot be deleted permanently.

l The retention period for an object cannot be deleted or shortened. Therefore, the retention
period for a bucket cannot be deleted or shortened.

l You can increase object and bucket retention periods.

l No user can delete an object under retention. This includes users with the CAS privileged-
delete permission.

Compliance agent
Describes the operation of the Compliance agent.

Compliance features are turned on by default, except for Compliance monitoring. If monitoring is
turned on, the agent periodically logs a message.

Note: Contact your ECS Remote Support representative to turn on Compliance monitoring.
Monitoring messages are available by command from the node. They do not appear in the ECS
Portal.

CAS retention in ECS
A CAS C-Clip can have a retention period that governs the length of time the associated object is
retained in ECS storage before an application can delete it.

Retention periods

Retention periods are assigned in the C-Clip for the object by the CAS application.

For example, if a financial document must be retained for three years from its creation date, then a
three-year retention period is specified in the C-Clip associated with the financial document. It is
also possible to specify that the document is retained indefinitely.

Retention policies (retention classes)

Note: The Centera concept of retention classes maps to retention policies in ECS. This
documentation uses retention policies.

Retention policies enable retention use cases to be captured and applied to C-Clips. For example,
different types of documents could have different retention periods. You could require the
following retention periods:

l Financial: 3 years

l Legal: 5 years

l Email: 6 months

When a retention policy is applied to a number of C-Clips, by changing the policy, the retention
period changes for all objects to which the policy applies.

Retention policies are associated with namespaces in ECS and are recognized by the CAS
application as retention classes.

ECS bucket-level retention and CAS

Bucket-level retention is not the default pool retention in Centera. In ECS, CAS default retention is
constantly zero.

CAS

102 ECS Data Access Guide



Default retention period in objects written without object-level retention in Compliance
namespaces

Starting with ECS 3.0, when an application writes C-Clips with no object retention to an ECS CAS
bucket in a Compliance namespace, and the bucket has a retention value (6 months, for example),
the default retention period of infinite (-1) will be assigned to the C-Clips. The C-Clips can never
be deleted because their effective retention period is the longest one between the two: the
bucket-level retention period and the default object-level retention.

CAS precedence

When multiple retention periods are applied to a CAS object in ECS, the retention period with the
higher value has precedence no matter how the retention was applied.

How to apply CAS retention

You can define retention polices for namespaces in the ECS Portal or with the ECS Management
API. See Set up namespace retention policies.

Your external CAS application can assign a fixed retention period or a retention policy to the C-Clip
during its creation.

When applying retention periods through APIs, specify the period in seconds.

Note that ECS CAS takes the creation time of the C-Clip for all retention related calculations and
not the migration time.

How to create retention policies with the ECS Management API.

You can create retention periods and policies using the ECS, a summary of which is provided
below.

Table 36 ECS Management API resources for retention

Method Description

PUT /object/bucket/{bucketName}/retention The retention value for a bucket defines a mandatory
retention period which is applied to every object within a
bucket. If you set a retention period of 1 year, an object
from the bucket cannot be deleted for one year.

GET /object/bucket/{bucketName}/retention Returns the retention period that is currently set for a
specified bucket.

POST /object/namespaces/namespace/{namespace}/
retention

For namespaces, the retention setting acts like a policy,
where each policy is a <Name>:<Retention period> pair.
You can define a number of retention policies for a
namespace and you can assign a policy, by name, to an
object within the namespace. This allows you to change
the retention period of a set of objects that have the
same policy assigned by changing the corresponding
policy.

PUT /object/namespaces/namespace/{namespace}/
retention/{class}

Updates the period for a retention period that is
associated with a namespace.

GET /object/namespaces/namespace/{namespace}/
retention

Returns the retention policy defined for a namespace.

You can find more information about the ECS Management API in ECS Management REST API
introduction. The online reference is here: ECS API Reference.

CAS

ECS Data Access Guide 103

http://doc.isilon.com/ECS/3.2/API/index.html


Advanced retention for CAS applications: event-based
retention, litigation hold, and the min/max governor

Describes advanced retention features available in the CAS API that are supported by ECS.

Customer applications use the CAS API to enable retention strategies. When CAS workloads are
migrated to ECS, ECS awareness of CAS API features allow the customer applications to continue
working with the migrated data. In ECS, the following advanced retention management (ARM)
features are available without a separate license:

l Event-based retention: the ability to configure an object through its C-Clip to apply (trigger) a
retention period or retention policy when the CAS application receives a specified event.

l Litigation hold: the ability to prevent deletion of an object if the CAS application has applied a
litigation hold to the object through its C-Clip. The CAS application can apply up to 100
litigation holds to an object by creating and applying unique litigation hold IDs.

l Min/Max governor: The ability for an administrator to set bucket-level limits for fixed retention
period or variable retention period. A variable retention period is one that is set to support
event-based retention. In ECS, System or Namespace Admins can set the values with the ECS
Portal. Programmers can use the ECS Management API to set the values.

Note: ARM is supported for legacy CAS data written with any naming scheme that is migrated
to ECS.

Min/max governor for CAS bucket-level retention

From the ECS Portal, locate a CAS bucket and select Edit. All the features shown on the screen
below are CAS-only features except for the Bucket Retention Period feature. Bucket Retention
Period is the standard ECS bucket retention feature supported on all ECS bucket types.

Figure 2 Retention options for CAS buckets

The CAS bucket retention features are explained in the following table.

Table 37 CAS Bucket

Feature Description

Enforce Retention If this feature is turned on, no CAS object can be created without retention information
(period or policy). An attempt to save such an object will return an error. If it is turned on, it
is possible not to configure Bucket Retention Period even in a compliance-enabled
environment.

Note: When a CE+ mode Centera is migrated to ECS, Enforce Retention is turned on
by default on the bucket.

Bucket Retention
Period

If a bucket retention period is specified, then the longer period will be enforced if there is
both a bucket-level and an object-level retention period. In a Compliance-enabled

CAS

104 ECS Data Access Guide



Table 37 CAS Bucket (continued)

Feature Description

environment Bucket Retention Period is mandatory unless retention information in the
object is enforced. However, once configured the Bucket Retention Period cannot be
reset even when retention information in the object is enforced.

Minimum Fixed
Retention Period

This feature governs the retention periods specified in objects. If an object's retention
period is outside of the bounds specified here, then an attempt to write the object fails.
When using retention policies, the min/max settings are not enforced. Selecting Infinite for
Minimum Fixed Retention Period means all retention values must be infinite. Selecting if
for Mamimum Fixed Retention Period means there is no maximum limit. Min/max
retention constrains are applied to any C-Clip written to a bucket. If a clip is migrated by
any SDK-based third-party tool the retention should be within bounds, otherwise an error is
thrown.

Maximum Fixed
Retention Period

Minimum Variable
Retention Period

This feature governs variable retention periods specified in objects using event-based
retention (EBR). In EBR, a base retention period is set and the programmed trigger function
has the ability to increase the retention period when the trigger fires. If an object's new
retention period is outside of the bounds specified here, then an attempt to write the object
in response to the trigger fails. When using retention policies, the min/max settings are not
enforced. Selecting Infinite for Minimum Variable Retention Period means all retention
values must be infinite. Selecting if for Mamimum Variable Retention Period means there
is no maximum limit. Min/max retention constrains are applied to any C-Clip written to a
bucket. If a clip is migrated by any SDK-based third-party tool the retention should be
within bounds, otherwise an error is thrown.

Maximum Variable
Retention Period

Note: If the System Administrator or programmer has not set any values for the fixed and
variable retention periods, the ECS Management API get function will not return values for
the min/max settings. The Enforce Retention Information in C-Clip will return a default
value of false.

Event-based retention

Event-based retention (EBR) is an instruction specifying that a record cannot be deleted before an
event and during a specified period after the event. In CAS, EBR is a C-Clip with a specified base
retention period or retention policy and an application-defined trigger that can set a longer
retention period when the trigger fires. The retention period only begins when the trigger fires.
When a C-Clip is marked for EBR, it cannot be deleted prior to the event unless a privileged delete
is used.

When using EBR, the C-Clip life-cycle is as follows:

l Create: the application creates a new C-Clip and marks it as being under EBR. The application
can provide a fixed retention period which acts as a minimum retention and it must provide an
event based retention period or policy.

l Trigger Event: The application triggers the event, which is the starting point of the event-
based retention period or retention policy. At this point the application can assign a new event-
based retention period, provided that it is longer than the one assigned at the time of the C-
Clip creation.

l Delete: When the application tries to delete the C-Clip, the following conditions must be met:

n Policy (Namespace) retention has expired

n Bucket retention has expired

n Fixed retention has expired

n The event has been triggered

CAS

ECS Data Access Guide 105



n Both the EBR set at the time of creation and any subsequent changes (extensions) at the
time of the event have expired

The following figure shows the three possible scenarios for a C-Clip under EBR:

l C1 has a fixed or minimal retention which already expired before the event was triggered.

l C2 has a fixed or minimal retention which will expire before the EBR expires.

l C3 has a fixed or minimal retention which will expire after the EBR expires.

Figure 3 EBR scenarios

For non-compliant namespaces, privileged delete commands can override fixed and variable
retention for EBR.

When applying EBR retention, it must comply with the Min/Max Governor settings for the variable
retention period.

The table shows the CAS API functions for event-based retention

Table 38 CAS API functions for event-based retention

Function Description

FPClip_EnableEBRWithClass This function sets a C-Clip to be eligible to receive a future event and
enables an event-based retention (EBR) class to be assigned to the C-
Clip during C-Clip creation time.

FPClip_EnableEBRWithPeriod This function sets a C-Clip to be eligible to receive a future event and
enables an event-based retention (EBR) period to be assigned to the
C-Clip during C-Clip creation time.

FPClip_IsEBREnabled This function returns a Boolean value to indicate whether or not a C-
Clip is enabled for event-based retention (EBR).

FPClip_GetEBRClassName This function retrieves the name of the event-based retention (EBR)
policy assigned to the C-Clip.

FPClip_GetEBREventTime This function returns the event time set on a C-Clip when the event-
based retention (EBR) event for that C-Clip was triggered.

FPClip_GetEBRPeriod This function returns the value (in seconds) of the event-based
retention (EBR) period associated with a C-Clip.

CAS

106 ECS Data Access Guide



Table 38 CAS API functions for event-based retention (continued)

Function Description

FPClip_TriggerEBREvent This function triggers the event of a C-Clip for which event-based
retention (EBR) was enabled.

FPClip_TriggerEBREventWithClass This function triggers the event of a C-Clip for which event-based
retention (EBR) was enabled and assigns a new EBR policy to the C-
Clip.

FPClip_TriggerEBREventWithPeriod This function triggers the event of a C-Clip for which event-based
retention (EBR) was enabled and assigns a new EBR period to the C-
Clip.

Litigation hold

Litigation hold allows CAS applications to temporarily prevent deletion of a C-Clip. Litigation hold is
useful for data that is subject to an official investigation, subpoena, or inquiry and that may not be
deleted until the investigation is over. Once there is no need to hold the data, the litigation hold
can be released by the application and normal retention behavior resumes. The CAS application
places and removes a litigation hold at the C-Clip level.

Note: Even a privileged delete cannot delete a C-Clip under litigation hold.

One C-Clip can be under several litigation holds. The application must generate unique litigation
hold IDs and be able to track the specific litigation holds associated with a C-Clip. The application
cannot query a C-Clip for this information. There is only a function that determines the litigation
hold state of the C-Clip. If there is one or several litigation holds on the C-Clip, this function
returns true, otherwise, it is false.

When using litigation hold, the C-Clip life-cycle is as follows:

l Create: The application creates a new C-Clip and provides a fixed and/or event-based
retention period.

l Set litigation hold: An application puts the C-Clip on hold. This application can be different
from the application that wrote the C-Clip.

l Release litigation hold: An application releases the C-Clip. This application can be different
from the application that sets the litigation hold or wrote the C-Clip.

l Delete: When the application tries to delete the C-Clip, the following conditions must be
satisfied:

n There are no other litigation holds outstanding on the C-Clip.

n Policy retention has expired.

n Standard bucket retention has expired. (Standard bucket retention is available to all ECS
object types, but is not recommended for CAS.)

n Fixed retention period has expired (CAS-only feature).

n Event-based retention has expired (CAS-only feature).

The following figure shows the three possible scenarios for a C-Clip put under litigation hold:

l C1 has a fixed retention that already expired when put under hold.

l C2 has a fixed retention that expires during the hold.

l C3 has a fixed retention that will expire after release of the hold.

CAS

ECS Data Access Guide 107



Figure 4 Litigation hold scenarios

A C-Clip can have multiple litigation holds assigned to it. If this is the case, each litigation hold
requires a separate API call with a unique identifier for the litigation hold.

Note: The maximum size of litigation hold ID is 64 characters. The maximum litigation hold IDs
per C-Clip is 100. These limitations are enforced by the CAS API.

The table shows the CAS API functions for litigation hold

Table 39 CAS API functions for litigation hold

Function Description

FPClip_GetRetentionHold This function determines the hold state of the C-Clip and returns
true or false.

FPClip_SetRetentionHold This function sets or resets a retention hold on a C-Clip. For
multiple litigation holds, provide a unique litigation hold ID for
each hold. For multiple holds, make one call per ID.

Set up namespace retention policies
Provides CAS-specific set up instructions for namespace retention policies.

About this task

The Retention Policy feature for namespace provides a way to define and manage CAS retention
classes for all C-Clips created in the namespace.

A namespace can have many retention polices, where each policy defines a retention period. By
applying a retention policy to a number of C-Clips (with the API), a change to the retention policy
changes the retention period for all objects associated with the policy. For CAS, retention classes
are applied to an object's C-Clip by the application. If an object is under a retention period,
requests to modify the object are not allowed.

Procedure

1. At the ECS Portal, select Manage > Namespace.

2. To edit the configuration of an existing namespace, choose the Edit action associated with
the existing namespace.

CAS

108 ECS Data Access Guide



3. Add and Configure Retention Policies.

a. In the Retention Policies area, select Add to add a new policy.

b. Enter a name for the policy.

c. Specify the period for the Retention Policy.

Select the Infinite checkbox to ensure that objects with this policy are never deleted.

4. Select Save.

Create and set up a bucket for a CAS user
Configure a bucket to support a CAS user.

About this task

In ECS, management users create buckets and become the bucket owners. For CAS, object users
need to be set up as bucket owners. Follow this procedure to properly set up a CAS bucket and
make the CAS user the bucket owner. In this example, newcasadmin1 is a management user,
newcasuser1 is a CAS object user, and newcasns1 is the namespace. The procedure assumes that
the two users and namespace have been set up.

Procedure

1. Login to the ECS Portal as newcasadmin1.

2. At the ECS Portal, select Manage > Bucket.

3. Choose New Bucket.

4. Fill in the fields as shown below:

The table describes the replication details

Table 40 Replication Details

Field Value

Replication Group Your replication group

Set current user as Bucket Owner Check

CAS On

5. Choose Save.

6. Select Manage > User.

7. Make sure the Object User tab is active, search for newcasuser1 and choose Edit.

8. In Default Bucket, type newcasbucket1 and choose Set Bucket.

9. Choose Close.

10. Select Manage > Bucket.

11. Search for newcasbucket1 and choose Edit bucket.

12. In Bucket Owner, type newcasuser1.

13. Choose Save.

CAS

ECS Data Access Guide 109



Set up a CAS object user
Set up an object user to use CAS.

About this task

When you set up an object user, you can assign CAS features to the profile that make up the
elements of a CAS profile. You will be able to view the resulting PEA file for use in your CAS
applications.

Procedure

1. At the ECS Portal, select Manage > Users.

2. To edit the configuration of an existing object user, choose the Edit action associated with
the user.

3. In the CAS area, type a password (secret) or choose Generate to have the portal create
one for you.

4. Choose Set Password.

5. Choose Generate PEA File to generate the PEA file your application needs to authenticate
to the CAS storage on ECS.

6. By setting a default bucket, every action the user takes that does not specify a bucket uses
the specified default bucket. Type the name of the default bucket and choose Set Bucket.

7. Choose Add Attribute to add a metadata tag to the user.

8. Add the metadata tag name and value.

See the CAS SDK documentation for more info on metadata tags.

9. Choose Save Metadata.

Set up bucket ACLs for CAS
Edit a bucket's access control list to limit a user's access.

About this task

Some ECS bucket ACLs map to CAS permissions and some have no meaning for CAS data.

Procedure

1. At the ECS Portal, select Manage > Bucket.

2. To edit the ACLs of an existing bucket, choose the Edit ACL action associated with the
existing bucket.

3. Choose the Edit associated with the user.

4. Modify the permissions.

The table lists the Bucket ACLs details

Table 41 Bucket ACLs

ECS ACL ACL definition

READ Read, Query, and Exist capabilities

WRITE Write and Litigation Hold capabilities

CAS

110 ECS Data Access Guide



Table 41 Bucket ACLs (continued)

ECS ACL ACL definition

FULL_CONTROL Read, Delete, Query, Exist, Clip Copy, Write,
Litigation Hold

PRIVILEDGED_WRITE Privileged Delete

DELETE Delete

Note: Other ECS ACLs have no meaning to CAS.

5. Select Save.

6. You can also edit the ACLs at the group level. Groups are predefined and membership in the
group is automatic based on user criteria. Choose Group ACLs.

7. Choose Add.

8. Select the group you want to edit from the Group Name list.

The table lists the Bucket ACL groups details

Table 42 Bucket ACL groups

Bucket ACL group Description

public All users authenticated or not.

all users All authenticated users.

other Authenticated users but not the bucket
owner.

log delivery Not supported.

9. Edit the ACLs and select Save.

ECS Management APIs that support CAS users
Describes ECS Management API resources that you can use to manage CAS user and profile
settings.

ECS Management API resource descriptions:

l <ip address>?name=<name>,password=<password> : Authenticates you with the CAS
API as an alternative to PEA file.

Note: You need the name and password from the PEA file.

l GET /object/user-cas/secret/{uid} : Gets the CAS secret for the specified user.

l GET /object/user-cas/secret/{namespace}/{uid}: Gets the CAS secret for the
specified namespace and user.

l POST /object/user-cas/secret/{uid}: Creates or updates the CAS secret for a
specified user.

l GET /object/user-cas/secret/{namespace}/{uid}/pea: Generates a PEA file for
the specified user.

l POST /object/user-cas/secret/{uid}/deactivate: Deletes the CAS secret for a
specified user.

CAS

ECS Data Access Guide 111



l GET /object/user-cas/bucket/{namespace}/{uid}: Gets the default bucket for the
specified namespace and user.

l GET /object/user-cas/bucket/{uid}: Gets the default bucket for a specified user.

l POST /object/user-cas/bucket/{namespace}/{uid}: Updates the default bucket for
the specified namespace and user.

l GET /object/user-cas/applications/{namespace}: Gets the CAS registered
applications for a specified namespace.

l POST /object/user-cas/metadata/{namespace}/{uid}: Updates the CAS registered
applications for a specified namespace and user.

l GET /object/user-cas/metadata/{namespace}/{uid}: Gets the CAS user metadata
for the specified namespace and user.

See the ECS API Reference for more information.

Content Addressable Storage (CAS) SDK API support

Supported versions

ECS supports the CAS build 3.1.544 or higher. Additionally you should verify that your ISV’s
application supports ECS.

More information about ECS CAS support is provided in Setting up CAS support in ECS.

CAS Query support

CAS Query is supported beginning with ECS 2.2.

Note: In ECS, CAS Query operations return results based on the creation time of the existing
C-Clip and the deletion time of the deleted C-Clip (reflection). In EMC Centera, query
operations return results based on the write-time of the object.

Unsupported APIs in ECS versions before ECS 3.0

CAS SDK API calls not supported in versions of ECS prior to ECS 3.0:

l FPClip_EnableEBRWithClass

l FPClip_EnableEBRWithPeriod

l FPClip_SetRetentionHold

l FPClip_TriggerEBREvent

l FPClip_ TriggerEBREventWithClass

l FPClip_ TriggerEBREventWithPeriod

l FPClip_GetEBRClassName

l FPClip_GetEBREventTime

l FPClip_GetEBRPeriod

l FPClip_GetRetentionHold

l FPClip_IsEBREnabled

ECS CAS error codes
The error codes that can be generated by the CAS head are listed in the following table.

The table lists the error code details

CAS

112 ECS Data Access Guide

http://doc.isilon.com/ECS/3.2/API/index.html


Table 43 Error Cdes

Value Error name Description

10001 FP_INVALID_NAME The name that you have used is not XML compliant.

10002 FP_UNKNOWN_OPTION You have used an unknown option name with
FPPool_SetIntOption() or FPPool_GetIntOption().

10003 FP_NOT_SEND_REQUEST_ERR An error occurred when you sent a request to the
server. This internal error was generated because the
server could not accept the request packet. Verify all
LAN connections and try again.

10004 FP_NOT_RECEIVE_REPLY_ERR No reply was received from the server. This internal
error was generated because the server did not send a
reply to the request packet. Verify all LAN connections
and try again.

10005 FP_SERVER_ERR The server reports an error. An internal error on the
server occurred. Try again.

10006 FP_PARAM_ERR You have used an incorrect or unknown parameter.
Example: Is a string-variable too long, null, or empty
when it should not be? Does a parameter have a limited
set of values? Check each parameter in your code.

10007 FP_PATH_NOT_FOUND_ERR This path does not correspond to a file or directory on
the client system. The path in one of your parameters
does not point to an existing file or directory. Verify the
path in your code.

10008 FP_CONTROLFIELD_ERR The server reports that the operation generated a
"Controlfield missing" error. This internal error was
generated because the required control field was not
found. Try again. (Obsolete fromv2.0.)

10009 FP_SEGDATA_ERR The server reports that the operation generated a
"Segdatafield missing" error. This internal error was
generated because the required field containing the
blob data was not found in the packet. Try again.
(Obsolete fromv2.0.)

10010 FP_DUPLICATE_FILE_ERR A duplicate CA already exists on the server. If you did
not enable duplicate file detection, verify that you have
not already stored this data and try again.

10011 FP_OFFSET_FIELD_ERR The server reports that the operation generated an
"Offsetfield missing" error. This internal error was
generated because the offset field was not found in the
packet. Try again. (Obsolete fromv2.0.)

10012 FP_OPERATION_NOT_SUPPORTED This operation is not supported. If FPClip_Write(),
FPTag_GetSibling(), FPTag_GetPrevSibling(),
FPTag_GetFirstChild() or FPTag_Delete() returned
this error, then this operation is not supported for C-
Clips opened in 'flat' mode. If FPStream returned this
error, then you are trying to perform an operation that
is not supported by that stream.

CAS

ECS Data Access Guide 113



Table 43 Error Cdes (continued)

10013 FP_ACK_NOT_RCV_ERR A write acknowledgement was not received. Verify your
LAN connections and try again.

10014 FP_FILE_NOT_STORED_ERR Could not write the blob to the server ORcould not find
the blob on the server. This internal error was
generated because the store operation of the blob was
not successful. Verify that the original data was
correctly stored, verify your LAN connections and try
again.

10015 FP_NUMLOC_FIELD_ERR The server reports that the operation generated a
"Numlockfield missing" error. This internal error was
generated because the numlock field was not found in
the packet. Try again. (Obsolete fromv2.0.)

10016 FP_SECTION_NOT_FOUND_ERR The GetSection request could not retrieve the defined
section tag. This internal error was generated because
a required section is missing in the CDF. Verify the
content of your code and try again. (Obsolete
fromv2.0.)

10017 FP_TAG_NOT_FOUND_ERR The referenced tag could not be found in the CDF. This
internal error was generated because information is
missing from the description section in the CDF. Verify
the content of your code and try again.

10018 FP_ATTR_NOT_FOUND_ERR Could not find an attribute with that name. If
FPTag_GetXXXAttribute() returned this error, then the
attribute was not found in the tag. If
FPTag_GetIndexAttribute() returned this error, then
the index parameter is larger than the number of
attributes in the tag.

10019 FP_WRONG_REFERENCE_ERR The reference that you have used is invalid. The
reference was not opened, already closed, or not of the
correct type.

10020 FP_NO_POOL_ERR It was not possible to establish a connection with a
cluster. The server could not be located. This means
that none of the IP addresses could be used to open a
connection to the server or that no cluster could be
found that has the required capability. Verify your LAN
connections, server settings, and try again.

10021 FP_CLIP_NOT_FOUND_ERR Could not find the referenced C-Clip in the cluster.
Returned by FPClip_Open(), it means the CDF could
not be found on the server. Verify that the original data
was correctly stored and try again.

10022 FP_TAGTREE_ERR An error exists in the tag tree. Verify the content of
your code and try again.

10023 FP_ISNOT_DIRECTORY_ERR A path to a file has been given but a path to a directory
is expected. Verify the path to the data and try again.

10024 FP_UNEXPECTEDTAG_ERR Either a "file" or "folder" tag was expected but not
given. An unexpected tag was found when retrieving
the CDF. The CDF is probably corrupt.

CAS

114 ECS Data Access Guide



Table 43 Error Cdes (continued)

10025 FP_TAG_READONLY_ERR The tag cannot be changed or deleted (it is probably a
top tag). Verify your program logic.

10026 FP_OUT_OF_BOUNDS_ERR The options parameter is out of bounds. One of the
function parameters exceeds its preset limits. Verify
each parameter in your code.

10027 FP_FILESYS_ERR A file system error occurred, for example an incorrect
path was given, or you are trying to open an unknown
file or a file in the wrong mode. Verify the path and try
again.

10029 FP_STACK_DEPTH_ERR You have exceeded the nested tag limit. Review the
structure of your content description and try again.
Deprecated.

10030 FP_TAG_HAS_NO_DATA_ERR You are trying to access blob data of a tag that does
not contain blob data.

10031 FP_VERSION_ERR The C-Clip has been created using a more recent
version of the client software than you are using.
Upgrade to the latest version.

10032 FP_MULTI_BLOB_ERR The tag already has data associated with it. You need to
create a new tag to store the new data or delete this
tag and recreate it and try again.

10033 FP_PROTOCOL_ERR You have used an unknown protocol option (Only HPP
is supported). Verify the parameters in your code. It is
also possible that an internal communication error
occurred between the server and client. If you have
verified your code and the problem persists then you
need to upgrade to the latest client and server versions.

10034 FP_NO_SOCKET_AVAIL_ERR No new network socket is available for the transaction.
Reduce the number of open transactions between the
client and the server or use the function
FPPool_SetGlobalOption() to increase the number of
available sockets with
FP_OPTION_MAXCONNECTIONS.

10035 FP_BLOBIDFIELD_ERR A BlobID field (the Content Address) was expected but
not given. Upgrade to the latest client and server
versions. (Obsolete fromv2.0.)

10036 FP_BLOBIDMISMATCH_ERR The blob is corrupt: a BlobID mismatch occurred
between the client and server. The Content Address
calculation on the client and the server has returned
different results. The blob is corrupt. If FPClip_Open()
returns this error, it means the blob data or metadata of
the C-Clip is corrupt and cannot be decoded.

10037 FP_PROBEPACKET_ERR The probe packet does not contain valid server
addresses. Upgrade to the latest client and server
versions. (Obsolete fromv2.0.)

CAS

ECS Data Access Guide 115



Table 43 Error Cdes (continued)

10038 FP_CLIPCLOSED_ERR (Javaonly.) You tried to perform an operation on a
closed C-Clip. This operation requires access to an
open C-Clip. Verify your code and try again.

10039 FP_POOLCLOSED_ERR (Javaonly.) You tried to perform an operation on a
closed pool. This operation requires access to an open
pool. Verify your code and LAN connections and try
again.

10040 FP_BLOBBUSY_ERR The blob on the cluster is busy and cannot be read from
or written to. You tried to read from or write to a blob
that is currently busy with another read/write
operation. Try again.

10041 FP_SERVER_NOTREADY_ERR The server is not ready yet. This error can occur when a
client tries to connect to the server to execute an
operation and the nodes with the access role are
running but the nodes with the storage role have not
been initialized yet. This error can also occur when not
enough mirror groups are found on the server. Allow
the SDK to perform the automatic number of
configured retries.

10042 FP_SERVER_NO_CAPACITY_ERR The server has no capacity to store data. Enlarge the
server's capacity and try again.

10043 FP_DUPLICATE_ID_ERR The application passed in a sequence ID that was
previously used.

10044 FP_STREAM_VALIDATION_ERR A generic stream validation error occurred.

10045 FP_STREAM_BYTECOUNT_MISMATCH
_ ERR

A generic stream byte count mismatch was detected.

10101 FP_SOCKET_ERR An error on the network socket occurred. Verify the
network.

10102 FP_PACKETDATA_ERR The data packet contains wrong data. Verify the
network, the version of the server or try again later.

10103 FP_ACCESSNODE_ERR No node with the access role can be found. Verify the
IP addresses provided with FPPool_Open().

10151 FP_OPCODE_FIELD_ERR The Query Opcode field is missing from the packet.

10152 FP_PACKET_FIELD_MISSING_ERR The packet field is missing.

10153 FP_AUTHENTICATION_FAILED_ERR Authentication to get access to the server failed. Check
the profile name and secret.

10154 FP_UNKNOWN_AUTH_SCHEME_ERR An unknown authentication scheme has been used.

10155 FP_UNKNOWN_AUTH_PROTOCOL_ER
R

An unknown authentication protocol has been used.

10156 FP_TRANSACTION_FAILED_ERR Transaction on the server failed.

10157 FP_PROFILECLIPID_NOTFOUND_ERR No profile clip was found.

CAS

116 ECS Data Access Guide



Table 43 Error Cdes (continued)

10158 FP_ADVANCED_RETENTION_DISABLE
D_ ERR

The Advanced Retention Management feature is not
licensed or enabled for event-based retention (EBR)
and retention hold.

10159 FP_NON_EBR_CLIP_ERR An attempt was made to trigger an EBRevent on a C-
Clip that is not eligible to receive an event.

10160 FP_EBR_OVERRIDE_ERR An attempt was made to trigger or enable the event-
based retention period/class of a C-Clip a second time.
You can set EBR information only once.

10161 FP_NO_EBR_EVENT_ERR The C-Clip is under event-based retention protection
and cannot be deleted.

10162 FP_RETENTION_OUT_OF_BOUNDS_E
RR

The event-based retention period being set does not
meet the minimum/maximum rule.

10163 FP_RETENTION_HOLD_COUNT_ERR The number of retention holds exceeds the limit of 100.

10164 FP_METADATA_MISMATCH_ERR Mutable metadata mismatch found.

10201 FP_OPERATION_REQUIRES_MARK The application requires marker support but the stream
does not provide that.

10202 FP_QUERYCLOSED_ERR The FP Query for this object is already closed. (Java
only).

10203 FP_WRONG_STREAM_ERR The function expects an input stream and gets an
output stream or vice-versa.

10204 FP_OPERATION_NOT_ALLOWED The use of this operation is restricted or this operation
is not allowed because the server capability is false.

10205 FP_SDK_INTERNAL_ERR An SDK internal programming error has been detected.

10206 FP_OUT_OF_MEMORY_ERR The system ran out of memory. Check the system's
capacity.

10207 FP_OBJECTINUSE_ERR Cannot close the object because it is in use. Check your
code.

10208 FP_NOTYET_OPEN_ERR The object is not yet opened. Check your code.

10209 FP_STREAM_ERR An error occurred in the generic stream. Check your
code.

10210 FP_TAG_CLOSED_ERR The FP Tag for this object is already closed. (Java
only.)

10211 FP_THREAD_ERR An error occurred while creating a background thread.

10212 FP_PROBE_TIME_EXPIRED_ERR The probe limit time was reached.

10213 FP_PROFILECLIPID_WRITE_ERR There was an error while storing the profile clip ID.

10214 FP_INVALID_XML_ERR The specified string is not valid XML.

10215 FP_UNABLE_TO_GET_LAST_ERROR The call to FPPool_GetLastError() or
FPPool_GetLastErrorInfo() failed. The error status of
the previous function call is unknown; the previous call
may have succeeded.

CAS

ECS Data Access Guide 117



Table 43 Error Cdes (continued)

10216 FP_LOGGING_CALLBACK_ERR An error occurred in the application-defined FP Logging
callback.

CAS

118 ECS Data Access Guide



CHAPTER 5

ECS Management REST API

This section describes how to access and authenticate with the ECS Management REST API and
provides a summary of the API paths.

l ECS Management REST API introduction............................................................................120
l Authenticate with the ECS Management REST API.............................................................120

ECS Data Access Guide 119



ECS Management REST API introduction
You can configure and manage the object store using the ECS REST Management API. Once the
object store is configured, you can perform object create, read, update, and delete operations
using the ECS-supported object and file protocols.

For more information about the ECS Management REST API, see these topics:

l Authenticate with the ECS Management REST API
l REST API for Object Control summary

In addition, you can see the ECS REST API REFERENCE Guide which is autogenerated from the
source code and provides a reference for the methods available in the API.

Authenticate with the ECS Management REST API
ECS uses a token-based authentication system for REST API calls. This section provides examples
of authenticating with the ECS API, with and without cookies.

When you are authenticated by ECS, the ECS API returns an authentication token. You can use
this token for authentication in subsequent calls.

l If the client automatically follows redirects, the ECS API returns an HTTP 401 code. You must
then log in and authenticate to obtain a new token.

l If the client does not automatically follow redirects, the ECS API returns an HTTP 302 code.
The 302 code directs the client to where it must get re-authenticated.

You can retrieve and use authentication tokens by:

l Saving the X-SDS-AUTH-TOKEN cookie from a successful authentication request and sending
that cookie with subsequent requests.

l Reading the X-SDS-AUTH-TOKEN HTTP header from a successful authentication request and
copying that header into any subsequent request.

The ECS API is available on port:4443. Clients access ECS by issuing a login request in the form:

https://<ECS_IP>:4443/login

Authenticate without cookies
The following example shows how to use authentication tokens by reading the X-SDS-AUTH-
TOKEN HTTP header from a successful authentication request and copying that header into a
subsequent request. This example does not use cookies. The examples are written using the curl
command line tool and formatted for readability.

The following ECS API call executes a GET on the /login resource. The -u option specifies the
user of the basic authentication header. You must specify the user in the request. Upon successful
authentication, the ECS API returns a HTTP 200 code and the X-SDS-AUTH-TOKEN header
containing the encoded token.

The default ECS API token lifetime is 8 hours, which means that after 8 hours the token is no
longer valid. The default idle time for a token is two hours; after a two hour idle time, the token
expires. If you use an expired token, you are redirected to the /login URL. You will receive an
HTTP status error code 401 upon any subsequent use of the expired token.

curl -L --location-trusted -k https://10.247.100.247:4443/login -u "root:ChangeMe" -v

ECS Management REST API

120 ECS Data Access Guide



> GET /login HTTP/1.1
> Authorization: Basic cm9vdDpDaGFuZ2VNZQ==
> User-Agent: curl/7.24.0 (i386-pc-win32) libcurl/7.24.0 OpenSSL/0.9.8t zlib/1.2.5
> Host: 10.247.100.247:4443
> Accept: */*
>
< HTTP/1.1 200 OK
< Date: Tue, 26 Nov 2013 22:18:25 GMT
< Content-Type: application/xml
< Content-Length: 93
< Connection: keep-alive
< X-SDS-AUTH-TOKEN: 
BAAcQ0xOd3g0MjRCUG4zT3NJdnNuMlAvQTFYblNrPQMAUAQADTEzODU0OTQ4NzYzNTICAAEABQA5dXJu
                    
OnN0b3JhZ2VvczpUb2tlbjo2MjIxOTcyZS01NGUyLTRmNWQtYWZjOC1kMGE3ZDJmZDU3MmU6AgAC0A8=
<
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<loggedIn>
   <user>root</user>
</loggedIn>
* Connection #0 to host 10.247.100.247 left intact
* Closing connection #0
* SSLv3, TLS alert, Client hello (1):

You can copy the X-SDS-AUTH-TOKEN contents and pass it into the next API call through the
curl tool -H switch, as shown in the following example.

curl https://10.247.100.247:4443/object/namespaces
     -k 
     -H "X-SDS-AUTH-TOKEN: 
BAAcOHZLaGF4MTl3eFhpY0czZ0tWUGhJV2xreUE4PQMAUAQADTEzODU0OTQ4NzYzNTICAAEABQA5dXJu
                           
OnN0b3JhZ2VvczpUb2tlbjpkYzc3ODU3Mi04NWRmLTQ2YjMtYjgwZi05YTdlNDFkY2QwZDg6AgAC0A8="

<?xml version="1.0" encoding="UTF-8" standalone="yes"?> 
<namespaces>
   <namespace>
     <id>ns1</id>
     <link rel="self" href="/object/namespaces/namespace/ns1"/>
     <names>ns1</name>
   </namespace>
</namespaces>

Authenticate with cookies
This example shows how to use authentication tokens by saving the cookie from a successful
authentication request and passing the cookie into a subsequent request.

The following example uses the ?using-cookies=true parameter to indicate that you want to
receive cookies in addition to the normal HTTP header. The Curl command saves the
authentication token to a file named cookiefile in the current directory.

curl -L --location-trusted -k https://<ECS_IP>:4443/login?using-cookies=true 
-u "root:Password" 
-c cookiefile 
-v 
        

ECS Management REST API

ECS Data Access Guide 121



The following command passes the cookie with the authentication token using the Curl command
-b switch, and returns the user's tenant information.

curl -k https://10.247.100.247:4443/object/namespaces -b cookiefile -v 

<?xml version="1.0" encoding="UTF-8" standalone="yes"?> 
<namespaces>
   <namespace>
     <id>ns1</id>
     <link rel="self" href="/object/namespaces/namespace/ns1"/>
     <names>ns1</name>
   </namespace>
</namespaces>

Logout
The logout API ends a session.

Each user is allowed a maximum of 100 concurrent authentication tokens. Beyond this limit, the
system refuses any new connection for a user until tokens free up. Tokens can free up by expiring
naturally, or by issuing the following ECS API call:

GET https://<ECS_IP>:4443/logout

If you have multiple sessions running simultaneously, the following API call forces the termination
of all tokens related to the current user.

GET https://<ECS_IP>:4443/logout?force=true

The following example shows a logout request. You pass in the authentication token from header
or cookie to log out.

GET https://<ECS_IP>:4443/logout

X-SDS-AUTH-TOKEN:{Auth_Token}

The response should be HTTP 200.

ECS Management REST API whoami command
An ECS user can view their own user name, tenant association, and roles using the whoami API
call.

Request

GET https://<ECS_IP>:4443/user/whoami

The following responses shows the whoami output for the root user and for a user who has been
assigned to the NAMESPACE_ADMIN role for the ns1 namespace.

ECS Management REST API

122 ECS Data Access Guide



Response

HTTP 200

GET /user/whoami
<user>
  <common_name>root</common_name>
  <distinguished_name/>
  <namespace/>
  <roles>
    <role>SYSTEM_ADMIN</role>
  </roles>
</user>

HTTP 200

GET /user/whoami
<user>
  <common_name>fred@corp.sean.com</common_name>
  <distinguished_name/>
  <namespace>ns1</namespace>
  <roles>
    <role>NAMESPACE_ADMIN</role>
  </roles>
</user>

ECS Management REST API summary
The ECS Management REST API enables the ECS object store to be configured and managed.

The following table summarizes the ECS Management REST API.

Table 44 ECS Management REST API - methods summary

API Area Description

Configuration

Certificate /object-cert API to manage certificates. /object-cert/keystore API to

specify and rotate the certificate chain used by ECS.

Configuration Properties /config/object/properties API to set the user scope as GLOBAL or

NAMESPACE. This must be set before the first user is created. The default is GLOBAL.

In GLOBAL scope, users are global and are can be shared across namespaces. In this

case, the default namespace associated with a user determines the namespace for
object operations and there is no need to supply a namespace for an operation. In
NAMESPACE scope, a user is associated with a namespace. In this case, there might be

more than one user with the same name, each associated with a different namespace,
and a namespace must be provided for every operation.

Licensing /license API to add a license and retrieve license details.

Feature /feature/ServerSideEncryption API to retrieve the details of the

ServerSideEncryption feature.

Syslog /vdc/syslog/config API to manage Syslog configuration and send alerts to the

Syslog server for troubleshooting and debugging purposes.

SNMP /vdc/snmp/config API to manage SNMP configuration and send alerts to

SNMP server for troubleshooting and debugging purposes.

CAS

ECS Management REST API

ECS Data Access Guide 123



Table 44 ECS Management REST API - methods summary (continued)

API Area Description

CAS user profile /object/user-cas/secret API to assign secret keys to CAS users and

generate the Pool Entry Authorization (PEA) file. /object/user-cas/bucket
API to retrieve or update the default bucket of a specified CAS user. /object/
user-cas/applications/{namespace} API to retrieve the CAS registered

applications for a specified namespace. /object/user-cas/metadata/
{namespace}/{uid} API to retrieve or update the CAS user metadata for the

specified namespace and CAS user.

File system access

NFS /object/nfs API to create an NFS export based on an ECS bucket and enable

access to the export by UNIX users and groups. /object/nfs/users API to

manage mapping between ECS user/group and corresponding UNIX user ID. /
object/nfs/exports API to create and manage NFS exports.

Metering

Billing /object/billing API to meter object store usage at the namespace and bucket

level.

Migration

Transformation /object/transformation API to enable data transformation from a Centera

cluster.

Monitoring

Capacity /object/capacity API to retrieve the current managed capacity.

Dashboard /dashboard/zones/localzone API to retrieve the local VDC details, including

details on replication groups, storage pools, nodes, and disks. /dashboard/
zones/hostedzone API to retrieve the hosted VDC details, including details on

replication groups. /dashboard/replicationgroups/{id} API to retrieve

the replication group instance details. /dashboard/storagepools/{id} API

to retrieve the storage pool details, including details on the storage pool nodes. /
dashboard/nodes/{id} API to retrieve the node instance details, including node

instance disk and process details. /dashboard/disks/{id} API to retrieve the

disk instance details. /dashboard/processes/{id} API to retrieve the process

instance details. /dashboard/rglinks/{id} API to retrieve the replication

group link instance details. /dashboard/datatables/{id} API to retrieve the

replication group datatables instance details.

Events /vdc/events API to retrieve audit events for a specified namespace.

Alerts /vdc/alerts API to retrieve audit alerts.

Multi-tenancy

Namespace /object/namespaces API to create and manage a namespace. This API also sets

the retention period and quota for the namespace. For more information about
retention periods and quotas, see the ECS Administration Guide which is available from
the ECS Product Documentation page.

Geo-replication

ECS Management REST API

124 ECS Data Access Guide

https://community.emc.com/docs/DOC-62642


Table 44 ECS Management REST API - methods summary (continued)

API Area Description

Replication Group /data/data-service/vpools API to create and manage replication groups.

Temporary Failed Zone /tempfailedzone/ API to retrieve all temporary failed zones, or the temporary

failed zones for a specified replication group.

Provisioning

Base URL /object/baseurl API to create a Base URL that allows existing applications to

work with the ECS object store. For more information on Base URL, see the ECS
Administration Guide which is available from the ECS Product Documentation page.

Bucket /object/bucket API to provision and manage buckets. /object/bucket/
{bucketName}/lock API to lock bucket access. /object/bucket/
{bucketName}/tags API to add tags to a specified bucket. /object/
bucket/{bucketName}/retention API to set the retention period for a

specified bucket. /object/bucket/{bucketName}/quota API to set the

quota for a specified bucket. /object/bucket/{bucketName}/policy API

to add a policy for a specified bucket. /object/bucket/{bucketName}/
metadata API to add metadata for a specified bucket.

Data store /vdc/data-stores API to create datastores on file systems (/vdc/data-
stores/filesystems) or on commodity nodes (/vdc/data-stores/
commodity).

Node /vdc/nodes API to retrieve the nodes that are currently configured for the

cluster. /vdc/nodes/{nodename}/lockdown API to set the locked or

unlocked status for a specified node. /vdc/lockdown API to retrieve the locked or

unlocked status for a VDC.

Storage pool /vdc/data-services/varrays API to create and manage storage pools.

Virtual data center /object/vdcs API to add a VDC and specify the inter-VDC endpoints and secret

key for replication of data between ECS sites.

VDC keystore /vdc/keystore API to manage certificates for a VDC.

Support

Call home /vdc/callhome/ API for managing ESRS configuration and sending alerts to

ConnectEMC for troubleshooting and debugging purposes.

User Management

Authentication provider /vdc/admin/authnproviders API to add and manage authentication

providers.

Password group (Swift) /object/user-password API to generate a password for use with OpenStack

Swift authentication.

Secret key /object/user-secret-keys API to assign secret keys to object users and to

manage secret keys.

Secret key self-service /object/secret-keys API to enable S3 users to create a new secret key that

enables them to access objects and buckets within their namespace in the object
store.

ECS Management REST API

ECS Data Access Guide 125

https://community.emc.com/docs/DOC-62642


Table 44 ECS Management REST API - methods summary (continued)

API Area Description

User (Object) /object/users API to create and manage object users. Object users are always

associated with a namespace. The API returns a secret key that can be used for S3
access. An object user assigned an S3 secret key can change it using the REST API. /
object/users/lock. API to lock user access. /object/users/
{userName}/tags. API to associate tags with a user ID. Tags are in the form of

name=value pairs.

User (management) /vdc/users API to create and manage users. Management users can be assigned

to the System Administrator role or to the Namespace Administrator role. You can use
this API the change the local management user password.

ECS Management REST API

126 ECS Data Access Guide



CHAPTER 6

ECS HDFS

This section describes the support that ECS provides for ECS HDFS.

l ECS HDFS Introduction....................................................................................................... 128
l Configuring Hadoop to use ECS HDFS ................................................................................129
l Hadoop authentication modes..............................................................................................130
l Migration from a simple to a Kerberos Hadoop cluster.........................................................132
l File system interaction......................................................................................................... 133
l Supported Hadoop applications........................................................................................... 134
l Integrate a simple Hadoop cluster with ECS HDFS.............................................................. 134
l Integrate a secure Hadoop cluster with ECS HDFS ............................................................. 147

ECS Data Access Guide 127



ECS HDFS Introduction
ECS HDFS is a Hadoop Compatible File System (HCFS) that enables you to run Hadoop 2.x
applications on top of the ECS storage infrastructure.

When using ECS HDFS, the Hadoop distribution is configured to run against the ECS HDFS
instead of the built-in Hadoop file system. The following illustration shows how ECS HDFS
integrates with an existing Hadoop cluster.

Figure 5 ECS HDFS integration in a Hadoop cluster

Hadoop Cluster

Resource
Manager

Hadoop Client

ECS Client Library

Node Manager

MapReduce 
Task

Appliance Software

MapReduce Request

Node Manager

MapReduce 
Task

Node Manager

MapReduce 
Task

ECS  
nodes

ECS  
nodes

ECS
nodes

ECS Client Library ECS Client Library

In a Hadoop environment that is configured to use ECS HDFS, each of the ECS nodes functions as
a traditional Hadoop NameNode and DataNode, so that all of the ECS nodes can accept and
service HDFS requests.

When you set up the Hadoop client to use ECS HDFS instead of traditional HDFS, the
configuration points to ECS HDFS to do all the HDFS activity. On each ECS HDFS client node, any
traditional Hadoop component would use the ECS Client Library (the ViPRFS JAR file) to perform
the HDFS activity.

To integrate ECS HDFS with an existing Hadoop environment, you must have the following:

ECS HDFS

128 ECS Data Access Guide



l A Hadoop cluster that is already installed and configured. The following distributions are
supported:

n Hortonworks HDP 2.6.2

l A Hadoop cluster that is installed and configured to support ECS HDFS, which requires:

n A file system-enabled bucket for HDFS access.
Note: Only one bucket is supported per Hadoop cluster and the ECS HDFS must be the
default file system.

n The ECS Client Library that is deployed to the cluster.

l For a Hadoop cluster that uses Kerberos or Kerberos with Active Directory.

n Kerberos configuration files and service principal keytab files that are deployed to the ECS
cluster.

n Secure metadata that is deployed to the bucket.

Configuring Hadoop to use ECS HDFS
Hadoop stores system configuration information in several files, including core-site.xml,
hdfs-site.xml and hive-site.xml. The ECS HDFS configuration requires you to edit core-
site.xml.

Add, or modify several types of properties in the core-site.xml file, including:

l ECS HDFS Java classes: This set of properties defines the ECS HDFS implementation classes
that are contained in the ECS HDFS Client Library.

l File system location properties: These properties define the file system URI (scheme and
authority) to use when running Hadoop jobs, and the IP addresses or FQDNs of the ECS data
nodes for a specific ECS file system.

l Kerberos realm and service principal properties: These properties are required only in a Hadoop
environment where Kerberos is present. These properties map Hadoop and ECS HDFS users.

The core-site.xml file resides on each node in the Hadoop cluster. Add the same properties to
each instance of core-site.xml.

Note:
When modifying configuration files, you should use the management interface (Ambari) rather
than manually editing files. Changes that you make using the Ambari management interface
are persisted across the cluster.

Note: HDFS now supports automatic trash removal for HDFS files that a user removes. In
traditional Hadoop, the fs.rash.interval hadoop setting defines the minimum time that
is taken to clean up the removed files from a users trash directory, and
fs.trash.checkpoint.interval defines the time interval between active and inactive
period, the trash cleanup thread takes before checking for removal of the candidates. In this
release of ECS, the storage administrator manages the trash removal on the ECS. Use the
cf_client command, the bucket, namespace of a Hadoop file system, and maintenance
interval settings to define maintenance intervals for all trash folders.

ECS HDFS

ECS Data Access Guide 129



Hadoop authentication modes
Hadoop supports two different modes of operation for determining the identity of a user, simple
and Kerberos.

Simple

In simple mode, the identity of a client process is determined by the host operating system.
On Unix-like systems, the user name is the equivalent of whoami.

Kerberos

In a Hadoop environment with Kerberos, the identity of a client process is determined by its
Kerberos credentials. For example, you can use the kinit utility to obtain a Kerberos ticket-
granting-ticket (TGT) and use klist to determine your current principal. When mapping a
Kerberos principal to an HDFS username, using the auth_to_local Hadoop property, all
components except for the primary are dropped. For example, a principal todd/
foobar@CORP.COMPANY.COM acts as the simple username “todd” on HDFS.

ECS HDFS integrates with Hadoop clusters configured to use either simple or Kerberos
authentication modes.

When the Hadoop cluster uses Kerberos, you can configure ECS to grant access to users with
Kerberos principals in the form user@REALM.COM. Alternatively, where ECS uses AD to
authenticate users, you can configure a one-way trust between the Kerberos environment and AD
so that users can authenticate using their AD credentials, in the form user@DOMAIN.COM.

The permissions of newly created files and directories are restricted by the umask
(fs.permissions.umask-mode). The recommended umask is 022.

Accessing the bucket as a file system
The HDFS file system storage is provided by an ECS bucket. When you create a bucket, you must
configure it in ECS so that it is available as a file system.

ECS (through the ECS Client Library) uses the permissions configured against the bucket and the
settings in the Hadoop core-site.xml file to determine access to the root file system (bucket).
You must ensure that you have configured sufficient access to enable Hadoop users and services
to create files and directories in the bucket.

In general, all file and directory operations must be permitted by the bucket ACLs. Additionally,
each individual file and directory object within the bucket has its own object ACL and all object
operations must also be permitted by the object ACL. If the object operation does not satisfy the
bucket ACL, the operation is denied. If the object operation does not satisfy the object ACL, the
operation is denied.

An exception to this is that the bucket owner and the Hadoop superuser and members of the
Hadoop supergroup, defined in hdfs-site.xml, are always permitted to perform any file system
operation regardless of bucket and object ACLs.

You can set bucket ACLs by explicitly adding user ACLs on the bucket for every user, or by
specifying custom group ACLs. For more information, see Bucket Custom Group ACLs and Default
Group. The bucket owner must be an ECS object user. Other users do not need to be ECS object
users and can be UNIX usernames from the Hadoop cluster.

A further exception is that, unlike normal ECS buckets, a file system-enabled ECS bucket has a
special object that represents the root directory and a special object for each directory. The root
directory object does not exist in a new file system-enabled bucket does not have a root directory
object, but is created when the first file system operation is performed on the bucket. When such
a root directory object exists, some ECS HDFS API calls do not perform bucket ACL checks.

ECS HDFS

130 ECS Data Access Guide



To ensure consistent permissions regardless of the API call, you should ensure that the root
directory object ACL duplicates the bucket ACL.

Once users have access to the file system, the files and directories that they create have
permissions determined by the umask property in the core-site.xml file.

Bucket Custom Group ACLs and Default Group
You can enable access to the bucket based on user ACLs or by assigning Custom Group ACLs.
Custom groups are names of user groups as defined on the Hadoop cluster and enable Hadoop
users to access the bucket using HDFS.

Typical groups defined on the Hadoop cluster are hdfs (with user hdfs), hadoop (typically
includes all service users), and users (includes other non-service users who access applications
on the Hadoop cluster). You can create corresponding groups in the ECS Portal and assign
permissions to them.

It is also possible to assign a Default Group for the bucket. The Default Group is the group
assigned to the root (/) file system. For example, if the bucket owner is hdfs and the Default
Group is set to hadoop, / is set to hdfs:hadoop as user and group, respectively. A Default
Group is also a custom group and displays in the Custom Group ACL list.

If a Default Group is not defined, the root of the file system has no group as shown in the following
example.

drwx---rwx+ - hdfs 0 2018-03-09 12:30 /

If a Default Group of hadoop is defined, the ownership and permissions display as shown in the
following example.

drwxrwxrwx+ - hdfs hadoop 0 2018-03-09 12:28 /

These permissions are not inherited by directories created in the root.

If a Default Group is not assigned, the bucket owner (the owner of the root file system) can assign
a group when accessing the HDFS from Hadoop, using thehdfs dfs -chgrp and hdfs dfs -
chmod commends.

Hadoop superuser and supergroup

The superuser in a Hadoop environment is the user that starts the namenode, usually hdfs or
hdfs@REALM.COM. In an ECS HDFS configuration, the superuser is the bucket owner. Therefore,
if you want the Hadoop superuser to have superuser access to the ECS bucket, you should ensure
that the bucket is owned by hdfs, or hdfs@REALM.COM, or hdfs@DOMAIN.COM if you are using
Active Directory to authenticate users in the Hadoop environment.

To ensure that the Hadoop client has superuser access, you can also configure a superuser group
using the dfs.permissions.superusergroup property in the core-site.xml file. In simple
mode, the check to determine if a user is a member of the supergroup is made on the client by
checking the value of the dfs.permissions.supergroup Hadoop property. In Kerberos mode,
the check to determine if a user is a member of the supergroup is made on the ECS server.

In general, when buckets are configured for access by the Hadoop superuser or by a Hadoop
superuser group, the superuser has full (read and write) access to the bucket. Users without
superuser privileges normally have read access, but that depends on how the bucket was created.
A user does not have to be an ECS object user to be granted access to the bucket. The name must
match a Unix local, Kerberos, or AD user (depending on the authentication mode being used).

ECS HDFS

ECS Data Access Guide 131



It is a best practice to ensure that the hdfs user or hdfs principal either be the bucket owner
(superuser), or a member of a superuser group.

Multi-protocol (cross-head) access
ECS supports the ability to write data to a bucket using the S3 protocol and to make that data
available as files through HDFS.

Multi-protocol access (also referred to as cross-head access) means objects written to the bucket
using the S3 protocol can become the subject of Hadoop jobs, such as MapReduce. Similarly,
directories and files written by HDFS can be read and modified using S3 clients.

In order that data written using S3 can be accessed as files, the bucket administrator can set a
Default Group on the bucket and can set default permissions for files and directories owned by
that group. This default Unix group is assigned to objects when they are created from S3 so that
they have an owner and have group membership and group permissions that enable HDFS access
from the Hadoop cluster.

Files created using HDFS and accessed using the S3 protocol are not affected by the default
permissions as they are only applied to objects created using the S3 protocol.

Proxy user
ECS HDFS supports the use of the Hadoop proxy user.

A proxy user allows a Hadoop user to submit jobs or access HDFS on behalf of another user. The
proxy user functionality can be compared to the UNIX/Linux effective user capabilities where
running a command as one user assumes the identity of a different user as identified by the
permission settings on the executable.

You configure proxy users for secure impersonation on a per-namespace (or per-bucket) basis.
Proxy users are supported in simple and Kerberos mode. In either mode, the administrator can
restrict proxy impersonations using the hadoop.proxyuser.*.* properties.

Equivalence user
ECS converts three part principals to two part principals.

A Kerberos principal is generally in the form primary/instance@realm, although the instance
is not required, so primary@realm principal applies to all hosts in the realm. If the instance is
specified, it may be used to designate a specific host, such as joe/
host1.company.com@COMPANY.COM or joe/host2.company.com@COMPANY.COM. These
two principals are for the same primary user (joe), but are targeted to only be granted
authentication on the hosts (host1 or host2).

This type of user principal is recommended to provide an enhanced level of security. From an ECS
perspective, each principal would have to be added to ECS. This becomes quite cumbersome, so
the equivalence user feature allows ECS authorization to be performed by using a two-part
principal (primary@realm), even if three-part principals are being used.

Migration from a simple to a Kerberos Hadoop cluster
ECS provides support for migrating from a simple Hadoop environment to a Hadoop environment
secured by Kerberos.

When ECS HDFS is integrated with a Hadoop environment that uses simple security, files and
directories created by Hadoop users, and processes, will be owned by non-secure users. If you
subsequently migrate the Hadoop cluster to use Kerberos security, the files and directories written
to ECS HDFS will no longer be accessible to those users.

ECS HDFS

132 ECS Data Access Guide



ECS provides a built-in migration feature that enables you to provide ECS with a mapping between
shortnames and Kerberos principals, so that files owned by non-secure shortnames will be
accessible as the mapped Kerberos principal.

Where you only have a small number of files that have been written by shortname users, you might
want to change them (using chown) to be owned by the Kerberos principal. However, where you
have a large number of files, the migration feature means you do not have to change their
ownership.

This feature is not implemented for buckets and you must change the bucket ACLs to allow access
by the Kerberos principals if you are relying on access by users. However, if you use group
membership as the primary means for enabling access, you do not have to change the bucket
ACLs.

ECS allows the use of groups to simplify access to buckets, files, and directories. Groups always
use UNIX simple names, so the group name associated with a bucket, file or directory is the same
when accessing them from a simple or Kerberized cluster. When accessing from a simple
environment, group membership is determined from the UNIX machine. When accessing from a
Kerberized cluster you can configure group membership by assigning the mapping. Refer to Map
group names for information on mapping group names.

When using AD credentials, the mapping between AD principals and UNIX principals is achieved by
removing the domain suffix, so user hdfs@domain.com becomes hdfs. This is not quite as
flexible as when using Kerberos principal mapping which allow mappings such as hdfs-
xx@realm.com to hdfs.

When using groups with AD, an authentication provider must have been configured in ECS so that
membership of the group can be checked.

Hadoop Kerberos authentication mode
When Kerberos and the ECS AD server are integrated, the Kerberos realm provides a single
namespace of users so that the Hadoop users authenticated with kinit are recognized as
credentialed ECS users.

In a Hadoop cluster running in Kerberos mode, there must be a one-way cross-realm trust from the
Kerberos realm to the AD realm used to authenticate ECS users.

The following identity translation properties in the core-site.xml file are used to ensure the
proper Hadoop-to-ECS user translation:

l fs.permissions.umask-mode: Set the value to 022.

l fs.viprfs.auth.anonymous_translation: Set the value to CURRENT_USER.

l fs.viprfs.auth.identity_translation: Set the value to CURRENT_USER_REALM so
the realm of users is auto-detected.

In addition, you must set the following properties in the core-site.xml file to define a service
principal:

l viprfs.security.principal: vipr/_HOST@REALM.COM where REALM.COM is replaced
by your Kerberos realm name.

File system interaction

When you are interacting directly with ECS HDFS, you might notice the following differences from
interaction with the standard HDFS file system:

ECS HDFS

ECS Data Access Guide 133



l Applications that expect the file system to be an instance of DistributedFileSystem do not
work. Applications hardcoded to work against the built-in HDFS implementation require
changes to use ECS HDFS.

l ECS HDFS does not support checksums of the data.

l When you use the listCorruptFileBlocks function, all blocks are reported as OK because ECS
HDFS has no notion of corrupted blocks.

l The replication factor is always reported as a constant N, where N=1. The data is protected by
the ECS SLA, not by Hadoop replication.

Supported Hadoop applications
ECS HDFS supports the majority of applications in the Hadoop ecosystem.

The following applications in the Hadoop ecosystem are supported:

l YARN

l MapRedeuce

l Pig

l Hive

l Spark

l Zookeeper

l Ambari

l Sqoop

l Flume

Integrate a simple Hadoop cluster with ECS HDFS
You can configure a Hadoop distribution to use the ECS storage infrastructure with ECS HDFS.

To perform this integration procedure, you must have:

l A working knowledge of your Hadoop distribution and its associated tools.

l The Hadoop credentials that allow you to log in to Hadoop nodes, to modify Hadoop system
files, and to start and stop Hadoop services.

The following steps must be performed:

1. Install Hortonworks HDP using Ambari

2. Create a bucket for HDFS using the ECS Portal

3. Plan the ECS HDFS and Hadoop integration

4. Obtain teh ECS HDFS installation and support package

5. Deploy the ECS HDFS Client Library (Not required if you have used Ambari Hortonworks for
ECS)

6. Configure ECS client properties.

7. Verify Hadoop access to ECS.

8. Relocate the default file system from HDFS to an ECS bucket

Once the configuration is complete, files in the default file system of the Hadoop cluster map to
files in ECS buckets. For example, /foo/bar on the default file system maps to viprfs://
<bucket_name>.<namespace>.<federation_name>/foo/bar.

ECS HDFS

134 ECS Data Access Guide



Install Hortonworks HDP using Ambari
Install the Ambari Server and use it install Hortonworks HDP.

About this task

The basic commands for installing and setting up the Ambari sever are provided in this procedure.
For more information on how to install the Ambari server, see the Hortonworks documentation.

Procedure

1. Download the Ambari repository.

wget -nv http://public-repo-1.hortonworks.com/ambari/centos7/2.x/updates/2.5.2.0/
ambari.repo -O /etc/yum.repos.d/ambari.repo

2. Install the Ambari server.

yum install -y ambari-server

3. Set up the Ambari server.

ambari-server setup -s

4. Start the Ambari server.

ambari-server start

5. Browse to http://ambari.example.com:8080/
6. On the Select Stack page, select the Hadoop version, HDP 2.6.2, and select the OS

version.

7. Select the Hadoop services that you want to enable.

8. Complete the installation wizard.

Create a bucket for HDFS using the ECS Portal
Use the ECS Portal to create a bucket configured for use with HDFS.

Before you begin

Ensure that you are assigned to the Namespace Administrator or a System Administrator role. If
you are a Namespace Administrator you can create buckets in your namespace. If you are System
Administrator you can create a bucket belonging to any namespace.

About this task

You must ensure that Hadoop users and services have access to the HDFS file system (the
bucket), and that files and directories are accessible to the appropriate users and groups. You can
do this in the following ways:

l Make the owner of the bucket the same as the Hadoop superuser, usually hdfs or
hdfs@REALM.COM.

ECS HDFS

ECS Data Access Guide 135

https://docs.hortonworks.com/HDPDocuments/Ambari-2.4.2.0/bk_ambari-installation/content/ch_Getting_Ready.html


l Enable access to the bucket by group membership:

n Assign a Default Group to the bucket. This automatically be assigns Custom Group ACLs.

n After bucket creation, add Custom Group ACLs for any other groups that need access.

l Enable access for individuals by adding User ACLs to the bucket.

l Ensure that the Hadoop users that need superuser access to the HDFS are part of the Hadoop
supergroup.

If you want object data written to the bucket using object protocols to be accessible from HDFS,
you should ensure that a default group is assigned to the bucket and that default file and directory
permissions are set for the group.

For more information about users and permissions, see Accessing the bucket as a file system and 
Example Hadoop and ECS bucket permissions.

Procedure

1. In the ECS Portal, select Manage > Buckets > New Bucket.

2. On the New Bucket page, at the Name field, enter a name for the bucket.

Note:
Do not use underscores in bucket names as they are not supported by the URI Java
class. For example, viprfs://my_bucket.ns.site/ does not work as it is an invalid
URI and is thus not understood by Hadoop.

3. In the Namespace field, select the namespace that the bucket will belong to.

4. In the Replication Group field, select a replication group or leave this field blank to use the
default replication group for the namespace.

5. In the Bucket Owner field, type the name of the bucket owner.

For a HDFS bucket, the bucket owner will usually be hdfs, or hdfs@REALM.COM for
Kerberos buckets. The Hadoop hdfs user requires superuser privileges on the HDFS; this
can be achieved by making hdfs the owner of the bucket. Other Hadoop users may also
require superuser privileges and these privileges are granted by assigning users to a group
and making that group a superuser group.

6. Do not turn on CAS.

Note: A bucket that is intended for use as HDFS cannot be used for CAS. The CAS field
is turned off when File System is turned on.

7. Turn on any other bucket features that you require.

You can turn on the following features for a HDFS bucket:

l Quota

l Server-side Encryption

l Metadata Search

l Access During Outage

l Compliance (see note)

l Bucket Retention

For information on each of these settings and how to configure them, refer to the ECS
Administration Guide which is available from the .ECS Product Documentation page.

Note:

ECS HDFS

136 ECS Data Access Guide

https://community.emc.com/docs/DOC-62642


A bucket that is compliance-enabled cannot be written to using the HDFS protocol.
However, data written using object protocols can be read from HDFS.

8. In the File System field, click On.

Once this feature is turned on, the fields for setting a default group for the file system/
bucket and for assigning group permissions for files and directories created in the bucket
are available.

9. In the Default Bucket Group field, type a name for the default bucket group.

This group is the group associated with the HDFS root file system and enables Hadoop users
who are members of the group to access the HDFS.

The default group could be a group, such as hdfs or hadoop to which the services that you
need to access the data on the HDFS belong, but it can be whatever group name makes
sense for your Hadoop configuration. For example, the administrator might want all S3 files
uploaded to the bucket to be assigned to group S3DataUsers. All S3 files will then have
this group assigned to them. On the Hadoop node, the Hadoop administrator will have users
that are members of the group S3DataUsers. S3DataUsers can be a Linux group, or an
AD group. When the Hadoop users want to access the S3 data, they can do so because the
files were uploaded and assigned to that group

You must specify the default group at bucket creation. If you do not, the group must be
assigned later from Hadoop by the file system owner.

10. In the Group File Permissions and Group Directory Permissions fields, set the default
permissions for files and directories created in the bucket using the object protocols.

You use these settings to apply UNIX group permissions to objects created using object
protocols. These permissions apply to the HDFS group (the Default Bucket Group) when the
object or directory is listed from Hadoop. For more information on setting the Default Group
and permissions for the file system, see Multi-protocol (cross-head) access.

a. In the Group File Permissions field, select the appropriate permission buttons. You
normally set Read and Execute permissions.

b. In the Group Directory Permissions field, select the appropriate permission buttons.
You normally set Read and Execute permissions.

11. Click Save to create the bucket.

Set custom group bucket ACLs
You can set a group ACL for a bucket in the ECS Portal and you can set bucket ACLs for a group
of users (Custom Group ACL), for individual users, or a combination of both. For example, you can
grant full bucket access to a group of users, but you can also restrict (or even deny) bucket access
to individual users in that group.

Before you begin

l This operation requires the System Administrator or Namespace Administrator role in ECS.

l A System Administrator can edit the group ACL settings for a bucket in any namespace.

l A Namespace Administrator can edit the group ACL settings for a bucket in the namespace in
which they are the administrator.

About this task

Custom group ACLs enable groups to be defined and for permissions to be assigned to the group.
The main use case for assigning groups to a bucket is to support access to the bucket as a file
system. For example, when making the bucket available for NFS or HDFS.

ECS HDFS

ECS Data Access Guide 137



Members of the UNIX group can access the bucket when it is accessed as a file system (using NFS
or HDFS).

Procedure

1. In the ECS Portal, select Manage > Buckets.

2. On the Bucket Management page, locate the bucket that you want to edit in the table and
select the Edit ACL action.

3. Click the Custom Group User ACLs tab to set the ACL for a custom group.

4. Click Add.

The Edit Custom Group page displays.

5. On the Edit Custom Group page, in the Custom Group Name field, type the name for the
group.

This name can be a Unix/Linux group, or an Active Directory group.

6. Select the permissions for the group.

At a minimum you should assign Read, Write, Execute, and Read ACL.

7. Click Save.

Set user bucket ACLs
You can set a user ACL for a bucket in the ECS Portal. ECS assigns permissions automatically to
the bucket owner. You can assign user ACLs to other Hadoop users to enable access to the
bucket/file system or alternatively they can gain access to the bucket by being a member of group
that has been assigned Custom Group ACLs.

Before you begin

l You must be an ECS Namespace Administrator or a System Administrator edit the ACL for a
bucket.

l If you are a Namespace Administrator you can edit the ACL settings for buckets belonging to
your namespace.

l If you are System Admin you can edit the ACL settings for a bucket belonging to any
namespace.

Procedure

1. In the ECS Portal, select Manage > Buckets.

2. On the Bucket Management page, locate the bucket you want to edit in the table and
select the Edit ACL action.

3. On the Bucket ACLs Management page, ensure the User ACLs tab is selected; this is the
default.

4. On the User ACLs tab, you can edit the permissions for a user that already has assigned
permissions, or you can add a user that you want to assign permissions for.

l To set (or remove) the ACL permissions for a user that already has permissions, select
Edit (or Remove) from the Action column in the ACL table.

l To add a user for whom you want to assign permissions, click Add and type the
username of the user that the permissions will apply to. Specify the permissions that you
want to apply to the user.

The user who you have set as the bucket owner already has default permissions assigned.

ECS HDFS

138 ECS Data Access Guide



The bucket in the following example is owned by the hdfs user and hdfs, as the owner, has
been given full control. Full control translates to read, write, and execute permissions in a
Hadoop/UNIX environment. The user sally has been give read and execute permissions to
access the bucket.

For more information on ACL privileges, see the ECS Administration Guide which is available
from the ECS Product Documentation page.

5. ClickSave.

Example Hadoop and ECS bucket permissions
Examples are provided in this topic to demonstrate the relationship between Hadoop users/groups
and the users/groups that are assigned permission to access the bucket using ECS User ACLs and
Custom Group ACLs.

When a bucket is created, ECS automatically assigns ACLs to the bucket owner and to the default
group, which is the group assignment for the bucket when accessed using HDFS. A bucket must
always have an owner, however, a bucket does not require an assigned default group. Users and
groups other than the bucket owner, that is, Custom Groups, can be assigned ACLs on the bucket.
ACLs assigned in this way translate to permissions for Hadoop users.

The table lists the example bucket permissions for file system access

Table 45 Example bucket permissions for file system access in a simple Hadoop cluster

Hadoop users and groups Bucket permissions Bucket/file system access

Bucket access using Group ACL

Users (service)

hdfs. mapred, yarn, hive, pig

Users (applications)

sally, fred

Groups

hdfs (hdfs)

hadoop (hdfs, mapred, yarn, hive,
pig)

users (sally, fred)

Supergroup

hdfs

Bucket owner

hdfs

Default Group

Default

Custom Group ACL

hadoop, users, hive,
spark (Full Control)

User ACL

hdfs (owner)

Custom Group ACLs must be set on the
bucket in the ECS Portal assign Full
Control on the bucket/root file system to
the hadoop,users, hive, and spark
groups. This example assumes that hdfs
is the superuser - the user that started
the namenode.

Bucket created by s3 user - crosshead access

Users (service)

hdfs. mapred, yarn, hive, pig

Users (applications)

sally, fred

Groups

hdfs (hdfs)

hadoop (hdfs, mapred, yarn, hive,
pig)

Bucket owner

s3user

Default Group

hadoop

(Group File
Permissions: Read,
Write

Where you want objects written by an S3
user to be accessible as files from HDFS, a
default group must be defined (hadoop)

so that Hadoop users and services have
permissions on the files due to group
membership. The default group
automatically has Custom Group ACLs on
the bucket/file system. The following
example shows that hadoop has been set

ECS HDFS

ECS Data Access Guide 139

https://community.emc.com/docs/DOC-62642


Table 45 Example bucket permissions for file system access in a simple Hadoop
cluster (continued)

Hadoop users and groups Bucket permissions Bucket/file system access

users (sally, fred)

Supergroup

hdfs

Group Directory
Permissions: Read,
Write, Execute)

Custom Group ACL

hadoop (default)

User ACL

s3user (owner), sally,
fred

default group and the root file system
permissions are 777:

drwxrwxrwx+ - s3user hadoop 0 
2018-03-09 12:28 / You can give 
users access either by adding 
User ACLs or by adding Custom 
Group ACLs for the group to 
which the users belong. 
                  

The table lists the example for bucket permissions for file system access

Table 46  Example bucket permissions for file system access in a Kerberized Hadoop cluster

Hadoop user Bucket perrmissions Bucket/file system access

Users (service)

hdfs@REALM.COM.
mapred@REALM.COM,
yarn@REALM.COM,
hive@REALM.COM,
pig@REALM.COM

Users (applications)

sally@REALM.COM,
fred@REALM.COM, ambari-
qa@REALM.COM

Groups

hdfs (hdfs@REALM.COM)

hadoop (hdfs@REALM.COM,
mapred@REALM.COM,
yarn@REALM.COM,
hive@REALM.COM,
pig@REALM.COM)

users (sally@REALM.COM,
fred@REALM.COM)

Supergroup

hdfs

Bucket owner

hdfs@REALM.COM

Default Group

hadoop

Custom Group ACL

hadoop (default),
users

User ACL

hdfs@REAL.COM
(owner)

Custom Group ACLs set on the bucket in
the Portal enable the hadoop and users
group to have permissions on the bucket/
root file system. User information from
the Hadoop cluster must be available to
ECS so that it can provide secure access
to the bucket. This information is provided
using bucket metadata and an example
metadata file is provided in Secure bucket
metadata.

Plan the ECS HDFS and Hadoop integration

Use the following table to verify that you have the information necessary to ensure a successful
integration.

ECS HDFS

140 ECS Data Access Guide



Table 47 ECS HDFS configuration prerequisites

Element What to do

Hadoop cluster Verify the cluster is installed and operational.

Record the admin credentials for use later in this procedure.

ECS cluster: ECS
nodes

Record the ECS node IP addresses for use later in this procedure.

ECS cluster: bucket HDFS requires that a bucket enabled for HDFS is created within an
ECS replication group. The bucket is accessed as a file system using
the namespace and bucket name.

Record the name of the bucket.

ECS cluster: tenant
namespace

Verify a tenant namespace is configured. Record the name.

Obtain the ECS HDFS installation and support package
The ECS HDFS Client Library, and HDFS support tools are provided in a HDFS Client ZIP file,
hdfsclient-<ECS version>-<version>.zip, that you can download from the ECS support
pages on support.emc.com.

The ZIP file contains /playbooks and /client directories. Before you unzip the file, create a
directory to hold the zip contents (your unzip tool might do this for you), then extract the
contents to that directory. After you extract the files, the directories will contain the following:

l /playbooks: Contains Ansible playbooks for configuring a secure Hadoop environment to talk
to ECS HDFS.

l /client: Contains the following files:

n ECS Client Library (ViPPRFS) JAR files (viprfs-client-<ECS version>-hadoop-
<Hadoop version>.jar): Used to configure different Hadoop distributions.

Deploy the ECS HDFS Client Library
Use this procedure to put the ECS HDFS Client Library JAR on the classpath of each client node in
the Hadoop cluster.

Before you begin

Obtain the ECS HDFS Client Library for your Hadoop distribution from the ECS support page as
described in Obtain the ECS HDFS installation and support package.

The HDFS Client Library uses the following naming convention viprfs-client-<ECS
version>-hadoop-<Hadoop version>.jar and the JAR file for use with ths release is listed
in the following table.

The table lists the ECS HDFS Client Libary details

Table 48 ECS HDFS Client Library

Hadoop
distribution

Version ECS HDFS JAR

Hortonworks HDP 2.6.2 viprfs-client-<ECS version>-hadoop-2.7.jar

ECS HDFS

ECS Data Access Guide 141



Note:

l When you upgrade to a later version of ECS, you must deploy the ECS HDFS Client Library
for the release to which you have upgraded.

Procedure

1. Log in to a node that has password-less SSH access to all Hadoop nodes.

2. Run the classpath command to get the list of directories in the classpath:

# hadoop classpath
3. Deploy the client JAR file to all Hadoop nodes by performing the following steps:

a. Create a text file named masters that contains a list of IP addresses or FQDNs for all
Hadoop master nodes, one per line.

b. Create a text file named workers that contains a list of IP addresses or FQDNs for all
Hadoop worker nodes, one per line.

c. Create the directory /usr/lib/hadoop/lib on all nodes. Use the following command:

# cat masters workers | xargs -i -n 1 ssh root@{} mkdir -p /usr/lib/hadoop/lib

d. Copy the ECS client jar to all nodes using the following command:

cat masters workers | xargs -i -n 1 scp viprfs-client-3.2.0.0-hadoop-2.7.jar 
root@{}:/usr/lib/hadoop/lib/ 
                  

Configure ECS client properties
You can use Ambari to set the following configuration properties that are required by the ECS
client.

For more information on the core-site.xml parameters, see Hadoop core-site xml properties
for ECS HDFS.

The table lists the Hadoop configuration details to enalble ECS access

Table 49 Hadoop configuration to enable ECS access

Hadoop
location

Property Value

core-site fs.viprfs.impl com.emc.hadoop.fs.vipr.ViPRFileSystem

fs.AbstractFileSystem.viprfs.impl com.emc.hadoop.fs.vipr.ViPRAbstractFileSyste
m

fs.viprfs.auth.identity_translation NONE

fs.viprfs.auth.anonymous_translation LOCAL_USER

fs.vipr.installations Can be any name, such as federation1and will be
referred to as $FEDERATION. If you have
multiple independent ECS federations, enter
multiple values separated by commas.

ECS HDFS

142 ECS Data Access Guide



Table 49 Hadoop configuration to enable ECS access (continued)

Hadoop
location

Property Value

fs.vipr.installation.$FEDERATION.hosts Comma-separated list of FQDN or IP address of
each ECS host in the local site

fs.vipr.installation.$FEDERATION.hosts.resolutio
n

dynamic

fs.vipr.installation.$FEDERATION.resolution.dyn
amic.time_to_live_ms

900000

hdfs-site fs.permissions.umask-mode 022

yarn-site yarn.application.classpath Append the following:

/usr/lib/hadoop/lib/* 
                   
                

mapred-site mapreduce.application.classpath Append the following:

/usr/lib/hadoop/lib/* 
                   
                

tez-site tez.cluster.additional.classpath.prefix Append the following:

/usr/lib/hadoop/lib/* 
                   
                

HDFS hadoop-env template Append the following:

export HADOOP_CLASSPATH=$
{HADOOP_CLASSPATH}:/usr/lib/
hadoop/lib/* 
                  

Spark spark-env template Append the following:

export SPARK_DIST_CLASSPATH="$
{SPARK_DIST_CLASSPATH}:/usr/lib/
hadoop/lib/*:/usr/hdp/current/hadoop-
client/client/guava.jar"

Set up Hive
The additional steps provided in this procedure a required to configure Hive.

Before you begin

ECS HDFS

ECS Data Access Guide 143



About this task

When using Hive, you should also ensure that the Hive metastore warehouse is being directed to
the ViPRFS location. Assuming that mysql is being used to identify the Hive metastore location,
start mysql, go to the Hive databases, and show the contents of the DBS table and set it as below.

Procedure

1. If Hive is using templeton, you should modify the following properties, and these properties
are already defined.

The table lists te Hive templeton configuration

Table 50 Hive templeton configuration

Hadoop location Property Value (example)

Advanced webhcat-
site

templeton.hive.archive viprfs://hdfsBucket2.s3.site1/hdp/apps/$
{hdp.version}/hive/hive.tar.gz

templeton.pig.archive viprfs://hdfsBucket2.s3.site1/hdp/apps/$
{hdp.version}/pig/pig.tar.gz

templeton.sqoop.archive viprfs://hdfsBucket2.s3.site1/hdp/apps/$
{hdp.version}/sqoop/sqoop.tar.gz

templeton.streaming.jar viprfs://hdfsBucket2.s3.site1/hdp/apps/$
{hdp.version}/mapreduce/hadoop-
streaming.jar

2. Start mysql.

[root@hdfs-pansy2 lib]# mysql -u hive -p
Enter password: 
Welcome to the MySQL monitor.  Commands end with ; or \g.

3. Go to the Hive database.

mysql> use hive;
Reading table information for completion of table and column names
You can turn off this feature to get a quicker startup with -A

4. Show the contents of the database.

select * from DBS;
+------+-------------+-----------------------------------+--------+-------+------+
|DB_ID | DESC        | DB_LOCATION_URI                   | NAME   | OWNER | OWNER|
|      |             |                                   |        | _NAME | _TYPE|
+------+-------------+-----------------------------------+--------+-------+------+
|  1   | Default Hive| hdfs://hdfs-pansy1.ecs.lab.emc.   |default |public |ROLE  |
|      | database    | com:8020/apps/hive/warehouse      |        |       |      |
|      |             |                                   |        |       |      |
|  6   | NULL        | viprfs://hdfsbucket.ns.Site1/     |retail  |hdfs   |USER  |
|      |             | apps/hive/warehouse/retail_demo.db| _demo  |       |      |
+------+-------------+-----------------------------------+--------+-------+------+
2 rows in set (0.00 sec)

ECS HDFS

144 ECS Data Access Guide



5. Change the database.

mysql> update DBS set DB_LOCATION_URI='viprfs://hdfsbucket3.ns.Site1/apps/hive/
warehouse' where DB_ID=1;
Query OK, 1 row affected (0.00 sec)
Rows matched: 1  Changed: 1  Warnings: 0

Verify Hadoop access to ECS
You must verify access to the ECS bucket.

Once all Hadoop client services have started, ensure that you can access the ECS bucket using the
Hadoop CLI. The URI is of the form viprfs://bucket.namespace.federation/.

For a bucket with URI viprfs://hive-warehouse-1.ns1.federation1/, you can attempt
a directory listing using:

[root@mycluster1-master-0 ~]# hdfs dfs -ls viprfs://hive-warehouse-1.ns1.federation1/

A new bucket will be empty and nothing will be returned.

For the same bucket, the following commands create an empty file and then perform a directory
listing that shows the file.

[root@mycluster1-master-0 ~]# hdfs dfs -touchz viprfs://hive-warehouse-1.ns1.federation1/hive-
warehouse-1
[root@mycluster1-master-0 ~]# hdfs dfs -ls viprfs://hive-warehouse-1.ns1.federation1/

Secure the bucket
In addition to configuring a bucket ACL, the root directory entry should be created and secured
immediately after bucket creation.

Before you begin

This procedure should be performed as the bucket owner, which is hdfs in this example.

Procedure

1. Set the mode bits in the root directory object ACL so that only the bucket owner and the
default group have access to the bucket. The other group, which includes all ECS HDFS
client users, is not allowed access the root directory, and therefore it is not allowed access
to any files in the bucket.

[hdfs@hadoop-0 ~]$
fs=viprfs://bucket.ns.fed
hadoop fs -chmod 750 $fs/
hadoop fs -chown hdfs:hdfs $fs/

2. Specific groups and users should be added to the root directory object ACL using the
setfacl command.

Note that these permissions duplicate the bucket's Custom Group ACLs to ensure that all
HDFS APIs have the same effective permissions.

hadoop fs -setfacl -m group:hadoop:r-x $fs/
hadoop fs -setfacl -m group:users:r-x $fs/

ECS HDFS

ECS Data Access Guide 145



hadoop fs -setfacl -m group:hive:r-x $fs/
hadoop fs -setfacl -m group:spark:r-x $fs/

3. Confirm the permissions.

hadoop fs -ls -d $fs/
drwxr-x---+ - hdfs hdfs 0 2017-08-22 20:44 viprfs://bucket.ns.fed/

hadoop fs -getfacl $fs/
# file: viprfs://bucket.ns.fed/
# owner: hdfs
# group: hdfs
user::rwx
group::r-x
group:hadoop:r-x
group:hive:r-x
group:spark:r-x
group:users:r-x
mask::r-x
other::---

Relocate the default file system from HDFS to an ECS bucket

About this task

Although the system is now usable and may appear to work well, a configuration with HDFS as the
default file system is not supported. You must therefore relocate the default file system from
HDFS to the root ECS bucket. This procedure copies all files from the HDFS file system to an ECS
bucket and then sets the ECS bucket as the default file system.

Procedure

1. Use Ambari to stop all services except HDFS, YARN, and Zookeeper.

2. Copy all existing files on the DAS HDFS file system to the ECS bucket. Even for a new
installation of Hadoop, there are critical directories that must exist in the default Hadoop file
system. Use DistCp to perform the file copy.

[hdfs@mycluster1-master-0~]$ hadoop distcp -skipcrccheck -update -pugp -i / viprfs://
mycluster1-root.ns1.federation/

3. Use Ambari to configure the following settings.

The table lists the Hadoop configuration details to enabe Hive concurrency and ACID
transactions

Table 51 Hadoop configuration to enable Hive concurrency and ACID transactions

Hadoop location Property Value (example)

HDFS Advanced core-site fs.defaultFS viprfs://
<bucket_name>.<namespace>.<fe
deration_name> For example:

ECS HDFS

146 ECS Data Access Guide



Table 51 Hadoop configuration to enable Hive concurrency and ACID transactions (continued)

Hadoop location Property Value (example)

viprfs://mycluster1-
root.ns1.federation1

Spark Advanced spark-defaults spark.eventLog.dir viprfs://
<bucket_name>.<namespace>.<fe
deration>/<spark-history> For

example: viprfs://mycluster1-
root.ns1.federation1/spark-
history

Spark Advanced spark-defaults spark.history.fs.logDirectory viprfs://
<bucket_name>.<namespace>.<fe
deration>/<spark-history> For

example: viprfs://mycluster1-
root.ns1.federation1/spark-
history

4. Use Ambari to stop and start all services.

5. Ensure proper directory permissions. If DistCp encounters any errors, the necessary
permissions may not have been applied to critical directories. The following commands set
the correct permissions.

[hdfs@mycluster1-master-0~]$
hadoop fs -chmod 777 /apps/hive/warehouse
hadoop fs -chown hive:hdfs /apps/hive/warehouse
hadoop fs -chmod -R 770 /user/ambari-qa
hadoop fs -chown -R ambari-qa:hdfs /user/ambari-qa

Integrate a secure Hadoop cluster with ECS HDFS
You can integrate your existing Hadoop distribution, that is secured using Kerberos, with ECS
HDFS.

You must perform a non-secure installation of Hadoop and ECS completely before optionally
enabling Kerberos.

Before performing the integration steps, you must do the following:

l Verify that a Kerberos Key Distribution Center (KDC) is installed and configured to handle
authentication of the Hadoop service principals. If you are using Active Directory to
authenticate ECS users, you must set up a cross-realm trust between the Kerberos realm and
the ECS user realm. For guidance on setting up the Kerberos KDC and configuring trust, see 
Setup the kerberos KDC.

l Ensure that you have created a bucket for the HDFS file system (see Create a bucket for
HDFS using the ECS Portal).

l Ensure that you have read the guidelines for planning the integration (see Plan the ECS HDFS
and Hadoop integration).

l Ensure that you have downloaded the installation and support package (see Obtain the ECS
HDFS installation and support package).

To integrate ECS HDFS with your secure Hadoop cluster, complete the following tasks:

ECS HDFS

ECS Data Access Guide 147



1. Plan migration from a simple to a Kerberos cluster

2. Map group names

3. Configure ECS nodes with the ECS service principal

4. Secure the ECS bucket using metadata

5. Reconfigure ECS client properties

6. Start Hadoop services and verify Hadoop access to ECS

Plan migration from a simple to a Kerberos cluster
ECS supports migration from a Hadoop cluster that uses simple security to a Hadoop cluster
secured by Kerberos.

If you are migrating from a simple to a secure environment, you should refer to Migration from a
simple to a Kerberos Hadoop cluster.

In general, the ECS migration feature enables files and directories to be accessible seamlessly by
Kerberos users. However, the following notes apply:

l The Ambari wizard to secure a Hadoop cluster reports errors in the final step when it starts the
Hadoop services. This is expected behavior. Once the ECS bucket is reconfigured to be secure,
you can to start the Hadoop services.

l For users and processes to be able to access the bucket, they must be members of the group
that has access to the bucket. Otherwise, you must change the bucket ACLs so that Kerberos
users have access.

Map group names

ECS must be able to map group details for Hadoop service principals like hdfs, hive, and so on. If
you are using Active Directory (AD), group information can be found from two different sources:
the bucket metadata or AD. ECS determines which source to use from a configuration parameter
setting in the /opt/storageos/conf/hdfssvc.conf configuration file in the
[hdfs.fs.request] section.

If you want ECS to use bucket metadata for group information (if available) instead of AD, define
the parameter as follows:

[hdfs.fs.request]
prefer_secure_metadata_bucket_for_groups = true

If you want ECS to determine group information from AD instead of bucket metadata, define the
parameter as follows:

[hdfs.fs.request]
prefer_secure_metadata_bucket_for_groups = false

The default value is true, so if this value is not defined, ECS determines group details for a
Kerberos principal from the bucket metadata. You must apply any change to all ECS nodes and you
must restart dataheadsvc on all nodes.

ECS HDFS

148 ECS Data Access Guide



Configure ECS nodes with the ECS service principal
The ECS service principal and its corresponding keytab file must reside on each ECS data node.
You must use the Ansible playbooks provided to automate these steps.

Before you begin

You must have the following items before you can complete this procedure:

l Access to the Ansible playbooks. Obtain the Ansible playbooks from the ECS HDFS software
package as described in Obtain the ECS HDFS installation and support packages.

l The list of ECS node IP addresses.

l IP address of the KDC.

l The DNS resolution where you run this script should be the same as the DNS resolution for the
Hadoop host, otherwise the vipr/_HOST@REALM will not work.

About this task

ECS provides reusable Ansible content called 'roles', which consist of Python scripts, YAML-based
task lists, and template files.

l vipr_kerberos_config: Configures an ECS node for Kerberos.

l vipr_jce_config: Configures an ECS data node for unlimited-strength encryption by
installing JCE policy files.

l vipr_kerberos_principal: Acquires a service principal for an ECS node.

In this procedure, Ansible is run using the utility Docker container that is installed with ECS.

Procedure

1. Log in to ECS Node 1 and copy the hdfsclient-<ECS version>-<version>.zip file
to that node.

For example: /home/admin/ansible . You can use wget to obtain the package directly
from support.emc.com or you can use scp if you have downloaded it to another machine.

2. Unzip the hdfsclient-<ECS version>-<version>.zip file.

The steps in this procedure use the playbooks contained in the viprfs-client-<ECS
version>-<version>/playbooks/samples directory and the steps are also contained
in viprfs-client-<ECS version>-<version>/playbooks/samples/README.md.

3. Edit the inventory.txt file in the playbooks/samples directory to refer to the ECS
data nodes and the KDC server.

The default entries are shown below.

[data_nodes]
192.168.2.[100:200] 

[kdc]
192.168.2.10

4. Download the unlimited JCE policy archive from oracle.com, and extract it to an
UnlimitedJCEPolicy directory in viprfs-client-<ECS version>-<version>/
playbooks/samples.

Note: You should only perform this step if you are using strong encryption type.

ECS HDFS

ECS Data Access Guide 149



You can configure Kerberos to use a strong encryption type, such as AES-256. In that case,
you must reconfigure the JRE within the ECS nodes to use the policy.

5. Start the utility container on ECS Node 1 and make the Ansible playbooks available to the
container.

a. Load the utility container image.

For example:

sudo docker load -i /opt/emc/caspian/checker/docker/images/utilities.txz

b. Get the identity of the docker image.

For example:

admin@provo-lilac:~> sudo docker images

The output will give you the image identity:

REPOSITORY                 TAG                     IMAGE ID            
CREATED             VIRTUAL SIZE
utilities                  1.5.0.0-403.cb6738e     186bd8577a7a        2 weeks 
ago         738.5 MB

c. Start and enter utilities image.

For example:

sudo docker run -v /opt/emc/caspian/fabric/agent/services/object/main/log:/opt/
storageos/logs 
-v /home/admin/ansible/viprfs-client-3.0.0.0.85325.a05145b/playbooks:/ansible --
name=ecs-tools -i -t --privileged --net=host 186bd8577a7a /bin/bash

In the example, the location to which the Ansible playbooks were unzipped /home/
admin/ansible/viprfs-client-3.0.0.0.85325.a05145b/playbooks is
mapped to the /ansible directory in the utility container.

6. Change to the working directory in the container.

For example:

cd /ansible

7. Copy the krb5.conf file from the KDC to the working directory.

8. Install the supplied Ansible roles.

ansible-galaxy install -r requirements.txt -f

9. Edit the generate-vipr-keytabs.yml as necessary and set the domain name.

For example:

[root@nile3-vm22 samples]# cat generate-vipr-keytabs.yml
---
###

ECS HDFS

150 ECS Data Access Guide



# Generates keytabs for ViPR/ECS data nodes.
###
  
- hosts: data_nodes
  serial: 1
  
  roles:
    - role: vipr_kerberos_principal
      kdc: "{{ groups.kdc | first }}"
      principals:
        - name: vipr/_HOST@MA.EMC.COM
          keytab: keytabs/_HOST@MA.EMC.COM.keytab

In this example, the default value (vipr/_HOST@EXAMPLE.COM) has been replaced with
(vipr/_HOST@MA.EMC.COM) and the domain is MA.EMC.COM.

10. Run the following command.

export ANSIBLE_HOST_KEY_CHECKING=False

11. Run the Ansible playbook to generate keytabs.

ansible-playbook -v -k -i inventory.txt --user admin –b --become-user=root generate-vipr-
keytabs.yml
          

12. Edit the setup-vipr-kerberos.yml file as necessary.

The default file contents are shown below.

# cat setup-vipr-kerberos.yml

---
### 
# Configures ViPR/ECS for Kerberos authentication.
# - Configures krb5 client 
# - Installs keytabs
# - Installs JCE policy
###
 
 - hosts: data_nodes
 
   roles:
     - role: vipr_kerberos_config
       krb5:
         config_file: krb5.conf
       service_principal:
         name: vipr/_HOST@EXAMPLE.COM
         keytab: keytabs/_HOST@EXAMPLE.COM.keytab

     - role: vipr_jce_config
       jce_policy: 
         name: unlimited
         src: UnlimitedJCEPolicy/

In this example, the default value (vipr/_HOST@EXAMPLE.COM) has been replaced with
(vipr/_HOST@MA.EMC.COM) and the domain is MA.EMC.COM.

ECS HDFS

ECS Data Access Guide 151



Note: You must remove the vipr_jce_config role if you are not using strong
encryption type.

13. Run the Ansible playbook to configure the data nodes with the ECS service principal.

Make sure the /ansible/samples/keytab directory exists and the krb5.conf file is in
the working directory /ansible/samples.

ansible-playbook -v -k -i inventory.txt --user admin –b --become-user=root setup-vipr-
kerberos.yml

Verify that the correct ECS service principal, one per data node, has been created (from the
KDC):

# kadmin.local -q "list_principals" | grep vipr
vipr/nile3-vm42.centera.lab.emc.com@MA.EMC.COM
vipr/nile3-vm43.centera.lab.emc.com@MA.EMC.COM

Verify that the correct keytab is generated and stored in the location: /data/hdfs/
krb5.keytab on all ECS data nodes. You can use the strings command on the keytab to
extract the human readable text, and verify that it contains the correct principal. For
example:

dataservice-10-247-199-69:~ # strings /data/hdfs/krb5.keytab
MA.EMC.COM
vipr
nile3-vm42.centera.lab.emc.com

In this case the principal is vipr/nile3-vm42.centera.lab.emc.com.

Enable Kerberos using Ambari
You must enable Kerberos using Ambari.

About this task

This procedure provides the basic steps you must perform to enable Kerberos. For more
information on the Ambari Kerberos Wizard, see thteAmbari Security Guide.

Procedure

1. In the Ambari interface, select Ambari > Admin > Kerberos  > Enable Kerberos to get to the
Enable Kerberos Wizard.

2. Follow the steps in the wizard Kerberize Cluster panel. Click the X to abort the Kerberos
wizard.

This Kerberize Cluster step can be skipped now since the Hadoop services cannot be started
at this point.

3. Confirm that you want to exit the wizard by clicking Exit Anyway in the Confirmation
dialog.

Secure the ECS bucket using metadata
To ensure that the ECS bucket can work with a secure Hadoop cluster, the bucket must have
access to information about the cluster.

In a secure Hadoop cluster, the Kerberos principal must be mapped to a HDFS username. In
addition, the user must be mapped to a UNIX group. Within the Hadoop cluster, the NameNode

ECS HDFS

152 ECS Data Access Guide

https://docs.hortonworks.com/HDPDocuments/Ambari-2.2.0.0/bk_Ambari_Security_Guide/content/_running_the_kerberos_wizard.html


gathers this information from the Hadoop nodes themselves and from the configuration files
(core-site.xml and hdfs.xml).

To enable the ECS nodes to determine this information and to validate client requests, the
following data must be made available to the ECS nodes:

l Kerberos user to UNIX user and group mapping

l Superuser group

l Proxy user settings

The data is made available to the ECS nodes as a set of name-value pairs held as metadata.

Kerberos users

Information about every Kerberos user (not AD users) that requires Hadoop access to a bucket
must be uploaded to ECS. The following data is required:

l Principal name

l Principal shortname (mapped name)

l Principal groups

If there are 10 Kerberos principals on a Hadoop node, you must create 30 name value pairs in the
JSON input file. Every name must be unique, so you will must uniquely assign a name for every
principal name, principal shortname, and principal group. ECS expects a constant prefix and suffix
for the JSON entry names.

The required prefix for every Kerberos user entry is internal.kerberos.user, and the three
possible suffixes are name, shortname and groups. As shown in the following example.

{
    "name": "internal.kerberos.user.hdfs.name",
    "value": "hdfs-cluster999@EXAMPLE_HDFS.EMC.COM"
},
{
    "name": "internal.kerberos.user.hdfs.shortname",
    "value": "hdfs"
},
{
    "name": "internal.kerberos.user.hdfs.groups",
    "value": "hadoop,hdfs"
},

The value between the prefix and suffix can be anything, as long is it uniquely identifies the entry.
For example, you could use:

"name": "internal.kerberos.user.1.name",
"name": "internal.kerberos.user.1.shortname",
"name": "internal.kerberos.user.1.groups",

Principals can map to a different users. For example, the rm principal user is usually mapped to the
yarn users using auth_to_local setting for the Hadoop cluster, like this.

RULE:[2:$1@$0](rm@EXAMPLE_HDFS.EMC.COM)s/.*/yarn/

ECS HDFS

ECS Data Access Guide 153



So for any principal that maps to a different principal (for example, the rm principal maps to the
yarn principal), you must use the mapped principal in the shortname value, so the entry for the rm
principal would be:

{
"name": "internal.kerberos.user.rm.name",
"value": "rm@EXAMPLE_HDFS.EMC.COM"
},
{
"name": "internal.kerberos.user.yarn.shortname",
"value": "yarn@EXAMPLE_HDFS.EMC.COM"
},
{
"name": "internal.kerberos.user.yarn.groups",
"value": "hadoop"
},

Supergroup

You must tell ECS which Linux group of users on the Hadoop nodes get superuser privileges based
on their group. Only one entry in the JSON input file is expected for the supergroup designation. It
must be like the following:

{
    "name": "dfs.permissions.supergroup",
    "value": "hdfs"
}

Proxy settings

For proxy support, you must identify all proxy settings that are allowed for each Hadoop
application, where application means one of the Hadoop-supported applications, for example, hive,
and so on.

In the following example, proxy support for the hive application is granted to users who are
members of the s3users group (AD or Linux group), and can run hive on any of the hosts in the
Hadoop cluster. So the JSON entry for this is two name/value pairs, one for the hosts setting, and
one for the groups setting.

{
    "name": "hadoop.proxyuser.hive.hosts",
    "value": "*"
},
{
    "name": "hadoop.proxyuser.hive.groups",
    "value": "s3users"
}

The complete file

The three types of metadata must be combined into a single JSON file. The JSON file format is as
shown in the following example.

{
    "head_type": "hdfs",
    "metadata": [
    {
        "name": "METADATANAME_1",
        "value": "METADATAVALUE_1"

ECS HDFS

154 ECS Data Access Guide



    },
    {
        "name": "METADATANAME_2",
        "value": "METADATAVALUE_2"
    },

        :

    {
        "name": "METADATANAME_N",
        "value": "METADATAVALUE_N"
    }
    ]
}

Note:
The last name/value pair does not have a trailing “,” character.

An example of a JSON file is shown in: Secure bucket metadata.

Secure and non-secure buckets

Once metadata is loaded into a bucket, it is referred to as a secure bucket and you must have
Kerberos principals to access it. A request from a non-secure Hadoop node is rejected. If metadata
is not loaded, the bucket is not secure and a request from a secure Hadoop node is rejected.

The following error is seen if you try and access a secure bucket from a non-secure cluster. A
similar message is seen if you try and access a non-secure bucket from a secure cluster.

[hdfs@sandbox ~]$ hadoop fs -ls -R viprfs://hdfsBucket3.s3.site1/
ls: ViPRFS internal error (ERROR_FAILED_TO_PROCESS_REQUEST).

Load metadata values to ECS using the Management REST API
You can supply the metadata values required to secure an ECS bucket for use with a secure
Hadoop cluster by running ECS Management REST API commands.

Before you begin

You must have ECS System Administrator credentials.

About this task

If the Hadoop administrator is not the ECS System Administrator, the Hadoop administrator must
work in conjunction with the ECS System Administrator to load the secure metadata to the
bucket.

The Hadoop administrator can make the JSON metadata file available to the ECS System
Administrator, who can then use this procedure to load the metadata. If the two roles are assumed
by the same user, then that user is responsible for creating the JSON metadata file and loading it
to the ECS bucket.

Procedure

1. Create the JSON file that contains the metadata, as described in: Secure the ECS bucket
using metadata.

2. Log in to ECS using your System Administrator credentials in order to obtain an
authentication token that can be used when running ECS management commands.

ECS HDFS

ECS Data Access Guide 155



You can run the login command using curl. In the following example, you must replace the
<username>:<password> with ECS System Administrator credentials and supply the IP
address or hostname of an ECS node.

TOKEN=$(curl -s -k -u <username>:<password> -D - -o /dev/null https://<ECS node IP or 
hostname>:4443/login | grep X-SDS-AUTH-TOKEN | tr -cd '\40-\176')

3. Run the PUT object/bucket/<bucketname>/metadata ECS Management REST API
command to deploy the metadata, as shown in the following example

curl -s -k -X PUT -H "$TOKEN" -H "Accept: application/json" -H "Content-Type: 
application/json" -T <bucketDetails>.json https:/<hostname>:4443/object/bucket/
<bucketname>/metadata?namespace=<namespace>

You must replace:

l <username> with an ECS System Administrator username.

l <password> with the password for the specified ECS System Administrator username.

l <bucketname> with the name of the bucket you are using for HDFS data.

l <hostname> with the IP address or hostname of an ECS node.

l <bucketdetails> with the filename of the JSON file containing name-value pairs.

l <namespace> with the name of the namespace the bucket resides in.

Once deployed, the metadata is available to all ECS nodes.

Reconfigure ECS client properties
You can use Ambari to set the configuration properties that are required by the ECS client.

The following table lists the required properties.

The table lists the Hadoop configuration details to enable ECs access

Table 52 Hadoop configuration to enable ECS access

Hadoop
location

Property Value

core-site fs.viprfs.auth.identity_translation CURRENT_USER_REALM

fs.viprfs.auth.anonymous_translation CURRENT_USER

viprfs.security.principal vipr/_HOST@REALM.COM where REALM.COM
is replaced by your Kerberos realm name.

For more information on each core_site.xml parameter, see Hadoop core-site.xml properties
for ECS HDFS.

Start Hadoop services and verify Hadoop access to ECS
Start the Hadoop services.

Procedure

1. Start the Hadoop services using Ambari.

ECS HDFS

156 ECS Data Access Guide



2. Once all Hadoop client services have started, ensure that the ECS bucket can be accessed
using the Hadoop CLI, using the following command.

hdfs dfs -ls /

ECS HDFS

ECS Data Access Guide 157



ECS HDFS

158 ECS Data Access Guide



APPENDIX A

Troubleshooting ECS HDFS Configuration

l Verify that AD/LDAP is correctly configured with a secure Hadoop cluster.........................160
l Pig test fails: unable to obtain Kerberos principal.................................................................160
l Permission denied for AD user.............................................................................................. 161
l Permissions errors................................................................................................................ 161
l Failed to process request..................................................................................................... 164
l Enable Kerberos client-side logging and debugging..............................................................164
l Debug Kerberos on the KDC................................................................................................ 165
l Eliminate clock skew............................................................................................................ 165
l Configure one or more new ECS nodes with the ECS service principal................................165
l Workaround for Yarn directory does not exist error............................................................. 167

ECS Data Access Guide 159



Verify that AD/LDAP is correctly configured with a secure
Hadoop cluster

You should verify that AD or LDAP is correctly set up with Kerberos (KDC) and the Hadoop
cluster.

When your configuration is correct, you should be able to use the kinit for an AD/LDAP user. In
addition, if the Hadoop cluster is configured for local HDFS, you should check that you can list the
local HDFS directory before ECS gets added to the cluster.

Workaround

If you cannot successfully authenticate as an AD/LDAP user with the KDC on the Hadoop cluster,
you should address this before proceeding to ECS Hadoop configuration.

An example of a successful login is shown below:

[kcluser@lvipri054 root]$  kinit kcluser@QE.COM
Password for kcluser@QE.COM:

[kcluser@lvipri054 root]$ klist
Ticket cache: FILE:/tmp/krb5cc_1025
Default principal: kcluser@QE.COM

Valid starting     Expires            Service principal
04/28/15 06:20:57  04/28/15 16:21:08  krbtgt/QE.COM@QE.COM
        renew until 05/05/15 06:20:57

If the above is not successful, you can investigate using the following checklist:

l Check the /etc/krb5.conf file on the KDC server for correctness and syntax. Realms can
be case sensitive in the configuration files as well as when used with the kinit command.

l Check that the /etc/krb5.conf file from the KDC server is copied to all the Hadoop nodes.

l Check that one-way trust between AD/LDAP and the KDC server was successfully made.

l Make sure that the encryption type on the AD/LDAP server matches that on the KDC server.

l Check that the /var/kerberos/krb5kdc/kadm5.acl and /var/kerberos/krb5kdc/
kdc.conf files are correct.

l Try logging in as a service principal on the KDC server to indicate that the KDC server itself is
working correctly.

l Try logging in as the same AD/LDAP user on the KDC server directly. If that does not work, the
issue is likely to be on the KDC server directly.

Pig test fails: unable to obtain Kerberos principal
Pig test fails with the error: Info:Error: java.io.IOException: Unable to obtain
the Kerberos principal even after kinit as AD user, or with Unable to open
iterator for alias firstten.

This issue is caused due to the fact that Pig ( release 0.13 and lower) does not generate a
delegation token for ViPRFS as a secondary storage.

Troubleshooting ECS HDFS Configuration

160 ECS Data Access Guide



Workaround

Append viprfs://bucket.ns.installation/ to the mapreduce.job.hdfs-servers
configuration setting. For example:

set mapreduce.job.hdfs-servers viprfs://KcdhbuckTM2.s3.site1

Permission denied for AD user
The Permission denied error is displayed when you run an application as an AD user.

Workaround

Set the permissions for the /user directory as:

hdfs dfs -chmod 1777 /user

Permissions errors
Insufficient permissions errors can occur for a number of reasons. You may receive this type of
error when running a hadoop fs command, or you may see it in an application log, such as the log
for mapreduce or hive.

INSUFFICIENT_PERMISSIONS errors

In the following example, the jhs principal tried to create a directory (/tmp) and received an
INSUFFICIENT_PERMISSIONS error. In this case, the permissions of the root directory did not
allow this user to create a directory.

root@lrmk042:/etc/security/keytabs# hadoop fs -mkdir /tmp
18/02/26 21:03:09 ERROR vipr.ViPRFileSystemClientBase: Permissions failure for request: User: 
jhs/lrmk042.lss.emc.com@HOP171_HDFS.EMC.COM (auth:KERBEROS), host: hdfsBucket3.s3.site1, 
namespace: s3, bucket: hdfsBucket3
18/02/26 21:03:09 ERROR vipr.ViPRFileSystemClientBase: Request message sent: 
MkDirRequestMessage[kind=MKDIR_REQUEST,namespace=s3,bucket=hdfsBucket3,path=/
tmp,hdfsTrustedStatus=HDFS_USER_NOT_TRUSTED,permissions=rwxr-xr-x,createParent=true]
mkdir: java.security.AccessControlException: ERROR_INSUFFICIENT_PERMISSIONS

root@lrmk042:/etc/security/keytabs# hadoop fs -ls -d /
drwxr-xr-x - hdfs hdfs 0 2018-02-26 16:58 /
root@lrmk042:/etc/security/keytabs#

When the case of an insufficient permissions error is not obvious on the client, you may have to
look at the server logs. Start with dataheadsvc-error.log to find the error. Open a terminal
window to each ECS node, and edit the dataheadsvc-error.log file. Find the error that
corresponds to the time you saw the error on the client.

Failed to get credentials

Where you see an error like the following in the dataheadsvc-error.log:

2018-02-26 22:36:21,985 [pool-68-thread-6] ERROR RequestProcessor.java (line 1482) Unable to 
get group credentials for principal 'jhs@HOP171_HDFS.EMC.COM'. This principal will default to 
use local user groups. Error message: java.io.IOException: Failed to get group credentials 
for 'jhs@HOP171_HDFS.EMC.COM', status=ERROR

Troubleshooting ECS HDFS Configuration

ECS Data Access Guide 161



This is not an error. The message means that the server tried to look up the principal's name to see
if there are any cached Active Directory(AD) groups for the principal user making the request. This
error is returned for a Kerberos user.

The error indicates the user name making the request. Make a note of it.

Bucket Access Error

If a user making are request to access a bucket does not have ACL permissions, you may see this
error in dataheadsvc-error.log.

2018-02-26 21:35:26,652 [pool-68-thread-1] ERROR BucketAPIImpl.java (line 220) Getting bucket 
failed with
com.emc.storageos.objcontrol.object.exception.ObjectAccessException: you don't have 
GET_KEYPOOL_ACL permission to this keypool
at 
com.emc.storageos.objcontrol.object.exception.ObjectAccessException.createExceptionForAPI(Obje
ctAccessException.java:286)
at 
com.emc.storageos.data.object.ipc.protocol.impl.ObjectAccessExceptionParser.parseFrom(ObjectAc
cessExceptionParser.java:61)

In this case, you should either add an explicit user ACL for the bucket, or add a custom group ACL
for one of the groups that the user is a member of.

Object Access Error

Another type of permission error is an object access error. Access to objects (files and directories)
should not be confused with access to a bucket. A user may have full control (read/write/delete)
to a bucket, but may receive an INSUFFICIENT_PERMISSIONS error because they do not have
access to one or more objects in the path they are trying to access. The following provides an
example of an object access error.

2018-02-26 22:36:21,995 [pool-68-thread-6] ERROR FileSystemAccessHelper.java (line 1364) 
nfsProcessOperation failed to process path: mr-history/done
2018-02-26 22:36:21,995 [pool-68-thread-6] ERROR ObjectControllerExceptionHelper.java (line 
186) Method nfsGetSMD failed due to exception
com.emc.storageos.data.object.exception.ObjectControllerException: directory server returns 
error ERROR_ACCESS_DENIED
at 
com.emc.storageos.data.object.FileSystemAccessLayer.FileSystemAccessHelper.nfsProcessOperatio
n(FileSystemAccessHelper.java:1368)
at 
com.emc.storageos.data.object.FileSystemAccessLayer.FileSystemAccessHelper.getSystemMetadata(F
ileSystemAccessHelper.java:466)
at 
com.emc.storageos.data.object.FileSystemAccessLayer.FileSystemAccessLayer.getSystemMetadata(Fi
leSystemAccessLayer.java:532)
at com.emc.storageos.data.object.blob.client.BlobAPI.getStat(BlobAPI.java:1294)
at com.emc.vipr.engine.real.RealBlobEngine.stat(RealBlobEngine.java:1976)
at com.emc.vipr.engine.real.RealBlobEngine.stat(RealBlobEngine.java:802)
at com.emc.vipr.hdfs.fs.RequestProcessor.accept(RequestProcessor.java:499)
at com.emc.vipr.hdfs.net.ConnectionManager$RequestThread.run(ConnectionManager.java:136)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
at java.lang.Thread.run(Thread.java:745)

The two important items to note here are the requested action (stat) and the path of the object
(mr-history/done). Note that the leading slash character is not displayed, so the real path
is /mr-history/done. Now you have three pieces of information that are important for
debugging:

l user principal (jhs@HOP171_HDFS.EMC.COM)

Troubleshooting ECS HDFS Configuration

162 ECS Data Access Guide



l action (stat is hadoop fs -ls)

l path (/mr-history/done)

There are two approaches for additional debugging are described below:

l Blobsvc log debugging

l Hadoop client debugging

Blobsvc log debugging

A failed permission request will have an error in blobsvc like this:

2018-02-26 22:36:21,994
[TaskScheduler-BlobService-COMMUNICATOR-ParallelExecutor-5892]
ERROR ObjectAclChecker.java (line 101) not permit, cred jhs@HOP171_HDFS.EMC.COM[hadoop]false1 
with
action GET_OBJECT_ACL on object with acl/owner/group 
user={hdfs@hop171_hdfs.emc.com=[FULL_CONTROL]},
groups={hdfs=[READ_ACL, EXECUTE, READ]}, other=[], owner=hdfs@hop171_hdfs.emc.com, group=hdfs

Look for not permit. This tells us the user making the request (jhs), the object's owner
(hdfs), object group (hdfs) and the permissions for owner, group, and others. What it does not
tell us is the actual object that failed the permission check. On the Hadoop node, become the
hdfs principal, and start with the path, and work up the tree, which leads to the other method of
debugging, looking at the Hadoop file system from the client.

Hadoop client debugging

When a permission error is received, you should know the user principal making the request, what
action the request is, and what items are being requested. In the example, the jhs user received
an error listing the /mr-history/done directory. You can do some analysis to determine the
root cause. If you have access to the superuser account, perform these steps as that account.

root@lrmk042:/var/log/hadoop-mapreduce/mapred# hadoop fs -ls -d /mr-history/done
drwxrwxrwt - mapred hadoop 0 2018-02-26 16:58 /mr-history/done

The following example shows that the jhs principal should have had access to list this directory.

root@lrmk042:/var/log/hadoop-mapreduce/mapred# hadoop fs -ls -d /mr-history
drwxr-xr-x - hdfs hdfs 0 2018-02-26 16:58 /mr-history

Likewise, the following output shows that the directory has no access issues.

root@lrmk042:/var/log/hadoop-mapreduce/mapred# hadoop fs -ls -d /
drwxr-x--- - hdfs hdfs 0 2018-02-26 16:58 /

The problem here, is that the root directory is owned by hdfs, the group name is hdfs, but the
others setting is - (0). The user making the request is jhs@REALM, and this user is a member of
hadoop, but not hdfs, so this user has no object ACL permissions to list the /mr-history/
done directory. Performing the chmod command on the root directory enables this user to
perform their task.

root@lrmk042:/var/log/hadoop-mapreduce/mapred# hadoop fs -chmod 755 /

Troubleshooting ECS HDFS Configuration

ECS Data Access Guide 163



root@lrmk042:/var/log/hadoop-mapreduce/mapred# hadoop fs -ls -d /
drwxr-xr-x - hdfs hdfs 0 2018-02-26 16:58 /

Failed to process request
The Failed to Process Request is displayed when listing a bucket.

When performing the list bucket command, for example:

# hadoop fs -ls viprfs://hdfsBucket2.s3.site1/

The following ViPRFS internal error occurs:

ERROR_FAILED_TO_PROCESS_REQUEST

Workaround

Possible reasons for this error are:

1. The viprfs-client JAR file on the Hadoop node is not in sync with the ECS software.

2. You are attempting to access a secure (Kerberos) bucket from a non-secure (non-Kerberos)
Hadoop node.

3. You are attempting to access a non-secure (non-Kerberos) bucket from a secure (Kerberos)
Hadoop node.

Enable Kerberos client-side logging and debugging
To troubleshoot authentication issues, you can enable verbose logging and debugging on the
Hadoop cluster node that you are using.

Enable client-side verbose logging

You can enable verbose logging using an environment variable that applies only to your current
SSH session, as shown in the following example.

export HADOOP_OPTS="-Dsun.security.krb5.debug=true"

Enable Hadoop client-side debugging

To troubleshoot Hadoop activity between the Hadoop node and ECS, you can enable Hadoop
verbose logging as follows:

export HADOOP_ROOT_LOGGER="Debug,console"

Troubleshooting ECS HDFS Configuration

164 ECS Data Access Guide



Debug Kerberos on the KDC
You can debug Kerberos on the KDC by using the tail command on the KDC /var/log/
krb5kdc.log file to make it easier to debug when you perform an HDFS operation.

tail -f /var/log/krb5kdc.log

Eliminate clock skew
It is important to ensure that time is synchronized between the client and server as Kerberos relies
on accurate time.

If your Active Directory (AD) has a clock skew with your data nodes/KDC, you will must configure
its NTP server. You can do this as follows:

1. Use Remote Desktop to connect to your AD server.

2. Run the following commands:

a. w32tm /config /syncfromflags:manual /manualpeerlist:<ntp-server1>,<ntp-
server2>

b. net stop w32time
c. net start w32time

Configure one or more new ECS nodes with the ECS service
principal

Where you are adding one or more new nodes to an ECS configuration, the ECS service principal
and corresponding keytab must be deployed to the new nodes.

Before you begin

l This procedure assumes that you have previously performed the steps Configure ECS nodes
with the ECS service principal and have the Ansible playbooks installed and accessible.

You must have the following items before you can complete this procedure:

l The list of ECS node IP addresses.

l The IP address of the KDC.

l The DNS resolution where you run this script should be the same as the DNS resolution for the
Hadoop host, otherwise the vipr/_HOST@REALM will not work.

Procedure

1. Log in to Node 1 and check that the tools have previously been installed and the playbooks
are available.

The example used previously was:

/home/admin/ansible/viprfs-client-<ECS version>-<version>/playbooks

2. Edit the inventory.txt file in the playbooks/samples directory to add the ECS
nodes.

Troubleshooting ECS HDFS Configuration

ECS Data Access Guide 165



The default entries are shown in the following extract.

[data_nodes]
192.168.2.[100:200] 

[kdc]
192.168.2.10

3. Start the utility container on ECS Node 1 and make the Ansible playbooks available to the
container.

a. Load the utility container image.

Example:

sudo docker load -i /opt/emc/caspian/checker/docker/images/utilities.txz

b. Get the identity of the docker image.

Example:

admin@provo-lilac:~> sudo docker images

The output will give you the image identity:

REPOSITORY    TAG                    IMAGE ID          CREATED          VIRTUAL SIZE
utilities     1.5.0.0-403.cb6738e    186bd8577a7a      2 weeks ago      738.5 MB

c. Start and enter utilities image.

Example:

sudo docker run -v /opt/emc/caspian/fabric/agent/services/object/main/log:/opt/
storageos/logs 
-v /home/admin/ansible/viprfs-client-3.0.0.0.85325.a05145b/playbooks:/ansible 
--name=ecs-tools -i -t --privileged --net=host 186bd8577a7a /bin/bash

In the example, the location to which the Ansible playbooks were unzipped /home/
admin/ansible/viprfs-client-3.0.0.0.85325.a05145b/playbooks is
mapped to the /ansible directory in the utility container.

4. Change to the working directory in the container.

Example:

cd /ansible

5. Run the Ansible playbook to generate keytabs.

ansible-playbook -v -k -i inventory.txt generate-vipr-keytabs.yml
          

6. Run the Ansible playbook to configure the data nodes with the ECS service principal.

Troubleshooting ECS HDFS Configuration

166 ECS Data Access Guide



Make sure the /ansible/samples/keytab directory exists and the krb5.conf file is in
the working directory /ansible/samples directory.

ansible-playbook -v -k -i inventory.txt setup-vipr-kerberos.yml

Verify that the correct ECS service principal, one per data node, has been created (from the
KDC):

# kadmin.local -q "list_principals" | grep vipr
vipr/nile3-vm42.centera.lab.emc.com@MA.EMC.COM
vipr/nile3-vm43.centera.lab.emc.com@MA.EMC.COM

Verify that correct keytab is generated and stored in location: /data/hdfs/krb5.keytab
on all ECS data nodes. You can use the strings command on the keytab to extract the
human readable text, and verify that it contains the correct principal. For example:

dataservice-10-247-199-69:~ # strings /data/hdfs/krb5.keytab
MA.EMC.COM
vipr
nile3-vm42.centera.lab.emc.com

In this case the principal is vipr/nile3-vm42.centera.lab.emc.com.

Workaround for Yarn directory does not exist error
When you configure ECS as the default file system with a Kerberized HDP cluster, you can get an
error like /ats/done does not exist. In addition to this, Resource Manager does not start.

About this task

This procedure provides a workaround for these issues.

Procedure

1. Check if your Hadoop nodes can resolve ECS nodes.

a. Install the nslookup tool in the Hadoop nodes.

yum install -y bind-utils

b. Check if it can resolve the ECS node.

nslookup <address of ECS node>

c. If it does not resolve to the correct hostname, add the ECS DNS to the /etc/
resolv.conf on the Hadoop nodes.

You can check that the DNS entries are there by running:

cat /etc/resolv.conf

Troubleshooting ECS HDFS Configuration

ECS Data Access Guide 167



d. Now the Hadoop node resolves the ECS nodes.

Run nslookup again to check it resolves.

nslookup <address of ECS node>

2. Check the system time in the Hadoop node, ECS nodes, and KDC.

Use:

# date

If the time of the systems is not consolidated, they should be synced to the same NTP
server.

Information on enabling NTP on the cluster and on the browser host is described Ambari
Security Guide.

3. If the previous steps do not work, you can try to manually create folder done or active
under /ats.

 # sudo -u hdfs hdfs dfs -mkdir /ats/done

 # sudo -u hdfs hdfs dfs -mkdir /ats/active

and check that the directories exist.

$ hdfs dfs -ls /ats 

Found 2 items 
drwxrwxrwt   - yarn hadoop     0 2016-07-12 09:00 /ats/active 
drwx------   - yarn hadoop     0 2016-07-12 09:00 /ats/done

Troubleshooting ECS HDFS Configuration

168 ECS Data Access Guide

https://docs.hortonworks.com/HDPDocuments/Ambari-2.6.0.0/bk_ambari-installation/content/enable_ntp_on_the_cluster_and_on_the_browser_host.html
https://docs.hortonworks.com/HDPDocuments/Ambari-2.6.0.0/bk_ambari-installation/content/enable_ntp_on_the_cluster_and_on_the_browser_host.html


APPENDIX B

Guidance on Kerberos Configuration in the
Hadoop Cluster

l Set up the Kerberos KDC..................................................................................................... 170
l Configure AD user authentication for Kerberos.....................................................................171

ECS Data Access Guide 169



Set up the Kerberos KDC
Set up the Kerberos KDC by following these steps.

Procedure

1. Install krb5-workstation.

Use the command:

yum install -y krb5-libs krb5-server krb5-workstation

2. Modify /etc/krb5.conf and change the realm name and extensions.

3. Modify /var/kerberos/krb5kdc/kdc.conf and change the realm name to match your
own.

4. If your KDC is a VM, recreate /dev/random (otherwise your next step of creating the KDC
database will take a very long time).

a. Remove using:

# rm -rf /dev/random

b. Recreate using:

 # mknod /dev/random c 1 9

5. Create the KDC database.

 # kdb5_util create -s

Note: If you made a mistake with the initial principals. For example, you ran "kdb5_util
create -s" incorrectly, you might need to delete these principals explicitly in the /var/
kerberos/krb5kdc/ directory.

6. Modify kadm5.acl to specify users that have admin permission.

*/admin@DET.EMC.COM *

7. Modify /var/kerberos/krb5kdc/kdc.conf and take out any encryption type except
des-cbc-crc:normal. Also modify the realm name.

8. Ensure that iptables and selinux are off on all nodes (KDC server as well as Hadoop nodes).

9. Start KDC services and create a local admin principal.

kadmin.local 

# service krb5kdc start

Guidance on Kerberos Configuration in the Hadoop Cluster

170 ECS Data Access Guide



# service kadmin start

# /usr/kerberos/sbin/kadmin.local-q "addprinc root/admin"

# kinit root/admin

10. Copy the krb5.conf file to all Hadoop nodes.

Any time you make a modification to any of the configuration files restart the below services
and copy the krb5.conf file over to relevant Hadoop host and ECS nodes.

11. Restart the services.

service krb5kdc restart

service kadmin restart

12. You can go to the following link to setup a Kerberos KDC based on steps at http://
www.centos.org/docs/4/html/rhel-rg-en-4/s1-kerberos-server.html.

Configure AD user authentication for Kerberos
Where you have a Hadoop environment configured with Kerberos security, you can configure it to
authenticate against the ECS AD domain.

Make sure you have an AD user for your ADREALM. The user "detscr" for ADREALM
CAMBRIDGE.ACME.COM is used in the example below. Create a one-way trust between the
KDCREALM and the ADREALM as shown in the example. Do not try to validate this realm using
"netdom trust".

On Active Directory

You must set up a one-way cross-realm trust from the KDC realm to the AD realm. To do so, run
the following commands at a command prompt.

ksetup /addkdc KDC-REALM <KDC hostname>
netdom trust KDC-REALM /Domain:AD-REALM /add /realm /passwordt:<TrustPassword>
ksetup /SetEncTypeAttr KDC-REALM <enc_type>

For example:

ksetup /addkdc LSS.EMC.COM lcigb101.lss.emc.com
netdom trust LSS.ACME.COM /Domain:CAMBRIDGE.ACME.COM /add /realm /
passwordt:ChangeMe
ksetup /SetEncTypeAttr LSS.ACME.COM DES-CBC-CRC

For this example, encryption des-cbc-crc was used. However, this is a weak encryption that was
only chosen for demonstration purposes. Whatever encryption you choose, the AD, KDC, and
clients must support it.

On your KDC (as root)

To set up a one-way trust, you will need to create a "krbtgt" service principal. To do so, the name
is krbtgt/KDC-REALM@AD-REALM. Give this the password ChangeMe, or whatever you specified
to the /passwordt argument above.

Guidance on Kerberos Configuration in the Hadoop Cluster

ECS Data Access Guide 171

https://www.centos.org/docs/5/html/5.1/Deployment_Guide/s1-kerberos-server.html
https://www.centos.org/docs/5/html/5.1/Deployment_Guide/s1-kerberos-server.html


1. On KDC (as root)

# kadmin
kadmin: addprinc -e "des-cbc-crc:normal" krbtgt/
LSS.ACME.COM@CAMBRIDGE.ACME.COM

Note: When deploying, it is best to limit the encryption types to the one you chose. Once
this is working, additional encryption types can be added.

2. Add the following rules to your core-site.xml hadoop.security.auth_to_local property:

RULE:[1:$1@$0](^.*@CAMBRIDGE\.ACME\.COM$)s/^(.*)@CAMBRIDGE\.ACME\.COM
$/$1/g
RULE:[2:$1@$0](^.*@CAMBRIDGE\.ACME\.COM$)s/^(.*)@CAMBRIDGE\.ACME\.COM
$/$1/g

3. Verify that AD or LDAP is correctly setup with the Kerberos (KDC) server. User should be able
to "kinit" against an AD user and list local HDFS directory.

Note: If you are configuring your Hadoop cluster and ECS to authenticate through an AD,
create local Linux user accounts on all Hadoop nodes for the AD user you will be kinit'ed as,
and also make sure that all Hadoop host are kinit'ed using that AD user. For example, if you
kinit as userX@ADREALM, create userX as a local user on all Hadoop hosts, and kinit using:
'kinit userX@ADREALM' on all hosts for that user.

In the example below, we will authenticate as "kinit detscr@CAMBRIDGE.EMC.COM", so will
create a user called "detscr" and kinit as this user on the Hadoop host. As shown below:

[root@lviprb159 ~]# su detscr
    [detscr@lviprb159 root]$ whoami
    detscr
    [detscr@lviprb159 root]$ kinit detscr@CAMBRIDGE.ACME.COM
    Password for detscr@CAMBRIDGE.ACME.COM:
    [detscr@lviprb159 root]$ klist
    Ticket cache: FILE:/tmp/krb5cc_1010
    Default principal: detscr@CAMBRIDGE.ACME.COM
    Valid starting     Expires            Service principal
    12/22/14 14:28:27  03/02/15 01:28:30  krbtgt/
CAMBRIDGE.ACME.COM@CAMBRIDGE.ACME.COM
        renew until 09/17/17 15:28:27
  
    [detscr@lviprb159 root]$ hdfs dfs -ls /
Found 4 items
drwx---rwx   - yarn   hadoop          0 2014-12-23 14:11 /app-logs
drwx---rwt   - hdfs                   0 2014-12-23 13:48 /apps
drwx---r-x   - mapred                 0 2014-12-23 14:11 /mapred
drwx---r-x   - hdfs                   0 2014-12-23 14:11 /mr-history

Guidance on Kerberos Configuration in the Hadoop Cluster

172 ECS Data Access Guide



APPENDIX C

HDFS Secure Bucket Metadata Example

l Secure bucket metadata...................................................................................................... 174

ECS Data Access Guide 173



Secure bucket metadata
The following example shows a list of secure bucket metadata name value pairs.

 {
    "head_type":    "hdfs",
    "metadata":    [
        {
            "name":    "internal.kerberos.user.ambari-qa.name",
            "value":    "ambari-qa@EXAMPLE_HDFS.EMC.COM"
        },
        {
            "name":    "internal.kerberos.user.ambari-qa.shortname",
            "value":    "ambari-qa"
        },
        {
            "name":    "internal.kerberos.user.ambari-qa.groups",
            "value":    "hadoop,users"
        },
        {
            "name":    "internal.kerberos.user.cmaurer.name",
            "value":    "cmaurer@EXAMPLE_HDFS.EMC.COM"
        },
        {
            "name":    "internal.kerberos.user.cmaurer.shortname",
            "value":    "cmaurer"
        },
        {
            "name":    "internal.kerberos.user.cmaurer.groups",
            "value":    "cmaurer,adm,cdrom,sudo,dip,plugdev,users,lpadmin,sambashare"
        },
        {
            "name":    "internal.kerberos.user.dn.name",
            "value":    "dn@EXAMPLE_HDFS.EMC.COM"
        },
        {
            "name":    "internal.kerberos.user.dn.shortname",
            "value":    "hdfs@EXAMPLE_HDFS.EMC.COM"
        },
        {
            "name":    "internal.kerberos.user.dn.groups",
            "value":    "hadoop,hdfs"
        },
        
        {
            "name":    "internal.kerberos.user.hdfs.name",
            "value":    "hdfs@EXAMPLE_HDFS.EMC.COM"
        },
        {
            "name":    "internal.kerberos.user.hdfs.shortname",
            "value":    "hdfs"
        },
        {
            "name":    "internal.kerberos.user.hdfs.groups",
            "value":    "hadoop,hdfs"
        },
        {
            "name":    "internal.kerberos.user.hive.name",
            "value":    "hive@EXAMPLE_HDFS.EMC.COM"
        },
        {
            "name":    "internal.kerberos.user.hive.shortname",
            "value":    "hive"
        },
        {

HDFS Secure Bucket Metadata Example

174 ECS Data Access Guide



            "name":    "internal.kerberos.user.hive.groups",
            "value":    "hadoop"
        },
        {
            "name":    "internal.kerberos.user.jhs.name",
            "value":    "jhs@EXAMPLE_HDFS.EMC.COM"
        },
        {
            "name":    "internal.kerberos.user.jhs.shortname",
            "value":    "mapred"
        },
        {
            "name":    "internal.kerberos.user.jhs.groups",
            "value":    "hadoop"
        },
        {
            "name":    "internal.kerberos.user.nm.name",
            "value":    "nm@EXAMPLE_HDFS.EMC.COM"
        },
        {
            "name":    "internal.kerberos.user.nm.shortname",
            "value":    "yarn@EXAMPLE_HDFS.EMC.COM"
        },
        {
            "name":    "internal.kerberos.user.nm.groups",
            "value":    "hadoop"
        },
        {
            "name":    "internal.kerberos.user.nn.name",
            "value":    "nn@EXAMPLE_HDFS.EMC.COM"
        },
        {
            "name":    "internal.kerberos.user.nn.shortname",
            "value":    "hdfs@EXAMPLE_HDFS.EMC.COM"
        },
        {
            "name":    "internal.kerberos.user.nn.groups",
            "value":    "hadoop,hdfs"
        },
        {
            "name":    "internal.kerberos.user.rm.name",
            "value":    "rm@EXAMPLE_HDFS.EMC.COM"
        },
        {
            "name":    "internal.kerberos.user.rm.shortname",
            "value":    "yarn@EXAMPLE_HDFS.EMC.COM"
        },
        {
            "name":    "internal.kerberos.user.rm.groups",
            "value":    "hadoop"
        },
        {
            "name":    "internal.kerberos.user.spark.name",
            "value":    "spark@EXAMPLE_HDFS.EMC.COM"
        },
        {
            "name":    "internal.kerberos.user.spark.shortname",
            "value":    "spark"
        },
        {
            "name":    "internal.kerberos.user.spark.groups",
            "value":    "hadoop"
        },
        {
            "name":    "internal.kerberos.user.yarn.name",
            "value":    "yarn@EXAMPLE_HDFS.EMC.COM"
        },
        {

HDFS Secure Bucket Metadata Example

ECS Data Access Guide 175



            "name":    "internal.kerberos.user.yarn.shortname",
            "value":    "yarn"
        },
        {
            "name":    "internal.kerberos.user.yarn.groups",
            "value":    "hadoop"
        },
        {
            "name":    "internal.kerberos.user.zookeeper.name",
            "value":    "zookeeper@EXAMPLE_HDFS.EMC.COM"
        },
        {
            "name":    "internal.kerberos.user.zookeeper.shortname",
            "value":    "ams"
        },
        {
            "name":    "internal.kerberos.user.zookeeper.groups",
            "value":    "hadoop"
        },
        {
            "name":    "hadoop.proxyuser.hcat.groups",
            "value":    "*"
        },
        {
            "name":    "hadoop.proxyuser.hcat.hosts",
            "value":    "*"
        },
        {
            "name":    "hadoop.proxyuser.yarn.users",
            "value":    "*"
        },
        {
            "name":    "hadoop.proxyuser.yarn.hosts",
            "value":    "*"
        },
        {
            "name":    "hadoop.proxyuser.hive.hosts",
            "value":    "10.247.179.42"
        },
        {
            "name":    "hadoop.proxyuser.hive.users",
            "value":    "*"
        },
        {
            "name":    "hadoop.proxyuser.hcat.groups",
            "value":    "*"
        },
        {
            "name":    "hadoop.proxyuser.hcat.hosts",
            "value":    "*"
        },
        {
            "name":    "dfs.permissions.supergroup",
            "value":    "hdfs"
        }
    ]
}

HDFS Secure Bucket Metadata Example

176 ECS Data Access Guide



APPENDIX D

Hadoop core-site xml properties

l Hadoop core-site.xml properties for ECS HDFS...................................................................178
l Hadoop core-site.xml properties for ECS S3........................................................................182

ECS Data Access Guide 177



Hadoop core-site.xml properties for ECS HDFS
When configuring the Hadoop core-site.xml file, use this table as a reference for the
properties and their related values.

The table lists the Hadoop core-site.xml properties details

Table 53 Hadoop core-site.xml properties

Property Description

File system implementation properties

fs.viprfs.impl
<property>
<name>fs.viprfs.impl</name>
<value>com.emc.hadoop.fs.vipr.ViPRFileSystem</value>
</property>

fs.AbstractFileSyste
m.viprfs.impl <property>

  <name>fs.AbstractFileSystem.viprfs.impl</name>
  <value>com.emc.hadoop.fs.vipr.ViPRAbstractFileSystem</value>
 </property>

Properties that define the authority section of the ECS HDFS file system URI

fs.vipr.installations A comma-separated list of names. The names are further defined by the fs.vipr.installation.
[federation].hosts property to uniquely identify sets of ECS data nodes. The names are used
as a component of the authority section of the ECS HDFS file system URI. For example:

<property>
    <name>fs.vipr.installations</name>
    <value><federation>,<site1>,<testsite></value>
 </property>

fs.vipr.installation.
[federation].hosts

The IP addresses of the ECS cluster's data nodes or the load balancers for each name listed
in the fs.vipr.installations property. Specify the value in the form of a comma-separated list
of IP addresses or FQDNs. For example:

<property>
  <name>fs.vipr.installation.<federation>.hosts</name>
  <value>203.0.113.10,203.0.113.11,203.0.113.12</value>
 </property>
    

fs.vipr.installation.
[installation_name].re
solution

Specifies how the ECS HDFS software knows how to access the ECS data nodes. Values
are:

l dynamic: Use this value when accessing ECS data nodes directly without a load
balancer.

Hadoop core-site xml properties

178 ECS Data Access Guide



Table 53 Hadoop core-site.xml properties (continued)

Property Description

l fixed: Use this value when accessing ECS data nodes through a load balancer.

<property>
  <name>fs.vipr.installation.<federation>.resolution</name>
  <value>dynamic</value>
 </property>
    

fs.vipr.installation.
[installation_name].re
solution.dynamic.time
_to_live_ms

When the fs.vipr.installation.[installation_name].resolution property is

set to dynamic, this property specifies how often to query ECS for the list of active nodes.

Values are in milliseconds. The default is 10 minutes.

<property>
  
<name>fs.vipr.installation.<federation>.resolution.dynamic.time_to_live_m
s</name>
  <value>600000</value>
 </property>
    

ECS file system URI

fs.defaultFS A standard Hadoop property that specifies the URI to the default file system. Setting this
property to the ECS HDFS file system is optional. If you do not set it to the ECS HDFS file
system, you must specify the full URI on each file system operation. The ECS HDFS file
system URI has this format:

viprfs://[bucket_name].[namespace].[federation]

l bucket_name: The name of the HDFS-enabled bucket that contains the data you want
to use when you run Hadoop jobs.

l namespace: The tenant namespace associated with the HDFS-enabled bucket.

l federation: The name associated with the set of ECS data nodes that Hadoop can use to
access ECS data. The value of this property must match one of the values specified in
the fs.vipr.installations property.

For example:

<property>
    <name>fs.defaultFS</name>
    <value>viprfs://testbucket.s3.federation1</value>
 </property>

umask property

Hadoop core-site xml properties

ECS Data Access Guide 179



Table 53 Hadoop core-site.xml properties (continued)

Property Description

fs.permissions.umask
-mode

This standard Hadoop property specifies how ECS HDFS should compute permissions on
objects. Permissions are computed by applying a umask on the input permissions. The
recommended value for both simple and Kerberos configurations is: 022. For example:

<property>
<name>fs.permissions.umask-mode</name>
<value>022</value>
</property>
             

Identity translation properties

fs.viprfs.auth.identity
_translation

This property specifies how the ECS HDFS client determines what Kerberos realm a
particular user belongs to if one is not specified. ECS data nodes store file owners as
username@REALM, while Hadoop stores file owners as just the username. The possible

values are:

l NONE: Default. Users are not mapped to a realm. Use this setting with a Hadoop cluster

that uses simple security. With this setting ECS HDFS does not perform realm
translation.

l CURRENT_USER_REALM: Valid when Kerberos is present. The user's realm is auto-

detected, and it is the realm of the currently signed in user. In the example below, the
realm is EMC.COM because sally is in the EMC.COM realm. The file ownership is changed

john@EMC.COM.

# kinit sally@EMC.COM
# hdfs dfs -chown john /path/to/file

Realms provided at the command line takes precedence over the property settings.

<property>
  <name>fs.viprfs.auth.identity_translation 
             </name>
  <value>CURRENT_USER_REALM</value>
 </property>
    

Note: FIXED_REALM is now deprecated.

fs.viprfs.auth.realm The realm assigned to users when the fs.viprfs.auth.identity_translation
property is set to FIXED_REALM. This is now deprecated.

fs.viprfs.auth.anonym
ous_translation

This property is used to determine how users and groups are assigned to newly created files.
Note: This property was used to determine what happened to files that had no owner.
These files were said to be owned by anonymous. Files and directories are no longer

anonymously owned. The values are:

l LOCAL_USER: Use this setting with a Hadoop cluster that uses simple security. Assigns

the Unix user and group of the Hadoop cluster to newly created files and directories.

l CURRENT_USER: Use this setting for a Hadoop cluster that uses Kerberos. Assigns the

Kerberos principal (user@REALM.COM) as the file or directory owner, and uses the

group that has been assigned as the default for the bucket.

Hadoop core-site xml properties

180 ECS Data Access Guide



Table 53 Hadoop core-site.xml properties (continued)

Property Description

l NONE: (Deprecated) Previously indicated that no mapping from the anonymously owned

objects to the current user should be performed.

<property>
  <name>fs.viprfs.auth.anonymous_translation</name>
  <value>CURRENT_USER</value>
 </property>
    

Kerberos realm and service principal properties

viprfs.security.princip
al

This property specifies the ECS service principal. This property tells the KDC about the ECS
service. This value is specific to your configuration. The principal name can include _HOST
which is automatically replaced by the actual data node FQDN at run time. For example:

<property>
        <name>viprfs.security.principal</name>
        <value>vipr/_HOST@example.com</value>
</property>

Sample core-site.xml for simple authentication mode
The following core-site.xml file is an example of ECS HDFS properties for simple
authentication mode.

Example 1  core-site.xml

<property>
  <name>fs.viprfs.impl</name>
  <value>com.emc.hadoop.fs.vipr.ViPRFileSystem</value>
</property>

<property>
  <name>fs.AbstractFileSystem.viprfs.impl</name>
  <value>com.emc.hadoop.fs.vipr.ViPRAbstractFileSystem</value>
</property>

<property>
  <name>fs.vipr.installations</name>
  <value>federation1</value>
</property>

<property>
  <name>fs.vipr.installation.federation1.hosts</name>
  <value>203.0.113.10,203.0.113.11,203.0.113.12</value>
</property>

<property>
  <name>fs.vipr.installation.federation1.resolution</name>
  <value>dynamic</value>
</property>

Hadoop core-site xml properties

ECS Data Access Guide 181



Example 1  core-site.xml (continued)

<property>
  <name>fs.vipr.installation.federation1.resolution.dynamic.time_to_live_ms</name>
  <value>900000</value>
</property>

<property>
  <name>fs.defaultFS</name>
  <value>viprfs://mybucket.mynamespace.federation1/</value>
</property>

<property>
  <name>fs.viprfs.auth.anonymous_translation</name>
  <value>LOCAL_USER</value>
</property>

<property>
  <name>fs.viprfs.auth.identity_translation</name>
  <value>NONE</value>
</property>

Hadoop core-site.xml properties for ECS S3
When configuring the Hadoop core-site.xml file for ECS S3, use this table as a reference for
the properties and their related values.

The table lists the Hadoop ore-site.xml properties details for ECS S3

Table 54 Hadoop core-site.xml properties for ECS S3

Property Description

fs.s3a.endpoint= <ECS IP address
(only one node address) or
LoadBalancer IP>:9020

ECS IP address to connect to.
Note: s3a does not support multiple IP addresses so better to have a
loadbalancer

fs.s3a.access.key= <S3 Object User
as created on ECS>

Your AWS access key ID

fs.s3a.secret.key=<S3 Object User
Secret Key as on ECS>

Your AWS secret key

fs.s3a.connection.maximum=15 Controls how many parallel connections HttpClient spawns (default: 15)

fs.s3a.connection.ssl.enabled=false Enables or disables SSL connections to S3 (default: true)

fs.s3a.path.style.access=false Enables S3 path style access that is disabling the default virtual hosting
behavior (default: false)

fs.s3a.connection.establish.timeout=
5000

Socket connection setup timeout in milliseconds.

fs.s3a.connection.timeout=200000 Socket connect timeout (default: 5000)

fs.s3a.paging.maximum=1000 How many keys to request from S3 when doing directory listings at a time
(default: 5000)

fs.s3a.threads.max=10 The total number of threads available in the filesystem for data uploads *or
any other queued filesystem operation*.

Hadoop core-site xml properties

182 ECS Data Access Guide



Table 54 Hadoop core-site.xml properties for ECS S3 (continued)

Property Description

fs.s3a.socket.send.buffer=8192 Socket send buffer hint to amazon connector. Represented in bytes.

fs.s3a.socket.recv.buffer=8192 Socket receive buffer hint to amazon connector. Represented in bytes.

fs.s3a.threads.keepalivetime=60 Number of seconds a thread can be idle before being terminated.

fs.s3a.max.total.tasks=5 The number of operations which can be queued for execution.

fs.s3a.multipart.size=100M How big (in bytes) to split a upload or copy operation up into (default: 100
MB)

fs.s3a.multipart.threshold=21474836
47

Until a file is this large (in bytes), use non-parallel upload (default: 2 GB)

fs.s3a.multiobjectdelete.enable=true When enabled, multiple single-object delete requests are replaced by a single
'delete multiple objects'-request, reducing the number of requests. Beware:
legacy S3-compatible object stores might not support this request.

fs.s3a.acl.default=PublicReadWrite Set a canned ACL on newly created/copied objects (Private | PublicRead |
PublicReadWrite | AuthenticatedRead | LogDeliveryWrite |
BucketOwnerRead | BucketOwnerFullControl)

fs.s3a.multipart.purge=false True if you want to purge existing multipart uploads that may not have been
completed/aborted correctly (default: false)

fs.s3a.multipart.purge.age=86400 Minimum age in seconds of multipart uploads to purge (default: 86400)

fs.s3a.block.size=32M Block size to use when reading files using s3a: file system. A suffix from the
set {K,M,G,T,P} may be used to scale the numeric value.

fs.s3a.readahead.range=64K Bytes to read ahead during a seek() before closing and re-opening the S3
HTTP connection. This option will be overridden if any call to
setReadahead() is made to an open stream. A suffix from the set
{K,M,G,T,P} may be used to scale the numeric value.

fs.s3a.buffer.dir=$
{hadoop.tmp.dir}/s3a

Comma separated list of directories that will be used to buffer file writes out
of (default: uses fs.s3.buffer.dir)

Sample core-site.xml for ECS S3
The following core-site.xml file is an example of ECS S3 properties.

Example 2  core-site.xml

  <configuration  xmlns:xi="http://www.w3.org/2001/XInclude">
    
    <property>
      <name>fs.azure.user.agent.prefix</name>
      <value>User-Agent: APN/1.0 Hortonworks/1.0 HDP/</value>
    </property>
    
    <property>
      <name>fs.defaultFS</name>
      <value>hdfs://<<hostname:8020>></value>
      <final>true</final>

Hadoop core-site xml properties

ECS Data Access Guide 183



Example 2  core-site.xml (continued)

    </property>
    
    <property>
      <name>fs.s3a.access.key</name>
      <value><<userid>></value>
    </property>
    
    <property>
      <name>fs.s3a.acl.default</name>
      <value>PublicReadWrite</value>
    </property>
    
    <property>
      <name>fs.s3a.block.size</name>
      <value>32M</value>
    </property>
    
    <property>
      <name>fs.s3a.bucket.s3aTestBucket.access.key</name>
      <value>ambari-qa</value>
    </property>
    
    <property>
      <name>fs.s3a.bucket.s3aTestBucket.secret.key</name>
      <value>secret_key</value>
    </property>
    
    <property>
      <name>fs.s3a.buffer.dir</name>
      <value>${hadoop.tmp.dir}/s3a</value>
    </property>
    
    <property>
      <name>fs.s3a.connection.establish.timeout</name>
      <value>5000</value>
    </property>
    
    <property>
      <name>fs.s3a.connection.maximum</name>
      <value>15</value>
    </property>
    
    <property>
      <name>fs.s3a.connection.ssl.enabled</name>
      <value>false</value>
    </property>
    
    <property>
      <name>fs.s3a.connection.timeout</name>
      <value>200000</value>
    </property>
    
    <property>
      <name>fs.s3a.endpoint</name>
      <value><<Host IP address>></value>
    </property>
    
    <property>
      <name>fs.s3a.fast.upload</name>
      <value>true</value>
    </property>
    
    <property>
      <name>fs.s3a.fast.upload.buffer</name>
      <value>disk</value>

Hadoop core-site xml properties

184 ECS Data Access Guide



Example 2  core-site.xml (continued)

    </property>
    
    <property>
      <name>fs.s3a.max.total.tasks</name>
      <value>5</value>
    </property>
    
    <property>
      <name>fs.s3a.multiobjectdelete.enable</name>
      <value>true</value>
    </property>
    
    <property>
      <name>fs.s3a.multipart.purge</name>
      <value>false</value>
    </property>
    
    <property>
      <name>fs.s3a.multipart.purge.age</name>
      <value>86400</value>
    </property>
    
    <property>
      <name>fs.s3a.multipart.size</name>
      <value>67108864</value>
    </property>
    
    <property>
      <name>fs.s3a.multipart.threshold</name>
      <value>2147483647</value>
    </property>
    
    <property>
      <name>fs.s3a.paging.maximum</name>
      <value>1000</value>
    </property>
    
    <property>
      <name>fs.s3a.path.style.access</name>
      <value>false</value>
    </property>
    
    <property>
      <name>fs.s3a.readahead.range</name>
      <value>64K</value>
    </property>
    
    <property>
      <name>fs.s3a.secret.key</name>
      <value><<secret key>></value>
    </property>
    
    <property>
      <name>fs.s3a.socket.recv.buffer</name>
      <value>8192</value>
    </property>
    
    <property>
      <name>fs.s3a.socket.send.buffer</name>
      <value>8192</value>
    </property>
    
    <property>
      <name>fs.s3a.threads.keepalivetime</name>
      <value>60</value>

Hadoop core-site xml properties

ECS Data Access Guide 185



Example 2  core-site.xml (continued)

    </property>
    
    <property>
      <name>fs.s3a.threads.max</name>
      <value>10</value>
    </property>
    
    <property>
      <name>fs.s3a.user.agent.prefix</name>
      <value>User-Agent: APN/1.0 Hortonworks/1.0 HDP/</value>
    </property>
    
    <property>
      <name>fs.trash.interval</name>
      <value>360</value>
    </property>
    
    <property>
      <name>ha.failover-controller.active-standby-elector.zk.op.retries</name>
      <value>120</value>
    </property>
    
    <property>
      <name>ha.zookeeper.acl</name>
      <value>sasl:nn:rwcda</value>
    </property>
    
    <property>
      <name>hadoop.http.authentication.cookie.domain</name>
      <value>centera.lab.emc.com</value>
    </property>
    
    <property>
      <name>hadoop.http.authentication.kerberos.keytab</name>
      <value>/etc/security/keytabs/spnego.service.keytab</value>
    </property>
    
    <property>
      <name>hadoop.http.authentication.kerberos.principal</name>
      <value>HTTP/_HOST@SM.EMC.COM</value>
    </property>
    
    <property>
      <name>hadoop.http.authentication.signature.secret.file</name>
      <value>/etc/security/http_secret</value>
    </property>
    
    <property>
      <name>hadoop.http.authentication.simple.anonymous.allowed</name>
      <value>false</value>
    </property>
    
    <property>
      <name>hadoop.http.authentication.type</name>
      <value>kerberos</value>
    </property>
    
    <property>
      <name>hadoop.http.cross-origin.allowed-headers</name>
      <value>X-Requested-With,Content-Type,Accept,Origin,WWW-Authenticate,Accept-
Encoding,Transfer-Encoding</value>
    </property>
    
    <property>
      <name>hadoop.http.cross-origin.allowed-methods</name>

Hadoop core-site xml properties

186 ECS Data Access Guide



Example 2  core-site.xml (continued)

      <value>GET,PUT,POST,OPTIONS,HEAD,DELETE</value>
    </property>
    
    <property>
      <name>hadoop.http.cross-origin.allowed-origins</name>
      <value>*</value>
    </property>
    
    <property>
      <name>hadoop.http.cross-origin.max-age</name>
      <value>1800</value>
    </property>
    
    <property>
      <name>hadoop.http.filter.initializers</name>
      
<value>org.apache.hadoop.security.AuthenticationFilterInitializer,org.apache.hadoop.
security.HttpCrossOriginFilterInitializer</value>
    </property>
    
    <property>
      <name>hadoop.proxyuser.ambari-server.groups</name>
      <value>*</value>
    </property>
    
    <property>
      <name>hadoop.proxyuser.ambari-server.hosts</name>
      <value><Ambari server fully  qualified name>></value>
    </property>
    
    <property>
      <name>hadoop.proxyuser.hdfs.groups</name>
      <value>*</value>
    </property>
    
    <property>
      <name>hadoop.proxyuser.hdfs.hosts</name>
      <value>*</value>
    </property>
    
    <property>
      <name>hadoop.proxyuser.hive.groups</name>
      <value>*</value>
    </property>
    
    <property>
      <name>hadoop.proxyuser.hive.hosts</name>
      <value><<hive host>></value>
    </property>
    
    <property>
      <name>hadoop.proxyuser.HTTP.groups</name>
      <value>users</value>
    </property>
    
    <property>
      <name>hadoop.proxyuser.knox.groups</name>
      <value>users</value>
    </property>
    
    <property>
      <name>hadoop.proxyuser.knox.hosts</name>
      <value><<knox host>></value>
    </property>
    

Hadoop core-site xml properties

ECS Data Access Guide 187



Example 2  core-site.xml (continued)

    <property>
      <name>hadoop.proxyuser.livy.groups</name>
      <value>*</value>
    </property>
    
    <property>
      <name>hadoop.proxyuser.livy.hosts</name>
      <value>*</value>
    </property>
    
    <property>
      <name>hadoop.proxyuser.yarn.groups</name>
      <value>*</value>
    </property>
    
    <property>
      <name>hadoop.proxyuser.yarn.hosts</name>
      <value><<yarn host>></value>
    </property>
    
    <property>
      <name>hadoop.rpc.protection</name>
      <value>authentication,privacy</value>
    </property>
    
    <property>
      <name>hadoop.security.auth_to_local</name>
      <value>RULE:[1:$1@$0](ambari-qa@SM.EMC.COM)s/.*/ambari-qa/
RULE:[1:$1@$0](hbase@SM.EMC.COM)s/.*/hbase/
RULE:[1:$1@$0](hdfs@SM.EMC.COM)s/.*/hdfs/
RULE:[1:$1@$0](spark@SM.EMC.COM)s/.*/spark/
RULE:[1:$1@$0](yarn-ats@SM.EMC.COM)s/.*/yarn-ats/
RULE:[1:$1@$0](.*@SM.EMC.COM)s/@.*//
RULE:[2:$1@$0](activity_analyzer@SM.EMC.COM)s/.*/activity_analyzer/
RULE:[2:$1@$0](activity_explorer@SM.EMC.COM)s/.*/activity_explorer/
RULE:[2:$1@$0](amshbase@SM.EMC.COM)s/.*/ams/
RULE:[2:$1@$0](amsmon@SM.EMC.COM)s/.*/ams/
RULE:[2:$1@$0](amszk@SM.EMC.COM)s/.*/ams/
RULE:[2:$1@$0](atlas@SM.EMC.COM)s/.*/atlas/
RULE:[2:$1@$0](dn@SM.EMC.COM)s/.*/hdfs/
RULE:[2:$1@$0](hbase@SM.EMC.COM)s/.*/hbase/
RULE:[2:$1@$0](hive@SM.EMC.COM)s/.*/hive/
RULE:[2:$1@$0](jhs@SM.EMC.COM)s/.*/mapred/
RULE:[2:$1@$0](knox@SM.EMC.COM)s/.*/knox/
RULE:[2:$1@$0](nm@SM.EMC.COM)s/.*/yarn/
RULE:[2:$1@$0](nn@SM.EMC.COM)s/.*/hdfs/
RULE:[2:$1@$0](rm@SM.EMC.COM)s/.*/yarn/
RULE:[2:$1@$0](spark@SM.EMC.COM)s/.*/spark/
RULE:[2:$1@$0](yarn@SM.EMC.COM)s/.*/yarn/
RULE:[2:$1@$0](yarn-ats-hbase@SM.EMC.COM)s/.*/yarn-ats/
DEFAULT</value>
    </property>
    
    <property>
      <name>hadoop.security.authentication</name>
      <value>kerberos</value>
    </property>
    
    <property>
      <name>hadoop.security.authorization</name>
      <value>true</value>
    </property>
    
    <property>
      <name>hadoop.security.instrumentation.requires.admin</name>

Hadoop core-site xml properties

188 ECS Data Access Guide



Example 2  core-site.xml (continued)

      <value>false</value>
    </property>
    
    <property>
      <name>io.compression.codecs</name>
      
<value>org.apache.hadoop.io.compress.GzipCodec,org.apache.hadoop.io.compress.Default
Codec,org.apache.hadoop.io.compress.SnappyCodec</value>
    </property>
    
    <property>
      <name>io.file.buffer.size</name>
      <value>131072</value>
    </property>
    
    <property>
      <name>io.serializations</name>
      <value>org.apache.hadoop.io.serializer.WritableSerialization</value>
    </property>
    
    <property>
      <name>ipc.client.connect.max.retries</name>
      <value>50</value>
    </property>
    
    <property>
      <name>ipc.client.connection.maxidletime</name>
      <value>30000</value>
    </property>
    
    <property>
      <name>ipc.client.idlethreshold</name>
      <value>8000</value>
    </property>
    
    <property>
      <name>ipc.server.tcpnodelay</name>
      <value>true</value>
    </property>
    
    <property>
      <name>mapreduce.jobtracker.webinterface.trusted</name>
      <value>false</value>
    </property>
    
    <property>
      <name>net.topology.script.file.name</name>
      <value>/etc/hadoop/conf/topology_script.py</value>
    </property>
    
  </configuration>

Hadoop core-site xml properties

ECS Data Access Guide 189



Hadoop core-site xml properties

190 ECS Data Access Guide



APPENDIX E

External Key Management

l External key management.................................................................................................... 192

ECS Data Access Guide 191



External key management

As a part of Data at Rest Encryption (D@RE), ECS supports centralized external key managers.
The centralized external key managers are compliant with the Key Management Interoperability
Protocol (KMIP) which enhance the enterprise grade security in the system. Also, it enables the
customers to use the centralized key servers to store top-level Key Encrypting Keys (KEKs) to
provide the following benefits:

l Helps in obtaining benefits from the Hardware Security Module (HSM) based key production
and the latest encryption technology that is provided by the specialized key management
servers.

l Provides production against loss of the entire appliance by storing top-level key information
outside of the appliance.

ECS incorporates the KMIP standard for integration with external key managers and serves as a
KMIP client, and supports the following:

l Supports the Gemalto Safenet and IBM SKLM (Security Key Lifecycle Manager) key
managers.

Note: The key manager supported versions are determined by Dell EMC's Key-Trust-
Platform (KTP) client.

l Supports the use of top-level KEK (master key) supplied by an external key manager.

l Supports rotation of top-level KEK (master key) supplied by an external key manager.

External Key Management

192 ECS Data Access Guide


	Contents
	S3
	Amazon S3 API support in ECS
	S3 API supported and unsupported features
	Behavior where bucket already exists

	Bucket policy support
	Creating, Assigning, and Managing Bucket Policies
	Bucket policy scenarios
	Supported bucket policy operations
	Supported bucket policy conditions

	Object lifecycle management
	S3 Extensions
	Byte range extensions
	Retention
	File system enabled
	S3A support
	Geo-replication status

	Metadata Search
	Assign metadata index values to a bucket
	Using encryption with metadata search
	Assign metadata to objects using the S3 protocol
	Use metadata search queries
	Using Metadata Search from the ECS Java SDK
	ECS system metadata and optional attributes

	S3 and Swift Interoperability
	Create and manage secret keys
	Create a key for an object user
	Create an S3 secret key: self-service

	Authenticating with the S3 service
	Authenticating using Signature V2
	Authenticating using Signature V4

	Using s3curl with ECS
	Use SDKs to access the S3 service
	Using the Java Amazon SDK
	Java SDK client for ECS

	ECS S3 error codes

	OpenStack Swift
	OpenStack Swift support in ECS
	OpenStack Swift supported operations
	Swift extensions
	Swift byte range extensions
	Updating a byte range within an object
	Overwriting part of an object
	Appending data to an object
	Reading multiple byte ranges within an object

	Retention
	File system enabled
	S3 and Swift interoperability
	OpenStack Swift authentication
	Create Swift users in the ECS Portal
	OpenStack Version 1 authentication
	OpenStack Version 2 authentication
	Authentication using ECS Keystone V3 integration

	Authorization on Container
	ECS Swift error codes

	EMC Atmos
	EMC Atmos API support in ECS
	Supported EMC Atmos REST API Calls
	Unsupported EMC Atmos REST API Calls
	Subtenant Support in EMC Atmos REST API Calls
	API Extensions
	Appending data to an object
	ECS support for retention and retention expiration periods for Atmos objects

	ECS Atmos error codes

	CAS
	Setting up CAS support in ECS
	Cold Storage
	Compliance
	Platform hardening and Compliance
	Compliance and retention policy
	Compliance agent

	CAS retention in ECS
	Advanced retention for CAS applications: event-based retention, litigation hold, and the min/max governor
	Set up namespace retention policies
	Create and set up a bucket for a CAS user
	Set up a CAS object user
	Set up bucket ACLs for CAS
	ECS Management APIs that support CAS users
	Content Addressable Storage (CAS) SDK API support
	ECS CAS error codes

	ECS Management REST API
	ECS Management REST API introduction
	Authenticate with the ECS Management REST API
	Authenticate without cookies
	Logout
	ECS Management REST API whoami command
	ECS Management REST API summary


	ECS HDFS
	ECS HDFS Introduction
	Configuring Hadoop to use ECS HDFS
	Hadoop authentication modes
	Accessing the bucket as a file system
	Bucket Custom Group ACLs and Default Group
	Hadoop superuser and supergroup
	Multi-protocol (cross-head) access
	Proxy user
	Equivalence user

	Migration from a simple to a Kerberos Hadoop cluster
	Hadoop Kerberos authentication mode

	File system interaction
	Supported Hadoop applications
	Integrate a simple Hadoop cluster with ECS HDFS
	Install Hortonworks HDP using Ambari
	Create a bucket for HDFS using the ECS Portal
	Plan the ECS HDFS and Hadoop integration
	Obtain the ECS HDFS installation and support package
	Deploy the ECS HDFS Client Library
	Configure ECS client properties
	Set up Hive
	Verify Hadoop access to ECS
	Secure the bucket
	Relocate the default file system from HDFS to an ECS bucket

	Integrate a secure Hadoop cluster with ECS HDFS
	Plan migration from a simple to a Kerberos cluster
	Map group names
	Configure ECS nodes with the ECS service principal
	Enable Kerberos using Ambari
	Secure the ECS bucket using metadata
	Reconfigure ECS client properties
	Start Hadoop services and verify Hadoop access to ECS


	Troubleshooting ECS HDFS Configuration
	Verify that AD/LDAP is correctly configured with a secure Hadoop cluster
	Pig test fails: unable to obtain Kerberos principal
	Permission denied for AD user
	Permissions errors
	Failed to process request
	Enable Kerberos client-side logging and debugging
	Debug Kerberos on the KDC
	Eliminate clock skew
	Configure one or more new ECS nodes with the ECS service principal
	Workaround for Yarn directory does not exist error

	Guidance on Kerberos Configuration in the Hadoop Cluster
	Set up the Kerberos KDC
	Configure AD user authentication for Kerberos

	HDFS Secure Bucket Metadata Example
	Secure bucket metadata

	Hadoop core-site xml properties
	Hadoop core-site.xml properties for ECS HDFS
	Sample core-site.xml for simple authentication mode

	Hadoop core-site.xml properties for ECS S3
	Sample core-site.xml for ECS S3


	External Key Management
	External key management


