

Greenplum® Database 4.1
Administrator Guide

P/N: 300-012-428
Rev: A04

The Data Computing Division of EMC

Copyright © 2011 EMC Corporation. All rights reserved.

EMC believes the information in this publication is accurate as of its publication date. The information is subject to
change without notice.

THE INFORMATION IN THIS PUBLICATION IS PROVIDED “AS IS.” EMC CORPORATION MAKES NO REPRESENTATIONS
OR WARRANTIES OF ANY KIND WITH RESPECT TO THE INFORMATION IN THIS PUBLICATION, AND SPECIFICALLY
DISCLAIMS IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Use, copying, and distribution of any EMC software described in this publication requires an applicable software
license.

For the most up-to-date listing of EMC product names, see EMC Corporation Trademarks on EMC.com

All other trademarks used herein are the property of their respective owners.

Greenplum Database Administrator Guide 4.1 - Contents
Greenplum Database Administrator Guide 4.1 - Contents
Preface ... 1

About This Guide.. 1
Document Conventions .. 2

Text Conventions.. 2
Command Syntax Conventions ... 3

Getting Support ... 3
Product information .. 3
Technical support ... 4

Section I: Introduction to Greenplum
Chapter 1: About the Greenplum Architecture 6

About the Greenplum Master.. 7
About the Greenplum Segments... 7
About the Greenplum Interconnect .. 7
About Redundancy and Failover in Greenplum Database 8

About Segment Mirroring.. 8
About Master Mirroring ... 9
About Interconnect Redundancy ... 9

About Parallel Data Loading ..10
About Management and Monitoring ...10

Chapter 2: About Distributed Databases12
Understanding How Data is Stored..12
Understanding Greenplum Distribution Policies................................13

Chapter 3: Summary of Greenplum Features14
Greenplum SQL Standard Conformance ..14

Core SQL Conformance..14
SQL 1992 Conformance ...15
SQL 1999 Conformance ...16
SQL 2003 Conformance ...16
SQL 2008 Conformance ...17

Greenplum and PostgreSQL Compatibility18

Chapter 4: About Greenplum Query Processing25
Understanding Query Planning and Dispatch25
Understanding Greenplum Query Plans ...26
Understanding Parallel Query Execution ..27

Section II: Access Control and Security
Chapter 5: Managing Roles and Privileges30

Security Best Practices for Roles and Privileges...............................30
Creating New Roles (Users)...31

Altering Role Attributes..31
Creating Groups (Role Membership)..32
Managing Object Privileges ...33

Simulating Row and Column Level Access Control34
Encrypting Data ..34
Table of Contents iii

Greenplum Database Administrator Guide 4.1 - Contents
Chapter 6: Configuring Client Authentication.........................36
Allowing Connections to Greenplum Database.................................36

Editing the pg_hba.conf File...37
Limiting Concurrent Connections ...38
Encrypting Client/Server Connections ...39

Chapter 7: Accessing the Database ...41
Establishing a Database Session ...41
Supported Client Applications..42

Greenplum Database Client Applications....................................43
pgAdmin III for Greenplum Database ..44
Database Application Interfaces...47
Third-Party Client Tools ...48

Troubleshooting Connection Problems ...49

Chapter 8: Managing Workload and Resources50
Overview of Greenplum Workload Management50

How Resource Queues Work in Greenplum Database.................50
Steps to Enable Workload Management54

Configuring Workload Management...55
Creating Resource Queues ..56

Creating Queues with an Active Query Limit56
Creating Queues with Memory Limits...57
Creating Queues with a Query Planner Cost Limits57
Setting Priority Levels..58

Assigning Roles (Users) to a Resource Queue..................................59
Removing a Role from a Resource Queue59

Modifying Resource Queues...60
Altering a Resource Queue...60
Dropping a Resource Queue ..60

Checking Resource Queue Status ..60
Viewing Queued Statements and Resource Queue Status61
Viewing Resource Queue Statistics ..61
Viewing the Roles Assigned to a Resource Queue61
Viewing the Waiting Queries for a Resource Queue....................62
Clearing a Waiting Statement From a Resource Queue62
Viewing the Priority of Active Statements63
Resetting the Priority of an Active Statement.............................63

Section III: Database Administration
Chapter 9: Defining Database Objects......................................65

Creating and Managing Databases ..65
About Template Databases ..65
Creating a Database ..65
Viewing the List of Databases ..66
Altering a Database ...66
Dropping a Database ...66

Creating and Managing Tablespaces..67
Creating a Filespace...67
Creating a Tablespace ...68
Table of Contents iv

Greenplum Database Administrator Guide 4.1 - Contents
Using a Tablespace to Store Database Objects68
Viewing Existing Tablespaces and Filespaces69
Dropping Tablespaces and Filespaces ..69

Creating and Managing Schemas...69
The Default ‘Public’ Schema...70
Creating a Schema ..70
Schema Search Paths ..70
Dropping a Schema ...71
System Schemas ...71

Creating and Managing Tables ..72
Creating a Table ..72
Altering a Table ...79
Dropping a Table ...80

Partitioning Large Tables...80
Understanding Table Partitioning in Greenplum Database..........80
Deciding on a Table Partitioning Strategy81
Creating Partitioned Tables..82
Loading Partitioned Tables ...86
Verifying Your Partition Strategy..86
Viewing Your Partition Design ..87
Maintaining Partitioned Tables ...87

Creating and Using Sequences ..91
Creating a Sequence..91
Using a Sequence ..91
Altering a Sequence...92
Dropping a Sequence...92

Using Indexes in Greenplum Database ..92
Index Types...94
Creating an Index..96
Examining Index Usage ...96
Managing Indexes ...97
Dropping an Index...97

Creating and Managing Views..97
Creating Views...97
Dropping Views..97

Chapter 10: Managing Data ...99
About Concurrency Control in Greenplum Database99
Inserting New Rows ..100
Updating Existing Rows ...101
Deleting Rows ...101

Truncating a Table...102
Working With Transactions..102

Transaction Isolation Levels...102
Vacuuming the Database ..103

Configuring the Free Space Map ..103

Chapter 11: Querying Data ..105
Defining Queries ...105

SQL Lexicon...105
Table of Contents v

Greenplum Database Administrator Guide 4.1 - Contents
SQL Value Expressions ..105
Using Functions and Operators..114

Using Functions in Greenplum Database114
User-Defined Functions..115
Built-in Functions and Operators..115

Query Profiling ..130
Reading EXPLAIN Output ...131
Reading EXPLAIN ANALYZE Output ..132
What to Look for in a Query Plan ...133

Chapter 12: Loading and Unloading Data135
Greenplum Database Loading Tools Overview135

About External Tables..135
About gpload ...136
About COPY ..136

Loading Data into Greenplum Database ..136
Accessing File-Based External Tables.......................................137

Defining External Tables - Examples ...139
Using the Greenplum Parallel File Server (gpfdist)141
Using Hadoop Distributed File System (HDFS) Tables144
Creating and Using Web External Tables..................................146
Loading Data Using an External Table......................................148
Handling Load Errors ...148

Loading Data from Greenplum Database150
Loading Data with gpload ..150
Loading Data with the gphdfs Protocol.....................................151
Loading Data with COPY ..152
Data Loading Performance Tips ...152

Unloading Data from Greenplum Database....................................153
Defining a File-Based Writable External Table153
Defining a Command-Based Writable External Web Table........155
Unloading Data Using a Writable External Table156
Unloading Data Using COPY ...157
Readable External Tables and Query Planner Statistics157

Formatting Data Files ..157
Formatting Rows..157
Formatting Columns ..158
Representing NULL Values ...158
Escaping ..158
Character Encoding..160

Section IV: System Administration
Chapter 13: Starting and Stopping Greenplum162

Overview...162
Starting Greenplum Database ...162

Restarting Greenplum Database ..162
Uploading Configuration File Changes Only..............................163
Starting the Master in Maintenance Mode163

Stopping Greenplum Database ..163
Table of Contents vi

Greenplum Database Administrator Guide 4.1 - Contents
Chapter 14: Configuring Your Greenplum System165
About Greenplum Master and Local Parameters165
Setting Configuration Parameters..165

Setting a Local Configuration Parameter166
Setting a Master Configuration Parameter166

Viewing Settings of Server Configuration Parameters167
Configuration Parameter Categories ..167

Connection and Authentication Parameters..............................168
System Resource Consumption Parameters169
Query Tuning Parameters ..170
Error Reporting and Logging Parameters172
System Monitoring Parameters ..172
Runtime Statistics Collection Parameters173
Automatic Statistics Collection Parameters173
Client Connection Default Parameters......................................174
Lock Management Parameters ...174
Workoad Management Parameters ..174
External Table Parameters...175
Append-Only Table Parameters..175
Database and Tablespace/Filespace Parameters175
Past PostgreSQL Version Compatibility Parameters..................175
Greenplum Array Configuration Parameters.............................175

Chapter 15: Enabling High Availability Features177
Overview of High Availability in Greenplum Database....................177

Overview of Segment Mirroring ...177
Overview of Master Mirroring...178
Overview of Fault Detection and Recovery...............................179

Enabling Mirroring in Greenplum Database....................................180
Enabling Segment Mirroring...180
Enabling Master Mirroring ..181

Knowing When a Segment is Down ...182
Enabling Alerts and Notifications..182
Checking for Failed Segments..182
Checking the Log Files ...183

Recovering a Failed Segment ..183
Recovering From Segment Failures..184

Recovering a Failed Master..187
Restoring Master Mirroring After a Recovery............................188

Chapter 16: Backing Up and Restoring Databases..............190
Overview of Backup and Restore Operations190

About Parallel Backups ..190
About Non-Parallel Backups ...191
About Parallel Restores..191
About Non-Parallel Restores ..192

Backing Up a Database ...192
Backing Up a Database with gp_dump.....................................193
Automating Parallel Backups with gpcrondump........................194

Restoring From Parallel Backup Files ...195
Table of Contents vii

Greenplum Database Administrator Guide 4.1 - Contents
Restoring a Database with gp_restore195
Restoring a Database Using gpdbrestore197
Restoring to a Different Greenplum System Configuration197

Chapter 17: Expanding a Greenplum System199
Planning Greenplum System Expansion...199

System Expansion Overview..199
System Expansion Checklist ..201
Planning New Hardware Platforms ...202
Planning Initialization of New Segments202
Planning Table Redistribution...203

Preparing and Adding Nodes ...206
Adding New Nodes to the Trusted Host Environment206
Verifying OS Settings...208
Validating Disk I/O and Memory Bandwidth208
Integrating New Hardware into the System209

Initializing New Segments ...209
Creating an Input File for System Expansion209
Running gpexpand to Initialize New Segments212
Rolling Back an Failed Expansion Setup213

Redistributing Tables...213
Ranking Tables for Redistribution ..213
Redistributing Tables Using gpexpand......................................214
Monitoring Table Redistribution..214

Removing the Expansion Schema..215

Chapter 18: Monitoring a Greenplum System.......................216
Monitoring Database Activity and Performance..............................216
Monitoring System State ...216

Enabling System Alerts and Notifications217
Checking System State..223
Checking Disk Space Usage ...224
Checking for Data Distribution Skew..225
Viewing Metadata Information about Database Objects226

Viewing the Database Server Log Files ..227
Log File Format..227
Searching the Greenplum Database Server Log Files228

Using gp_toolkit ..228

Chapter 19: Routine System Maintenance Tasks.................230
Routine Vacuum and Analyze ..230

Transaction ID Management ..230
System Catalog Maintenance...230
Vacuum and Analyze for Query Optimization231

Routine Reindexing ...231
Managing Greenplum Database Log Files232

Database Server Log Files ...232
Management Utility Log Files ...232
Table of Contents viii

Greenplum Database Administrator Guide 4.1 - Contents
Section V: Performance Tuning
Chapter 20: Defining Database Performance234

Understanding the Performance Factors ..234
System Resources ...234
Workload ...234
Throughput..234
Contention...235
Optimization ..235

Determining Acceptable Performance ..235
Baseline Hardware Performance ..235
Performance Benchmarks ..235

Chapter 21: Common Causes of Performance Issues.........237
Identifying Hardware and Segment Failures237
Managing Workload...238
Avoiding Contention ..238
Maintaining Database Statistics...238

Identifying Statistics Problems in Query Plans238
Tuning Statistics Collection ..239

Optimizing Data Distribution ...239
Optimizing Your Database Design..239

Greenplum Database Maximum Limits.....................................240

Chapter 22: Investigating a Performance Problem241
Checking System State ...241
Checking Database Activity ...241

Checking for Active Sessions (Workload)241
Checking for Locks (Contention) ..241
Checking Query Status and System Utilization.........................242

Troubleshooting Problem Queries ..242
Investigating Error Messages ..242

Gathering Information for Greenplum Support.........................243

Section VI: Extending Greenplum Database
Chapter 23: Using Greenplum MapReduce245

About Greenplum MapReduce ...245
The Basics of MapReduce...245
How Greenplum MapReduce Works..246

Programming Greenplum MapReduce..247
Defining Inputs..247
Defining Map Functions..250
Defining Reduce Functions...252
Defining Outputs..255
Defining Tasks ...256
Putting Together a Complete MapReduce Specification257

Submitting MapReduce Jobs for Execution257
Troubleshooting Problems with MapReduce Jobs258

Language Does Not Exist ...258
Generic Python Iterator Error ..259
Function Defined Using Wrong MODE.......................................259
Table of Contents ix

Greenplum Database Administrator Guide 4.1 - Contents
Section VII: References

Appendix A: SQL Command Reference.......................................264
SQL Syntax Summary ...266
ABORT ..293
ALTER AGGREGATE ...294
ALTER CONVERSION ...296
ALTER DATABASE..297
ALTER DOMAIN ...299
ALTER EXTERNAL TABLE ...301
ALTER FILESPACE ...304
ALTER FUNCTION..305
ALTER GROUP ...308
ALTER INDEX ..309
ALTER LANGUAGE ...311
ALTER OPERATOR ...312
ALTER OPERATOR CLASS ..313
ALTER RESOURCE QUEUE ...314
ALTER ROLE ..317
ALTER SCHEMA ...321
ALTER SEQUENCE ...322
ALTER TABLE ..325
ALTER TABLESPACE ..337
ALTER TRIGGER ..338
ALTER TYPE...339
ALTER USER..340
ANALYZE...341
BEGIN ...343
CHECKPOINT...345
CLOSE...346
CLUSTER...347
COMMENT ...350
COMMIT ..353
COPY...354
CREATE AGGREGATE...362
CREATE CAST..366
CREATE CONVERSION...369
CREATE DATABASE ...371
CREATE DOMAIN...373
CREATE EXTERNAL TABLE ...375
CREATE FUNCTION..383
CREATE GROUP...389
CREATE INDEX..390
CREATE LANGUAGE...394
CREATE OPERATOR ...398
CREATE OPERATOR CLASS..403
CREATE RESOURCE QUEUE ...408
CREATE ROLE..412
CREATE RULE..417
Table of Contents x

Greenplum Database Administrator Guide 4.1 - Contents
CREATE SCHEMA...420
CREATE SEQUENCE...422
CREATE TABLE ..426
CREATE TABLE AS...437
CREATE TABLESPACE ..441
CREATE TRIGGER..443
CREATE TYPE ..446
CREATE USER ...453
CREATE VIEW ...454
DEALLOCATE...457
DECLARE...458
DELETE ...461
DROP AGGREGATE ..464
DROP CAST ...465
DROP CONVERSION ..466
DROP DATABASE...467
DROP DOMAIN ..468
DROP EXTERNAL TABLE ..469
DROP FILESPACE ..470
DROP FUNCTION...471
DROP GROUP ..473
DROP INDEX ...474
DROP LANGUAGE ..475
DROP OPERATOR ..476
DROP OPERATOR CLASS ...478
DROP OWNED ...480
DROP RESOURCE QUEUE ..482
DROP ROLE ...484
DROP RULE ...485
DROP SCHEMA ..486
DROP SEQUENCE ..487
DROP TABLE ...488
DROP TABLESPACE ...489
DROP TRIGGER ...490
DROP TYPE..491
DROP USER...492
DROP VIEW...493
END ..494
EXECUTE...495
EXPLAIN..496
FETCH ...499
GRANT ..503
INSERT ...508
LOAD ..510
LOCK...511
MOVE ..515
PREPARE ...517
REASSIGN OWNED..520
REINDEX ...521
Table of Contents xi

Greenplum Database Administrator Guide 4.1 - Contents
RELEASE SAVEPOINT ..523
RESET ...524
REVOKE ..525
ROLLBACK...528
ROLLBACK TO SAVEPOINT ..529
SAVEPOINT ...531
SELECT ...533
SELECT INTO ..549
SET ...551
SET ROLE..553
SET SESSION AUTHORIZATION ..555
SET TRANSACTION ...557
SHOW ...560
START TRANSACTION ...561
TRUNCATE ..563
UPDATE...564
VACUUM..568
VALUES...571

Appendix B: Management Utility Reference................................574
Backend Server Programs ...575
Management Utility Summary ...576
gp_dump...597
gp_restore ..602
gpaddmirrors ..606
gpactivatestandby...611
gpbitmapreindex ...614
gpcheck ..616
gpcheckperf ..618
gpconfig ..622
gpcrondump..626
gpdbrestore ..631
gpdeletesystem...634
gpdetective ...636
gpexpand ..639
gpfdist...643
gpfilespace..646
gpinitstandby ..649
gpinitsystem ...652
gpload...659
gplogfilter..670
gpmapreduce ..673
gpmigrator ..676
gpmigrator_mirror ..679
gpperfmon_install ...683
gprecoverseg ..685
gpscp ..690
gpseginstall...692
gpsetupsanfailover ..695
Table of Contents xii

Greenplum Database Administrator Guide 4.1 - Contents
gpsnmpd...697
gpssh ..700
gpssh-exkeys ..702
gpstart ..705
gpstate..708
gpstop...712
gpsys1 ..715

Appendix C: Client Utility Reference..716
Client Utility Summary ..718
clusterdb...727
createdb..729
createlang...731
createuser...733
dropdb ..736
gp_db_interfaces ..738
droplang..739
dropuser ...741
ecpg..743
pg_config ..745
pg_dump...748
pg_dumpall ...755
pg_restore ..759
psql...764
reindexdb..787
vacuumdb ...789

Appendix D: Server Configuration Parameters792
add_missing_from...794
application_name..794
array_nulls..794
authentication_timeout ...794
backslash_quote ...794
block_size ...794
bonjour_name...794
check_function_bodies ..794
client_encoding ...795
client_min_messages ..795
cpu_index_tuple_cost ...795
cpu_operator_cost ..795
cpu_tuple_cost..795
cursor_tuple_fraction ..795
custom_variable_classes ...795
DateStyle ..795
db_user_namespace ...796
deadlock_timeout..796
debug_assertions ..796
debug_pretty_print ...796
debug_print_parse ..796
debug_print_plan ..796
Table of Contents xiii

Greenplum Database Administrator Guide 4.1 - Contents
debug_print_prelim_plan ..796
debug_print_rewritten...796
debug_print_slice_table ..796
default_statistics_target..796
default_tablespace ..797
default_transaction_isolation...797
default_transaction_read_only ..797
dynamic_library_path..797
effective_cache_size ...797
enable_bitmapscan ...797
enable_groupagg ..797
enable_hashagg ..798
enable_hashjoin ..798
enable_indexscan..798
enable_mergejoin ...798
enable_nestloop..798
enable_seqscan...798
enable_sort ...798
enable_tidscan ..798
escape_string_warning..798
explain_pretty_print..799
extra_float_digits ..799
from_collapse_limit ...799
gp_adjust_selectivity_for_outerjoins...799
gp_analyze_relative_error...799
gp_autostats_mode ..800
gp_autostats_on_change_threshold ..800
gp_cached_segworkers_threshold...800
gp_command_count..800
gp_connectemc_mode ..801
gp_connections_per_thread ..801
gp_content..801
gp_dbid...801
gp_debug_linger ...801
gp_email_from..801
gp_email_smtp_password...801
gp_email_smtp_server..801
gp_email_smtp_userid ..801
gp_email_to ..802
gp_enable_adaptive_nestloop ...802
gp_enable_agg_distinct ..802
gp_enable_agg_distinct_pruning...802
gp_enable_direct_dispatch..802
gp_enable_fallback_plan ...802
gp_enable_fast_sri..802
gp_enable_gpperfmon ..803
gp_enable_groupext_distinct_gather ..803
gp_enable_groupext_distinct_pruning...803
gp_enable_multiphase_agg...803
Table of Contents xiv

Greenplum Database Administrator Guide 4.1 - Contents
gp_enable_predicate_propagation...803
gp_enable_preunique..803
gp_enable_sequential_window_plans ..803
gp_enable_sort_distinct ..803
gp_enable_sort_limit...804
gp_external_enable_exec..804
gp_external_grant_privileges ..804
gp_external_max_segs ...804
gp_fts_probe_interval ...804
gp_fts_probe_threadcount ..804
gp_fts_probe_timeout...804
gp_gpperfmon_send_interval..804
gp_hashjoin_tuples_per_bucket..805
gp_interconnect_hash_multiplier...805
gp_interconnect_queue_depth ..805
gp_interconnect_setup_timeout ..805
gp_interconnect_type..805
gp_log_format ..805
gp_max_csv_line_length...805
gp_max_databases ...806
gp_max_filespaces..806
gp_max_local_distributed_cache...806
gp_max_packet_size...806
gp_max_tablespaces...806
gp_motion_cost_per_row..806
gp_num_contents_in_cluster ..806
gp_reject_percent_threshold...806
gp_reraise_signal..806
gp_resqueue_memory_policy..806
gp_resqueue_priority ..806
gp_resqueue_priority_cpucores_per_segment807
gp_resqueue_priority_sweeper_interval ..807
gp_role ...807
gp_safefswritesize...807
gp_segment_connect_timeout ..807
gp_segments_for_planner...807
gp_session_id ...808
gp_set_proc_affinity ...808
gp_set_read_only ...808
gp_snmp_community..808
gp_snmp_monitor_address ...808
gp_snmp_use_inform_or_trap ..808
gp_statistics_pullup_from_child_partition808
gp_statistics_use_fkeys ..808
gp_vmem_idle_resource_timeout ...808
gp_vmem_protect_limit ..809
gp_vmem_protect_segworker_cache_limit....................................809
gp_workfile_checksumming ..809
gp_workfile_compress_algorithm ..809
Table of Contents xv

Greenplum Database Administrator Guide 4.1 - Contents
gpperfmon_port ..809
integer_datetimes ...809
IntervalStyle ...810
join_collapse_limit ..810
krb_caseins_users...810
krb_server_keyfile ..810
krb_srvname...810
lc_collate...810
lc_ctype ..810
lc_messages ...811
lc_monetary..811
lc_numeric ..811
lc_time..811
listen_addresses ...811
local_preload_libraries ..811
log_autostats ..811
log_connections ..812
log_disconnections ..812
log_dispatch_stats ..812
log_duration..812
log_error_verbosity...812
log_executor_stats..812
log_hostname ...812
log_min_duration_statement ..812
log_min_error_statement..813
log_min_messages..813
log_parser_stats ...813
log_planner_stats..813
log_rotation_age...813
log_rotation_size...813
log_statement...813
log_statement_stats ...814
log_timezone ..814
log_truncate_on_rotation..814
maintenance_work_mem ..814
max_appendonly_tables..814
max_connections ..815
max_files_per_process..815
max_fsm_pages..815
max_fsm_relations..815
max_function_args ...815
max_identifier_length ...815
max_index_keys ...815
max_locks_per_transaction...816
max_prepared_transactions ..816
max_resource_portals_per_transaction...816
max_resource_queues ..816
max_stack_depth..816
max_statement_mem ...817
Table of Contents xvi

Greenplum Database Administrator Guide 4.1 - Contents
max_work_mem ...817
password_encryption ..817
pljava_classpath ...817
pljava_statement_cache_size..817
pljava_release_lingering_savepoints ...817
pljava_vmoptions..818
port...818
random_page_cost..818
regex_flavor..818
resource_cleanup_gangs_on_wait...818
resource_select_only...818
search_path ..818
seq_page_cost ..819
server_encoding..819
server_version ..819
server_version_num ...819
shared_buffers ..819
shared_preload_libraries ...819
ssl ...819
ssl_ciphers ..819
standard_conforming_strings ..819
statement_mem..820
statement_timeout..820
stats_queue_level ...820
superuser_reserved_connections ..820
tcp_keepalives_count..820
tcp_keepalives_idle ...820
tcp_keepalives_interval...820
temp_buffers ..820
TimeZone..821
timezone_abbreviations ..821
track_activities..821
track_counts ...821
transaction_isolation ...821
transaction_read_only...821
transform_null_equals...821
unix_socket_directory ...821
unix_socket_group..821
unix_socket_permissions ..822
update_process_title ...822
vacuum_cost_delay...822
vacuum_cost_limit ..822
vacuum_cost_page_dirty ..822
vacuum_cost_page_hit ...822
vacuum_cost_page_miss ..822
vacuum_freeze_min_age ..823
work_mem..823

Appendix E: Greenplum MapReduce Specification824
Table of Contents xvii

Greenplum Database Administrator Guide 4.1 - Contents
Greenplum MapReduce Document Format.....................................824
Greenplum MapReduce Document Schema827
Example Greenplum MapReduce Document...................................838

MapReduce Flow Diagram..845

Appendix F: Greenplum Environment Variables846
Required Environment Variables..846
Optional Environment Variables ..847

Appendix G: Greenplum Database Data Types849

Appendix H: System Catalog Reference......................................852
gp_configuration_history...855
gp_distributed_log ..856
gp_distributed_xacts...857
gp_distribution_policy ...858
gp_fastsequence ...859
gp_fault_strategy..860
gp_global_sequence..861
gpexpand.status ...862
gpexpand.status_detail ...863
gp_id ..865
gp_interfaces ..866
gp_master_mirroring ..867
gp_persistent_database_node...868
gp_persistent_filespace_node ...869
gp_persistent_relation_node ...870
gp_persistent_tablespace_node ..871
gp_relation_node ..872
gp_san_configuration..873
gp_segment_configuration ..875
gp_pgdatabase ...876
gp_transaction_log..877
gp_version_at_initdb...878
gpexpand.expansion_progress ..879
pg_aggregate..880
pg_am ..881
pg_amop...883
pg_amproc..884
pg_appendonly ...885
pg_attrdef ...887
pg_attribute ..888
pg_auth_members ..890
pg_authid..891
pg_autovacuum ..892
pg_cast ...893
pg_class..894
pg_constraint ..897
pg_conversion...898
pg_database ...899
Table of Contents xviii

Greenplum Database Administrator Guide 4.1 - Contents
pg_depend ..901
pg_description ..902
pg_exttable...903
pg_filespace ..904
pg_filespace_entry..905
pg_index...906
pg_inherits..908
pg_language ...909
pg_largeobject ..910
pg_listener ..911
pg_locks..912
pg_namespace ..914
pg_opclass ..915
pg_operator ..916
pg_partition ..917
pg_partition_columns..918
pg_partition_rule ..919
pg_partition_templates ...920
pg_partitions...921
pg_pltemplate...923
pg_proc...924
pg_resqueue ...926
pg_resourcetype ...927
pg_resqueue_attributes ..928
pg_resqueue_status - Deprecated...929
pg_resqueuecapability...930
pg_rewrite ..931
pg_roles..932
pg_shdepend ..933
pg_shdescription ...934
pg_stat_activity ..935
pg_stat_operations ...936
pg_stat_partition_operations ..937
pg_stat_resqueues..938
pg_stat_last_operation ...939
pg_stat_last_shoperation ..940
pg_statistic ...941
pg_tablespace...943
pg_trigger ...944
pg_type ..945
pg_window..948

Appendix I: The gp_toolkit Administrative Schema950
Checking for Tables that Need Routine Maintenance950

gp_bloat_diag..951
gp_stats_missing...951

Checking for Locks ..951
gp_locks_on_relation...952
gp_locks_on_resqueue ..952
Table of Contents xix

Greenplum Database Administrator Guide 4.1 - Contents
Viewing Greenplum Database Server Log Files953
gp_log_command_timings ...953
gp_log_database ...954
gp_log_master_concise ...955
gp_log_system ..955

Checking Server Configuration Files ..956
gp_param_setting('parameter_name').....................................957
gp_param_settings_seg_value_diffs ..957

Checking for Failed Segments ...957
gp_pgdatabase_invalid ..957

Checking Resource Queue Activity and Status...............................958
gp_resq_activity ..958
gp_resq_activity_by_queue ...959
gp_resq_priority_statement...959
gp_resq_role ...959
gp_resqueue_status ..960

Viewing Users and Groups (Roles)...960
gp_roles_assigned ...961

Checking Database Object Sizes and Disk Space...........................961
gp_size_of_all_table_indexes ..962
gp_size_of_database ...962
gp_size_of_index...962
gp_size_of_partition_and_indexes_disk...................................963
gp_size_of_schema_disk ...963
gp_size_of_table_and_indexes_disk ..963
gp_size_of_table_and_indexes_licensing964
gp_size_of_table_disk ...964
gp_size_of_table_uncompressed ...964
gp_disk_free..965

Checking for Uneven Data Distribution..965
gp_skew_coefficients...965
gp_skew_idle_fractions ...966

Appendix J: Oracle Compatibility Functions967
Installing Oracle Compatibility Functions967
Oracle and Greenplum Implementation Differences.......................967
Available Oracle Compatibility Functions968

Appendix K: Character Set Support ...974
Setting the Character Set..975
Character Set Conversion Between Server and Client....................976

Appendix L: SQL 2008 Optional Feature Compliance................979

Glossary .. 1000

Index ... 1009
Table of Contents xx

Greenplum Database Administrator Guide 4.1 – Preface
Preface

This guide provides information for system administrators and database superusers
responsible for administering a Greenplum Database system.

• About This Guide

• Document Conventions

• Getting Support

About This Guide
This guide provides information and instructions for configuring, maintaining and
using a Greenplum Database system. This guide is intended for system and database
administrators responsible for managing a Greenplum Database system.

This guide assumes knowledge of Linux/UNIX system administration, database
management systems, database administration, and structured query language (SQL).

Because Greenplum Database is based on PostgreSQL 8.2.15, this guide assumes
some familiarity with PostgreSQL. Links and cross-references to PostgreSQL
documentation are provided throughout this guide for features that are similar to those
in Greenplum Database.

This guide contains the following main sections:

• Section I, “Introduction to Greenplum” explains the distributed architecture and
parallel processing concepts of Greenplum Database.

• Section II, “Access Control and Security” explains how clients connect to a
Greenplum Database system, and how to configure access control and workload
management.

• Section III, “Database Administration” explains how to do basic database
administration tasks such as defining database objects, loading data, writing
queries and managing data.

• Section IV, “System Administration” explains the various system administration
tasks of Greenplum Database such as configuring the server, monitoring system
activity, enabling high-availability, backing up and restoring databases, and other
routine system administration tasks.

• Section V, “Performance Tuning” provides guidance on identifying and
troubleshooting the most common causes of performance issues in Greenplum
Database.

• Section VI, “Extending Greenplum Database” describes how to extend the
functionality of Greenplum Database by developing your own functions and
programs.

• Section VII, “References” contains reference documentation for SQL commands,
command-line utilities, client programs, system catalogs, and configuration
parameters.
About This Guide 1

http://www.postgresql.org/docs/8.2/static/index.html
http://www.postgresql.org/docs/8.2/static/index.html

Greenplum Database Administrator Guide 4.1 – Preface
Document Conventions
The following conventions are used throughout the Greenplum Database
documentation to help you identify certain types of information.

• Text Conventions

• Command Syntax Conventions

Text Conventions

Table 0.1 Text Conventions

Text Convention Usage Examples

bold Button, menu, tab, page, and field
names in GUI applications

Click Cancel to exit the page without
saving your changes.

italics New terms where they are defined

Database objects, such as schema,
table, or columns names

The master instance is the postgres
process that accepts client
connections.

Catalog information for Greenplum
Database resides in the pg_catalog
schema.

monospace File names and path names

Programs and executables

Command names and syntax

Parameter names

Edit the postgresql.conf file.

Use gpstart to start Greenplum
Database.

monospace italics Variable information within file
paths and file names

Variable information within
command syntax

/home/gpadmin/config_file

COPY tablename FROM
'filename'

monospace bold Used to call attention to a particular
part of a command, parameter, or
code snippet.

Change the host name, port, and
database name in the JDBC
connection URL:

jdbc:postgresql://host:5432/m
ydb

UPPERCASE Environment variables

SQL commands

Keyboard keys

Make sure that the Java /bin
directory is in your $PATH.

SELECT * FROM my_table;

Press CTRL+C to escape.
Document Conventions 2

Greenplum Database Administrator Guide 4.1 – Preface
Command Syntax Conventions

Table 0.2 Command Syntax Conventions

Text Convention Usage Examples

{ } Within command syntax, curly
braces group related command
options. Do not type the curly
braces.

FROM { 'filename' | STDIN }

[] Within command syntax, square
brackets denote optional
arguments. Do not type the
brackets.

TRUNCATE [TABLE] name

... Within command syntax, an ellipsis
denotes repetition of a command,
variable, or option. Do not type the
ellipsis.

DROP TABLE name [, ...]

| Within command syntax, the pipe
symbol denotes an “OR”
relationship. Do not type the pipe
symbol.

VACUUM [FULL | FREEZE]

$ system_command

root_system_command

=> gpdb_command

=# su_gpdb_command

Denotes a command prompt - do
not type the prompt symbol. $ and
denote terminal command
prompts. => and =# denote
Greenplum Database interactive
program command prompts (psql
or gpssh, for example).

$ createdb mydatabase

chown gpadmin -R /datadir

=> SELECT * FROM mytable;

=# SELECT * FROM pg_database;

Getting Support
EMC support, product, and licensing information can be obtained as follows.

Product information

For documentation, release notes, software updates, or for information about EMC
products, licensing, and service, go to the EMC Powerlink website (registration
required) at:

http://Powerlink.EMC.com
Getting Support 3

http://Powerlink.EMC.com

Greenplum Database Administrator Guide 4.1 – Preface
Technical support

For technical support, go to Powerlink and choose Support. On the Support page, you
will see several options, including one for making a service request. Note that to open
a service request, you must have a valid support agreement. Please contact your EMC
sales representative for details about obtaining a valid support agreement or with
questions about your account.
Getting Support 4

http://Powerlink.EMC.com

Section I 5

Section I: Introduction to Greenplum

Greenplum Database is a massively parallel processing (MPP) database server based
on PostgreSQL open-source technology. MPP (also known as a shared nothing
architecture) refers to systems with two or more processors which cooperate to carry
out an operation - each processor with its own memory, operating system and disks.
Greenplum leverages this high-performance system architecture to distribute the load
of multi-terabyte data warehouses, and is able to use all of a system’s resources in
parallel to process a query.

Greenplum Database is essentially several PostgreSQL database instances acting
together as one cohesive database management system. It is based on PostgreSQL
8.2.15, and in most cases is very similar to PostgreSQL with regards to SQL support,
features, configuration options, and end-user functionality. Database users interact
with Greenplum Database as they would a regular PostgreSQL DBMS.

The internals of PostgreSQL have been modified or supplemented to support the
parallel structure of Greenplum Database. For example the system catalog, query
planner, optimizer, query executor, and transaction manager components have been
modified and enhanced to be able to execute queries in parallel across all of the
PostgreSQL database instances at once. The Greenplum interconnect (the networking
layer) enables communication between the distinct PostgreSQL instances and allows
the system to behave as one logical database.

Greenplum Database also includes features designed to optimize PostgreSQL for
business intelligence (BI) workloads. For example, Greenplum has added parallel data
loading (external tables), resource management, query optimizations and storage
enhancements which are not found in regular PostgreSQL. Many features and
optimizations developed by Greenplum do make their way back into the PostgreSQL
community. For example, table partitioning is a feature developed by Greenplum
which is now in standard PostgreSQL.

To learn more about Greenplum Database, refer to the following topics:

About the Greenplum Architecture

About Distributed Databases

About Greenplum Query Processing

Summary of Greenplum Features

Greenplum Database Administrator Guide 4.1 – Chapter 1: About the Greenplum Architecture
1. About the Greenplum Architecture

Greenplum Database is able to handle the storage and processing of large amounts of
data by distributing the load across several servers or hosts. A database in Greenplum
is actually an array of individual PostgreSQL databases, all working together to
present a single database image. The master is the entry point to the Greenplum
Database system. It is the database instance where clients connect and submit SQL
statements. The master coordinates the work with the other database instances in the
system, the segments, which handle data processing and storage.

Figure 1.1 High-Level Greenplum Database Architecture

This section describes all of the components that comprise a Greenplum Database
system, and how they work together:

• About the Greenplum Master

• About the Greenplum Segments

• About the Greenplum Interconnect

• About Redundancy and Failover in Greenplum Database

• About Parallel Data Loading

• About Management and Monitoring
6

Greenplum Database Administrator Guide 4.1 – Chapter 1: About the Greenplum Architecture
About the Greenplum Master
The master is the entry point to the Greenplum Database system. It is the database
process that accepts client connections and processes the SQL commands issued by
the users of the system.

Since Greenplum Database is based on PostgreSQL, end-users interact with
Greenplum Database (through the master) as they would a typical PostgreSQL
database. They can connect to the database using client programs such as psql or
application programming interfaces (APIs) such as JDBC or ODBC.

The master is where the global system catalog resides (the set of system tables that
contain metadata about the Greenplum Database system itself), however the master
does not contain any user data. Data resides only on the segments. The master does the
work of authenticating client connections, processing the incoming SQL commands,
distributing the work load between the segments, coordinating the results returned by
each of the segments, and presenting the final results to the client program.

About the Greenplum Segments
In Greenplum Database, the segments are where the data is stored and where the
majority of query processing takes place. User-defined tables and their indexes are
distributed across the available number of segments in the Greenplum Database
system, each segment containing a distinct portion of the data. Segment instances are
the database server processes that serve segments. Users do not interact directly with
the segments in a Greenplum Database system, but do so through the master.

In the recommended Greenplum Database hardware configuration, there is one active
segment per effective CPU or CPU core. For example, if your segment hosts have two
dual-core processors, you would have four primary segments per host.

About the Greenplum Interconnect
The interconnect is the networking layer of Greenplum Database. When a user
connects to a database and issues a query, processes are created on each of the
segments to handle the work of that query (see “Understanding Parallel Query
Execution” on page 27). The interconnect refers to the inter-process communication
between the segments, as well as the network infrastructure on which this
communication relies. The interconnect uses a standard Gigabit Ethernet switching
fabric.

By default, the interconnect uses UDP (User Datagram Protocol) to send messages
over the network. The Greenplum software does the additional packet verification and
checking not performed by UDP, so the reliability is equivalent to TCP (Transmission
Control Protocol), and the performance and scalability exceeds TCP. With TCP,
Greenplum has a scalability limit of 1000 segment instances. To remove this limit,
UDP is now the default protocol for the interconnect.
About the Greenplum Master 7

Greenplum Database Administrator Guide 4.1 – Chapter 1: About the Greenplum Architecture
About Redundancy and Failover in Greenplum Database
Greenplum Database has deployment options to provide for a system without a single
point of failure. This section explains the redundancy components of Greenplum
Database.

• About Segment Mirroring

• About Master Mirroring

• About Interconnect Redundancy

About Segment Mirroring

When you deploy your Greenplum Database system, you have the option to configure
mirror segments. Mirror segments allow database queries to fail over to a backup
segment if the primary segment becomes unavailable. To configure mirroring, you
must have enough hosts in your Greenplum Database system so that the secondary
segment always resides on a different host than its primary. Figure 1.2 shows how
table data is distributed across the segments when mirroring is configured. The mirror
segment always resides on a different host than its primary segment.

Figure 1.2 Data Mirroring in Greenplum Database

Segment Failover and Recovery

When mirroring is enabled in a Greenplum Database system, the system will
automatically fail over to the mirror copy whenever a primary copy becomes
unavailable. A Greenplum Database system can remain operational if a segment
instance or host goes down as long as all portions of data are available on the
remaining active segments.

Whenever the master cannot connect to a segment instance, it marks that segment
instance as down in the Greenplum Database system catalog and brings up the mirror
segment in its place. A failed segment instance will remain out of operation until steps
are taken to bring that segment back online. A failed segment can be recovered while
the system is up and running. The recovery process only copies over the changes that
were missed while the segment was out of operation.
About Redundancy and Failover in Greenplum Database 8

Greenplum Database Administrator Guide 4.1 – Chapter 1: About the Greenplum Architecture
If you do not have mirroring enabled, the system will automatically shutdown if a
segment instance becomes invalid. You must recover all failed segments before
operations can continue.

About Master Mirroring

You can also optionally deploy a backup or mirror of the master instance on a separate
host from the master node. A backup master host serves as a warm standby in the
event of the primary master host becoming unoperational. The standby master is kept
up to date by a transaction log replication process, which runs on the standby master
host and keeps the data between the primary and standby master hosts synchronized.

If the primary master fails, the log replication process is shutdown, and the standby
master can be activated in its place. Upon activation of the standby master, the
replicated logs are used to reconstruct the state of the master host at the time of the last
successfully committed transaction. The activated standby master effectively becomes
the Greenplum Database master, accepting client connections on the master port
(which must be set to the same port number on the master host and the backup master
host).

Since the master does not contain any user data, only the system catalog tables need to
be synchronized between the primary and backup copies. These tables are not updated
frequently, but when they are, changes are automatically copied over to the standby
master so that it is always kept current with the primary.

Figure 1.3 Master Mirroring in Greenplum Database

About Interconnect Redundancy

The interconnect refers to the inter-process communication between the segments, as
well as the network infrastructure on which this communication relies. A highly
available interconnect can be achieved by deploying dual Gigabit Ethernet switches
on your network, and redundant Gigabit connections to the Greenplum Database host
servers.
About Redundancy and Failover in Greenplum Database 9

Greenplum Database Administrator Guide 4.1 – Chapter 1: About the Greenplum Architecture
About Parallel Data Loading
One challenge of large scale, multi-terabyte data warehouses is getting large amounts
of data loaded within a given maintenance window. Greenplum supports fast, parallel
data loading with its external tables feature. External tables can also be accessed in
‘single row error isolation’ mode, allowing administrators to filter out bad rows during
a load operation into a separate error table, while still loading properly formatted
rows. Administrators can control the acceptable error threshold for a load operation,
giving them control over the quality and flow of data into the database.

By using external tables in conjunction with Greenplum Database’s parallel file server
(gpfdist), administrators can achieve maximum parallelism and load bandwidth
from their Greenplum Database system. Greenplum has demonstrated load rates in
excess of 2 TB an hour.

Figure 1.4 External Tables Using Greenplum Parallel File Server (gpfdist)

About Management and Monitoring
Management of a Greenplum Database system is performed using a series of
command-line utilities, which are located in $GPHOME/bin. Greenplum provides
utilities for the following Greenplum Database administration tasks:

• Installing Greenplum Database on an Array

• Initializing a Greenplum Database System

• Starting and Stopping Greenplum Database

• Adding or Removing a Host

• Expanding the Array and Redistributing Tables among New Segments

• Managing Recovery for Failed Segment Instances

• Managing Failover and Recovery for a Failed Master Instance
About Parallel Data Loading 10

Greenplum Database Administrator Guide 4.1 – Chapter 1: About the Greenplum Architecture
• Backing Up and Restoring a Database (in Parallel)

• Loading Data in Parallel

• System State Reporting

Greenplum also provides an optional performance monitoring feature that
administrators can install and enable with Greenplum Database. The Greenplum
Performance Monitor has agents on each segment host that collect data on query
execution and system utilization and store it a database. Segment agents send their
data to the Greenplum master at regular intervals (typically every 15 seconds). Users
can query the Greenplum Performance Monitor database to see query and system
performance data for both active queries and historical queries. Greenplum
Performance Monitor also has a graphical web-based user interface for viewing these
performance metrics, which can be installed separately from Greenplum Database.

Figure 1.5 Greenplum Performance Monitor Architecture
About Management and Monitoring 11

Greenplum Database Administrator Guide 4.1 – Chapter 2: About Distributed Databases
2. About Distributed Databases

Greenplum is a distributed database system. This means that the data stored in the
database system is physically located on more than one database server (referred to as
segments in Greenplum). These individual database servers are connected by a
communications network (referred to as the interconnect in Greenplum). An essential
feature of a true distributed database is that users and client programs work as if they
were accessing one single database on a local machine (in Greenplum, this entry-point
database is referred to as the master). The fact that the database is distributed across
several machines is seamless to the users of the system.

Understanding How Data is Stored
To understand how Greenplum Database stores data across the various hosts and
segment instances, consider the following simple logical database. In Figure 2.1,
primary keys are shown in bold font and foreign key relationships are indicated by a
line from the foreign key in the referring relation to the primary key of the referenced
relation. In data warehouse terminology, this is referred to as a star schema. In this
type of database schema, the sale table is usually called a fact table and the other
tables (customer, vendor, product) are usually called the dimension tables.

Figure 2.1 Sample Database Star Schema

In Greenplum Database all tables are distributed, which means a table is divided into
non-overlapping sets of rows or parts. Each part resides on a single database known as
a segment within the Greenplum Database system. The parts are distributed across all
of the available segments using a sophisticated hashing algorithm. Database
administrators choose the hash key (one or more table columns) when defining the
table.
Understanding How Data is Stored 12

Greenplum Database Administrator Guide 4.1 – Chapter 2: About Distributed Databases
The Greenplum Database physical database implements the logical database on an
array of individual database instances — a master instance and two or more segment
instances. The master instance does not contain any user data, only the global catalog
tables. The segment instances contain disjoint parts (collections of rows) for each
distributed table.

Figure 2.2 Table Distribution in a Greenplum Database Physical Database

Understanding Greenplum Distribution Policies
When you create or alter a table in Greenplum Database, there is an additional
DISTRIBUTED clause to define the distribution policy of the table. The distribution
policy determines how to divide the rows of a table across the Greenplum segments.
Greenplum Database provides two types of distribution policy:

Hash Distribution - With hash distribution, one or more table columns is used as the
distribution key for the table. The distribution key is used by a hashing algorithm to
assign each row to a particular segment. Keys of the same value will always hash to
the same segment. Choosing a unique distribution key, such as a primary key, will
ensure the most even data distribution. Hash distribution is the default distribution
policy for a table. If a DISTRIBUTED clause is not supplied, then either the PRIMARY
KEY (if the table has one) or the first column of the table will be used as the table
distribution key.

Random Distribution - With random distribution, rows are sent to the segments as
they come in, cycling across the segments in a round-robin fashion. Rows with
columns having the same values will not necessarily be located on the same segment.
Although a random distribution ensures even data distribution, there are performance
advantages to choosing a hash distribution policy whenever possible.
Understanding Greenplum Distribution Policies 13

Greenplum Database Administrator Guide 4.1 – Chapter 3: Summary of Greenplum Features
3. Summary of Greenplum Features

This section provides a high-level overview of the system requirements and feature set
of Greenplum Database. It contains the following topics:

• Greenplum SQL Standard Conformance

• Greenplum and PostgreSQL Compatibility

Greenplum SQL Standard Conformance
The SQL language was first formally standardized in 1986 by the American National
Standards Institute (ANSI) as SQL 1986. Subsequent versions of the SQL standard
have been released by ANSI and as International Organization for Standardization
(ISO) standards: SQL 1989, SQL 1992, SQL 1999, SQL 2003, SQL 2006, and finally
SQL 2008, which is the current SQL standard. The official name of the standard is
ISO/IEC 9075-14:2008. In general, each new version adds more features, although
occasionally features are deprecated or removed.

It is important to note that there are no commercial database systems that are fully
compliant with the SQL standard. Greenplum Database is almost fully compliant with
the SQL 1992 standard, with most of the features from SQL 1999. Several features
from SQL 2003 have also been implemented (most notably the SQL OLAP features).

This section addresses the important conformance issues of Greenplum Database as
they relate to the SQL standards. For a feature-by-feature list of Greenplum’s support
of the latest SQL standard, see Appendix L, “SQL 2008 Optional Feature
Compliance”.

Core SQL Conformance

In the process of building a parallel, shared-nothing database system and query
optimizer, certain common SQL constructs are not currently implemented in
Greenplum Database. The following SQL constructs are not supported:

1. Correlated subqueries that Greenplum’s parallel optimizer cannot internally
rewrite into non-correlated joins. Most simple uses of correlated subqueries do
work. Those that do not can be manually rewritten using outer joins.

2. Certain rare cases of multi-row subqueries that Greenplum’s parallel optimizer
cannot internally rewrite into equijoins.

3. Some set returning subqueries in EXISTS or NOT EXISTS clauses that
Greenplum’s parallel optimizer cannot rewrite into joins.

4. UNION ALL of joined tables with subqueries.

5. Set-returning functions in the FROM clause of a subquery.
Greenplum SQL Standard Conformance 14

Greenplum Database Administrator Guide 4.1 – Chapter 3: Summary of Greenplum Features
6. Backwards scrolling cursors, including the use of FETCH PRIOR, FETCH FIRST,
FETCH ABOLUTE, and FETCH RELATIVE.

7. In CREATE TABLE statements (on hash-distributed tables): a UNIQUE or PRIMARY
KEY clause must include all of (or a superset of) the distribution key columns.
Because of this restriction, only one UNIQUE clause or PRIMARY KEY clause is
allowed in a CREATE TABLE statement. UNIQUE or PRIMARY KEY clauses are not
allowed on randomly-distributed tables.

8. CREATE UNIQUE INDEX statements that do not contain all of (or a superset of) the
distribution key columns. CREATE UNIQUE INDEX is not allowed on
randomly-distributed tables.

9. VOLATILE or STABLE functions cannot execute on the segments, and so are
generally limited to being passed literal values as the arguments to their
parameters.

10. Triggers are not supported since they typically rely on the use of VOLATILE
functions.

11. Referential integrity constraints (foreign keys) are not enforced in Greenplum
Database. Users can declare foreign keys and this information is kept in the
system catalog, however.

12. Sequence manipulation functions CURRVAL and LASTVAL.

13. DELETE WHERE CURRENT OF and UPDATE WHERE CURRENT OF (positioned delete
and positioned update operations).

SQL 1992 Conformance

The following features of SQL 1992 are not supported in Greenplum Database:

1. NATIONAL CHARACTER (NCHAR) and NATIONAL CHARACTER VARYING
(NVARCHAR). Users can declare the NCHAR and NVARCHAR types, however they are
just synonyms for CHAR and VARCHAR in Greenplum Database.

2. CREATE ASSERTION statement.

3. INTERVAL literals are supported in Greenplum Database, but do not conform to
the standard.

4. GET DIAGNOSTICS statement.

5. GRANT INSERT or UPDATE privileges on columns. Privileges can only be granted
on tables in Greenplum Database.

6. GLOBAL TEMPORARY TABLEs and LOCAL TEMPORARY TABLEs. Greenplum
TEMPORARY TABLEs do not conform to the SQL standard, but many commercial
database systems have implemented temporary tables in the same way.
Greenplum temporary tables are the same as VOLATILE TABLEs in Teradata.

7. UNIQUE predicate.
Greenplum SQL Standard Conformance 15

Greenplum Database Administrator Guide 4.1 – Chapter 3: Summary of Greenplum Features
8. MATCH PARTIAL for referential integrity checks (most likely will not be
implemented in Greenplum Database).

SQL 1999 Conformance

The following features of SQL 1999 are not supported in Greenplum Database:

1. Large Object data types: BLOB, CLOB, NCLOB. However, the BYTEA and TEXT
columns can store very large amounts of data in Greenplum Database (hundreds
of megabytes).

2. Recursive WITH clause or the WITH RECURSIVE clause (recursive queries).
Non-recursive WITH clauses can easily be rewritten by moving the common table
expression into the FROM clause as a derived table.

3. MODULE (SQL client modules).

4. CREATE PROCEDURE (SQL/PSM). This can be worked around in Greenplum
Database by creating a FUNCTION that returns void, and invoking the function as
follows:

SELECT myfunc(args);

5. The PostgreSQL/Greenplum function definition language (PL/PGSQL) is a subset
of Oracle’s PL/SQL, rather than being compatible with the SQL/PSM function
definition language. Greenplum Database also supports function definitions
written in Python, Perl, and R.

6. BIT and BIT VARYING data types (intentionally omitted). These were deprecated
in SQL 2003, and replaced in SQL 2008.

7. Greenplum supports identifiers up to 63 characters long. The SQL standard
requires support for identifiers up to 128 characters long.

8. Prepared transactions (PREPARE TRANSACTION, COMMIT PREPARED, ROLLBACK
PREPARED). This also means Greenplum does not support XA Transactions (2
phase commit coordination of database transactions with external transactions).

9. CHARACTER SET option on the definition of CHAR() or VARCHAR() columns.

10. Specification of CHARACTERS or OCTETS (BYTES) on the length of a CHAR() or
VARCHAR() column. For example, VARCHAR(15 CHARACTERS) or VARCHAR(15
OCTETS) or VARCHAR(15 BYTES).

11. CURRENT_SCHEMA function.

12. CREATE DISTINCT TYPE statement. CREATE DOMAIN can be used as a
work-around in Greenplum.

13. The explicit table construct.

SQL 2003 Conformance

The following features of SQL 2003 are not supported in Greenplum Database:
Greenplum SQL Standard Conformance 16

Greenplum Database Administrator Guide 4.1 – Chapter 3: Summary of Greenplum Features
1. XML data type (PostgreSQL does support this).

2. MERGE statements.

3. IDENTITY columns and the associated GENERATED ALWAYS/GENERATED BY
DEFAULT clause. The SERIAL or BIGSERIAL data types are very similar to INT or
BIGINT GENERATED BY DEFAULT AS IDENTITY.

4. MULTISET modifiers on data types.

5. ROW data type.

6. Greenplum Database syntax for using sequences is non-standard. For example,
nextval('seq') is used in Greenplum instead of the standard NEXT VALUE FOR
seq.

7. GENERATED ALWAYS AS columns. Views can be used as a work-around.

8. The sample clause (TABLESAMPLE) on SELECT statements. The random()
function can be used as a work-around to get random samples from tables.

9. NULLS FIRST/NULLS LAST clause on SELECT statements and subqueries (nulls
are always last in Greenplum Database).

10. The partitioned join tables construct (PARTITION BY in a join).

11. GRANT SELECT privileges on columns. Privileges can only be granted on tables in
Greenplum Database. Views can be used as a work-around.

12. For CREATE TABLE x (LIKE(y)) statements, Greenplum does not support the
[INCLUDING|EXCLUDING] [DEFAULTS|CONSTRAINTS|INDEXES] clauses.

13. Greenplum array data types are almost SQL standard compliant with some
exceptions. Generally customers should not encounter any problems using them.

SQL 2008 Conformance

The following features of SQL 2008 are not supported in Greenplum Database:

1. BINARY and VARBINARY data types. BYTEA can be used in place of VARBINARY in
Greenplum Database.

2. FETCH FIRST or FETCH NEXT clause for SELECT, for example:

SELECT id, name FROM tab1 ORDER BY id OFFSET 20 ROWS FETCH
NEXT 10 ROWS ONLY;

Greenplum has LIMIT and LIMIT OFFSET clauses instead.

3. The ORDER BY clause is ignored in views and subqueries unless a LIMIT clause is
also used. This is intentional, as the Greenplum optimizer cannot determine when
it is safe to avoid the sort, causing an unexpected performance impact for such
ORDER BY clauses. To work around, you can specify a really large LIMIT. For
example: SELECT * FROM mytable ORDER BY 1 LIMIT 9999999999
Greenplum SQL Standard Conformance 17

Greenplum Database Administrator Guide 4.1 – Chapter 3: Summary of Greenplum Features
4. The row subquery construct is not supported.

5. TRUNCATE TABLE does not accept the CONTINUE IDENTITY and RESTART
IDENTITY clauses.

Greenplum and PostgreSQL Compatibility
Greenplum Database is based on PostgreSQL 8.2 with a few features added in from
the 8.3 release. To support the distributed nature and typical workload of a Greenplum
Database system, some SQL commands have been added or modified, and there are a
few PostgreSQL features that are not supported. Greenplum has also added features
not found in PostgreSQL, such as physical data distribution, parallel query
optimization, external tables, resource queues for workload management and
enhanced table partitioning. For full SQL syntax and references, see “SQL Command
Reference” on page 264.

Table 3.1 SQL Support in Greenplum Database

SQL Command
Supported in
Greenplum

Modifications, Limitations, Exceptions

ALTER AGGREGATE YES

ALTER CONVERSION YES

ALTER DATABASE YES

ALTER DOMAIN YES

ALTER FILESPACE YES Greenplum Database parallel tablespace feature - not in
PostgreSQL 8.2.15.

ALTER FUNCTION YES

ALTER GROUP YES An alias for ALTER ROLE

ALTER INDEX YES

ALTER LANGUAGE YES

ALTER OPERATOR YES

ALTER OPERATOR CLASS NO

ALTER RESOURCE QUEUE YES Greenplum Database workload management feature - not in
PostgreSQL.

ALTER ROLE YES Greenplum Database Clauses:

RESOURCE QUEUE queue_name | none

ALTER SCHEMA YES

ALTER SEQUENCE YES
Greenplum and PostgreSQL Compatibility 18

Greenplum Database Administrator Guide 4.1 – Chapter 3: Summary of Greenplum Features
ALTER TABLE YES Unsupported Clauses / Options:

CLUSTER ON
ENABLE/DISABLE TRIGGER

Greenplum Database Clauses:

ADD | DROP | RENAME | SPLIT | EXCHANGE
PARTITION | SET SUBPARTITION TEMPLATE | SET
WITH (REORGANIZE=true | false)| SET
DISTRIBUTED BY

ALTER TABLESPACE YES

ALTER TRIGGER NO

ALTER TYPE YES

ALTER USER YES An alias for ALTER ROLE

ANALYZE YES

BEGIN YES

CHECKPOINT YES

CLOSE YES

CLUSTER YES

COMMENT YES

COMMIT YES

COMMIT PREPARED NO

COPY YES Modified Clauses:

ESCAPE [AS] 'escape' | 'OFF'
Greenplum Database Clauses:

[LOG ERRORS INTO error_table]
 SEGMENT REJECT LIMIT count [ROWS|PERCENT]

CREATE AGGREGATE YES Unsupported Clauses / Options:

[, SORTOP = sort_operator]

Greenplum Database Clauses:

[, PREFUNC = prefunc]

Limitations:

The functions used to implement the aggregate must be
IMMUTABLE functions.

CREATE CAST YES

CREATE CONSTRAINT TRIGGER NO

CREATE CONVERSION YES

CREATE DATABASE YES

Table 3.1 SQL Support in Greenplum Database

SQL Command
Supported in
Greenplum

Modifications, Limitations, Exceptions
Greenplum and PostgreSQL Compatibility 19

Greenplum Database Administrator Guide 4.1 – Chapter 3: Summary of Greenplum Features
CREATE DOMAIN YES

CREATE EXTERNAL TABLE YES Greenplum Database parallel ETL feature - not in
PostgreSQL 8.2.15.

CREATE FILESPACE YES Greenplum Database parallel tablespace feature - not in
PostgreSQL 8.2.15.

CREATE FUNCTION YES Limitations:

Functions defined as STABLE or VOLATILE can be
executed in Greenplum Database provided that they are
executed on the master only. STABLE and VOLATILE
functions cannot be used in statements that execute at the
segment level.

CREATE GROUP YES An alias for CREATE ROLE

CREATE INDEX YES Greenplum Database Clauses:

USING bitmap (bitmap indexes)

Limitations:

UNIQUE indexes are allowed only if they contain all of (or a
superset of) the Greenplum distribution key columns. On
partitioned tables, a unique index is only supported within an
individual partition - not across all partitions.

CONCURRENTLY keyword not supported in Greenplum.

CREATE LANGUAGE YES

CREATE OPERATOR YES Limitations:

The function used to implement the operator must be an
IMMUTABLE function.

CREATE OPERATOR CLASS NO

CREATE OPERATOR FAMILY NO

CREATE RESOURCE QUEUE YES Greenplum Database workload management feature - not in
PostgreSQL 8.2.15.

CREATE ROLE YES Greenplum Database Clauses:

RESOURCE QUEUE queue_name | none

CREATE RULE YES

CREATE SCHEMA YES

CREATE SEQUENCE YES Limitations:

• The lastval and currval functions are not supported.
• The setval function is only allowed in queries that do not

operate on distributed data.

Table 3.1 SQL Support in Greenplum Database

SQL Command
Supported in
Greenplum

Modifications, Limitations, Exceptions
Greenplum and PostgreSQL Compatibility 20

Greenplum Database Administrator Guide 4.1 – Chapter 3: Summary of Greenplum Features
CREATE TABLE YES Unsupported Clauses / Options:

[GLOBAL | LOCAL]
REFERENCES
FOREIGN KEY
[DEFERRABLE | NOT DEFERRABLE]

Limited Clauses:

• UNIQUE or PRIMARY KEY constraints are only allowed on
hash-distributed tables (DISTRIBUTED BY), and the
constraint columns must be the same as or a superset of
the table’s distribution key columns.

Greenplum Database Clauses:

DISTRIBUTED BY (column, [...]) |
DISTRIBUTED RANDOMLY

PARTITION BY type (column [, ...])
 (partition_specification, [...])
WITH (appendonly=true
 [,compresslevel=value,blocksize=value]
)

CREATE TABLE AS YES See CREATE TABLE

CREATE TABLESPACE NO Greenplum Database Clauses:

FILESPACE filespace_name

CREATE TRIGGER NO

CREATE TYPE YES Limitations:

The functions used to implement a new base type must be
IMMUTABLE functions.

CREATE USER YES An alias for CREATE ROLE

CREATE VIEW YES

DEALLOCATE YES

DECLARE YES Unsupported Clauses / Options:

SCROLL
FOR UPDATE [OF column [, ...]]

Limitations:

Cursors are non-updatable, and cannot be
backward-scrolled. Forward scrolling is supported.

DELETE YES Unsupported Clauses / Options:

RETURNING

Limitations:

• Cannot use STABLE or VOLATILE functions in a DELETE
statement if mirrors are enabled

DROP AGGREGATE YES

Table 3.1 SQL Support in Greenplum Database

SQL Command
Supported in
Greenplum

Modifications, Limitations, Exceptions
Greenplum and PostgreSQL Compatibility 21

Greenplum Database Administrator Guide 4.1 – Chapter 3: Summary of Greenplum Features
DROP CAST YES

DROP CONVERSION YES

DROP DATABASE YES

DROP DOMAIN YES

DROP EXTERNAL TABLE YES Greenplum Database parallel ETL feature - not in
PostgreSQL 8.2.15.

DROP FILESPACE YES Greenplum Database parallel tablespace feature - not in
PostgreSQL 8.2.15.

DROP FUNCTION YES

DROP GROUP YES An alias for DROP ROLE

DROP INDEX YES

DROP LANGUAGE YES

DROP OPERATOR YES

DROP OPERATOR CLASS NO

DROP OWNED NO

DROP RESOURCE QUEUE YES Greenplum Database workload management feature - not in
PostgreSQL 8.2.15.

DROP ROLE YES

DROP RULE YES

DROP SCHEMA YES

DROP SEQUENCE YES

DROP TABLE YES

DROP TABLESPACE NO

DROP TRIGGER NO

DROP TYPE YES

DROP USER YES An alias for DROP ROLE

DROP VIEW YES

END YES

EXECUTE YES

EXPLAIN YES

Table 3.1 SQL Support in Greenplum Database

SQL Command
Supported in
Greenplum

Modifications, Limitations, Exceptions
Greenplum and PostgreSQL Compatibility 22

Greenplum Database Administrator Guide 4.1 – Chapter 3: Summary of Greenplum Features
FETCH YES Unsupported Clauses / Options:

LAST
PRIOR
BACKWARD
BACKWARD ALL

Limitations:

Cannot fetch rows in a nonsequential fashion; backward
scan is not supported.

GRANT YES

INSERT YES Unsupported Clauses / Options:

RETURNING

LISTEN NO

LOAD YES

LOCK YES

MOVE YES See FETCH

NOTIFY NO

PREPARE YES

PREPARE TRANSACTION NO

REASSIGN OWNED YES

REINDEX YES

RELEASE SAVEPOINT YES

RESET YES

REVOKE YES

ROLLBACK YES

ROLLBACK PREPARED NO

ROLLBACK TO SAVEPOINT YES

SAVEPOINT YES

Table 3.1 SQL Support in Greenplum Database

SQL Command
Supported in
Greenplum

Modifications, Limitations, Exceptions
Greenplum and PostgreSQL Compatibility 23

Greenplum Database Administrator Guide 4.1 – Chapter 3: Summary of Greenplum Features
SELECT YES Limitations:

• Limited use of VOLATILE and STABLE functions in FROM
or WHERE clauses

• Limited use of correlated subquery expressions (See
SELECT)

• Text search (Tsearch2) is not supported
• FETCH FIRST or FETCH NEXT clauses not supported

Greenplum Database Clauses (OLAP):

[GROUP BY grouping_element [, ...]]
[WINDOW window_name AS
(window_specification)]
[FILTER (WHERE condition)] applied to an aggregate
function in the SELECT list

SELECT INTO YES See SELECT

SET YES

SET CONSTRAINTS NO In PostgreSQL, this only applies to foreign key constraints,
which are currently not enforced in Greenplum Database.

SET ROLE YES

SET SESSION AUTHORIZATION YES Deprecated as of PostgreSQL 8.1 - see SET ROLE

SET TRANSACTION YES

SHOW YES

START TRANSACTION YES

TRUNCATE YES

UNLISTEN NO

UPDATE YES Unsupported Clauses:

RETURNING

Limitations:

• SET not allowed for Greenplum distribution key columns.
• Cannot use STABLE or VOLATILE functions in an UPDATE

statement if mirrors are enabled.

VACUUM YES Limitations:

VACUUM FULL is not recommended in Greenplum
Database.

VALUES YES

Table 3.1 SQL Support in Greenplum Database

SQL Command
Supported in
Greenplum

Modifications, Limitations, Exceptions
Greenplum and PostgreSQL Compatibility 24

Greenplum Database Administrator Guide 4.1 – Chapter 4: About Greenplum Query Processing
4. About Greenplum Query Processing

Users issue queries to Greenplum Database just as they would to any database
management system (DBMS). They connect to the database instance on the
Greenplum master host using a client application (such as psql) and submit an SQL
statement.

Understanding Query Planning and Dispatch
The query is received through the master, which parses the query, optimizes the query,
and creates either a parallel or targeted query plan (depending on the query). The
master then dispatches the plan to the segments for execution. Each segment is then
responsible for executing local database operations on its own particular set of data.

Most database operations—such as table scans, joins, aggregations, and sorts—
execute in parallel across the segments simultaneously. Each operation is performed
on a segment database independent of the data associated with the other segment
databases.

Figure 4.1 Dispatching the Parallel Query Plan
Understanding Query Planning and Dispatch 25

Greenplum Database Administrator Guide 4.1 – Chapter 4: About Greenplum Query Processing
Certain queries may only access data on a single segment, such as single-row INSERT,
UPDATE, DELETE or SELECT operations, or queries that return a small set of rows and
filter on the table distribution key column(s). In queries such as these, the query plan
is not dispatched to all segments, but is targeted to the segment that contains the
affected row(s).

Figure 4.2 Dispatching a Targeted Query Plan

Understanding Greenplum Query Plans
A query plan is the set of operations that Greenplum Database will perform to produce
the answer to a given query. Each node or step in the plan represents a database
operation such as a table scan, join, aggregation or sort. Plans are read and executed
from bottom to top.

In addition to the typical database operations (tables scans, joins, etc.), Greenplum
Database has an additional operation type called a motion. A motion operation
involves moving tuples between the segments during query processing. Note that not
every query requires a motion. For example, a query of the system catalog tables on
the master does not require data to move across the interconnect.

In order to achieve maximum parallelism during query execution, Greenplum divides
the work of the query plan into slices. A slice is a portion of the plan that can be
worked on independently at the segment-level. A query plan is sliced wherever a
motion operation occurs in the plan, one slice on each side of the motion.

For example, consider the following simple query involving a join between two
tables:

SELECT customer, amount
Understanding Greenplum Query Plans 26

Greenplum Database Administrator Guide 4.1 – Chapter 4: About Greenplum Query Processing
FROM sales JOIN customer USING (cust_id)

WHERE dateCol = '04-30-2008';

Figure 4.3 shows the query plan. Note that each segment gets a copy of the query plan
and works on it in parallel. For this particular plan, there is a redistribute motion that
moves tuples between the segments in order to complete the join. The plan is sliced on
either side of the redistribute motion (slice 1 and slice 2). This query plan also has
another type of motion operation called a gather motion. A gather motion is when the
segments send results back up to the master for presentation to the client. Since a
query plan is always sliced wherever a motion occurs, this plan also has an implicit
slice at the very top of the plan (slice 3). Not all query plans involve a gather motion.
For example, a CREATE TABLE x AS SELECT... statement would not have a gather
motion (tuples are sent to the newly created table, not to the master).

Figure 4.3 Query Slice Plan

Understanding Parallel Query Execution
Greenplum creates a number of database processes to handle the work of a query. On
the master, the query worker process is called the query dispatcher (QD). The QD is
responsible for creating and dispatching the query plan, and for accumulating and
presenting the final results. On the segments, a query worker process is called a query
executor (QE). A QE is responsible for completing its portion of work and
communicating its intermediate results to the other worker processes.
Understanding Parallel Query Execution 27

Greenplum Database Administrator Guide 4.1 – Chapter 4: About Greenplum Query Processing
For each slice of the query plan there is at least one worker process assigned. A
worker process works on its assigned portion of the query plan independently. During
query execution, each segment will have a number of processes working on the query
in parallel.

Related processes that are working on the same portion of the query plan are referred
to as gangs. As a portion of work is completed, tuples flow up the query plan from one
gang of processes to the next. This inter-process communication between the
segments is what is referred to as the interconnect component of Greenplum Database.

Figure 4.4 shows the query worker processes on the master and two segment instances
for the query plan illustrated in Figure 4.3.

Figure 4.4 Query Worker Processes
Understanding Parallel Query Execution 28

Section II 29

Section II: Access Control and Security

This section describes how to manage access to your Greenplum Database system. It
contains the following chapters:

• Managing Roles and Privileges - Provides information on creating database roles
(users and groups) and managing access privileges to database objects.

• Configuring Client Authentication - Provides information about the pg_hba.conf
file, a configuration file used to control client access and authentication to
Greenplum Database.

• Accessing the Database - Explains the various client tools you can use to connect
to Greenplum Database, and how to establish a database session.

• Managing Workload and Resources - Describes the workload management
feature of Greenplum Database, and explains the tasks involved in creating and
managing resource queues.

Greenplum Database Administrator Guide 4.1 – Chapter 5: Managing Roles and Privileges
5. Managing Roles and Privileges

Greenplum Database manages database access permissions using the concept of roles.
The concept of roles subsumes the concepts of users and groups. A role can be a
database user, a group, or both. Roles can own database objects (for example, tables)
and can assign privileges on those objects to other roles to control access to the
objects. Roles can be members of other roles, thus a member role can inherit the
object privileges of its parent role.

Every Greenplum Database system contains a set of database roles (users and groups).
Those roles are separate from the users and groups managed by the operating system
on which the server runs. However, for convenience you may want to maintain a
relationship between operating system user names and Greenplum Database role
names, since many of the client applications use the current operating system user
name as the default.

In Greenplum Database, users log in and connect through the master instance, which
then verifies their role and access privileges. The master then issues out commands to
the segment instances behind the scenes as the currently logged in role.

Roles are defined at the system level, meaning they are valid for all databases in the
system.

In order to bootstrap the Greenplum Database system, a freshly initialized system
always contains one predefined superuser role. This role will have the same name as
the operating system user that initialized the Greenplum Database system.
Customarily, this role is named gpadmin. In order to create more roles you first have
to connect as this initial role.

Security Best Practices for Roles and Privileges
• Secure the gpadmin system user. Greenplum requires a UNIX user id to install

and initialize the Greenplum Database system. This system user is referred to as
gpadmin in the Greenplum documentation. This gpadmin user is the default
database superuser in Greenplum Database, as well as the file system owner of the
Greenplum installation and its underlying data files. This default administrator
account is fundamental to the design of Greenplum Database. The system cannot
run without it, and there is no way to limit the access of this gpadmin user id. This
gpadmin user can bypass all security features of Greenplum Database. Anyone
who logs on to a Greenplum host as this user id can read, alter or delete any data;
including system catalog data and database access rights. Therefore, it is very
important to secure the gpadmin user id and only provide access to essential
system administrators. Administrators should only log in to Greenplum as
gpadmin when performing certain system maintenance tasks (such as upgrade or
expansion). Database users should never log on as gpadmin, and ETL or
production workloads should never run as gpadmin.
Security Best Practices for Roles and Privileges 30

Greenplum Database Administrator Guide 4.1 – Chapter 5: Managing Roles and Privileges
• Assign a distinct role to each user that logs in. For logging and auditing
purposes, each user that is allowed to log in to Greenplum Database should be
given their own database role. For applications or web services, consider creating
a distinct role for each application or service. See “Creating New Roles (Users)”
on page 31.

• Use groups to manage access privileges. See “Creating Groups (Role
Membership)” on page 32.

• Limit users who have the SUPERUSER role attribute. Roles that are
superusers bypass all access privilege checks in Greenplum Database, as well as
resource queuing. Only system administrators should be given superuser rights.
See “Altering Role Attributes” on page 31.

Creating New Roles (Users)
A user-level role is considered to be a database role that can log in to the database and
initiate a database session. Therefore, when you create a new user-level role using the
CREATE ROLE command, you must specify the LOGIN privilege. For example:

=# CREATE ROLE jsmith WITH LOGIN;

A database role may have a number of attributes that define what sort of tasks that role
can perform in the database. You can set these attributes when you create the role, or
later using the ALTER ROLE command. See Table 5.1, “Role Attributes” on page 31
for a description of the role attributes you can set.

Altering Role Attributes

A database role may have a number of attributes that define what sort of tasks that role
can perform in the database.

Table 5.1 Role Attributes

Attributes Description

SUPERUSER | NOSUPERUSER Determines if the role is a superuser. A superuser always bypasses
all access permission checks within the database and has full access
to everything. Superuser status is dangerous and should be used
only when really needed. You must yourself be a superuser to create
a new superuser. NOSUPERUSER is the default.

CREATEDB | NOCREATEDB Determines if the role is allowed to create databases. NOCREATEDB
is the default.

CREATEROLE | NOCREATEROLE Determines if the role is allowed to create and manage other roles.
NOCREATEROLE is the default.

INHERIT | NOINHERIT Determines whether a role inherits the privileges of roles it is a
member of. A role with the INHERIT attribute can automatically use
whatever database privileges have been granted to all roles it is
directly or indirectly a member of. INHERIT is the default.

LOGIN | NOLOGIN Determines whether a role is allowed to log in. A role having the
LOGIN attribute can be thought of as a user. Roles without this
attribute are useful for managing database privileges (groups).
NOLOGIN is the default.
Creating New Roles (Users) 31

Greenplum Database Administrator Guide 4.1 – Chapter 5: Managing Roles and Privileges
You can set these attributes when you create the role, or later using the ALTER ROLE
command. For example:

=# ALTER ROLE jsmith WITH PASSWORD 'passwd123';
=# ALTER ROLE admin VALID UNTIL 'infinity';
=# ALTER ROLE jsmith LOGIN;
=# ALTER ROLE jsmith RESOURCE QUEUE adhoc;

A role can also have role-specific defaults for many of the server configuration
settings. For example, to set the default schema search path for a role:

=# ALTER ROLE admin SET search_path TO myschema, public;

Creating Groups (Role Membership)
It is frequently convenient to group users together to ease management of object
privileges: that way, privileges can be granted to, or revoked from, a group as a whole.
In Greenplum Database this is done by creating a role that represents the group, and
then granting membership in the group role to individual user roles.

Use the CREATE ROLE SQL command to create a new group role. For example:

=# CREATE ROLE admin CREATEROLE CREATEDB;

Once the group role exists, you can add and remove members (user roles) using the
GRANT and REVOKE commands. For example:

=# GRANT admin TO john, sally;

=# REVOKE admin FROM bob;

CONNECTION LIMIT connlimit If role can log in, this specifies how many concurrent connections the
role can make. -1 (the default) means no limit.

PASSWORD ‘password’ Sets the role’s password. If you do not plan to use password
authentication you can omit this option. If no password is specified,
the password will be set to null and password authentication will
always fail for that user. A null password can optionally be written
explicitly as PASSWORD NULL.

ENCRYPTED | UNENCRYPTED Controls whether the password is stored encrypted in the system
catalogs. The default behavior is determined by the configuration
parameter password_encryption (currently set to MD5). If the
presented password string is already in MD5-encrypted format, then
it is stored encrypted as-is, regardless of whether ENCRYPTED or
UNENCRYPTED is specified (since the system cannot decrypt the
specified encrypted password string). This allows reloading of
encrypted passwords during dump/restore.

VALID UNTIL ‘timestamp’ Sets a date and time after which the role’s password is no longer
valid. If omitted the password will be valid for all time.

RESOURCE QUEUE queue_name Assigns the role to the named resource queue for workload
management. Any statement that role issues is then subject to the
resource queue’s limits. Note that the RESOURCE QUEUE attribute
is not inherited; it must be set on each user-level (LOGIN) role.

Table 5.1 Role Attributes

Attributes Description
Creating Groups (Role Membership) 32

Greenplum Database Administrator Guide 4.1 – Chapter 5: Managing Roles and Privileges
For managing object privileges, you would then grant the appropriate permissions to
the group-level role only (see Table 5.2, “Object Privileges” on page 33). The
member user roles then inherit the object privileges of the group role. For example:

=# GRANT ALL ON TABLE mytable TO admin;

=# GRANT ALL ON SCHEMA myschema TO admin;

=# GRANT ALL ON DATABASE mydb TO admin;

The role attributes LOGIN, SUPERUSER, CREATEDB, and CREATEROLE are never
inherited as ordinary privileges on database objects are. User members must actually
SET ROLE to a specific role having one of these attributes in order to make use of the
attribute. In the above example, we gave CREATEDB and CREATEROLE to the admin
role. If sally is a member of admin, she could issue the following command to
assume the role attributes of the parent role:

=> SET ROLE admin;

Managing Object Privileges
When an object (table, view, sequence, database, function, language, schema, or
tablespace) is created, it is assigned an owner. The owner is normally the role that
executed the creation statement. For most kinds of objects, the initial state is that only
the owner (or a superuser) can do anything with the object. To allow other roles to use
it, privileges must be granted. Greenplum Database supports the following privileges
for each object type:

Table 5.2 Object Privileges

Object Type Privileges

Tables, Views, Sequences SELECT

INSERT

UPDATE

DELETE

RULE

ALL

External Tables SELECT

RULE

ALL

Databases CONNECT

CREATE

TEMPORARY | TEMP

ALL

Functions EXECUTE

Procedural Languages USAGE

Schemas CREATE

USAGE

ALL
Managing Object Privileges 33

Greenplum Database Administrator Guide 4.1 – Chapter 5: Managing Roles and Privileges
Note: Privileges must be granted for each object individually. For example, granting ALL
on a database does not grant full access to the objects within that database. It only
grants all of the database-level privileges (CONNECT, CREATE, TEMPORARY) to
the database itself.

Use the GRANT SQL command to give a specified role privileges on an object. For
example:

=# GRANT INSERT ON mytable TO jsmith;

To revoke privileges, use the REVOKE command. For example:

=# REVOKE ALL PRIVILEGES ON mytable FROM jsmith;

You can also use the DROP OWNED and REASSIGN OWNED commands for managing
objects owned by deprecated roles (Note: only an object’s owner or a superuser can
drop an object or reassign ownership). For example:

=# REASSIGN OWNED BY sally TO bob;

=# DROP OWNED BY visitor;

Simulating Row and Column Level Access Control

Greenplum Database access control corresponds roughly to the Orange Book ‘C2’
level of security, not the ‘B1’ level. Greenplum Database currently supports access
privileges at the object level. Row-level or column-level access is not supported, nor is
labeled security.

Row-level and column-level access can be simulated using views to restrict the
columns and/or rows that are selected. Row-level labels can be simulated by adding an
extra column to the table to store sensitivity information, and then using views to
control row-level access based on this column. Roles can then be granted access to the
views rather than the base table. While these workarounds do not provide the same as
"B1" level security, they may still be a viable alternative for many organizations that
require more granular access control.

Encrypting Data
PostgreSQL provides an optional package of encryption/decryption functions called
pgcrypto, which can also be installed and used in Greenplum Database. The
pgcrypto package is not installed by default with Greenplum Database, however
Greenplum can provide a platform-specific build of pgcrypto upon request. Contact
Greenplum Customer Support to obtain a build of pgcrypto and its supporting
documentation.

The pgcrypto functions allow database administrators to store certain columns of
data in encrypted form. This adds an extra layer of protection for sensitive data, as
data stored in Greenplum Database in encrypted form cannot be read by users who do
not have the encryption key, nor be read directly from the disks.

Encrypting Data 34

Greenplum Database Administrator Guide 4.1 – Chapter 5: Managing Roles and Privileges
It is important to note that the pgcrypto functions run inside database server. That
means that all the data and passwords move between pgcrypto and the client
application in clear-text. For optimal security, consider also using SSL connections
between the client and the Greenplum master server.
Encrypting Data 35

Greenplum Database Administrator Guide 4.1 – Chapter 6: Configuring Client Authentication
6. Configuring Client Authentication

When a Greenplum Database system is first initialized, the system contains one
predefined superuser role. This role will have the same name as the operating system
user who initialized the Greenplum Database system. This role is referred to as
gpadmin. By default, the system is configured to only allow local connections to the
database from the gpadmin role. If you want to allow any other roles to connect, or if
you want to allow connections from remote hosts, you have to configure Greenplum
Database to allow such connections. This chapter explains how to configure client
connections and authentication to Greenplum Database.

• Allowing Connections to Greenplum Database

• Limiting Concurrent Connections

Allowing Connections to Greenplum Database
Client access and authentication is controlled by a configuration file named
pg_hba.conf (the standard PostgreSQL host-based authentication file). For detailed
information about this file, see The pg_hba.conf File in the PostgreSQL
documentation.

In Greenplum Database, the pg_hba.conf file of the master instance controls client
access and authentication to your Greenplum system. The segments also have
pg_hba.conf files, but these are already correctly configured to only allow client
connections from the master host. The segments never accept outside client
connections, so there is no need to alter the pg_hba.conf file on your segments.

The general format of the pg_hba.conf file is a set of records, one per line. Blank
lines are ignored, as is any text after the # comment character. A record is made up of
a number of fields which are separated by spaces and/or tabs. Fields can contain white
space if the field value is quoted. Records cannot be continued across lines. Each
remote client access record is in the format of:

host database role CIDR-address authentication-method

Each UNIX-domain socket access record is in the format of:

local database role authentication-method

The meaning of the fields is as follows:

Table 6.1 pg_hba.conf Fields

Field Description

local Matches connection attempts using UNIX-domain sockets. Without a
record of this type, UNIX-domain socket connections are disallowed.

host Matches connection attempts made using TCP/IP. Remote TCP/IP
connections will not be possible unless the server is started with an
appropriate value for the listen_addresses server configuration
parameter.
Allowing Connections to Greenplum Database 36

http://www.postgresql.org/docs/9.0/interactive/auth-pg-hba-conf.html

Greenplum Database Administrator Guide 4.1 – Chapter 6: Configuring Client Authentication
Editing the pg_hba.conf File

This example shows how to edit the pg_hba.conf file of the master to allow remote
client access to all databases from all roles using md5-encrypted password
authentication.

Note: For a more secure system, consider removing all connections that use trust
authentication from your master pg_hba.conf. Trust authentication means the role is
granted access without any authentication, therefore bypassing all security. Replace
trust entries with ident authentication if your system has an ident service available.

hostssl Matches connection attempts made using TCP/IP, but only when the
connection is made with SSL encryption. SSL must be enabled at
server start time by setting the ssl configuration parameter

hostnossl Matches connection attempts made over TCP/IP that do not use
SSL.

database Specifies which database names this record matches. The value all
specifies that it matches all databases. Multiple database names can
be supplied by separating them with commas. A separate file
containing database names can be specified by preceding the file
name with @.

role Specifies which database role names this record matches. The value
all specifies that it matches all roles. If the specified role is a group
and you want all members of that group to be included, precede the
role name with a +. Multiple role names can be supplied by
separating them with commas. A separate file containing role names
can be specified by preceding the file name with @.

CIDR-address Specifies the client machine IP address range that this record
matches. It contains an IP address in standard dotted decimal
notation and a CIDR mask length. IP addresses can only be
specified numerically, not as domain or host names. The mask length
indicates the number of high-order bits of the client IP address that
must match. Bits to the right of this must be zero in the given IP
address. There must not be any white space between the IP
address, the /, and the CIDR mask length.

Typical examples of a CIDR-address are 172.20.143.89/32 for a
single host, or 172.20.143.0/24 for a small network, or 10.6.0.0/16 for
a larger one. To specify a single host, use a CIDR mask of 32 for
IPv4 or 128 for IPv6. In a network address, do not omit trailing
zeroes.

IP-address

IP-mask

These fields can be used as an alternative to the CIDR-address
notation. Instead of specifying the mask length, the actual mask is
specified in a separate column. For example, 255.0.0.0 represents
an IPv4 CIDR mask length of 8, and 255.255.255.255 represents a
CIDR mask length of 32. These fields only apply to host, hostssl, and
hostnossl records.

authentication-method Specifies the authentication method to use when connecting. See
Authentication Methods in the PostgreSQL 8.4 documentation for
details.

Table 6.1 pg_hba.conf Fields

Field Description

Allowing Connections to Greenplum Database 37

http://www.postgresql.org/docs/9.0/static/auth-methods.html

Greenplum Database Administrator Guide 4.1 – Chapter 6: Configuring Client Authentication
Editing pg_hba.conf

1. Open the file $MASTER_DATA_DIRECTORY/pg_hba.conf in a text editor.

2. Add a line to the file for each type of connection you want to allow. Records are
read sequentially, so the order of the records is significant. Typically, earlier
records will have tight connection match parameters and weaker authentication
methods, while later records will have looser match parameters and stronger
authentication methods. For example:

allow the gpadmin user local access to all databases

using ident authentication

local all gpadmin ident sameuser

host all gpadmin 127.0.0.1/32 ident

host all gpadmin ::1/128 ident

allow the 'dba' role access to any database from any

host with IP address 192.168.x.x and use md5 encrypted

passwords to authenticate the user

host all dba 192.168.0.0/32 md5

allow all roles access to any database from any

host and use ldap to authenticate the user. Greenplum role

names must match the LDAP common name.

host all all 192.168.0.0/32 ldap ldapserver=usldap1
ldapport=1389 ldapprefix="cn="
ldapsuffix=",ou=People,dc=company,dc=com"

3. Save and close the file.

4. Reload the pg_hba.conf configuration file for your changes to take effect:

$ gpstop -u

Note: Note that you can also control database access by setting object privileges as
described in “Managing Object Privileges” on page 33. The pg_hba.conf file just
controls who can initiate a database session and how those connections are
authenticated.

Limiting Concurrent Connections
To limit the number of active concurrent sessions to your Greenplum Database
system, you can configure the max_connections server configuration parameter. This
is a local parameter, meaning that you must set it in the postgresql.conf file of the
master, the standby master, and each segment instance (primary and mirror). The
value of max_connections on segments must be 5-10 times the value on the master.

When you set max_connections, you must also set the dependent parameter
max_prepared_transactions. This value must be at least as large as the value of
max_connections on the master, and segment instances should be set to the same
value as the master.

For example:

Limiting Concurrent Connections 38

Greenplum Database Administrator Guide 4.1 – Chapter 6: Configuring Client Authentication
In $MASTER_DATA_DIRECTORY/postgresql.conf (including standby master):

max_connections=100
max_prepared_transactions=100

In SEGMENT_DATA_DIRECTORY/postgresql.conf for all segment instances:

max_connections=500
max_prepared_transactions=100

To change the number of allowed connections

1. Stop your Greenplum Database system:

$ gpstop

2. On your master host, edit $MASTER_DATA_DIRECTORY/postgresql.conf and
change the following two parameters:

max_connections (the number of active user sessions you want to allow plus the
number of superuser_reserved_connections)
max_prepared_transactions (must be greater than or equal to
max_connections)

3. On each segment instance, edit SEGMENT_DATA_DIRECTORY/postgresql.conf
and and change the following two parameters:

max_connections (must be 5-10 times the value on the master)
max_prepared_transactions (must be equal to the value on the master)

4. Restart your Greenplum Database system:

$ gpstart

Note: Raising the values of these parameters may cause Greenplum Database to
request more shared memory. To mitigate this effect, consider decreasing
other memory-related parameters such as
gp_cached_segworkers_threshold.

Encrypting Client/Server Connections
Greenplum Database has native support for SSL connections between the client and
the master server. SSL connections prevent third parties from snooping on the packets,
and also prevent man-in-the-middle attacks. SSL should be used whenever the client
connection goes through an insecure link, and must be used whenever client certificate
authentication is used.

To enable SSL requires that OpenSSL be installed on both the client and the master
server systems. Greenplum can be started with SSL enabled by setting the server
configuration parameter ssl=on in the master postgresql.conf. When starting in
SSL mode, the server will look for the files server.key (server private key) and
server.crt (server certificate) in the master data directory. These files must be set
up correctly before an SSL-enabled Greenplum system can start. If the private key is
protected with a passphrase, the server will prompt for the passphrase and will not
start until it has been entered.

Encrypting Client/Server Connections 39

Greenplum Database Administrator Guide 4.1 – Chapter 6: Configuring Client Authentication
For details on how to create your server private key and certificate, refer to the
OpenSSL documentation. A self-signed certificate can be used for testing, but a
certificate signed by a certificate authority (CA) (either one of the global CAs or a
local one) should be used in production so the client can verify the server’s identity.
Encrypting Client/Server Connections 40

Greenplum Database Administrator Guide 4.1 – Chapter 7: Accessing the Database
7. Accessing the Database

This chapter explains the various client tools you can use to connect to Greenplum
Database, and how to establish a database session. It contains the following topics:

• Establishing a Database Session

• Supported Client Applications

• Troubleshooting Connection Problems

Establishing a Database Session
Users can connect to Greenplum Database using a PostgreSQL-compatible client
program, such as psql. Users and administrators always connect to Greenplum
Database through the master - the segments cannot accept client connections.

In order to establish a connection to the Greenplum Database master, you will need to
know the following connection information and configure your client program
accordingly.

Table 7.1 Connection Parameters

Connection Parameter Description Environment Variable

Application name The application name that is
connecting to the database. The
default value, held in the
application_name connection
parameter is psql.

$PGAPPNAME

Database name The name of the database to which
you want to connect. For a newly
initialized system, use the
template1 database to connect
for the first time.

$PGDATABASE

Host name The host name of the Greenplum
Database master. The default host
is the local host.

$PGHOST
Establishing a Database Session 41

Greenplum Database Administrator Guide 4.1 – Chapter 7: Accessing the Database
Supported Client Applications
Users can connect to Greenplum Database using various client applications:

• A number of Greenplum Database Client Applications are provided with your
Greenplum installation. The psql client application provides an interactive
command-line interface to Greenplum Database.

• pgAdmin III for Greenplum Database is an enhanced version of the popular
management tool pgAdmin III. Since version 1.10.0, the pgAdmin III client
available from PostgreSQL Tools includes support for Greenplum-specific
features. Installation packages are available for download from the pgAdmin
download site.

• Using standard Database Application Interfaces, such as ODBC and JDBC, users
can create their own client applications that interface to Greenplum Database.
Because Greenplum Database is based on PostgreSQL, it uses the standard
PostgreSQL database drivers.

• Most Third-Party Client Tools that use standard database interfaces, such as
ODBC and JDBC, can be configured to connect to Greenplum Database.

Port The port number that the
Greenplum Database master
instance is running on. The default
is 5432.

$PGPORT

User name The database user (role) name to
connect as. This is not necessarily
the same as your OS user name.
Check with your Greenplum
administrator if you are not sure
what you database user name is.
Note that every Greenplum
Database system has one
superuser account that is created
automatically at initialization time.
This account has the same name
as the OS name of the user who
initialized the Greenplum system
(typically gpadmin).

$PGUSER

Table 7.1 Connection Parameters

Connection Parameter Description Environment Variable
Supported Client Applications 42

http://www.pgadmin.org/download/
http://www.pgadmin.org/download/

Greenplum Database Administrator Guide 4.1 – Chapter 7: Accessing the Database
Greenplum Database Client Applications

Greenplum Database comes installed with a number of client applications located in
$GPHOME/bin of your Greenplum Database master host installation. The following
are the most commonly used client applications:

Table 7.2 Commonly used client applications

Name Usage

createdb create a new database

createlang define a new procedural language

createuser define a new database role

dropdb remove a database

droplang remove a procedural language

dropuser remove a role

psql PostgreSQL interactive terminal

reindexdb reindex a database

vacuumdb garbage-collect and analyze a database

When using these client applications, you must connect to a database through the
Greenplum master instance. You will need to know the name of your target database,
the host name and port number of the master, and what database user name to connect
as. This information can be provided on the command-line using the options -d, -h,
-p, and -U respectively. If an argument is found that does not belong to any option, it
will be interpreted as the database name first.

All of these options have default values which will be used if the option is not
specified. The default host is the local host. The default port number is 5432. The
default user name is your OS system user name, as is the default database name. Note
that OS user names and Greenplum Database user names are not necessarily the same.

If the default values are not correct, you can save yourself some typing by setting the
environment variables PGDATABASE, PGHOST, PGPORT, and PGUSER to the appropriate
values. See “Greenplum Environment Variables” on page 846 for more information. It
is also convenient to have a ~/.pgpass file to avoid regularly having to type in
passwords. See “psql” on page 764 for more information.

Connecting with psql

Depending on the default values used or the environment variables you have set, the
following examples show how to access a database via psql:

$ psql -d gpdatabase -h master_host -p 5432 -U gpadmin

$ psql gpdatabase

$ psql

If a user-defined database has not yet been created, you can access the system by
connecting to the template1 database. For example:
Supported Client Applications 43

Greenplum Database Administrator Guide 4.1 – Chapter 7: Accessing the Database
$ psql template1

After connecting to a database, psql provides a prompt with the name of the database
to which psql is currently connected, followed by the string => (or =# if you are the
database superuser). For example:

gpdatabase=>

At the prompt, you may type in SQL commands. A SQL command must end with a ;
(semicolon) in order to be sent to the server and executed. For example:

=> SELECT * FROM mytable;

For more information on using the psql client application, see “psql” on page 764. For
more information on SQL commands and syntax, see “SQL Command Reference” on
page 264.

pgAdmin III for Greenplum Database

If you prefer a graphic interface, use pgAdmin III for Greenplum Database. This GUI
client supports PostgreSQL databases with all standard pgAdmin III features, while
adding support for Greenplum-specific features.

pgAdmin III for Greenplum Database supports the following Greenplum-specific
features:

• External tables

• Append-only tables, including compressed append-only tables

• Table partitioning

• Resource queues

• Graphical EXPLAIN ANALYZE

• Greenplum server configuration parameters
Supported Client Applications 44

Greenplum Database Administrator Guide 4.1 – Chapter 7: Accessing the Database
Figure 7.1 Greenplum Options in pgAdmin III

Installing pgAdmin III for Greenplum Database

The installation package for pgAdmin III for Greenplum Database is available for
download from the official pgAdmin III download site (http://www.pgadmin.org).
Installation instructions are included in the installation package.

Documentation for pgAdmin III for Greenplum Database

For general help on the features of the graphical interface, select Help contents from
the Help menu.

For help with Greenplum-specific SQL support, select Greenplum Database Help
from the Help menu. If you have an active internet connection, you will be directed to
online Greenplum SQL reference documentation. Alternately, you can install the
Greenplum Client Tools package. This package contains SQL reference
documentation that is accessible to the help links in pgAdmin III.

Performing Administrative Tasks with pgAdmin III

This section highlights two of the many Greenplum Database administrative tasks you
can perform with pgAdmin III: editing the server configuration, and viewing a
graphical representation of a query plan.
Supported Client Applications 45

http://www.pgadmin.org

Greenplum Database Administrator Guide 4.1 – Chapter 7: Accessing the Database
Editing Server Configuration

The pgAdmin III interface provides two ways to update the server configuration in
postgresql.conf: locally, through the File menu, and remotely on the server
through the Tools menu. Editing the server configuration remotely may be more
convenient in many cases, because it does not require you to upload or copy
postgresql.conf.

To edit server configuration remotely

1. Connect to the server whose configuration you want to edit. If you are connected
to multiple servers, make sure that the correct server is highlighted in the object
browser in the left pane.

2. Select Tools > Server Configuration > postgresql.conf. The Backend
Configuration Editor opens, displaying the list of available and enabled server
configuration parameters.

3. Locate the parameter you want to edit, and double click on the entry to open the
Configuration settings dialog.

4. Enter the new value for the parameter, or select/deselect Enabled as desired and
click OK.

5. If the parameter can be enabled by reloading server configuration, click the green
reload icon, or select File > Reload server. Many parameters require a full restart
of the server.

Viewing a Graphical Query Plan

Using the pgAdmin III query tool, you can run a query with EXPLAIN to view the
details of the query plan. The output includes details about operations unique to
Greenplum distributed query processing such as plan slices and motions between
segments. You can view a graphical depiction of the plan as well as the text-based data
output.

To view a graphical query plan

1. With the correct database highlighted in the object browser in the left pane, select
Tools > Query tool.

2. Enter the query by typing in the SQL Editor, dragging objects into the Graphical
Query Builder, or opening a file.

3. Select Query > Explain options and verify the following options:

• Verbose — this must be deselected if you want to view a graphical depiction
of the query plan

• Analyze — select this option if you want to run the query in addition to
viewing the plan

4. Trigger the operation by clicking the Explain query option at the top of the pane,
or by selecting Query > Explain.

The query plan displays in the Output pane at the bottom of the screen. Select the
Explain tab to view the graphical output. For example:
Supported Client Applications 46

Greenplum Database Administrator Guide 4.1 – Chapter 7: Accessing the Database
Figure 7.2 Graphical Query Plan in pgAdmin III

Database Application Interfaces

You may want to develop your own client applications that interface to Greenplum
Database. PostgreSQL provides a number of database drivers for the most commonly
used database application programming interfaces (APIs), which can also be used
with Greenplum Database. These drivers are not packaged with the Greenplum
Database base distribution. Each driver is an independent PostgreSQL development
project and must be downloaded, installed and configured to connect to Greenplum
Database. The following drivers are available:

Table 7.3 Greenplum Database Interfaces

API PostgreSQL Driver Download Link

ODBC pgodbc Available in the Greenplum Database
Connectivity package, which can be
downloaded from the EMC Download
Center.

JDBC pgjdbc Available in the Greenplum Database
Connectivity package, which can be
downloaded from the EMC Download
Center.

Perl DBI pgperl http://gborg.postgresql.org/project/pgperl

Python DBI pygresql http://www.pygresql.org
Supported Client Applications 47

http://gborg.postgresql.org/project/pgperl/projdisplay.php
http://www.pygresql.org/
https://emc.subscribenet.com
https://emc.subscribenet.com
https://emc.subscribenet.com
https://emc.subscribenet.com

Greenplum Database Administrator Guide 4.1 – Chapter 7: Accessing the Database
General instructions for accessing a Greenplum Database with an API are:

1. Download your programming language platform and respective API from the
appropriate source. For example, you can get the Java development kit (JDK) and
JDBC API from Sun.

2. Write your client application according to the API specifications. When
programming your application, be aware of the SQL support in Greenplum
Database so you do not include any unsupported SQL syntax. See “SQL
Command Reference” on page 264.

Download the appropriate PostgreSQL driver and configure connectivity to your
Greenplum Database master instance. Greenplum provides a client tools package that
contains the supported database drivers for Greenplum Database. The client tools
package (and associated documentation) is available for download from the EMC
Download Center.

Third-Party Client Tools

Most third-party extract-transform-load (ETL) and business intelligence (BI) tools use
standard database interfaces, such as ODBC and JDBC, and can be configured to
connect to Greenplum Database. Greenplum has worked with the following tools on
previous customer engagements and is in the process of becoming officially certified:

• Business Objects

• Microstrategy

• Informatica Power Center

• Microsoft SQL Server Integration Services (SSIS) and Reporting Services (SSRS)

• Ascential Datastage

• SAS

• Cognos

Greenplum Professional Services can assist users in configuring their chosen
third-party tool for use with Greenplum Database.
Supported Client Applications 48

https://emc.subscribenet.com
https://emc.subscribenet.com

Greenplum Database Administrator Guide 4.1 – Chapter 7: Accessing the Database
Troubleshooting Connection Problems
A number of things can prevent a client application from successfully connecting to
Greenplum Database. This section explains some of the common causes of connection
problems and how to correct them.

Table 7.4 Common connection problems

Problem Solution

No pg_hba.conf entry for
host or user

In order for Greenplum Database to be able to accept remote client
connections, you must configure your Greenplum Database master
instance so that connections are allowed from the client hosts and
database users that will be connecting to Greenplum Database. This
is done by adding the appropriate entries to the pg_hba.conf
configuration file (located in the master instance’s data directory). For
more detailed information, see “Allowing Connections to Greenplum
Database” on page 36.

Greenplum Database is not
running

If the Greenplum Database master instance is down, users will not be
able to connect. You can verify that the Greenplum Database system
is up by running the gpstate utility on the Greenplum master host.

Network problems

Interconnect timeouts

If users are connecting to the Greenplum master host from a remote
client, network problems may be preventing a connection (for
example, DNS host name resolution problems, the host system is
down, etc.). To ensure that network problems are not the cause, try
connecting to the Greenplum master host from the remote client host.
For example: ping hostname
If the system cannot resolve the host names and IP addresses of the
hosts involved in Greenplum Database, queries and connections will
fail. Keep in mind that for some operations, connections to the
Greenplum Database master use localhost while others use the
actual host name, so you must be able to resolve both. If you
encounter this error, first make sure you can connect to each host in
your Greenplum Database array from the master host over the
network. In the /etc/hosts file of the master and all segments,
make sure you have the correct host names and IP addresses for all
hosts involved in the Greenplum Database array. The 127.0.0.1 IP
should only resolve to localhost.

Too many clients already By default, Greenplum Database is configured to allow a maximum of
25 concurrent user connections. A connection attempt that causes
that limit to be exceeded will be refused. This limit is controlled by the

max_connections parameter in the postgresql.conf
configuration file of the Greenplum Database master. If you change
this setting for the master, you must also make appropriate changes
at the segments.
Troubleshooting Connection Problems 49

Greenplum Database Administrator Guide 4.1 – Chapter 8: Managing Workload and Resources
8. Managing Workload and Resources

This chapter describes the workload management feature of Greenplum Database, and
explains the tasks involved in creating and managing resource queues. The following
topics are covered in this chapter:

• Overview of Greenplum Workload Management

• Configuring Workload Management

• Creating Resource Queues

• Assigning Roles (Users) to a Resource Queue

• Modifying Resource Queues

• Checking Resource Queue Status

Overview of Greenplum Workload Management
The purpose of workload management is to limit the number of active queries in the
system at any given time in order to avoid exhausting system resources such as
memory, CPU, and disk I/O. This is accomplished in Greenplum Database with
role-based resource queues. A resource queue has attributes that limit the size and/or
total number of queries that can be executed by the users (or roles) in that queue. Also,
you can assign a priority level that controls the relative share of available CPU used
by queries associated with the resource queue. By assigning all database roles to the
appropriate resource queue, administrators can control concurrent user queries and
prevent the system from being overloaded.

How Resource Queues Work in Greenplum Database

Resource scheduling is enabled by default when you install Greenplum Database. All
database roles must be assigned to a resource queue. If an administrator creates a role
without explicitly assigning it to a resource queue, the role is assigned to the default
resource queue, pg_default.

Greenplum recommends that administrators create resource queues for the various
types of workloads in their organization. For example, you may have resource queues
for power users, web users, and management reports. You would then set limits on the
resource queue based your estimate of how resource-intensive the queries associated
with that workload are likely to be. Currently, the configurable limits on a queue
include:

• Active statement count. The maximum number of statements that can run
concurrently.

• Active statement memory. The total amount of memory that all queries submitted
through this queue can consume.

• Active statement priority. This value defines a queue’s priority relative to other
queues in terms of available CPU resources.
Overview of Greenplum Workload Management 50

Greenplum Database Administrator Guide 4.1 – Chapter 8: Managing Workload and Resources
• Active statement cost. This value is compared with the cost estimated by the query
planner, measured in units of disk page fetches.

After resource queues are created, database roles (users) are then assigned to the
appropriate resource queue. A resource queue can have multiple roles, but a role can
have only one assigned resource queue.

How Resource Queue Limits Work

At runtime, when the user submits a query for execution, that query is evaluated
against the resource queue’s limits. If the query does not cause the queue to exceed its
resource limits, then that query will run immediately. If the query causes the queue to
exceed its limits (for example, if the maximum number of active statement slots are
currently in use), then the query must wait until queue resources are free before it can
run. Queries are evaluated on a first in, first out basis. If query prioritization is
enabled, the active workload on the system is periodically assessed and processing
resources are reallocated according to query priority (see “How Priorities Work” on
page 52).

Figure 8.1 Resource Queue Example

Roles with the SUPERUSER attribute are always exempt from resource queue limits.
Superuser queries are always allowed to run immediately regardless of the limits of
their assigned resource queue.

How Memory Limits Work

Setting a memory limit on a resource queue sets the maximum amount of memory that
all queries submitted through the queue can consume on a segment host. The amount
of memory allotted to a particular query is based on the queue memory limit divided
by the active statement limit (Greenplum recommends that memory limits be used in
conjunction with statement-based queues rather than cost-based queues). For example,
if a queue has a memory limit of 2000MB and an active statement limit of 10, each
query submitted through the queue is allotted 200MB of memory by default. The
default memory allotment can be overridden on a per-query basis using the
statement_mem server configuration parameter (up to the queue memory limit). Once
a query has started executing, it holds its allotted memory in the queue until it
completes (even if during execution it actually consumes less than its allotted amount
of memory).
Overview of Greenplum Workload Management 51

Greenplum Database Administrator Guide 4.1 – Chapter 8: Managing Workload and Resources
For more information on configuring memory limits on a resource queue, and other
memory utilization controls, see “Creating Queues with Memory Limits” on page 57.

How Priorities Work

Resource limits on active statement count, memory and query cost are admission
limits, which determine whether a query is admitted into the group of actively running
statements, or whether it is queued with other waiting statements. After a query
becomes active, it must share available CPU resources as determined by the priority
settings for its resource queue. When a statement from a high-priority queue enters the
group of actively running statements, it may claim a significant share of the available
CPU, reducing the share allotted to already-running statements.

The comparative size or complexity of the queries does not affect the allotment of
CPU. If a simple, low-cost query is running simultaneously with a large, complex
query, and their priority settings are the same, they will be allotted the same share of
available CPU resources. When a new query becomes active, the exact percentage
shares of CPU will be recalculated, but queries of equal priority will still have equal
amounts of CPU allotted.

For example, an administrator creates three resource queues: adhoc for ongoing
queries submitted by business analysts, reporting for scheduled reporting jobs, and
executive for queries submitted by executive user roles. The administrator wants to
ensure that scheduled reporting jobs are not heavily affected by unpredictable resource
demands from ad-hoc analyst queries. Also, the administrator wants to make sure that
queries submitted by executive roles are allotted a significant share of CPU.
Accordingly, the resource queue priorities are set as shown:

• adhoc — Low priority

• reporting — High priority

• executive — Maximum priority

For more information about commands to set priorities, see “Setting Priority Levels”
on page 58.
Overview of Greenplum Workload Management 52

Greenplum Database Administrator Guide 4.1 – Chapter 8: Managing Workload and Resources
At runtime, the CPU share of active statements is determined by these priority
settings. If queries 1 and 2 from the reporting queue are running simultaneously, they
have equal shares of CPU. When an ad-hoc query becomes active, it claims a smaller
share of CPU. The exact share used by the reporting queries is adjusted, but remains
equal due to their equal priority setting:

Figure 8.2 CPU share readjusted according to priority

Note: The percentages shown in these graphics are approximate. CPU usage between high,
low and maximum priority queues is not always calculated in precisely these
proportions.

Overview of Greenplum Workload Management 53

Greenplum Database Administrator Guide 4.1 – Chapter 8: Managing Workload and Resources
When an executive query enters the group of running statements, CPU usage is
adjusted to account for its maximum priority setting. It may be a simple query
compared to the analyst and reporting queries, but until it is completed, it will claim
the largest share of CPU.

Figure 8.3 CPU share readjusted for maximum priority query

Types of Queries Evaluated for Resource Queues

Not all SQL statements submitted through a resource queue are evaluated against the
queue limits. By default only SELECT, SELECT INTO, CREATE TABLE AS SELECT,
and DECLARE CURSOR statements are evaluated. If the server configuration parameter
resource_select_only is set to off, then INSERT, UPDATE, and DELETE statements
will be evaluated as well.

Steps to Enable Workload Management

Enabling and using workload management in Greenplum Database involves the
following high-level tasks:

1. Creating the resource queues and setting limits on them. See “Creating Resource
Queues” on page 56.

2. Assigning a queue to one or more user roles. See “Assigning Roles (Users) to a
Resource Queue” on page 59.

3. Using the workload management system views to monitor and manage the
resource queues. See “Checking Resource Queue Status” on page 60.
Overview of Greenplum Workload Management 54

Greenplum Database Administrator Guide 4.1 – Chapter 8: Managing Workload and Resources
Configuring Workload Management
Resource scheduling is enabled by default when you install Greenplum Database, and
is required for all roles. The default resource queue, pg_default, has an active
statement limit of 20, no cost limit, no memory limit, and a medium priority setting.
Greenplum recommends that you create resource queues for the various types of

To configure workload management

1. The following parameters are for the general configuration of resource queues:

• max_resource_queues - Sets the maximum number of resource queues.

• max_resource_portals_per_transaction - Sets the maximum number of
simultaneously open cursors allowed per transaction. Note that an open cursor
will hold an active query slot in a resource queue.

• resource_select_only - If set to on, then SELECT, SELECT INTO, CREATE
TABLE AS SELECT, and DECLARE CURSOR commands are evaluated. If set to
off INSERT, UPDATE, and DELETE commands will be evaluated as well.

• resource_cleanup_gangs_on_wait - Cleans up idle segment worker processes
before taking a slot in the resource queue.

• stats_queue_level - Enables statistics collection on resource queue usage,
which can then be viewed by querying the pg_stat_resqueues system view.

2. The following parameters are related to memory utilization:

• gp_resqueue_memory_policy - Enables Greenplum memory management
features. When set to none, memory management is the same as in
Greenplum Database releases prior to 4.1. When set to auto, query memory
usage is controlled by statement_mem and resource queue memory limits.
The work_mem, max_work_mem and maintenance_work_mem parameters
become obsolete when this is enabled.

• statement_mem and max_statement_mem - Used to allocate memory to a
particular query at runtime (override the default allocation assigned by the
resource queue). max_statement_mem is set by database superusers to
prevent regular database users from over-allocation.

• gp_vmem_protect_limit - Sets the upper boundary that all query processes
can consume on a segment host. When a segment host reaches this limit
during query execution, the queries that cause the limit to be exceeded will be
cancelled.

• gp_vmem_idle_resource_timeout and
gp_vmem_protect_segworker_cache_limit - used to free memory on segment
hosts held by idle database processes. Administrators may want to adjust
these settings on systems with lots of concurrency.

3. The following parameters are related to query prioritization. Note that the
following parameters are all local parameters, meaning they must be set in the
postgresql.conf files of the master and all segments:

• gp_resqueue_priority - The query prioritization feature is enabled by default.
Configuring Workload Management 55

Greenplum Database Administrator Guide 4.1 – Chapter 8: Managing Workload and Resources
• gp_resqueue_priority_sweeper_interval - Sets the interval at which CPU
usage is recalculated for all active statements. The default value for this
parameter should be sufficient for typical database operations.

• gp_resqueue_priority_cpucores_per_segment - Specifies the number of CPU
cores per segment. The default is 4 for segments and 24 for the master, the
correct values for the EMC Greenplum Data Computing Appliance. Each host
checks its own postgresql.conf file for the value of this parameter.
This parameter also affects the master node, where it should be set to a value
reflecting the higher ratio of CPU cores. For example, on a cluster that has 8
CPU cores per host and 4 segments per host, you would use the following
settings:
Master and standby master
gp_resqueue_priority_cpucores_per_segment = 8

Segment hosts
gp_resqueue_priority_cpucores_per_segment = 2

Important: If you have fewer than one segment per CPU core on your segment
hosts, make sure you adjust this value accordingly. An improperly low value for
this parameter can result in under-utilization of CPU resources.

4. If you wish to view or change any of the workload management parameter values,
you can use the gpconfig utility.

5. For example, to see the setting of a particular parameter:

$ gpconfig --show gp_vmem_protect_limit

6. For example, to set one value on all segments and a different value on the master:

$ gpconfig -c gp_resqueue_priority_cpucores_per_segment -v 2
-m 8

7. Restart Greenplum Database to make the configuration changes effective:

$ gpstop -r

Creating Resource Queues
Creating a resource queue involves giving it a name and setting either a query cost
limit or an active query limit (or both), and optionally a query priority on the resource
queue. Use the CREATE RESOURCE QUEUE command to create new resource queues.

Creating Queues with an Active Query Limit

Resource queues with an ACTIVE_STATEMENTS setting limit the number of queries
that can be executed by roles assigned to that queue. For example, to create a resource
queue named adhoc with an active query limit of three:

=# CREATE RESOURCE QUEUE adhoc WITH (ACTIVE_STATEMENTS=3);
Creating Resource Queues 56

Greenplum Database Administrator Guide 4.1 – Chapter 8: Managing Workload and Resources
This means that for all roles assigned to the adhoc resource queue, only three active
queries can be running on the system at any given time. If this queue has three queries
running, and a fourth query is submitted by a role in that queue, that query must wait
until a slot is free before it can run.

Creating Queues with Memory Limits

Resource queues with a MEMORY_LIMIT setting control the amount of memory that all
queries submitted through the queue can consume on a segment host. This limit
determines the total amount of memory that all worker processes of a query can
consume on a segment host during query execution.

When used in conjunction with ACTIVE_STATEMENTS, the default amount of
memory allotted per query is: MEMORY_LIMIT / ACTIVE_STATEMENTS. When used
in conjunction with MAX_COST, the default amount of memory allotted per query is:
MEMORY_LIMIT * (query_cost / MAX_COST). Greenplum recommends that
MEMORY_LIMIT be used in conjunction with ACTIVE_STATEMENTS rather than with
MAX_COST.

For example, to create a resource queue with an active query limit of 10 and a total
memory limit of 2000MB (each query will be allocated 200MB of segment host
memory at execution time):

=# CREATE RESOURCE QUEUE myqueue WITH (ACTIVE_STATEMENTS=20,
MEMORY_LIMIT='2000MB');

The default memory allotment can be overridden on a per-query basis using the
statement_mem server configuration parameter, provided that MEMORY_LIMIT or
max_statement_mem is not exceeded. For example, to allocate more memory to a
particular query:

=> SET statement_mem='2GB';

=> SELECT * FROM my_big_table WHERE column='value' ORDER BY id;

=> RESET statement_mem;

As a general guideline, MEMORY_LIMIT for all of your resource queues should not
exceed the amount of physical memory of a segment host. If workloads are staggered
over multiple queues, it may be OK to oversubscribe memory allocations, keeping in
mind that queries may be cancelled during execution if the segment host memory limit
(gp_vmem_protect_limit) is exceeded.

Creating Queues with a Query Planner Cost Limits

Resource queues with a MAX_COST setting limit the total cost of queries that can be
executed by roles assigned to that queue. Cost is specified as a floating point number
(for example 100.0) or can also be specified as an exponent (for example 1e+2).

Cost is measured in the estimated total cost for the query as determined by the
Greenplum query planner (as shown in the EXPLAIN output for a query). Therefore, an
administrator must be familiar with the queries typically executed on the system in
order to set an appropriate cost threshold for a queue. Cost is measured in units of disk
page fetches; 1.0 equals one sequential disk page read.
Creating Resource Queues 57

Greenplum Database Administrator Guide 4.1 – Chapter 8: Managing Workload and Resources
For example, to create a resource queue named webuser with a query cost limit of
100000.0 (1e+5):

=# CREATE RESOURCE QUEUE webuser WITH (MAX _COST=100000.0);

or

=# CREATE RESOURCE QUEUE webuser WITH (MAX _COST=1e+5);

This means that for all roles assigned to the webuser resource queue, it will only allow
queries into the system until the cost limit of 100000.0 is reached. So for example, if
this queue has 200 queries with a 500.0 cost all running at the same time, and query
201 with a 1000.0 cost is submitted by a role in that queue, that query must wait until
space is free before it can run.

Allowing Queries to Run on Idle Systems

If a resource queue is limited based on a cost threshold, then the administrator can
allow COST_OVERCOMMIT (the default). Resource queues with a cost threshold and
overcommit enabled will allow a query that exceeds the cost threshold to run,
provided that there are no other queries in the system at the time the query is
submitted. The cost threshold will still be enforced if there are concurrent workloads
on the system.

If COST_OVERCOMMIT is false, then queries that exceed the cost limit will always be
rejected and never allowed to run.

Allowing Small Queries to Bypass Queue Limits

Workloads may have certain small queries that administrators want to allow to run
without taking up an active statement slot in the resource queue. For example, simple
queries to look up metadata information in the system catalogs do not typically require
significant resources or interfere with query processing on the segments. An
administrator can set MIN_COST to denote a query planner cost associated with a small
query. Any query that falls below the MIN_COST limit will be allowed to run
immediately. MIN_COST can be used on resource queues with either an active
statement or a maximum query cost limit. For example:

=# CREATE RESOURCE QUEUE adhoc WITH (ACTIVE_STATEMENTS=10,
MIN_COST=100.0);

Setting Priority Levels

To control a resource queue’s consumption of available CPU resources, an
administrator can assign an appropriate priority level. When high concurrency causes
contention for CPU resources, queries and statements associated with a high-priority
resource queue will claim a larger share of available CPU than lower priority queries
and statements.

Priority settings are created or altered using the WITH parameter of the commands
CREATE RESOURCE QUEUE and ALTER RESOURCE QUEUE. For example, to specify
priority settings for the adhoc and reporting queues, an administrator would use the
following commands:

=# ALTER RESOURCE QUEUE adhoc WITH (PRIORITY=LOW);

=# ALTER RESOURCE QUEUE reporting WITH (PRIORITY=HIGH);
Creating Resource Queues 58

Greenplum Database Administrator Guide 4.1 – Chapter 8: Managing Workload and Resources
To create the executive queue with maximum priority, an administrator would use the
following command:

=# CREATE RESOURCE QUEUE executive WITH (ACTIVE_STATEMENTS=3,
PRIORITY=MAX);

When the query prioritization feature is enabled, resource queues are given a MEDIUM
priority by default if not explicitly assigned. For more information on how priority
settings are evaluated at runtime, see “How Priorities Work” on page 52.

Important: In order for resource queue priority levels to be enforced on the
active query workload, you must enable the query prioritization feature by setting
the associated server configuration parameters. See “Configuring Workload
Management” on page 55.

Assigning Roles (Users) to a Resource Queue
Once a resource queue is created, you must assign roles (users) to their appropriate
resource queue. If roles are not explicitly assigned to a resource queue, they will go to
the default resource queue, pg_default. The default resource queue has an active
statement limit of 20, no cost limit, and a medium priority setting.

Use the ALTER ROLE or CREATE ROLE commands to assign a role to a resource queue.
For example:

=# ALTER ROLE name RESOURCE QUEUE queue_name;

=# CREATE ROLE name WITH LOGIN RESOURCE QUEUE queue_name;

A role can only be assigned to one resource queue at any given time, so you can use
the ALTER ROLE command to initially assign or change a role’s resource queue.

Resource queues must be assigned on a user-by-user basis. If you have a role
hierarchy (for example, a group-level role) then assigning a resource queue to the
group does not propagate down to the users in that group.

Superusers are always exempt from resource queue limits. Superuser queries will
always run regardless of the limits set on their assigned queue.

Removing a Role from a Resource Queue

All users must be assigned to a resource queue. If not explicitly assigned to a
particular queue, users will go into the default resource queue, pg_default. If you
wish to remove a role from a resource queue and put them in the default queue, change
the role’s queue assignment to none. For example:

=# ALTER ROLE role_name RESOURCE QUEUE none;
Assigning Roles (Users) to a Resource Queue 59

Greenplum Database Administrator Guide 4.1 – Chapter 8: Managing Workload and Resources
Modifying Resource Queues
After a resource queue has been created, you can change or reset the queue limits
using the ALTER RESOURCE QUEUE command. You can remove a resource queue
using the DROP RESOURCE QUEUE command. To change the roles (users) assigned to a
resource queue, see “Assigning Roles (Users) to a Resource Queue” on page 59.

Altering a Resource Queue

The ALTER RESOURCE QUEUE command changes the limits of a resource queue. A
resource queue must have either an ACTIVE_STATEMENTS or a MAX_COST value (or it
can have both). To change the limits of a resource queue, specify the new values you
want for the queue. For example:

=# ALTER RESOURCE QUEUE adhoc WITH (ACTIVE_STATEMENTS=5);

=# ALTER RESOURCE QUEUE exec WITH (MAX_COST=100000.0);

To reset active statements or memory limit to no limit, enter a value of -1. To reset the
maximum query cost to no limit, enter a value of -1.0. For example:

=# ALTER RESOURCE QUEUE adhoc WITH (MAX_COST=-1.0,
MEMORY_LIMIT='2GB');

You can use the ALTER RESOURCE QUEUE command to change the priority of queries
associated with a resource queue. For example, to set a queue to the minimum priority
level:

ALTER RESOURCE QUEUE webuser WITH (PRIORITY=MIN);

Dropping a Resource Queue

The DROP RESOURCE QUEUE command drops a resource queue. To drop a resource
queue, the queue cannot have any roles assigned to it, nor can it have any statements
waiting in the queue. See “Removing a Role from a Resource Queue” on page 59 and
“Clearing a Waiting Statement From a Resource Queue” on page 62 for instructions
on emptying a resource queue. To drop a resource queue:

=# DROP RESOURCE QUEUE name;

Checking Resource Queue Status
Checking resource queue status involves the following tasks:

• Viewing Queued Statements and Resource Queue Status

• Viewing Resource Queue Statistics

• Viewing the Roles Assigned to a Resource Queue

• Viewing the Waiting Queries for a Resource Queue

• Clearing a Waiting Statement From a Resource Queue

• Viewing the Priority of Active Statements

• Resetting the Priority of an Active Statement
Modifying Resource Queues 60

Greenplum Database Administrator Guide 4.1 – Chapter 8: Managing Workload and Resources
Viewing Queued Statements and Resource Queue Status

The gp_toolkit.gp_resqueue_status view allows administrators to see status and
activity for a workload management resource queue. It shows how many queries are
waiting to run and how many queries are currently active in the system from a
particular resource queue. To see the resource queues created in the system, their limit
attributes, and their current status:

=# SELECT * FROM gp_toolkit.gp_resqueue_status;

Viewing Resource Queue Statistics

If you want to track statistics and performance of resource queues over time, you can
enable statistics collecting for resource queues. This is done by setting the following
server configuration parameter in your master postgresql.conf file:

stats_queue_level = on

Once this is enabled, you can use the pg_stat_resqueues system view to see the
statistics collected on resource queue usage. Note that enabling this feature does incur
slight performance overhead, as each query submitted through a resource queue must
be tracked. It may be useful to enable statistics collecting on resource queues for
initial diagnostics and administrative planning, and then disable the feature for
continued use.

See the section on the Statistics Collector in the PostgreSQL documentation for more
information about collecting statistics in Greenplum Database.

Viewing the Roles Assigned to a Resource Queue

To see the roles assigned to a resource queue, perform the following query of the
pg_roles and gp_toolkit.gp_resqueue_status system catalog tables:

=# SELECT rolname, rsqname FROM pg_roles,
 gp_toolkit.gp_resqueue_status

 WHERE
pg_roles.rolresqueue=gp_toolkit.gp_resqueue_status.queueid;

You may want to create a view of this query to simplify future inquiries. For example:

=# CREATE VIEW role2queue AS

 SELECT rolname, rsqname FROM pg_roles, pg_resqueue

 WHERE
pg_roles.rolresqueue=gp_toolkit.gp_resqueue_status.queueid;

Then you can just query the view:

=# SELECT * FROM role2queue;
Checking Resource Queue Status 61

http://www.postgresql.org/docs/8.2/static/monitoring-stats.html

Greenplum Database Administrator Guide 4.1 – Chapter 8: Managing Workload and Resources
Viewing the Waiting Queries for a Resource Queue

When a slot is in use for a resource queue, it is recorded in the pg_locks system
catalog table. This is where you can see all of the currently active and waiting queries
for all resource queues. To check that statements are being queued (even statements
that are not waiting), you can also use the gp_toolkit.gp_locks_on_resqueue view. For
example:

=# SELECT * FROM gp_toolkit.gp_locks_on_resqueue WHERE
lorwaiting='true';

If this query returns no results, then that means there are currently no statements
waiting in a resource queue.

Clearing a Waiting Statement From a Resource Queue

In some cases, you may want to clear a waiting statement from a resource queue. For
example, you may want to remove a query that is waiting in the queue but has not
been executed yet. You may also want to stop a query that has been started if it is
taking too long to execute, or if it is sitting idle in a transaction and taking up resource
queue slots that are needed by other users. To do this, you must first identify the
statement you want to clear, determine its process id (pid), and then kill that process
id.

For example, to see process information about all statements currently active or
waiting in all resource queues, run the following query:

=# SELECT rolname, rsqname, pid, granted,

 current_query, datname

 FROM pg_roles, gp_toolkit.gp_resqueue_status, pg_locks,
 pg_stat_activity

 WHERE pg_roles.rolresqueue=pg_locks.objid

 AND pg_locks.objid=gp_toolkit.gp_resqueue_status.queueid

 AND pg_stat_activity.procpid=pg_locks.pid;

If this query returns no results, then that means there are currently no statements in a
resource queue. A sample of a resource queue with two statements in it looks
something like this:

rolname | rsqname | pid | granted | current_query | datname

 sammy | webuser | 31861 | t | <IDLE> in transaction | namesdb
 daria | webuser | 31905 | f | SELECT * FROM topten; | namesdb

Use this output to identify the process id (pid) of the statement you want to clear from
the resource queue. To clear the statement, you would then open a terminal window
(as the gpadmin database superuser or as root) on the master host and cancel the
corresponding process. For example:

=# pg_cancel_backend(31905)

Note: Do not use the Postgres KILL command.
Checking Resource Queue Status 62

Greenplum Database Administrator Guide 4.1 – Chapter 8: Managing Workload and Resources
Viewing the Priority of Active Statements

The gp_toolkit administrative schema has a view called gp_resq_priority_statement,
which lists all statements currently being executed and provides the priority, session
ID, and other information.

This view is only available through the gp_toolkit administrative schema. See
Appendix I, “The gp_toolkit Administrative Schema” for more information.

Resetting the Priority of an Active Statement

Superusers can adjust the priority of a statement currently being executed using the
built-in function gp_adjust_priority(session_id, statement_count,
priority). Using this function, superusers can raise or lower the priority of any
query. For example:

=# SELECT gp_adjust_priority(752, 24905, 'HIGH')

To obtain the session ID and statement count parameters required by this function,
Superusers can use the gp_toolkit administrative schema view,
gp_resq_priority_statement. This function affects only the specified statement .
Subsequent statements in the same resource queue are executed using the queue’s
normally assigned priority.
Checking Resource Queue Status 63

Section III 64

Section III: Database Administration

This section describes how create, manage and access databases and database objects
using SQL (structured query language).

• Defining Database Objects - This chapter covers data definition language (DDL)
in Greenplum Database and how to create and manage database objects.

• Managing Data - This chapter covers data manipulation language (DML) in
Greenplum Database and how transaction concurrency in handled.

• Querying Data - This chapter describes the use of the SQL language in Greenplum
Database.

• Loading and Unloading Data - This chapter describes the various ways to load
data into Greenplum Database.

Greenplum Database Administrator Guide 4.1 – Chapter 9: Defining Database Objects
9. Defining Database Objects

This chapter covers data definition language (DDL) in Greenplum Database and how
to create and manage database objects.

• Creating and Managing Databases

• Creating and Managing Tablespaces

• Creating and Managing Schemas

• Creating and Managing Tables

• Partitioning Large Tables

• Creating and Using Sequences

• Using Indexes in Greenplum Database

• Creating and Managing Views

Creating and Managing Databases
A Greenplum Database system can have one or more databases. This is different from
some other database management systems (such as Oracle) where the database
instance is the database. Although you can create many databases in a Greenplum
system, client programs can connect and access one database at a time — you cannot
cross-query between databases.

About Template Databases

Every new database you create is based on a template. A default database called
template1 exists in every newly initialized Greenplum Database system. You can use
this database to connect to Greenplum Database for the first time. This is the template
used to create other databases by default if you do not explicitly declare a template
when creating a new database. You do not want to create any objects in this database
unless you want those objects to also be in every other database you create afterwards.

In addition to template1, every newly created Greenplum system has two other
database templates, template0 and postgres, which are used internally by the
system and should not be dropped or modified. The template0 database template can
be used to create a completely clean database containing only the standard objects
predefined by Greenplum Database at initialization. This is useful if you wish to avoid
copying any objects that may have been added to template1.

Creating a Database

The CREATE DATABASE command creates a new database. For example:

=> CREATE DATABASE new_dbname;
Creating and Managing Databases 65

Greenplum Database Administrator Guide 4.1 – Chapter 9: Defining Database Objects
In order to create a database, you must have privileges to create a database or be a
Greenplum superuser. If you do not have the correct privileges, then you will not be
able to create a database. Contact your Greenplum administrator to either give you the
necessary privilege or to create a database for you.

There is also a client program called createdb that you can use to create a database.
For example, running the following command in a command line terminal will make a
connection to Greenplum Database using the provided host name and port and create
the database named mydatabase:

$ createdb -h masterhost -p 5432 mydatabase

Cloning a Database

By default, a new database is created by cloning the standard system database
template, template1. Any database can be used as a template when creating a new
database, thereby providing the capability to ‘clone’ or copy an existing database and
all of the objects and data within that database. For example:

=> CREATE DATABASE new_dbname TEMPLATE old_dbname;

Viewing the List of Databases

If you are working in the psql client program, you can use the \l meta-command to
show the list of databases and templates in your Greenplum Database system. If using
another client program, you can query the list of databases from the pg_database
system catalog table (you must be a superuser). For example:

=> SELECT datname from pg_database;

Altering a Database

The ALTER DATABASE command is used to change certain attributes about a database,
such its owner, name or default configuration attributes. You must be either the owner
of the database or a superuser to alter it. Here is an example of altering a database to
set its default schema search path (the search_path configuration parameter):

=> ALTER DATABASE mydatabase SET search_path TO myschema,
public, pg_catalog;

Dropping a Database

The DROP DATABASE command can be used to drop (or delete) a database. It removes
the system catalog entries for the database and also deletes the database directory on
disk containing the data. You must be the database owner or a superuser to drop a
database, and you cannot drop a database while you or anyone else is connected to it.
Connect into template1 (or another database) before dropping a database. For
example:

=> \c template1

=> DROP DATABASE mydatabase;
Creating and Managing Databases 66

Greenplum Database Administrator Guide 4.1 – Chapter 9: Defining Database Objects
There is also a client program called dropdb that you can use to drop a database. For
example, running the following command in a command line terminal will make a
connection to Greenplum Database using the provided host name and port and drop
the database named mydatabase:

$ dropdb -h masterhost -p 5432 mydatabase

Warning: Dropping a database cannot be undone. Use this command with care!

Creating and Managing Tablespaces
Tablespaces allow database administrators to have multiple file systems per machine
and decide how to best use their physical storage to store database objects.
Tablespaces are useful for a number of reasons, such as allowing different storage
types for frequently versus infrequently used database objects, or controlling the I/O
performance on certain database objects. For example, highly utilized tables can be
placed on file systems that use high performance solid-state drives (SSD), while the
remaining tables utilize standard hard drives.

A tablespace requires a file system location to store its database files. In Greenplum
Database, the master and each segment (primary and mirror) needs its own distinct
storage location. This collection of file system locations for all components in a
Greenplum system is referred to as a filespace. Once a filespace is defined, it can be
used by one or more tablespaces.

Creating a Filespace

To create a filespace, you must first prepare the logical file systems on all of your
Greenplum hosts. A file system location is needed for the master, each primary
segment and each mirror segment on a host. Once you have your file systems
prepared, use the gpfilespace utility to define the filespace. You must be a database
superuser in order to create a filespace.

Note: Greenplum is not directly aware of the file system boundaries on your underlying
systems. It will store files in the directories you tell it to use. Therefore, there is not
much point in defining multiple filespaces that use the same logical file system since
you cannot control the location on disk of individual files within a logical file system.

To create a filespace using gpfilespace

1. Log in to the Greenplum Database master as the gpadmin user.

$ su - gpadmin

2. Create a filespace configuration file:

$ gpfilespace -o gpfilespace_config

Creating and Managing Tablespaces 67

Greenplum Database Administrator Guide 4.1 – Chapter 9: Defining Database Objects
3. You will be prompted to enter a name for the filespace, the primary segment file
system locations, the mirror segment file system locations, and a master file
system location. For example, if your configuration has 2 primary and 2 mirror
segments per host, you will be prompted for a total of 5 locations (including the
master). For example:

Enter a name for this filespace> fastdisk

primary location 1> /gpfs1/seg1

primary location 2> /gpfs1/seg2

mirror location 1> /gpfs2/mir1

mirror location 2> /gpfs2/mir2

master location> /gpfs1/master

4. The utility will output a configuration file. Examine the file and make sure it
reflects the filespace configuration you want.

5. Run the utility again to create the filespace based on the configuration file:

$ gpfilespace -c gpfilespace_config

Creating a Tablespace

Once you have created a filespace, you can define a tablespace that uses that filespace.
To define a tablespace, use the CREATE TABLESPACE command, for example:

=# CREATE TABLESPACE fastspace FILESPACE fastdisk;

Creation of the tablespace itself must be done as a database superuser, but after that
you can allow ordinary database users to make use of it. To do that, GRANT them the
CREATE privilege on it. For example:

=# GRANT CREATE ON TABLESPACE fastspace TO admin;

Using a Tablespace to Store Database Objects

Tables, indexes, and entire databases can be assigned to particular tablespaces. To do
so, a user with the CREATE privilege on a given tablespace must pass the tablespace
name as a parameter to the relevant command. For example, the following creates a
table in the tablespace space1:

CREATE TABLE foo(i int) TABLESPACE space1;

Alternatively, use the default_tablespace parameter:

SET default_tablespace = space1;

CREATE TABLE foo(i int);

When default_tablespace is set to anything but an empty string, it supplies an
implicit TABLESPACE clause for CREATE TABLE and CREATE INDEX commands that
do not have an explicit one.

The tablespace associated with a database is used to store the system catalogs of that
database, as well as any temporary files created by server processes using that
database. Furthermore, it is the default tablespace selected for tables and indexes
created within the database, if no TABLESPACE clause is given (either explicitly or via
Creating and Managing Tablespaces 68

Greenplum Database Administrator Guide 4.1 – Chapter 9: Defining Database Objects
default_tablespace) when the objects are created. If a database is created without
specifying a tablespace for it, it uses the same tablespace as the template database it is
copied from.

Once created, a tablespace can be used from any database, provided the requesting
user has sufficient privilege.

Viewing Existing Tablespaces and Filespaces

Every Greenplum Database system has two default tablespaces: pg_global (used for
shared system catalogs) and pg_default (the default tablespace used by the
template1 and template0 databases). These tablespaces use the system default
filespace, pg_system (the data directory locations created at system initialization
time).

To see filespace information, look in the pg_filespace and pg_filespace_entry catalog
tables. You can join these tables with pg_tablespace to see the full definition of a
tablespace. For example:

=# SELECT spcname as tblspc, fsname as filespc,

 fsedbid as seg_dbid, fselocation as datadir

 FROM pg_tablespace pgts, pg_filespace pgfs,

 pg_filespace_entry pgfse

WHERE pgts.spcfsoid=pgfse.fsefsoid

AND pgfse.fsefsoid=pgfs.oid

ORDER BY tblspc, seg_dbid;

Dropping Tablespaces and Filespaces

A tablespace cannot be dropped until all objects in all databases using the tablespace
have been removed. A filespace cannot be dropped until all tablespaces using that
filespace have also been removed.

To remove an empty tablespace, use the DROP TABLESPACE command. A tablespace
can only be dropped by its owner or a superuser.

To remove an empty filespace, use the DROP FILESPACE command. Only a superuser
can drop a filespace.

Creating and Managing Schemas
Schemas are a way to logically organize objects and data in a database. Schemas allow
you to have more than one object (such as tables) with the same name in the database
without conflict, as long as they are in different schemas.
Creating and Managing Schemas 69

Greenplum Database Administrator Guide 4.1 – Chapter 9: Defining Database Objects
The Default ‘Public’ Schema

Every newly created database has a default schema named public. If you do not create
any schemas of your own, objects will be created in the public schema by default. All
database roles (users) have CREATE and USAGE privileges in the public schema by
default. Any other schemas you create, you will have to grant the appropriate
privileges so that users can access the schema.

Creating a Schema

Use the CREATE SCHEMA command to create a new schema. For example:

=> CREATE SCHEMA myschema;

To create or access objects in a schema, write a qualified name consisting of the
schema name and table name separated by a dot. For example:

schema.table

See “Schema Search Paths” on page 70 for more information about accessing a
schema.

You may want to create a schema owned by someone else (since this is one of the
ways to restrict the activities of your users to well-defined namespaces). The syntax
for that is:

=> CREATE SCHEMA schemaname AUTHORIZATION username;

Schema Search Paths

For the database to know in which schema it should look for an object, you can always
use the schema-qualified name. For example:

=> SELECT * FROM myschema.mytable;

If you do not want to type the schema-qualified name all the time, you can set the
search_path configuration parameter. This tells the database in which order it should
search the available schemas for objects. The schema listed first in the search path
becomes the default schema. The default schema is where new objects will be created
if a schema name is not explicitly declared.

Setting the Schema Search Path

The search_path configuration parameter is used to set the order in which schemas
are searched. You can set search_path for a database using the ALTER DATABASE
command. For example:

=> ALTER DATABASE mydatabase SET search_path TO myschema,
public, pg_catalog;

You can also set search_path for a particular role (user) using the ALTER ROLE
command. For example:

=> ALTER ROLE sally SET search_path TO myschema, public,
pg_catalog;
Creating and Managing Schemas 70

Greenplum Database Administrator Guide 4.1 – Chapter 9: Defining Database Objects
Viewing the Current Schema

There may be times when you are not sure what schema you are currently in or what
your search_path setting is. To find out this information, you can use the
current_schema() function or the SHOW command. For example:

=> SELECT current_schema();

=> SHOW search_path;

Dropping a Schema

Use the DROP SCHEMA command to drop (delete) a schema. For example:

=> DROP SCHEMA myschema;

By default, the schema must be empty before you can drop it. If you want to drop a
schema and all of the objects in that schema (tables, data, functions, etc.) use:

=> DROP SCHEMA myschema CASCADE;

System Schemas

The following system-level schemas also exist in every database:

• pg_catalog is the schema that has the system catalog tables, built-in data types,
functions, and operators. It is always part of the schema search path, even if it is
not explicitly named in the search path. For information on the system catalog
tables in the pg_catalog schema, see “System Catalog Reference” on page 852.

• information_schema consists of a standardized set of views that contain
information about the objects in the database. These views are used to get system
information from the system catalog tables in a standardized way.

• pg_toast is a system schema where large objects are stored (records that exceed
the page size). This schema is used internally by the Greenplum Database system
and is not typically accessed by database administrators or users.

• pg_bitmapindex is the system schema where bitmap index objects are stored
(list of values, etc.). This schema is used internally by the Greenplum Database
system and is not typically accessed by database administrators or users.

• pg_aoseg is the system schema where append-only table objects are stored. This
schema is used internally by the Greenplum Database system and is not typically
accessed by database administrators or users.

• gp_toolkit is an administrative schema that you can use to view and query the
system log files and other system metrics. The gp_toolkit schema contains a
number of external tables, views and functions that you can access by using SQL
commands. gp_toolkit is accessible by all database users. See Appendix I, “The
gp_toolkit Administrative Schema” for more information.
Creating and Managing Schemas 71

Greenplum Database Administrator Guide 4.1 – Chapter 9: Defining Database Objects
Creating and Managing Tables
A table in Greenplum Database is much like a table in any other relational database,
except that the records in the table are distributed across the different segments in the
system. When you create a table, there is additional SQL syntax to declare the table’s
distribution policy.

Creating a Table

The CREATE TABLE command is used to create a new table and define its structure.
When creating a table, you will typically define the following aspects of the table:

• The columns of the table and their associated data types. See “Choosing Column
Data Types” on page 72.

• Any table or column constraints to limit the data that a column or table can
contain. See “Setting Table and Column Constraints” on page 73.

• The distribution policy of the table, which determines how the data is divided
across the Greenplum Database segments. See “Choosing the Table Distribution
Policy” on page 74.

• The way the table is stored on disk. See “Choosing the Table Storage Model” on
page 75.

• The table partitioning strategy for large tables. See “Partitioning Large Tables” on
page 80.

Choosing Column Data Types

The data type of a column determines the types of data values that column can
contain. As a general rule, you want to choose the data type that uses the least possible
space, yet can still accommodate your data. You should also select the data type that
best constrains the data in that column. For example, use character data types for
strings, date or timestamp data types for dates, and numeric data types for numbers.

For character column data types, there are no performance differences between the use
of CHAR, VARCHAR, and TEXT data types, apart from the increased storage size when
using the blank-padded type. While CHAR has performance advantages in some other
database systems, it has no such advantages in Greenplum Database. In most
situations, TEXT or VARCHAR should be used instead.

For numeric column data types, use the smallest data type in which the data will fit. A
lot of space is wasted if, for example, the BIGINT data type is used when the data
would always fit in INT or SMALLINT.

Also consider using identical data types for the columns you plan to use in cross-table
joins. Joins work much more efficiently if the data types of the columns used in the
join predicate (usually the primary key in one table and a foreign key in the other
table) have identical data types. When the data types are different, the database has to
convert one of them so that the data values can be compared correctly, and such
conversion amounts to unnecessary overhead.

Greenplum Database has a rich set of native data types available to users. See
“Greenplum Database Data Types” on page 849 for a list of the built-in data types.
Creating and Managing Tables 72

Greenplum Database Administrator Guide 4.1 – Chapter 9: Defining Database Objects
Setting Table and Column Constraints

Data types are a way to limit the kind of data that can be stored in a table. For many
applications, however, the constraint they provide is too coarse. SQL allows you to
define constraints on columns and tables. Constraints give you more control over the
data in your tables. If a user attempts to store data in a column that would violate a
constraint, an error is raised.

There are some limitations and conditions when using constraints in Greenplum
Database, most notably with regards to foreign key, primary key, and unique
constraints. Otherwise constraints are supported as in PostgreSQL.

Check Constraints

A check constraint is the most generic constraint type. It allows you to specify that the
value in a certain column must satisfy a Boolean (truth-value) expression. For
instance, to require positive product prices, you could use:

=> CREATE TABLE products
 (product_no integer,
 name text,
 price numeric CHECK (price > 0));

Not-Null Constraints

A not-null constraint simply specifies that a column must not assume the null value. A
not-null constraint is always written as a column constraint. For example:

=> CREATE TABLE products
 (product_no integer NOT NULL,
 name text NOT NULL,
 price numeric);

Unique Constraints

Unique constraints ensure that the data contained in a column or a group of columns is
unique with respect to all the rows in the table. For a unique constraint to be enforced
in Greenplum Database, the table must be hash-distributed (not DISTRIBUTED
RANDOMLY), and the constraint columns must be the same as (or a superset of) the
table’s distribution key columns.

=> CREATE TABLE products
 (product_no integer UNIQUE,
 name text,
 price numeric)

 DISTRIBUTED BY (product_no);

Primary Keys

A primary key constraint is simply a combination of a UNIQUE constraint and a NOT
NULL constraint. For a primary key constraint to be enforced in Greenplum Database,
the table must be hash-distributed (not DISTRIBUTED RANDOMLY), and the primary
key columns must be the same as (or a superset of) the table’s distribution key
columns. If a table has a primary key, this column (or group of columns) is chosen as
the distribution key for the table by default. For example:

=> CREATE TABLE products
 (product_no integer PRIMARY KEY,
Creating and Managing Tables 73

Greenplum Database Administrator Guide 4.1 – Chapter 9: Defining Database Objects
 name text,
 price numeric)

 DISTRIBUTED BY (product_no);

Foreign Keys

Foreign keys are not supported in this release of Greenplum Database. It is possible to
declare them, but referential integrity will not be enforced.

A foreign key constraint specifies that the values in a column (or a group of columns)
must match the values appearing in some row of another table. This maintains the
referential integrity between two related tables. In this release of Greenplum Database,
referential integrity checks cannot be enforced between the distributed table segments
of a Greenplum database.

Choosing the Table Distribution Policy

All Greenplum Database tables are distributed. When you create or alter a table, there
is an optional DISTRIBUTED BY (hash distribution) or DISTRIBUTED RANDOMLY
(round-robin distribution) clause to declare how the rows of the table should be
distributed. See “Understanding Greenplum Distribution Policies” on page 13.

The following considerations should be taken into account when declaring a
distribution policy for a table (in order of importance):

• Even Data Distribution — For the best possible performance, all of the segments
should contain equal portions of data. If the data is unbalanced or skewed, then the
segments with more data will have to work harder to perform their portion of the
query processing. To ensure an even distribution of data, you want to choose a
distribution key that is unique for each record, such as the primary key.

• Local and Distributed Operations — During query processing, it is faster if the
work associated with join, sort or aggregation operations can be done locally at
the segment-level rather than at the system-level (distributing tuples across the
segments). When tables share a common distribution key in Greenplum Database,
joining or sorting on their shared distribution key columns will result in the most
efficient query processing, as the majority of the work is done locally at the
segment-level. Local operations are approximately 5 times faster than distributed
operations. With a random distribution policy, local operations are not an option.

• Even Query Processing — When a query is being processed, you want all of the
segments to handle an equal amount of the query workload to get the best possible
performance. In some cases, query processing workload can be skewed if the
table’s data distribution policy and the query predicates are not well matched. For
example, suppose you have a table of sales transactions. The table is distributed
based on a column that contains corporate names as values. The hashing algorithm
distributes the data based on the values of the distribution key, so if a predicate in
a query references a single value from the distribution key, the work in the query
will run on only one segment. This may be a viable distribution policy if your
query predicates tend to select data on a criteria other than corporation name.
However, for queries that do use corporation name in their predicates, you can
potentially have just one segment instance handling all of the query workload.
Creating and Managing Tables 74

Greenplum Database Administrator Guide 4.1 – Chapter 9: Defining Database Objects
Declaring Distribution Keys

When creating a table, there is an additional clause to declare the Greenplum Database
distribution policy. If a DISTRIBUTED BY or DISTRIBUTED RANDOMLY clause is not
supplied, then Greenplum assigns a hash distribution policy to the table using either
the PRIMARY KEY (if the table has one) or the first column of the table as the
distribution key. Columns of geometric or user-defined data types are not eligible as
Greenplum distribution key columns. If a table does not have a column of an eligible
data type, the rows are distributed based on a round-robin or random distribution.

To ensure an even distribution of data, you want to choose a distribution key that is
unique for each record, or if that is not possible, then choose DISTRIBUTED
RANDOMLY. For example:

=> CREATE TABLE products
 (name varchar(40),
 prod_id integer,
 supplier_id integer)
 DISTRIBUTED BY (prod_id);

=> CREATE TABLE random_stuff
 (things text,
 doodads text,
 etc text)
 DISTRIBUTED RANDOMLY;

Choosing the Table Storage Model

Greenplum Database provides an agile and flexible processing engine capable of
supporting several storage models (or a hybrid of storage models). When you create a
new table, you have several options as to how its data is stored on disk. This section
explains the various options for table storage and how to decide on the best storage
model for your workload.

• Choosing Heap or Append-Only Storage

• Choosing Row or Column-Oriented Storage

• Using Compression (Append-Only Tables Only)

• Checking the Compression and Distribution of an Append-Only Table

Choosing Heap or Append-Only Storage

By default, Greenplum Database uses the same heap storage model as PostgreSQL.
Heap table storage favors OLTP-type workloads where the data is often modified after
it is initially loaded. UPDATE and DELETE operations require row-level versioning
information to be stored in order to ensure that database transactions are processed
reliably. Heap tables are best suited for smaller tables, such as dimension tables, that
are often updated after they are initially loaded.

Greenplum Database also offers an append-only table storage model. Append-only
table storage favors denormalized fact tables in a data warehouse environment, which
are typically the largest tables in the system. Fact tables are typically loaded in
batches, and then accessed by read-only queries. Data is not updated after it is loaded.
Moving large fact tables to an append-only storage model eliminates the storage
overhead of the per-row update visibility information (about 20 bytes per row is
saved). This allows for a leaner and easier-to-optimize page structure. Append-only
Creating and Managing Tables 75

Greenplum Database Administrator Guide 4.1 – Chapter 9: Defining Database Objects
tables do not allow UPDATE and DELETE operations. The storage model of append-only
tables is optimized for bulk data loading. Single row INSERT statements are not
recommended.

To create a heap table

Row-oriented heap tables are the default storage type, so no extra CREATE TABLE
command syntax is required to create a heap table. For example:

=> CREATE TABLE foo (a int, b text) DISTRIBUTED BY (a);

To create an append-only table

The WITH clause of the CREATE TABLE command is used to declare the storage options
of the table. If not declared, the table will be created as a regular row-oriented
heap-storage table. For example, to create an append-only table with no compression:

=> CREATE TABLE bar (a int, b text)

 WITH (appendonly=true)

 DISTRIBUTED BY (a);

Choosing Row or Column-Oriented Storage

Greenplum provides a choice of storage orientation models: row or column (or a
hybrid of both). This section provides some general guidelines for choosing the
correct storage orientation for a table; however you are encouraged to evaluate
performance using your own data and query workloads.

For most general purpose or mixed workloads, row-oriented storage offers the best
combination of flexibility and performance. However, there are certain specific use
cases where a column-oriented storage model provides more efficient I/O and storage.
Consider the following requirements when deciding on the storage orientation model
of a table:

• Updates of table data. If table data must be updated after it is loaded, choose a
row-oriented heap table. Column-oriented table storage is only available on
append-only tables. See “Choosing Heap or Append-Only Storage” on page 75 for
more information.

• Frequent INSERTs. If new rows are frequently inserted into the table, consider a
row-oriented model. Column-oriented tables are not optimized for write
operations, as column values for a row must be written to different places on disk.

• Number of columns requested in queries. If you typically request all or the
majority of columns in the SELECT list or WHERE clause of your queries, consider a
row-oriented model. Column-oriented tables are best suited to queries that
aggregate many values of a single column where the WHERE or HAVING predicate
is also on the aggregate column,

SELECT SUM(salary)...

SELECT AVG(salary)... WHERE salary > 10000

or where the WHERE predicate is on a single column and is highly selective (returns
a relatively small number of rows).

SELECT salary, dept ... WHERE state='CA'
Creating and Managing Tables 76

Greenplum Database Administrator Guide 4.1 – Chapter 9: Defining Database Objects
• Number of columns in the table. Row-oriented storage is more efficient when
many columns are required at the same time, or when the row-size of a table is
relatively small. Column-oriented tables can offer better query performance on
wide tables (lots of columns) where you typically only access a small subset of
columns in your queries.

• Compression. Since column data is of the same data type, there are some storage
size optimizations available in column-oriented data that are not available in
row-oriented data. For example, many compression schemes make use of the
similarity of adjacent data to compress. However, the greater adjacent
compression achieved, the more difficult random access may become, as data
might need to be uncompressed to be read.

To create a column-oriented table

The WITH clause of the CREATE TABLE command is used to declare the storage options
of the table. If not declared, the table will be created as a row-oriented heap table.
Tables that use column-oriented storage must also be append-only tables. For
example, to create a column-oriented table:

=> CREATE TABLE bar (a int, b text)

 WITH (appendonly=true, orientation=column)

 DISTRIBUTED BY (a);

Using Compression (Append-Only Tables Only)

Tables that utilize the append-only storage model also have the option of using
in-database compression (with zlib or QuickLZ) to save disk space. Using in-database
compression requires that your segment systems have the available CPU power to
compress and uncompress the data. Compressed append-only tables should not be
used on file systems that also are using compression. If the file system where your
segment data directory resides is a compressed file system, your append-only table
should not use compression.

When choosing a compression type and level for append-only tables, consider these
factors:

• CPU usage

• Compression ratio/disk size

• Speed of compression

• Speed of decompression/scan rate

Though minimizing disk size may be the main goal in compressing tables, the time
and CPU capacity required to compress and scan data is also important to consider.
Every system has an optimal range of settings where compression most efficiently
reduces data size without causing excessively long compression times or slow scan
rates.

QuickLZ compression generally uses less CPU capacity and compresses data faster at
a lower compression ratio than zlib. Conversely, zlib provides higher compression
ratios at lower speeds. At compression level 1 (compresslevel=1), QuickLZ and
zlib may yield comparable compression ratios (though at different speeds). However,
Creating and Managing Tables 77

Greenplum Database Administrator Guide 4.1 – Chapter 9: Defining Database Objects
using zlib compression at a higher level of 6 might dramatically increase its advantage
over QuickLZ in compression ratio (though consequently lowering the speed of
compression).

Performance with compressed append-only tables depends on hardware, query tuning
settings, and other factors. Greenplum recommends performing comparison testing to
determine the actual performance in your environment.

To create a compressed table

The WITH clause of the CREATE TABLE command is used to declare the storage options
of the table. Tables that use compression must also be append-only tables. For
example, to create an append-only table with zlib compression at a compression level
of 5:

=> CREATE TABLE foo (a int, b text)

 WITH (appendonly=true, compresstype=zlib,

 compresslevel=5);

Note: QuickLZ compression level can only be set to level 1; no other options are available.
Compression level with zlib can be set at any value from 1 - 9.

Checking the Compression and Distribution of an Append-Only Table

Greenplum provides built-in functions to check the compression ratio and the
distribution of an append-only table. Both functions take either the object ID or name
of a table. The table name may be qualified with a schema name.

Table 9.1 Functions for compressed append-only table metadata

Function Return Type Description

get_ao_distribution(oid,name) Set of (dbid,
tuplecount) rows

Shows the distribution of rows of an
append-only table across the array.
Returns a set of rows, each of which
includes a segment dbid and the number of
tuples stored on the segment.

get_ao_compression_ratio(oid,name) float8 Calculates the compression ratio for a
compressed append-only table. If
information is not available, this function
returns a value of -1.

The compression ratio is returned as a common ratio. For example, a returned value of
3.19, or 3.19:1, means that the uncompressed table is slightly larger than three times
the size of the compressed table.

The distribution of the table is returned as a set of rows indicating how many tuples
are stored on each segment. For example, in a system with four primary segments with
dbid values ranging from 0 - 3, the function returns four rows similar to the following:

=# SELECT get_ao_distribution('lineitem_comp');

 get_ao_distribution

Creating and Managing Tables 78

Greenplum Database Administrator Guide 4.1 – Chapter 9: Defining Database Objects
(0,7500721)

(1,7501365)

(2,7499978)

(3,7497731)

(4 rows)

Altering a Table

The ALTER TABLE command is used to change the definition of an existing table. With
ALTER TABLE, you can change various table attributes such as column definitions,
distribution policy, storage model, and partition structure (see also “Maintaining
Partitioned Tables” on page 87). For example, to add a not-null constraint to a table
column:

=> ALTER TABLE address ALTER COLUMN street SET NOT NULL;

Altering Table Distribution

ALTER TABLE provides options to change the distribution policy of a table. When the
distribution options of a table change, the table data is redistributed on disk, which can
be resource intensive. There is also an option to redistribute table data using the
existing distribution policy.

Changing the Distribution Policy

You can use the ALTER TABLE command to change the distribution policy for a table.
For partitioned tables, changes to the distribution policy recursively apply to the child
partitions. This operation preserves the ownership and all other attributes of the table.
For example, the following command redistributes the table sales across all
segments using the customer_id column as the distribution key:

ALTER TABLE sales SET DISTRIBUTED BY (customer_id);

When you change the hash distribution of a table, table data is automatically
redistributed. However, changing the distribution policy to a random distribution will
not cause the data to be redistributed. For example:

ALTER TABLE sales SET DISTRIBUTED RANDOMLY;

Redistributing Table Data

To redistribute table data for tables with a random distribution policy (or when the
hash distribution policy has not changed) use REORGANIZE=TRUE. This sometimes
may be necessary to correct a data skew problem, or when new segment resources
have been added to the system. For example:

ALTER TABLE sales SET WITH (REORGANIZE=TRUE);

This command rebalances a table evenly across all segments using the current
distribution policy (including random distribution).

Altering the Table Storage Model

It is not possible to alter the storage model of a table that has already been created.
Storage, compression, and orientation can only be declared at CREATE TABLE time. If
you have an existing table for which you want to change the storage model, you must
Creating and Managing Tables 79

Greenplum Database Administrator Guide 4.1 – Chapter 9: Defining Database Objects
recreate the table with the correct storage options, reload the data into the newly
created table, drop the original table and rename the new table to the original name.
You must also re-grant any table permissions. For example:

CREATE TABLE sales2 (LIKE sales)

WITH (appendonly=true, compresstype=quicklz,
compresslevel=1, orientation=column);

INSERT INTO sales2 SELECT * FROM sales;

DROP TABLE sales;

ALTER TABLE sales2 RENAME TO sales;

GRANT ALL PRIVILEGES ON sales TO admin;

GRANT SELECT ON sales TO guest;

See also, “Exchanging a Partition” on page 90 for instructions on changing the storage
model of a partitioned table.

Dropping a Table

The DROP TABLE command removes tables from the database. For example:

DROP TABLE mytable;

To empty a table of rows without removing the table definition, use DELETE or
TRUNCATE. For example:

DELETE FROM mytable;

TRUNCATE mytable;

DROP TABLE always removes any indexes, rules, triggers, and constraints that exist for
the target table. However, to drop a table that is referenced by a view, CASCADE must
be specified. CASCADE will remove a dependent view entirely.

Partitioning Large Tables
Table partitioning addresses the problem of supporting very large tables, such as fact
tables, by allowing you to divide them into smaller and more manageable pieces.
Partitioned tables can improve query performance by allowing the Greenplum
Database query planner to scan only the relevant data needed to satisfy a given query
rather than scanning the entire contents of a large table. Partitioned tables can also be
used to facilitate database maintenance tasks, such as rolling old data out of the data
warehouse.

Understanding Table Partitioning in Greenplum Database

Tables are partitioned at CREATE TABLE time using the PARTITION BY (and optionally
the SUBPARTITION BY) clause. When you partition a table in Greenplum Database,
you are actually creating a top-level (or parent) table with one or more levels of
sub-tables (or child tables). Internally, Greenplum Database creates an inheritance
relationship between the top-level table and its underlying partitions (similar to the
functionality of the INHERITS clause of PostgreSQL).
Partitioning Large Tables 80

Greenplum Database Administrator Guide 4.1 – Chapter 9: Defining Database Objects
Using the partition criteria defined during table creation, each partition is created with
a distinct CHECK constraint, which limits the data that table can contain. The CHECK
constraints are also used by the query planner to determine which table partitions to
scan in order to satisfy a given query predicate.

Partition hierarchy information is stored in the Greenplum system catalog so that rows
inserted into the top-level parent table appropriately propagate to the child table
partitions. Any changes to the partition design or table structure must be done through
the parent table using the PARTITION clauses of the ALTER TABLE command.

Greenplum Database supports both range partitioning (division of data based on a
numerical range, such as date or price) or list partitioning (division of data based on a
list of values, such as sales territory or product line), or a combination of both types.

Figure 9.1 Example Multi-level Partition Design

Partitioned tables are also distributed across Greenplum Database segments as is any
non-partitioned table. Table distribution in Greenplum Database physically divides a
table across the Greenplum segments to enable parallel query processing. Table
partitioning is a tool to logically divide big tables to improve query performance and
facilitate data warehouse maintenance tasks. Partitioning does not change the physical
distribution of the table data across the segments.

Deciding on a Table Partitioning Strategy

Not all tables are good candidates for partitioning. If the answer is yes to all or most of
the following questions, then table partitioning is a viable database design strategy for
improving query performance. If the answer is no to most of the following questions,
then table partitioning is not the right solution for that table:
Partitioning Large Tables 81

Greenplum Database Administrator Guide 4.1 – Chapter 9: Defining Database Objects
• Is the table large enough? Large fact tables are good candidates for table
partitioning. If you have millions or billions of records in a table, you will see
performance benefits from logically breaking that data up into smaller chunks. For
smaller tables with only a few thousand rows or less, the administrative overhead
of maintaining the partitions will outweigh any performance benefits you might
see.

• Are you experiencing unsatisfactory performance? As with any performance
tuning initiative, a table should be partitioned only if queries against that table are
producing slower response times than desired.

• Do your query predicates have identifiable access patterns? Examine the
WHERE clauses of your query workload and look for table columns that are
consistently used to access data. For example, if most of your queries tend to look
up records by date, then a monthly or weekly date-partitioning design might be
beneficial. Or if you tend to access records by region, consider a list-partitioning
design to divide the table by region.

• Does your data warehouse maintain a window of historical data? Another
consideration for partition design is your organization’s business requirements for
maintaining historical data. For example, your data warehouse may only require
you to keep the past twelve months worth of data. If the data is partitioned by
month, you can easily drop the oldest monthly partition from the warehouse, and
load current data into the most recent monthly partition.

• Can the data be divided into somewhat equal parts based on some defining
criteria? You should choose partitioning criteria that will divide your data as
evenly as possible. If the partitions contain a relatively equal number of records,
query performance improves based on the number of partitions created. For
example, by dividing a large table into 10 partitions, a query will execute 10 times
faster than it would against the unpartitioned table (provided that the partitions are
designed to support the query’s criteria).

Creating Partitioned Tables

A table can only be partitioned at creation time using the CREATE TABLE command.

The first step in partitioning a table is to decide on the partition design (date range,
numeric range, or list of values) and choose the column(s) on which to partition the
table. Decide how many levels of partitions you want. For example, you may want to
date range partition a table by month and then further subpartition the monthly
partitions by sales region. This section shows examples of SQL syntax for creating a
table with various partition designs.

• Defining Date Range Table Partitions

• Defining Numeric Range Table Partitions

• Defining List Table Partitions

• Defining Multi-level Partitions

• Partitioning an Existing Table
Partitioning Large Tables 82

Greenplum Database Administrator Guide 4.1 – Chapter 9: Defining Database Objects
Defining Date Range Table Partitions

A date range partitioned table uses a single date or timestamp column as the
partition key column. You can use the same partition key column to further
subpartition a table if necessary (for example, to partition by month and then
subpartition by day). When date partitioning a table, consider partitioning by the most
granular level you are interested in. For example, partition by day and have 365 daily
partitions, rather than partition by year then subpartition by month then subpartition
by day. A multi-level design can reduce query planning time, but a flat partition design
will execute faster at query run time.

You can have Greenplum Database automatically generate partitions by giving a
START value, an END value, and an EVERY clause that defines the partition increment
value. By default, START values are always inclusive and END values are always
exclusive. For example:

CREATE TABLE sales (id int, date date, amt decimal(10,2))

DISTRIBUTED BY (id)

PARTITION BY RANGE (date)

(START (date '2008-01-01') INCLUSIVE

 END (date '2009-01-01') EXCLUSIVE

 EVERY (INTERVAL '1 day'));

You can also declare and name each partition individually. For example:

CREATE TABLE sales (id int, date date, amt decimal(10,2))

DISTRIBUTED BY (id)

PARTITION BY RANGE (date)

(PARTITION Jan08 START (date '2008-01-01') INCLUSIVE ,

 PARTITION Feb08 START (date '2008-02-01') INCLUSIVE ,

 PARTITION Mar08 START (date '2008-03-01') INCLUSIVE ,

 PARTITION Apr08 START (date '2008-04-01') INCLUSIVE ,

 PARTITION May08 START (date '2008-05-01') INCLUSIVE ,

 PARTITION Jun08 START (date '2008-06-01') INCLUSIVE ,

 PARTITION Jul08 START (date '2008-07-01') INCLUSIVE ,

 PARTITION Aug08 START (date '2008-08-01') INCLUSIVE ,

 PARTITION Sep08 START (date '2008-09-01') INCLUSIVE ,

 PARTITION Oct08 START (date '2008-10-01') INCLUSIVE ,

 PARTITION Nov08 START (date '2008-11-01') INCLUSIVE ,

 PARTITION Dec08 START (date '2008-12-01') INCLUSIVE

 END (date '2009-01-01') EXCLUSIVE);

Note that you do not need to declare an END value for each partition, only the last one.
In this example, Jan08 would end where Feb08 starts.

Defining Numeric Range Table Partitions

A numeric range partitioned table uses a single numeric data type column as the
partition key column. For example:

CREATE TABLE rank (id int, rank int, year int, gender
Partitioning Large Tables 83

Greenplum Database Administrator Guide 4.1 – Chapter 9: Defining Database Objects
char(1), count int)

DISTRIBUTED BY (id)

PARTITION BY RANGE (year)

(START (2001) END (2008) EVERY (1),

 DEFAULT PARTITION extra);

For more information on default partitions, see “Adding a Default Partition” on page
89.

Defining List Table Partitions

A list partitioned table can use any data type column that allows equality comparisons
as its partition key column. A list partition can also have a multi-column (composite)
partition key, whereas a range partition only allows a single column as the partition
key. For list partitions, you must declare a partition specification for every partition
(list value) you want to create. For example:

CREATE TABLE rank (id int, rank int, year int, gender
char(1), count int)

DISTRIBUTED BY (id)

PARTITION BY LIST (gender)

(PARTITION girls VALUES ('F'),

 PARTITION boys VALUES ('M'),

 DEFAULT PARTITION other);

For more information on default partitions, see “Adding a Default Partition” on page
89.

Defining Multi-level Partitions

It is possible to create a multi-level partition design where you have subpartitions of
partitions. Using a subpartition template ensures that every partition has the same
subpartition design, even partitions that are added later. For example, to create the
two-level partition design illustrated in Figure 9.1,“Example Multi-level Partition
Design” on page 81:

CREATE TABLE sales (trans_id int, date date, amount
decimal(9,2), region text)

DISTRIBUTED BY (trans_id)

PARTITION BY RANGE (date)

SUBPARTITION BY LIST (region)

SUBPARTITION TEMPLATE

(SUBPARTITION usa VALUES ('usa'),
 SUBPARTITION asia VALUES ('asia'),
 SUBPARTITION europe VALUES ('europe'),
 DEFAULT SUBPARTITION other_regions)

(START (date '2008-01-01') INCLUSIVE

 END (date '2009-01-01') EXCLUSIVE

 EVERY (INTERVAL '1 month')),

 DEFAULT PARTITION outlying_dates);
Partitioning Large Tables 84

Greenplum Database Administrator Guide 4.1 – Chapter 9: Defining Database Objects
Below is a similar example illustrating a three-level partition design where the sales
table is partitioned by year, then month, then region. The SUBPARTITION
TEMPLATE clauses ensure that each yearly partition has the same subpartition
structure. Also note that a DEFAULT partition is declared at each level of the hierarchy:

CREATE TABLE sales (id int, year int, month int, day int,
region text)

DISTRIBUTED BY (id)

PARTITION BY RANGE (year)

 SUBPARTITION BY RANGE (month)

 SUBPARTITION TEMPLATE (

 START (1) END (13) EVERY (1),

 DEFAULT SUBPARTITION other_months)

 SUBPARTITION BY LIST (region)

 SUBPARTITION TEMPLATE (

 SUBPARTITION usa VALUES ('usa'),

 SUBPARTITION europe VALUES ('europe'),

 SUBPARTITION asia VALUES ('asia'),

 DEFAULT SUBPARTITION other_regions)

(START (2002) END (2010) EVERY (1),

 DEFAULT PARTITION outlying_years);

Partitioning an Existing Table

It is not possible to partition a table that has already been created. Tables can only be
partitioned at CREATE TABLE time. If you have an existing table that you want to
partition, you must recreate the table as a partitioned table, reload the data into the
newly partitioned table, drop the original table and rename the partitioned table to the
original name. You must also regrant any table permissions. For example:

CREATE TABLE sales2 (LIKE sales)

PARTITION BY RANGE (date)

(START (date '2008-01-01') INCLUSIVE

 END (date '2009-01-01') EXCLUSIVE

 EVERY (INTERVAL '1 month'));

INSERT INTO sales2 SELECT * FROM sales;

DROP TABLE sales;

ALTER TABLE sales2 RENAME TO sales;

GRANT ALL PRIVILEGES ON sales TO admin;

GRANT SELECT ON sales TO guest;

Limitations of Partitioned Tables

• To be able to enforce a primary key or unique constraint, the primary or unique
key columns must start with the partitioning key column.
Partitioning Large Tables 85

Greenplum Database Administrator Guide 4.1 – Chapter 9: Defining Database Objects
Loading Partitioned Tables

Once you have created your partitioned table structure, top-level parent tables are
always empty. Data is routed to the bottom-level child table partitions only. In a
multi-level partition design, only the subpartitions at the bottom of the hierarchy can
contain data.

If a row cannot be mapped to a child table partition, it will be rejected and the load
will fail. If you do not want unmapped rows to be rejected at load time, you can define
your partition hierarchy with a DEFAULT partition. Any rows that do not match to an
existing partition’s CHECK constraints will then load into the DEFAULT partition.
See“Adding a Default Partition” on page 89.

At runtime, the query planner scans the entire table inheritance hierarchy and uses the
CHECK table constraints to determine which of the child table partitions to scan in
order to satisfy the query’s conditions. The DEFAULT partition (if your hierarchy has
one) is always scanned. If the DEFAULT partition contains data, this will slow down the
overall scan time.

When you use COPY or INSERT to load data into a parent table, it automatically gets
rerouted to the correct partition by default. Therefore, you can load a partitioned table
as you would a regular table.

You can also load data into the child table partitions directly if needed. You can also
create an intermediate staging table, load it, and then exchange it into your partition
design. See “Exchanging a Partition” on page 90.

Verifying Your Partition Strategy

The purpose for partitioning a table is to reduce the number of rows that must be
scanned in order to satisfy a given query. If a table is partitioned based on the query
predicate, you can verify that the query planner is selectively scanning the relevant
data by using EXPLAIN to look at the query plan.

For example, suppose we have a sales table that is date-range partitioned by month
and subpartitioned by region as illustrated in Figure 9.1, “Example Multi-level
Partition Design” on page 81. For the following query:

EXPLAIN SELECT * FROM sales WHERE date='01-07-08' AND
region='usa';

The query plan for this query should show a table scan of the following tables only:

• the default partition returning 0-1 rows (if your partition design has one)

• the January 2008 partition (sales_1_prt_1) returning 0-1 rows

• the USA region subpartition (sales_1_2_prt_usa) returning some number of rows.

Below is an example of the relevant portion of the query plan:

-> Seq Scan on sales_1_prt_1 sales (cost=0.00..0.00 rows=0
 width=0)

Filter: "date"=01-07-08::date AND region='USA'::text

-> Seq Scan on sales_1_2_prt_usa sales (cost=0.00..9.87
rows=20
Partitioning Large Tables 86

Greenplum Database Administrator Guide 4.1 – Chapter 9: Defining Database Objects
 width=40)

Make sure that the query planner is not scanning unnecessary partitions or
subpartitions (for example, scans of other months or regions not specified in the query
predicate), and that scans of the top-level tables are returning 0-1 rows.

Some Limitations of Selective Partition Scanning

If the query plan shows that your partition hierarchy is not being selectively scanned,
it may be due to one of the following limitations:

• The query planner is only able to selectively scan partitioned tables when the
query contains a direct and simple restriction of the table using immutable
operators such as:
= < <= > >= <>

• Selective scanning does not currently recognize VOLATILE functions within a
query (STABLE and IMMUTABLE functions are recognized). For example, WHERE
clauses such as date > CURRENT_DATE will cause the query planner to
selectively scan partitioned tables, but time > TIMEOFDAY will not.

• Selective scanning does not currently support the runtime evaluation of table data
as a basis for determining which partitions to eliminate. For example, a query with
a WHERE predicate such as the following would not cause selective scanning of
partitions because the evaluation criteria is based on the runtime evaluation of the
value in some_column:
SELECT * from partition_table PT, other_table OT WHERE
PT.id=OT.id and OT.some_column = 'value';

Viewing Your Partition Design

You can look up information about your partition design using the pg_partitions view.
For example to see the partition design of the sales table:

SELECT partitionboundary, partitiontablename, partitionname,
partitionlevel, partitionrank FROM pg_partitions WHERE
tablename='sales';

There are also the following views that show information about partitioned tables:

• pg_partition_templates - Shows subpartitions that were created using a
subpartition template.

• pg_partition_columns - Shows the partition key columns used in a partition
design.

Maintaining Partitioned Tables

You must maintain a partitioned table using the ALTER TABLE command against the
top-level parent table. The most common scenario is dropping old partitions and
adding new ones in order to maintain a rolling window of data in a range partition
design. You may also want to convert (exchange) older partitions to the append-only
compressed storage format in order to save space. If you have a default partition in
your partition design, the procedure for adding a new partition is to split the default
partition.
Partitioning Large Tables 87

Greenplum Database Administrator Guide 4.1 – Chapter 9: Defining Database Objects
• Adding a New Partition

• Renaming a Partition

• Adding a Default Partition

• Dropping a Partition

• Truncating a Partition

• Exchanging a Partition

• Splitting a Partition

• Modifying a Subpartition Template

Important: When defining and altering partition designs, use the given partition
name, not the table object name. Although you can query and load any
table (including partitioned tables) directly using SQL commands, you can
only modify the structure of a partitioned table using the ALTER
TABLE...PARTITION clauses.

Adding a New Partition

You can add a new partition to an existing partition design using the ALTER TABLE
command. If the original partition design included subpartitions defined by a
subpartition template, then the newly added partition will also be subpartitioned
according to that template. For example:

ALTER TABLE sales ADD PARTITION

 START (date '2009-02-01') INCLUSIVE

 END (date '2009-03-01') EXCLUSIVE;

If a subpartition template was not used when you created the table, you would then
define subpartitions when adding a new partition:

ALTER TABLE sales ADD PARTITION

 START (date '2009-02-01') INCLUSIVE

 END (date '2009-03-01') EXCLUSIVE

 (SUBPARTITION usa VALUES ('usa'),
 SUBPARTITION asia VALUES ('asia'),
 SUBPARTITION europe VALUES ('europe'));

If you want to add a new subpartition to an existing partition, you can specify a
particular partition to alter. For example:

ALTER TABLE sales ALTER PARTITION FOR (RANK(12))

 ADD PARTITION africa VALUES ('africa');

Note: You cannot add a new partition to a partition design that has a default partition. You
must split the default partition in order to add a new partition. See “Splitting a
Partition” on page 90.

Renaming a Partition

Partitioned tables are created using the naming convention:

<parentname>_<level>_prt_<partition_name>

Partitioning Large Tables 88

Greenplum Database Administrator Guide 4.1 – Chapter 9: Defining Database Objects
For example:

sales_1_prt_jan08

Or for auto-generated range partitions (a number is assigned when no name is given):

sales_1_prt_1

It is not possible to rename a partitioned child table directly by altering the table name.
However, you can rename the top-level parent table, and the associated
<parentname> will change in the table names of all associated child table partitions.
For example:

ALTER TABLE sales RENAME TO globalsales;

Would change the associated table names accordingly:

globalsales_1_prt_1

You can also change the partition name of a partition to make it easier to identify. For
example:

ALTER TABLE sales RENAME PARTITION FOR ('2008-01-01') TO
jan08;

Would change the associated table name accordingly:

sales_1_prt_jan08

When altering partitioned tables with the ALTER TABLE command, they are always
referred to by their partition name (jan08) and not their full table name
(sales_1_prt_jan08).

Adding a Default Partition

You can add a default partition to an existing partition design using the ALTER TABLE
command.

ALTER TABLE sales ADD DEFAULT PARTITION other;

If your partition design is multi-leveled, then each level in the hierarchy needs a
default partition. For example:

ALTER TABLE sales ALTER PARTITION FOR (RANK(1)) ADD DEFAULT
PARTITION other;

ALTER TABLE sales ALTER PARTITION FOR (RANK(2)) ADD DEFAULT
PARTITION other;

ALTER TABLE sales ALTER PARTITION FOR (RANK(3)) ADD DEFAULT
PARTITION other;

Partition designs that do not have a default partition will reject incoming rows that do
not match to an existing partition’s CHECK constraint. If a partitioned table has a
default partition, incoming data that does not match to an existing partition is instead
inserted into the default partition.
Partitioning Large Tables 89

Greenplum Database Administrator Guide 4.1 – Chapter 9: Defining Database Objects
Dropping a Partition

You can drop a partition from your partition design using the ALTER TABLE command.
When you drop a partition that has subpartitions, the subpartitions (and all data in
them) are automatically dropped as well. For range partitions, it is common to drop
the older partitions from the range as old data is rolled out of the data warehouse. For
example:

ALTER TABLE sales DROP PARTITION FOR (RANK(1));

Truncating a Partition

You can truncate a partition using the ALTER TABLE command. When you truncate a
partition that has subpartitions, the subpartitions are automatically truncated as well.

ALTER TABLE sales TRUNCATE PARTITION FOR (RANK(1));

Exchanging a Partition

Exchanging a partition involves swapping in another table in place of an existing
partition. You can exchange a partition using the ALTER TABLE command. You can
only exchange partitions at the lowest level of your partition hierarchy (only partitions
that contain data can be exchanged).

This can be useful for data loading. For example, you could load a staging table and
then swap the loaded table into your partition design. You can also use exchange to
change the storage type of older partitions to append-only tables. For example:

CREATE TABLE jan08 (LIKE sales) WITH (appendonly=true);

INSERT INTO jan08 SELECT * FROM sales_1_prt_1 ;

ALTER TABLE sales EXCHANGE PARTITION FOR ('2008-01-01') WITH
TABLE jan08;

Splitting a Partition

Splitting a partition involves dividing an existing partition into two. You can split a
partition using the ALTER TABLE command. You can only split partitions at the lowest
level of your partition hierarchy (only partitions that contain data can be split). The
split value you specify will go into the latter partition.

For example, to split a monthly partition into two with the first partition containing
dates January 1-15 and the second partition containing dates January 16-31:

ALTER TABLE sales SPLIT PARTITION FOR ('2008-01-01')

AT ('2008-01-16')

INTO (PARTITION jan081to15, PARTITION jan0816to31);

If your partition design has a default partition, you must split the default partition in
order to add a new partition. You can only split default partitions at the lowest level of
your partition hierarchy (only default partitions that contain data can be split).

When using the INTO clause, the second partition name specified should always be
that of the existing default partition. For example, to split a default range partition to
add a new monthly partition for January 2009:

ALTER TABLE sales SPLIT DEFAULT PARTITION

START ('2009-01-01') INCLUSIVE
Partitioning Large Tables 90

Greenplum Database Administrator Guide 4.1 – Chapter 9: Defining Database Objects
END ('2009-02-01') EXCLUSIVE

INTO (PARTITION jan09, default partition);

Modifying a Subpartition Template

Use ALTER TABLE SET SUBPARTITION TEMPLATE to modify the subpartition
template for an existing partition. After you set a new subpartition template, partitions
that you add subsequently will have the new subpartition design. Existing partitions
are not modified.

For example, to modify the subpartition design illustrated in Figure 9.1, “Example
Multi-level Partition Design” on page 81:

ALTER TABLE sales SET SUBPARTITION TEMPLATE

(SUBPARTITION usa VALUES ('usa'),
 SUBPARTITION asia VALUES ('asia'),
 SUBPARTITION europe VALUES ('europe'),
 SUBPARTITION africa VALUES ('africa')
 DEFAULT SUBPARTITION other);

With this example template, when you next add a date-range partition of the table
sales, it will include the new regional list subpartition for Africa. For example, the
following command would create the subpartitions usa, asia, europe, africa,
and a default partition named other:

ALTER TABLE sales ADD PARTITION sales_prt_3
 START ('2009-03-01') INCLUSIVE
 END ('2009-04-01') EXCLUSIVE);

If you need to remove a subpartition template, use SET SUBPARTITION TEMPLATE
with empty parentheses. For example, to completely clear the subpartition template
used in the above examples:

ALTER TABLE sales SET SUBPARTITION TEMPLATE ()

Creating and Using Sequences
Sequences are often used to auto-increment unique ID columns of a table whenever a
new record is added.

Creating a Sequence

The CREATE SEQUENCE command creates and initializes a new special single-row
sequence generator table with the given sequence name. The sequence name must be
distinct from the name of any other sequence, table, index, or view in the same
schema. For example:

CREATE SEQUENCE myserial START 101;

Using a Sequence

Once you have created a sequence generator table using CREATE SEQUENCE, you can
use the nextval function to operate on the sequence. For example, to insert a row into
a table that gets the next value of a sequence:
Creating and Using Sequences 91

Greenplum Database Administrator Guide 4.1 – Chapter 9: Defining Database Objects
INSERT INTO vendors VALUES (nextval('myserial'), 'acme');

You can also use the setval function to operate on a sequence to reset a sequence’s
counter value. For example:

SELECT setval('myserial', 201);

A nextval operation is never rolled back. Once a value has been fetched it is
considered used, even if the transaction that did the nextval later aborts. This means
that aborted transactions may leave unused holes in the sequence of assigned values.
setval operations are never rolled back, either.

Note that the nextval function is currently not allowed in UPDATE or DELETE
statements if mirroring is enabled, and the currval and lastval functions are
currently not supported in Greenplum Database.

To then examine the current settings of a sequence you can simply query the sequence
table directly:

SELECT * FROM myserial;

Altering a Sequence

The ALTER SEQUENCE command changes the parameters of an existing sequence
generator. For example:

ALTER SEQUENCE myserial RESTART WITH 105;

Any parameters not specifically set in the ALTER SEQUENCE command retain their
prior settings.

Dropping a Sequence

The DROP SEQUENCE command removes a sequence generator table. For example:

DROP SEQUENCE myserial;

Using Indexes in Greenplum Database
In most traditional databases, indexes can greatly improve data access times.
However, in a distributed database such as Greenplum, indexes should be used more
sparingly. Greenplum Database is very fast at sequential scanning (indexes use a
random seek pattern to locate records on disk). Also, unlike a traditional database, the
data is distributed across the segments. This means each segment scans a smaller
portion of the overall data in order to get the result. If using table partitioning, the total
data to scan may be even a fraction of that. Typically, a business intelligence (BI)
query workload returns very large data sets, and thus does not make efficient use of
indexes.

Greenplum recommends that you first try your query workload without adding any
additional indexes. Indexes are more likely to improve performance for OLTP type
workloads, where the query is returning a single record or a small subset of data.
Indexes can also improve performance on compressed append-only tables for queries
Using Indexes in Greenplum Database 92

Greenplum Database Administrator Guide 4.1 – Chapter 9: Defining Database Objects
that return a targeted set of rows, as the optimizer has the option to use an index access
method rather than a full table scan when appropriate. For compressed data, an index
access method means only the necessary rows are uncompressed.

Note that Greenplum Database will automatically create PRIMARY KEY indexes for
tables with primary keys. If you want to create an index on a partitioned table, you
must index each partitioned child table directly. Indexes on the parent table are not
passed down to child table partitions.

Indexes do add some database overhead — they take up storage space and have to be
maintained whenever the table is updated. Make sure that the indexes you create are
actually being used by your query workload. Also, check to see that the indexes you
add are indeed improving query performance (as compared to a sequential scan of the
table). You can look at the EXPLAIN plans for a query to determine if indexes are being
used. See “Query Profiling” on page 130.

Some other general considerations when creating indexes are:

• Your Query Workload. Indexes are more likely to improve performance for
OLTP type workloads, where the query is returning a single record or a very small
data set. Typically, a business intelligence (BI) query workload returns very large
data sets, and thus does not make efficient use of indexes. For this type of
workload, it is better to use sequential scans to locate large chunks of data on disk
rather than to randomly seek the disk using index scans.

• Compressed Tables. Indexes can improve performance on compressed
append-only tables for queries that return a targeted set of rows, as the optimizer
has the option to use an index access method rather than a full table scan when
appropriate. For compressed data, an index access method means only the
necessary rows are uncompressed.

• Avoid indexes on frequently updated columns. Creating an index on a column
that is frequently updated increases the amount of writes required when the
column is updated.

• Create selective B-tree indexes. Index selectivity is a ratio of the number of
distinct values a column has divided by the number of rows in a table. For
example, if a table has 1000 rows and a column has 800 distinct values, the
selectivity of the index is 0.8, which is considered good. Unique indexes always
have a selectivity ratio of 1.0, which is the best possible. Note that unique indexes
are only allowed on distribution key columns in Greenplum Database.

• Use Bitmap indexes for low selectivity columns. Greenplum Database has an
additional index type called a Bitmap index, which is not available in regular
PostgreSQL. See “About Bitmap Indexes” on page 94 for details.

• Index columns used in joins. An index on a column used for frequent joins (such
as a foreign key column) may improve join performance, as it can enable
additional join methods for the query planner to use.

• Index columns frequently used in predicates. For queries on large tables,
examine the WHERE predicates for the columns that are referenced most often.
These may be good candidates for indexes.

• Avoid overlapping indexes. Overlapping indexes (those that have the same
leading column) are redundant and unnecessary.
Using Indexes in Greenplum Database 93

Greenplum Database Administrator Guide 4.1 – Chapter 9: Defining Database Objects
• Drop indexes for bulk loads. For mass loads of data into a table, consider
dropping the indexes and re-creating them after the load is complete. This is often
faster than updating the indexes.

• Consider a clustered index. Clustering an index means that the records are
physically ordered on disk according to the index. If the records you need are
distributed randomly on disk, then the database has to seek across the disk to get
the records requested. If those records are stored more closely together, then the
fetching from disk is more sequential. A good example for a clustered index is on
a date column where the data is ordered sequentially by date. A query against a
specific date range will result in an ordered fetch from the disk, which leverages
fast sequential access.

To cluster an index in Greenplum Database

For very large tables, using the CLUSTER command to physically reorder a table
based on an index can take an extremely long time. To achieve the same results
much faster, you can manually reorder the data on disk by creating an
intermediate table and loading the data in the desired order. For example:

CREATE TABLE new_table (LIKE old_table)
 AS SELECT * FROM old_table ORDER BY myixcolumn;

DROP old_table;

ALTER TABLE new_table RENAME TO old_table;

CREATE INDEX myixcolumn_ix ON old_table;

VACUUM ANALYZE old_table;

Index Types

Greenplum Database provides the following index types as does PostgreSQL: B-tree
and GiST (Hash and GIN indexes are disabled in Greenplum Database). Each index
type uses a different algorithm that is best suited to different types of queries. By
default, the CREATE INDEX command will create a B-tree index, which fits the most
common situations. See Index Types in the PostgreSQL documentation for a
description of these types.

Note: Greenplum Database has some special considerations concerning unique indexes on
a table. Unique indexes are allowed only if the columns of the index key are the same
as (or a superset of) the Greenplum distribution key. Unique indexes are not
supported on append-only tables. On partitioned tables, a unique index can not be
enforced across all child table partitions of a partitioned table - a unique index is only
supported within an individual partition.

About Bitmap Indexes

In addition to the index types provided by PostgreSQL, Greenplum Database has an
additional Bitmap index type. Bitmap indexes are one of the most promising strategies
for indexing high dimensional data in data warehousing applications and decision
support systems. These types of applications typically have large amounts of data and
ad hoc queries, but a low number of DML transactions.

An index provides pointers to the rows in a table that contain a given key value. A
regular index stores a list of tuple ids for each key corresponding to the rows with that
key value. In a bitmap index, a bitmap for each key value replaces a list of tuple ids.

Using Indexes in Greenplum Database 94

http://www.postgresql.org/docs/8.2/static/indexes-types.html

Greenplum Database Administrator Guide 4.1 – Chapter 9: Defining Database Objects
Fully indexing a large table with a traditional B-tree index can be expensive in terms
of space because the indexes can be several times larger than the data in the table.
Bitmap indexes are typically only a fraction of the size of the indexed data in the table.

Each bit in the bitmap corresponds to a possible tuple id, and if the bit is set, it means
that the row with the corresponding tuple id contains the key value. A mapping
function converts the bit position to an actual tuple id, so that the bitmap index
provides the same functionality as a regular index. Bitmap indexes store the bitmaps
in a compressed way. If the number of distinct key values is small, bitmap indexes
compress better and the space saving benefit compared to a B-tree index becomes
even better.

Bitmap indexes are most effective for queries that contain multiple conditions in the
WHERE clause. Rows that satisfy some, but not all, conditions are filtered out before the
table itself is accessed. This improves response time, often dramatically.

When to Use Bitmap Indexes

Bitmap indexes perform best for columns that have between 100 and 100,000 distinct
values. Columns with fewer than 100 distinct values usually do not benefit much from
any type of index. For example, a gender column with only two distinct values for
male and female would not be a good candidate. On a column with more than 100,000
distinct values, the performance and space efficiency of a bitmap index decline. The
size of a bitmap index is proportional to the number of rows in the table times the
number of distinct values in the indexed column.

When used on columns that have the right characteristics, a bitmap index can
outperform a B-tree index, particularly when the indexed column is often queried in
conjunction with other indexed columns.

Bitmap indexes can dramatically improve query performance for ad hoc queries. AND
and OR conditions in the WHERE clause of a query can be resolved quickly by
performing the corresponding Boolean operations directly on the bitmaps before
converting the resulting bitmap to tuple ids. If the resulting number of rows is small,
the query can be answered quickly without resorting to a full table scan.

When Not to Use Bitmap Indexes

Bitmap indexes should not be used for unique columns or columns with high
cardinality data, such as customer names or phone numbers. The performance gains
and disk space advantages of bitmap indexes start to diminish on columns with
100,000 or more unique values, regardless of the number of rows in the table.

Bitmap indexes are primarily intended for data warehousing applications where users
query the data rather than update it. They are not suitable for OLTP applications with
large numbers of concurrent transactions modifying the data.

As with B-tree indexes, bitmap indexes should be used sparingly. Testing should
demonstrate improved query performance after adding the bitmap index (as opposed
to doing a sequential scan of the table).
Using Indexes in Greenplum Database 95

Greenplum Database Administrator Guide 4.1 – Chapter 9: Defining Database Objects
Creating an Index

The CREATE INDEX command defines a new index on a table. By default, a B-tree
index is created if you do not declare an index type. For example, to create a B-tree
index on the column title in the table films:

CREATE INDEX title_idx ON films (title);

To create a bitmap index on the column gender in the table employee:

CREATE INDEX gender_bmp_idx ON employee USING bitmap
(gender);

Examining Index Usage

Although indexes in Greenplum Database do not need maintenance and tuning, it is
still important to check which indexes are actually used by the real-life query
workload. Examining index usage for an individual query is done with the EXPLAIN
command.

The query plan shows the different steps or plan nodes that the database will take to
answer a particular query, along with time estimates for each plan node. To examine
the use of indexes, look for the following query plan node types in your EXPLAIN
output:

• Index Scan - A scan of an index.

• Bitmap Heap Scan - Retrieves all rows from the bitmap generated by
BitmapAnd, BitmapOr, or BitmapIndexScan and accesses the heap to retrieve the
relevant rows.

• Bitmap Index Scan - Compute a bitmap by OR-ing all bitmaps that satisfy the
query predicates from the underlying index.

• BitmapAnd or BitmapOr - Takes the bitmaps generated from multiple
BitmapIndexScan nodes, ANDs or ORs them together, and generates a new
bitmap as its output.

It is difficult to formulate a general procedure for determining which indexes to set up.
A good deal of experimentation will be necessary in most cases.

• Always run ANALYZE after creating or updating an index. This command collects
table statistics that are used by the query planner. This information is required to
guess the number of rows returned by a query, which is needed by the planner to
assign realistic costs to each possible query plan.

• Use real data for experimentation. Using test data for setting up indexes will tell
you what indexes you need for the test data, but that is all.

• It is especially fatal to use very small test data sets. While selecting 1000 out of
1,000,000 rows could be a candidate for an index, selecting 1 out of 100 rows will
hardly be, because the 100 rows will probably fit within a single disk page, and
there is no plan that can beat sequentially fetching one disk page.

• Also be careful when making up test data, which is often unavoidable when the
application is not in production use yet. Values that are very similar, completely
random, or inserted in sorted order will skew the statistics away from the
distribution that real data would have.
Using Indexes in Greenplum Database 96

Greenplum Database Administrator Guide 4.1 – Chapter 9: Defining Database Objects
• When indexes are not used, it can be useful for testing to force their use. There are
run-time parameters that can turn off various plan types. For instance, turning off
sequential scans (enable_seqscan) and nested-loop joins (enable_nestloop),
which are the most basic plans, will force the system to use a different plan. Time
your query with and without indexes. The EXPLAIN ANALYZE command can be
useful here.

Managing Indexes

In certain conditions, a poorly performing index may need to be rebuilt using the
REINDEX command. This rebuilds an index using the data stored in the index’s table,
replacing the old copy of the index.

Updates or delete operations do not update bitmap indexes. Therefore, if you have
deleted rows or updated columns in a table that has bitmap indexes, you will need to
rebuild the indexes using the REINDEX command.

To rebuild all indexes on a table

REINDEX my_table;

To rebuild a particular index

REINDEX my_index;

Dropping an Index

The DROP INDEX command removes an index. For example:

DROP INDEX title_idx;

When loading data, it is often faster to drop all indexes, load, then recreate the indexes
afterwards.

Creating and Managing Views
Views are a way to save frequently used or complex queries and then access them in a
SELECT statement as if they were a table. A view is not physically materialized on disk
as is a table. The query is instead ran as a subquery whenever the view is accessed.

Creating Views

The CREATE VIEW command defines a view of a query. For example:

CREATE VIEW comedies AS SELECT * FROM films WHERE kind =
'comedy';

Note that currently views ignore ORDER BY or SORT operations stored in the view.

Dropping Views

The DROP VIEW command removes a view. For example:

DROP VIEW topten;
Creating and Managing Views 97

Greenplum Database Administrator Guide 4.1 – Chapter 9: Defining Database Objects
Creating and Managing Views 98

Greenplum Database Administrator Guide 4.1 – Chapter 10: Managing Data
10. Managing Data

This chapter provides information about managing data and concurrent access in
Greenplum Database. It contains the following topics:

• About Concurrency Control in Greenplum Database

• Inserting New Rows

• Updating Existing Rows

• Deleting Rows

• Working With Transactions

• Vacuuming the Database

About Concurrency Control in Greenplum Database
Unlike traditional database systems which use locks for concurrency control,
Greenplum Database (as does PostgreSQL) maintains data consistency by using a
multiversion model (Multiversion Concurrency Control, MVCC). This means that
while querying a database, each transaction sees a snapshot of data which protects the
transaction from viewing inconsistent data that could be caused by (other) concurrent
updates on the same data rows. This provides transaction isolation for each database
session.

MVCC, by eschewing explicit locking methodologies of traditional database systems,
minimizes lock contention in order to allow for reasonable performance in multiuser
environments. The main advantage to using the MVCC model of concurrency control
rather than locking is that in MVCC locks acquired for querying (reading) data do not
conflict with locks acquired for writing data, and so reading never blocks writing and
writing never blocks reading.

Greenplum Database provides various lock modes to control concurrent access to data
in tables. Most Greenplum Database SQL commands automatically acquire locks of
appropriate modes to ensure that referenced tables are not dropped or modified in
incompatible ways while the command executes. For applications that cannot adapt
easily to MVCC behavior, the LOCK command can be used to acquire explicit locks.
However, proper use of MVCC will generally provide better performance than locks.

Table 10.1 Lock Modes in Greenplum Database

Lock Mode Associated SQL Commands Conflicts With

ACCESS SHARE SELECT ACCESS EXCLUSIVE

ROW SHARE SELECT FOR UPDATE, SELECT FOR
SHARE

EXCLUSIVE, ACCESS EXCLUSIVE

ROW EXCLUSIVE INSERT, COPY SHARE, SHARE ROW EXCLUSIVE,
EXCLUSIVE, ACCESS EXCLUSIVE
About Concurrency Control in Greenplum Database 99

Greenplum Database Administrator Guide 4.1 – Chapter 10: Managing Data
Inserting New Rows
When a table is created, it contains no data. The first thing to do before a database can
be of much use is to insert data. To create a new row, use the INSERT command. This
command requires the table name and a value for each of the columns of the table. The
data values are listed in the order in which the columns appear in the table, separated
by commas. For example:

INSERT INTO products VALUES (1, 'Cheese', 9.99);

If you do not know the order of the columns in the table, you can also list the columns
explicitly. Many users consider it good practice to always list the column names. For
example:

INSERT INTO products (name, price, product_no) VALUES
('Cheese', 9.99, 1);

Usually, the data values will be literals (constants), but scalar expressions are also
allowed. For example:

INSERT INTO films SELECT * FROM tmp_films WHERE date_prod <
'2004-05-07';

You can also insert multiple rows in a single command. For example:

INSERT INTO products (product_no, name, price) VALUES

 (1, 'Cheese', 9.99),

 (2, 'Bread', 1.99),

 (3, 'Milk', 2.99);

SHARE UPDATE
EXCLUSIVE

VACUUM (without FULL), ANALYZE SHARE UPDATE EXCLUSIVE, SHARE,
SHARE ROW EXCLUSIVE, EXCLUSIVE,
ACCESS EXCLUSIVE

SHARE CREATE INDEX ROW EXCLUSIVE, SHARE UPDATE
EXCLUSIVE, SHARE ROW EXCLUSIVE,
EXCLUSIVE, ACCESS EXCLUSIVE

SHARE ROW EXCLUSIVE ROW EXCLUSIVE, SHARE UPDATE
EXCLUSIVE, SHARE, SHARE ROW
EXCLUSIVE, EXCLUSIVE, ACCESS
EXCLUSIVE

EXCLUSIVE DELETE, UPDATE1 ROW SHARE, ROW EXCLUSIVE, SHARE
UPDATE EXCLUSIVE, SHARE, SHARE
ROW EXCLUSIVE, EXCLUSIVE, ACCESS
EXCLUSIVE

ACCESS EXCLUSIVE ALTER TABLE, DROP TABLE,
TRUNCATE, REINDEX, CLUSTER,
VACUUM FULL

ACCESS SHARE, ROW SHARE, ROW
EXCLUSIVE, SHARE UPDATE
EXCLUSIVE, SHARE, SHARE ROW
EXCLUSIVE, EXCLUSIVE, ACCESS
EXCLUSIVE

1. UPDATE and DELETE in Greenplum Database acquire a more restrictive lock - EXCLUSIVE rather than ROW EXCLUSIVE.

Table 10.1 Lock Modes in Greenplum Database

Lock Mode Associated SQL Commands Conflicts With
Inserting New Rows 100

Greenplum Database Administrator Guide 4.1 – Chapter 10: Managing Data
When inserting a lot of data at the same time, considering using external tables
(CREATE EXTERNAL TABLE) or the COPY command. These load mechanisms are more
efficient than INSERT when loading a large number of rows. See “Loading and
Unloading Data” on page 135 for more information about bulk data loading.

The storage model of append-only tables is optimized for bulk data loading. Single
row INSERT statements are not recommended for append-only tables.

Updating Existing Rows
The term update refers to the modification of data that is already in the database. You
can update individual rows, all the rows in a table, or a subset of all rows. Each
column can be updated separately without affecting the other columns.

To perform an update, you need three pieces of information:

1. The name of the table and columns to update,

2. The new values of the columns,

3. The row(s) to update by specifying the conditions a row must meet in order to be
updated.

The UPDATE command updates rows in a table. For example, this command updates all
products that have a price of 5 to have a price of 10:

UPDATE products SET price = 10 WHERE price = 5;

Using UPDATE in Greenplum Database has the following restrictions:

• The Greenplum distribution key columns may not be updated.

• Cannot use STABLE or VOLATILE functions in an UPDATE statement if mirrors are
enabled.

• The RETURNING clause is not supported in Greenplum Database.

Deleting Rows
The DELETE command deletes rows that satisfy the WHERE clause from the specified
table. If the WHERE clause is absent, the effect is to delete all rows in the table. The
result is a valid, but empty table. For example, to remove all rows from the products
table that have a price of 10:

DELETE FROM products WHERE price = 10;

Or to delete all rows from a table:

DELETE FROM products;

Using DELETE in Greenplum Database has the following restrictions:

• Cannot use STABLE or VOLATILE functions in a DELETE statement if mirrors are
enabled.

• The RETURNING clause is not supported in Greenplum Database.
Updating Existing Rows 101

Greenplum Database Administrator Guide 4.1 – Chapter 10: Managing Data
Truncating a Table

If you want to quickly remove all rows in a table, consider using the TRUNCATE
command. For example:

TRUNCATE mytable;

This command empties the table of all rows in one operation. Note that TRUNCATE
does not scan the table, therefore it does not process inherited child tables or ON
DELETE rewrite rules. Only rows in the named table will be truncated.

Working With Transactions
Transactions allow you to bundle together multiple SQL statements in one
all-or-nothing operation.

The SQL commands used to perform transactions in Greenplum Database are:

• BEGIN or START TRANSACTION to start a transaction block.

• END or COMMIT to commit the results of the transaction.

• ROLLBACK to abandon the transaction without making any changes.

• SAVEPOINT to allow you to selectively discard parts of the transaction, while
committing the rest. After defining a savepoint with SAVEPOINT, you can if needed
roll back to the savepoint with ROLLBACK TO SAVEPOINT. To destroy a savepoint
within a transaction, use RELEASE SAVEPOINT.

Transaction Isolation Levels

The SQL standard defines four transaction isolation levels. In Greenplum Database,
you can request any of the four standard transaction isolation levels. But internally,
there are only two distinct isolation levels — read committed and serializable:

• read committed — When a transaction runs on this isolation level, a SELECT
query sees only data committed before the query began. It never sees either
uncommitted data or changes committed during query execution by concurrent
transactions. However, the SELECT does see the effects of previous updates
executed within its own transaction, even though they are not yet committed. In
effect, a SELECT query sees a snapshot of the database as of the instant that query
begins to run. Notice that two successive SELECT commands can see different
data, even though they are within a single transaction, if other transactions commit
changes during execution of the first SELECT. UPDATE and DELETE commands
behave the same as SELECT in terms of searching for target rows. They will only
find target rows that were committed as of the command start time. However, such
a target row may have already been updated (or deleted or locked) by another
concurrent transaction by the time it is found. The partial transaction isolation
provided by read committed mode is adequate for many applications, and this
mode is fast and simple to use. However, for applications that do complex queries
and updates, it may be necessary to guarantee a more rigorously consistent view
of the database than the read committed mode provides.
Working With Transactions 102

Greenplum Database Administrator Guide 4.1 – Chapter 10: Managing Data
• serializable — This is the strictest transaction isolation. This level emulates serial
transaction execution, as if transactions had been executed one after another,
serially, rather than concurrently. Applications using this level must be prepared to
retry transactions due to serialization failures. When a transaction is on the
serializable level, a SELECT query sees only data committed before the transaction
began. It never sees either uncommitted data or changes committed during
transaction execution by concurrent transactions. However, the SELECT does see
the effects of previous updates executed within its own transaction, even though
they are not yet committed. Successive SELECT commands within a single
transaction always see the same data. UPDATE and DELETE commands behave the
same as SELECT in terms of searching for target rows. They will only find target
rows that were committed as of the transaction start time. However, such a target
row may have already been updated (or deleted or locked) by another concurrent
transaction by the time it is found. In this case, the serializable transaction will
wait for the first updating transaction to commit or roll back (if it is still in
progress). If the first updater rolls back, then its effects are negated and the
serializable transaction can proceed with updating the originally found row. But if
the first updater commits (and actually updated or deleted the row, not just locked
it) then the serializable transaction will be rolled back.

• read uncommitted — Treated the same as read committed in Greenplum
Database.

• repeatable read — Treated the same as serializable in Greenplum Database.

The default transaction isolation level in Greenplum Database is read committed. To
change the isolation level for a transaction, you can declare the isolation level when
you BEGIN the transaction, or else use the SET TRANSACTION command after the
transaction is started.

Vacuuming the Database
Because of the MVCC transaction concurrency model, data rows that are deleted or
updated still occupy physical space on disk even though they are not visible to any
new transactions. If you have a database with lots of updates and deletes, you will
generate a lot of expired rows. Periodically running the VACUUM command will remove
these expired rows. For example:

VACUUM mytable;

The VACUUM command also collects table-level statistics such as number of rows and
pages, so it is necessary to vacuum all tables after loading data, including append-only
tables. Recommended routine vacuum operations are described in “Routine Vacuum
and Analyze” on page 230.

Configuring the Free Space Map

Expired rows are held in what is called the free space map. The free space map must
be sized large enough to cover the expired rows of all tables in your database. If not
sized large enough, space occupied by expired rows that overflow the free space map
cannot be reclaimed by a regular VACUUM command.
Vacuuming the Database 103

Greenplum Database Administrator Guide 4.1 – Chapter 10: Managing Data
A VACUUM FULL will reclaim all expired row space, but is a very expensive operation
and may take an unacceptably long time to finish on large, distributed Greenplum
Database tables. If you do get into a situation where the free space map has
overflowed, it may be more timely to recreate the table with a CREATE TABLE AS
statement and drop the old table. A VACUUM FULL is not recommended in Greenplum
Database.

It is best to size the free space map appropriately. The free space map is configured
with the following server configuration parameters:

max_fsm_pages

max_fsm_relations

.

Vacuuming the Database 104

Greenplum Database Administrator Guide 4.1 – Chapter 11: Querying Data
11. Querying Data

This chapter describes the use of the SQL language in Greenplum Database. SQL
commands are typically entered using the standard PostgreSQL interactive terminal
psql, but other programs that have similar functionality can be used as well.

• Defining Queries

• Using Functions and Operators

• Query Profiling

Defining Queries
A query is a SQL command that views, changes or analyzes the data in a database.
This section describes how to construct SQL queries in Greenplum Database.

• SQL Lexicon

• SQL Value Expressions

SQL Lexicon

SQL (structured query language) is the language used to access the database. The SQL
language has a specific lexicon (words, special characters, etc.) used to construct
queries or commands that the database engine can understand.

SQL input consists of a sequence of commands. A command is composed of a
sequence of tokens, terminated by a semicolon (;). Which tokens are valid depends on
the syntax of the particular command. The syntax rules for each command are
described in “SQL Command Reference” on page 264.

Greenplum Database is based on PostgreSQL and adheres to the same SQL structure
and syntax (with some minor exceptions). In most cases, the syntax is identical to
PostgreSQL, however some commands may have additional or restricted syntax in
Greenplum Database. For a complete explanation of the SQL rules and concepts as
implemented in PostgreSQL, see SQL Syntax in the PostgreSQL documentation.

SQL Value Expressions

Value expressions are used in a variety of contexts, such as in the target list of the
SELECT command, as new column values in INSERT or UPDATE, or in search
conditions in a number of commands. The result of a value expression is sometimes
called a scalar, to distinguish it from the result of a table expression (which is a table).
Value expressions are therefore also called scalar expressions (or even simply
expressions). The expression syntax allows the calculation of values from primitive
parts using arithmetic, logical, set, and other operations.

A value expression is one of the following:

• A constant or literal value.
Defining Queries 105

http://www.postgresql.org/docs/8.2/static/sql-syntax.html

Greenplum Database Administrator Guide 4.1 – Chapter 11: Querying Data
• A column reference.

• A positional parameter reference, in the body of a function definition or prepared
statement.

• A subscripted expression.

• A field selection expression.

• An operator invocation.

• A function call.

• An aggregate expression.

• A window expression.

• A type cast.

• A scalar subquery.

• An array constructor.

• A row constructor.

• Another value expression in parentheses, useful to group subexpressions and
override precedence.

In addition to this list, there are a number of constructs that can be classified as an
expression but do not follow any general syntax rules. These generally have the
semantics of a function or operator and are explained in “Using Functions and
Operators” on page 114.

Column References

A column can be referenced in the form:

correlation.columnname

Where correlation is the name of a table (possibly qualified with a schema name), or
an alias for a table defined by means of a FROM clause, or one of the key words NEW or
OLD. (NEW and OLD can only appear in rewrite rules, while other correlation names can
be used in any SQL statement.) The correlation name and separating dot may be
omitted if the column name is unique across all the tables being used in the current
query.

Positional Parameters

A positional parameter reference is used to indicate a value that is supplied externally
to an SQL statement. Parameters are used in SQL function definitions and in prepared
queries. Some client libraries also support specifying data values separately from the
SQL command string, in which case parameters are used to refer to the out-of-line
data values. The form of a parameter reference is:

$number

For example, consider the definition of a function, dept, as:

CREATE FUNCTION dept(text) RETURNS dept

 AS $$ SELECT * FROM dept WHERE name = $1 $$

 LANGUAGE SQL;
Defining Queries 106

Greenplum Database Administrator Guide 4.1 – Chapter 11: Querying Data
Here the $1 references the value of the first function argument whenever the function
is invoked.

Subscripts

If an expression yields a value of an array type, then a specific element of the array
value can be extracted by writing:

expression[subscript]

Or multiple adjacent elements (an ‘array slice’) can be extracted by writing:

expression[lower_subscript:upper_subscript]

Here, the brackets [] are meant to appear literally. Each subscript is itself an
expression, which must yield an integer value.

In general the array expression must be parenthesized, but the parentheses may be
omitted when the expression to be subscripted is just a column reference or positional
parameter. Also, multiple subscripts can be concatenated when the original array is
multidimensional. For example:

mytable.arraycolumn[4]

mytable.two_d_column[17][34]

$1[10:42]

(arrayfunction(a,b))[42]

The parentheses in the last example are required.

Field Selection

If an expression yields a value of a composite type (row type), then a specific field of
the row can be extracted by writing:

expression.fieldname

In general the row expression must be parenthesized, but the parentheses may be
omitted when the expression to be selected from is just a table reference or positional
parameter. For example:

mytable.mycolumn

$1.somecolumn

(rowfunction(a,b)).col3

Thus, a qualified column reference is actually just a special case of the field selection
syntax.

Operator Invocations

There are three possible syntaxes for an operator invocation:

expression operator expression (binary infix operator)
operator expression (unary prefix operator)
expression operator (unary postfix operator)

Where operator is an operator token, one of the key words AND, OR, or NOT, or is a
qualified operator name in the form:

OPERATOR(schema.operatorname)
Defining Queries 107

Greenplum Database Administrator Guide 4.1 – Chapter 11: Querying Data
Which particular operators exist and whether they are unary or binary depends on
what operators have been defined by the system or the user. “Built-in Functions and
Operators” on page 115 describes the built-in operators.

Function Calls

The syntax for a function call is the name of a function (possibly qualified with a
schema name), followed by its argument list enclosed in parentheses:

function ([expression [, expression ...]])

For example, the following function call computes the square root of 2:

sqrt(2)

The list of built-in functions is listed in “Built-in Functions and Operators” on page
115. Other functions may be added by the user.

Aggregate Expressions

An aggregate expression represents the application of an aggregate function across the
rows selected by a query. An aggregate function reduces multiple inputs to a single
output value, such as the sum or average of the inputs. The syntax of an aggregate
expression is one of the following:

aggregate_name (expression [, ...]) [FILTER (WHERE
condition)]

aggregate_name (ALL expression [, ...]) [FILTER (WHERE
condition)]

aggregate_name (DISTINCT expression [, ...]) [FILTER
(WHERE condition)]

aggregate_name (*) [FILTER (WHERE condition)]

Where aggregate_name is a previously defined aggregate (possibly qualified with a
schema name), and expression is any value expression that does not itself contain an
aggregate expression.

The first form of aggregate expression invokes the aggregate across all input rows for
which the given expression(s) yield non-null values. The second form is the same as
the first, since ALL is the default. The third form invokes the aggregate for all distinct
non-null values of the expressions found in the input rows. The last form invokes the
aggregate once for each input row regardless of null or non-null values; since no
particular input value is specified, it is generally only useful for the count(*)
aggregate function.

For example, count(*) yields the total number of input rows; count(f1) yields the
number of input rows in which f1 is non-null; count(distinct f1) yields the
number of distinct non-null values of f1.

The FILTER clause allows you to specify a condition to limit the input rows to the
aggregate function. For example:

SELECT count(*) FILTER (WHERE gender='F') FROM employee;
Defining Queries 108

Greenplum Database Administrator Guide 4.1 – Chapter 11: Querying Data
The WHERE condition of the FILTER clause cannot contain a set returning function,
subquery, a window function, or an outer reference. If using a user-defined aggregate
function, the state transition function must be declared as STRICT (see CREATE
AGGREGATE).

The predefined aggregate functions are described in “Aggregate Functions” on page
116. Other aggregate functions may be added by the user.

An aggregate expression may only appear in the result list or HAVING clause of a
SELECT command. It is forbidden in other clauses, such as WHERE, because those
clauses are logically evaluated before the results of aggregates are formed.

When an aggregate expression appears in a subquery (see “Scalar Subqueries” on
page 111 and “Subquery Expressions” on page 116), the aggregate is normally
evaluated over the rows of the subquery. But an exception occurs if the aggregate’s
arguments contain only outer-level variables: the aggregate then belongs to the nearest
such outer level, and is evaluated over the rows of that query. The aggregate
expression as a whole is then an outer reference for the subquery it appears in, and acts
as a constant over any one evaluation of that subquery. The restriction about appearing
only in the result list or HAVING clause applies with respect to the query level that the
aggregate belongs to.

Greenplum Database currently does not support DISTINCT with more than one input
expression.

Window Expressions

Window expressions allow application developers to more easily compose complex
online analytical processing (OLAP) queries using standard SQL commands. For
example, moving averages or sums can be calculated over various intervals;
aggregations and ranks can be reset as selected column values change; and complex
ratios can be expressed in simple terms.

A window expression represents the application of a window function applied to a
window frame, which is defined in a special OVER() clause. A window partition is a
set of rows that are grouped together for the purpose of applying an window function.
Unlike aggregate functions, which return a result value for each group of rows,
window functions return a result value for every row, but that value is calculated with
respect to the rows in a particular window partition. If no partition is specified, the
window function is computed over the complete intermediate result set.

The syntax of a window expression is:

window_function ([expression [, ...]]) OVER (
window_specification)

Where window_function is one of the functions listed in “Window Functions” on page
117, expression is any value expression that does not itself contain a window
expression, and window_specification is:

[window_name]

[PARTITION BY expression [, ...]]

[[ORDER BY expression [ASC | DESC | USING operator] [, ...]

 [{RANGE | ROWS}

 { UNBOUNDED PRECEDING
Defining Queries 109

Greenplum Database Administrator Guide 4.1 – Chapter 11: Querying Data
 | expression PRECEDING

 | CURRENT ROW

 | BETWEEN window_frame_bound AND window_frame_bound }]]

 and where window_frame_bound can be one of:
 UNBOUNDED PRECEDING

 expression PRECEDING

 CURRENT ROW

 expression FOLLOWING

 UNBOUNDED FOLLOWING

A window expression may only appear in the select list of a SELECT command. For
example:

SELECT count(*) OVER(PARTITION BY customer_id), * FROM
sales;

The OVER clause is what differentiates window functions from other aggregate or
reporting functions. The OVER clause defines the window_specification to which
the window function is applied. A window specification has the following
characteristics:

• The PARTITION BY clause, which defines the window partitions to which the
window function is applied. If omitted, the entire result set is treated as one
partition.

• The ORDER BY clause defines the expression(s) for sorting rows within a window
partition. Note that the ORDER BY of a window specification is separate and
distinct from the ORDER BY clause of a regular query expression (see “The
ORDER BY Clause” on page 543). The ORDER BY clause is required for the
window functions that calculate rankings, as it identifies the measure(s) for the
ranking values. For OLAP aggregations, the ORDER BY clause is required in order
to use window frames (the ROWS | RANGE clause).
Note: Columns of data types that lack a coherent ordering, such as time, are not
good candidates for use in the ORDER BY clause of a window specification. Time,
with or without time zone, lacks a coherent ordering because addition and
subtraction do not have the expected effects. For example, the following is not
generally true: x::time < x::time + '2 hour'::interval

• The ROWS/RANGE clause is used to define a window frame for aggregate
(non-ranking) window functions. A window frame defines a set of rows within a
window partition. When a window frame is defined, the window function is
computed with respect to the contents of this moving frame rather than the fixed
contents of the entire window partition. Window frames can be row-based (ROWS)
or value-based (RANGE).

Type Casts

A type cast specifies a conversion from one data type to another. Greenplum Database
(as does PostgreSQL) accepts two equivalent syntaxes for type casts:

CAST (expression AS type)

expression::type

The CAST syntax conforms to SQL; the syntax with :: is historical PostgreSQL usage.
Defining Queries 110

Greenplum Database Administrator Guide 4.1 – Chapter 11: Querying Data
When a cast is applied to a value expression of a known type, it represents a run-time
type conversion. The cast will succeed only if a suitable type conversion function has
been defined. Notice that this is subtly different from the use of casts with constants. A
cast applied to an unadorned string literal represents the initial assignment of a type to
a literal constant value, and so it will succeed for any type (if the contents of the string
literal are acceptable input syntax for the data type).

An explicit type cast may usually be omitted if there is no ambiguity as to the type that
a value expression must produce (for example, when it is assigned to a table column);
the system will automatically apply a type cast in such cases. However, automatic
casting is only done for casts that are marked “OK to apply implicitly” in the system
catalogs. Other casts must be invoked with explicit casting syntax. This restriction is
intended to prevent surprising conversions from being applied silently.

Scalar Subqueries

A scalar subquery is an ordinary SELECT query in parentheses that returns exactly one
row with one column. The SELECT query is executed and the single returned value is
used in the surrounding value expression. It is an error to use a query that returns more
than one row or more than one column as a scalar subquery. The subquery can refer to
variables from the surrounding query, which will act as constants during any one
evaluation of the subquery. For example, the following finds the largest city
population in each state:

SELECT name, (SELECT max(pop) FROM cities WHERE cities.state
= states.name) FROM states;

Array Constructors

An array constructor is an expression that builds an array value from values for its
member elements. A simple array constructor consists of the key word ARRAY, a left
square bracket [, one or more expressions (separated by commas) for the array
element values, and finally a right square bracket]. For example,

SELECT ARRAY[1,2,3+4];

 array

 {1,2,7}

The array element type is the common type of the member expressions, determined
using the same rules as for UNION or CASE constructs.

Multidimensional array values can be built by nesting array constructors. In the inner
constructors, the key word ARRAY may be omitted. For example, these two SELECT
statements produce the same result:

SELECT ARRAY[ARRAY[1,2], ARRAY[3,4]];

SELECT ARRAY[[1,2],[3,4]];

 array

 {{1,2},{3,4}}

Since multidimensional arrays must be rectangular, inner constructors at the same
level must produce sub-arrays of identical dimensions.
Defining Queries 111

Greenplum Database Administrator Guide 4.1 – Chapter 11: Querying Data
Multidimensional array constructor elements can be anything yielding an array of the
proper kind, not only a sub-ARRAY construct. For example:

CREATE TABLE arr(f1 int[], f2 int[]);

INSERT INTO arr VALUES (ARRAY[[1,2],[3,4]],
ARRAY[[5,6],[7,8]]);

SELECT ARRAY[f1, f2, '{{9,10},{11,12}}'::int[]] FROM arr;

 array

--

 {{{1,2},{3,4}},{{5,6},{7,8}},{{9,10},{11,12}}}

It is also possible to construct an array from the results of a subquery. In this form, the
array constructor is written with the key word ARRAY followed by a parenthesized (not
bracketed) subquery. For example:

SELECT ARRAY(SELECT oid FROM pg_proc WHERE proname LIKE
'bytea%');

 ?column?

 {2011,1954,1948,1952,1951,1244,1950,2005,1949,1953,2006,31}

(The subquery must return a single column. The resulting one-dimensional array will
have an element for each row in the subquery result, with an element type matching
that of the subquery’s output column. The subscripts of an array value built with
ARRAY always begin with one.

Row Constructors

A row constructor is an expression that builds a row value (also called a composite
value) from values for its member fields. A row constructor consists of the key word
ROW, a left parenthesis, zero or more expressions (separated by commas) for the row
field values, and finally a right parenthesis. For example,

SELECT ROW(1,2.5,'this is a test');

A row constructor can include the syntax rowvalue.*, which will be expanded to a
list of the elements of the row value, just as occurs when the .* syntax is used at the
top level of a SELECT list. For example, if table t has columns f1 and f2, these are the
same:

SELECT ROW(t.*, 42) FROM t;

SELECT ROW(t.f1, t.f2, 42) FROM t;

By default, the value created by a ROW expression is of an anonymous record type. If
necessary, it can be cast to a named composite type — either the row type of a table, or
a composite type created with CREATE TYPE AS. An explicit cast may be needed to
avoid ambiguity. For example:

CREATE TABLE mytable(f1 int, f2 float, f3 text);

CREATE FUNCTION getf1(mytable) RETURNS int AS 'SELECT $1.f1'
LANGUAGE SQL;

-- No cast needed since only one getf1() exists

SELECT getf1(ROW(1,2.5,'this is a test'));
Defining Queries 112

Greenplum Database Administrator Guide 4.1 – Chapter 11: Querying Data
 getf1

 1

CREATE TYPE myrowtype AS (f1 int, f2 text, f3 numeric);

CREATE FUNCTION getf1(myrowtype) RETURNS int AS 'SELECT
$1.f1' LANGUAGE SQL;

-- Now we need a cast to indicate which function to call:

SELECT getf1(ROW(1,2.5,'this is a test'));

ERROR: function getf1(record) is not unique

SELECT getf1(ROW(1,2.5,'this is a test')::mytable);

 getf1

 1

SELECT getf1(CAST(ROW(11,'this is a test',2.5) AS
myrowtype));

 getf1

 11

Row constructors can be used to build composite values to be stored in a
composite-type table column, or to be passed to a function that accepts a composite
parameter.

Expression Evaluation Rules

The order of evaluation of subexpressions is not defined. In particular, the inputs of an
operator or function are not necessarily evaluated left-to-right or in any other fixed
order.

Furthermore, if the result of an expression can be determined by evaluating only some
parts of it, then other subexpressions might not be evaluated at all. For instance, if one
wrote:

SELECT true OR somefunc();

then somefunc() would (probably) not be called at all. The same would be the case if
one wrote:

SELECT somefunc() OR true;

Note that this is not the same as the left-to-right ‘forced evaluation order’ of Boolean
operators that is found in some programming languages.

As a consequence, it is unwise to use functions with side effects as part of complex
expressions. It is particularly dangerous to rely on side effects or evaluation order in
WHERE and HAVING clauses, since those clauses are extensively reprocessed as part of
developing an execution plan. Boolean expressions (AND/OR/NOT combinations) in
those clauses may be reorganized in any manner allowed by the laws of Boolean
algebra.
Defining Queries 113

Greenplum Database Administrator Guide 4.1 – Chapter 11: Querying Data
When it is essential to force evaluation order, a CASE construct may be used. For
example, this is an untrustworthy way of trying to avoid division by zero in a WHERE
clause:

SELECT ... WHERE x <> 0 AND y/x > 1.5;

But this is safe:

SELECT ... WHERE CASE WHEN x <> 0 THEN y/x > 1.5 ELSE false
END;

A CASE construct used in this fashion will defeat optimization attempts, so it should
only be done when necessary.

Using Functions and Operators
• Using Functions in Greenplum Database

• User-Defined Functions

• Built-in Functions and Operators

• Window Functions

• Advanced Analytic Functions

Using Functions in Greenplum Database

A function can be one of three types: IMMUTABLE, STABLE, or VOLATILE. Greenplum
Database offers full support of all IMMUTABLE functions. An immutable function is a
function that relies only on information directly present in its argument list and will
always return the same result when given the same argument values.

The use of STABLE functions is supported in most cases in Greenplum Database.
STABLE indicates that within a single table scan the function will consistently return
the same result for the same argument values, but that its result could change across
SQL statements. Functions whose results depend on database lookups or parameter
variables are classified as STABLE. Also note that the current_timestamp family of
functions qualify as stable, since their values do not change within a transaction.

The use of VOLATILE functions is restricted in Greenplum Database. VOLATILE
indicates that the function value can change even within a single table scan. Relatively
few database functions are volatile in this sense; some examples are random(),
currval(), timeofday(). But note that any function that has side-effects must be
classified volatile, even if its result is quite predictable (for example, setval()).

In Greenplum Database, the data is divided up across the segments — each segment
is, in a sense, its own distinct PostgreSQL database. To prevent data from becoming
out-of-sync across the segments, any function classified VOLATILE cannot be executed
at the segment level if it contains SQL or modifies the database in any way. For
example, functions such as random() or timeofday() are not allowed to execute on
distributed data in Greenplum Database because they could potentially cause
inconsistent data between the segment instances.
Using Functions and Operators 114

Greenplum Database Administrator Guide 4.1 – Chapter 11: Querying Data
To ensure data consistency, VOLATILE and STABLE functions can safely be used in
statements that are evaluated on and execute from the master. For example, the
following statements are always executed on the master (statements without a FROM
clause):

SELECT setval('myseq', 201);

SELECT foo();

In cases where a statement has a FROM clause containing a distributed table and the
function used in the FROM clause simply returns a set of rows, execution may be
allowed on the segments:

SELECT * from foo();

One exception to this rule are functions that return a table reference (rangeFuncs) or
functions that use the refCursor datatype. These types of functions cannot be used at
all in Greenplum Database.

User-Defined Functions

Greenplum Database supports user-defined functions as does PostgreSQL. See the
section on Extending SQL in the PostgreSQL documentation for more information.
You can use the CREATE FUNCTION command to register user-defined functions as long
as they are used as described in “Using Functions in Greenplum Database” on page
114. By default, functions are declared as VOLATILE, so it is important to specify the
correct volatility level if you are registering a user-defined function that is IMMUTABLE
or STABLE.

When creating user-defined functions, avoid using fatal errors or any kind of
destructive call. The Greenplum Database server may respond to such errors with a
sudden shutdown or restart.

Note that in Greenplum Database, the shared library files for user-created functions
must reside in the same library path location on every host in the Greenplum Database
array (masters, segments, and mirrors).

Built-in Functions and Operators

The following table lists the categories of built-in functions and operators supported
by PostgreSQL. All functions and operators are supported in Greenplum Database as
in PostgreSQL with the exception of STABLE and VOLATILE functions, which are
subject to the restrictions noted in “Using Functions in Greenplum Database” on page
114. See the Functions and Operators section of the PostgreSQL documentation for
more information about these built-in functions and operators.

Table 11.1 Built-in functions and operators

Operator/Function Category VOLATILE Functions STABLE Functions

Logical Operators

Comparison Operators

Mathematical Functions and Operators random

setseed
Using Functions and Operators 115

http://www.postgresql.org/docs/8.2/static/extend.html
http://www.postgresql.org/docs/8.2/static/functions.html
http://www.postgresql.org/docs/8.2/static/functions.html#FUNCTIONS-LOGICAL
http://www.postgresql.org/docs/8.2/static/functions-comparison.html
http://www.postgresql.org/docs/8.2/static/functions-math.html

Greenplum Database Administrator Guide 4.1 – Chapter 11: Querying Data
String Functions and Operators All built-in conversion functions convert

pg_client_encoding

Binary String Functions and Operators

Bit String Functions and Operators

Pattern Matching

Data Type Formatting Functions to_char

to_timestamp

Date/Time Functions and Operators timeofday age

current_date

current_time

current_timestamp

localtime

localtimestamp

now

Geometric Functions and Operators

Network Address Functions and
Operators

Sequence Manipulation Functions currval

lastval

nextval

setval

Conditional Expressions

Array Functions and Operators All array functions

Aggregate Functions

Subquery Expressions

Row and Array Comparisons

Set Returning Functions generate_series

Table 11.1 Built-in functions and operators

Operator/Function Category VOLATILE Functions STABLE Functions
Using Functions and Operators 116

http://www.postgresql.org/docs/8.2/static/functions-string.html
http://www.postgresql.org/docs/8.2/static/functions-binarystring.html
http://www.postgresql.org/docs/8.2/static/functions-bitstring.html
http://www.postgresql.org/docs/8.3/static/functions-matching.html
http://www.postgresql.org/docs/8.2/static/functions-formatting.html
http://www.postgresql.org/docs/8.2/static/functions-datetime.html
http://www.postgresql.org/docs/8.2/static/functions-geometry.html
http://www.postgresql.org/docs/8.2/static/functions-net.html
http://www.postgresql.org/docs/8.2/static/functions-sequence.html
http://www.postgresql.org/docs/8.2/static/functions-conditional.html
http://www.postgresql.org/docs/8.2/static/functions-array.html
http://www.postgresql.org/docs/8.2/static/functions-aggregate.html
http://www.postgresql.org/docs/8.2/static/functions-subquery.html
http://www.postgresql.org/docs/8.2/static/functions-comparisons.html
http://www.postgresql.org/docs/8.2/static/functions-srf.html

Greenplum Database Administrator Guide 4.1 – Chapter 11: Querying Data
Window Functions

Greenplum Database has the following built-in window functions that are not
available in PostgreSQL 8.2. Window functions are often used to compose complex
OLAP (online analytical processing) queries. Window functions are applied to
partitioned result sets within the scope of a single query expression. A window
partition is a subset of rows returned by a query, as defined in a special OVER() clause.
See “Window Expressions” on page 109. All window functions are immutable
functions.

Note that any aggregate function (as described in Aggregate Functions of the
PostgreSQL documentation) may also be used with an OVER clause, thereby making it
a window aggregate function. A window aggregate function returns the aggregated
value of the expression argument(s) for the specified window frame corresponding to
a particular row. If the OVER clause does not specify ordering (ORDER BY) or window
framing (ROWS | RANGE), the value is aggregated over the defined window partition. In
the case where ordering and framing are not specified, if the aggregate function allows

System Information Functions All session information functions

All access privilege inquiry functions

All schema visibility inquiry functions

All system catalog information
functions

All comment information functions

System Administration Functions set_config

pg_cancel_backend

pg_reload_conf

pg_rotate_logfile

pg_start_backup

pg_stop_backup

pg_size_pretty

pg_ls_dir

pg_read_file

pg_stat_file

current_setting

All database object size functions

Table 11.1 Built-in functions and operators

Operator/Function Category VOLATILE Functions STABLE Functions
Using Functions and Operators 117

http://www.postgresql.org/docs/8.2/static/functions-aggregate.html
http://www.postgresql.org/docs/8.2/static/functions-info.html
http://www.postgresql.org/docs/8.2/static/functions-info.html

Greenplum Database Administrator Guide 4.1 – Chapter 11: Querying Data
the DISTINCT qualifier, then so does its corresponding window aggregate function.
DISTINCT is not allowed for window aggregate functions that specify ordering or
framing.

Table 11.2 Window functions

Function
Return
Type

Full Syntax Description

cume_dist() double
precision

CUME_DIST() OVER ([PARTITION BY expr]
ORDER BY expr)

Calculates the cumulative
distribution of a value in a
group of values. Rows with
equal values always evaluate
to the same cumulative
distribution value.

dense_rank(
)

bigint DENSE_RANK () OVER ([PARTITION BY
expr] ORDER BY expr)

Computes the rank of a row in
an ordered group of rows
without skipping rank values.
Rows with equal values are
given the same rank value.

first_value
(expr)

same as
input expr
type

FIRST_VALUE(expr) OVER ([PARTITION BY
expr] ORDER BY expr [ROWS|RANGE
frame_expr])

Returns the first value in an
ordered set of values.

lag(expr
[,offset]
[,default])

same as
input expr
type

LAG(expr [,offset] [,default]) OVER (
[PARTITION BY expr] ORDER BY expr)

Provides access to more than
one row of the same table
without doing a self join. Given
a series of rows returned from
a query and a position of the
cursor, LAG provides access to
a row at a given physical offset
prior to that position. If offset
is not specified, the default
offset is 1. default sets the
value that is returned if the
offset goes beyond the scope
of the window. If default is
not specified, the default value
is null.

last_value(ex
pr)

same as
input expr
type

LAST_VALUE(expr) OVER ([PARTITION BY
expr] ORDER BY expr [ROWS|RANGE
frame_expr])

Returns the last value in an
ordered set of values.

lead(expr
[,offset]
[,default])

same as
input expr
type

LEAD(expr [,offset] [,default]) OVER (
[PARTITION BY expr] ORDER BY expr)

Provides access to more than
one row of the same table
without doing a self join. Given
a series of rows returned from
a query and a position of the
cursor, LAG provides access to
a row at a given physical offset
after that position. If offset is
not specified, the default offset
is 1. default sets the value
that is returned if the offset
goes beyond the scope of the
window. If default is not
specified, the default value is
null.
Using Functions and Operators 118

Greenplum Database Administrator Guide 4.1 – Chapter 11: Querying Data
Advanced Analytic Functions

Greenplum Database has the following built-in advanced analytic functions that are
not available in PostgreSQL. All of these analytic functions are immutable functions.

ntile(expr) bigint NTILE(expr) OVER ([PARTITION BY expr]
ORDER BY expr)

Divides an ordered data set
into a number of buckets (as
defined by expr) and assigns
a bucket number to each row.

percent_rank(
)

double
precision

PERCENT_RANK () OVER ([PARTITION BY
expr] ORDER BY expr)

Calculates the rank of a
hypothetical row R minus 1,
divided by 1 less than the
number of rows being
evaluated (within a window
partition).

rank() bigint RANK () OVER ([PARTITION BY expr]
ORDER BY expr)

Calculates the rank of a row in
an ordered group of values.
Rows with equal values for the
ranking criteria receive the
same rank. The number of tied
rows are added to the rank
number to calculate the next
rank value. Ranks may not be
consecutive numbers in this
case.

row_number() bigint ROW_NUMBER () OVER ([PARTITION BY
expr] ORDER BY expr)

Assigns a unique number to
each row to which it is applied
(either each row in a window
partition or each row of the
query).

Table 11.2 Window functions

Function
Return
Type

Full Syntax Description

Table 11.3 Advanced Analytic Functions

Function
Return
Type

Full Syntax Description

matrix_add(
array[],
array[])

smallint[]
int[],
bigint[],
float[]

matrix_add(array[[1,1],[2,2]],
array[[3,4],[5,6]])

Adds two two-dimensional
matrices. The matrices must be
conformable.

matrix_mult
iply(array
[], array[])

smallint[]
int[],
bigint[],
float[]

matrix_multiply(array[[2,0,0],[0,2,0],[
0,0,2]],[[3,0,3],[0,3,0]])

Multiplies two two-dimensional
arrays. The matrices must be
conformable.

matrix_mult
iply(array
[], expr)

int[],
float[]

matrix_multiply(array[[1,1,1], [2,2,2],
[3,3,3]], 2)

Multiplies a two-dimensional
array and a scalar numeric
value.

matrix_tran
spose(array
[])

Same as
input array
type.

matrix_transpose(array
[[1,1,1],[2,2,2]])

Transposes a two-dimensional
array.
Using Functions and Operators 119

Greenplum Database Administrator Guide 4.1 – Chapter 11: Querying Data
.

pinv(array
[])

smallint[]
int[],
bigint[],
float[]

pinv(array[[2.5,0,0],[0,1,0],[0,0,.5]]) Calculates the Moore-Penrose
pseudoinverse of a matrix.

unnest
(array[])

set of
anyelement

unnest(array['one', 'row', 'per',
'item'])

Transforms a one dimensional
array into rows. Returns a set
of anyelement, a polymorphic
pseudotype in PostgreSQL.

Table 11.3 Advanced Analytic Functions

Function
Return
Type

Full Syntax Description

Table 11.4 Advanced Aggregate Functions

Function
Return
Type

Full Syntax Description

sum(array[]
)

smallint[]
int[],
bigint[],
float[]

sum(array[[1,2],[3,4]])

Example:

CREATE TABLE mymatrix (myvalue int[]);

INSERT INTO mymatrix VALUES (array[[1,2],[3,4]]);

INSERT INTO mymatrix VALUES (array[[0,1],[1,0]]);

SELECT sum(myvalue) FROM mymatrix;

 sum

 {{1,3},{4,4}}

Performs matrix summation.
Can take as input a
two-dimensional array that is
treated as a matrix.

pivot_sum
(label[],
label, expr)

int[],
bigint[],
float[]

pivot_sum(array['A1','A2'], attr,
value)

A pivot aggregation using sum
to resolve duplicate entries.

mregr_coef(
expr,
array[])

float[] mregr_coef(y, array[1, x1, x2]) The four mregr_* aggregates
perform linear regressions
using the
ordinary-least-squares method.
mregr_coef calculates the
regression coefficients. The
size of the return array for
mregr_coef is the same as
the size of the input array of
independent variables, since
the return array contains the
coefficient for each
independent variable.

mregr_r2
(expr,
array[])

float mregr_r2(y, array[1, x1, x2]) The four mregr_* aggregates
perform linear regressions
using the
ordinary-least-squares method.
mregr_r2 calculates the
r-squared error value for the
regression.
Using Functions and Operators 120

http://www.postgresql.org/docs/current/static/datatype-pseudo.html
http://www.postgresql.org/docs/current/static/datatype-pseudo.html

Greenplum Database Administrator Guide 4.1 – Chapter 11: Querying Data
Advanced Analytic Function Examples

These examples illustrate selected advanced analytic functions in queries on
simplified example data. Examples are given for the multiple linear regression
aggregate functions, and for Naive Bayes Classification with nb_classify.

Linear Regression Aggregates Example

This example uses the four linear regression aggregates mregr_coef, mregr_r2,
mregr_pvalues, and mregr_tstats in a query on the example table
regr_example. In this example query, all the aggregates take the dependent variable
as the first parameter and an array of independent variables as the second parameter.

SELECT mregr_coef(y, array[1, x1, x2]),
 mregr_r2(y, array[1, x1, x2]),
 mregr_pvalues(y, array[1, x1, x2]),
 mregr_tstats(y, array[1, x1, x2])
from regr_example;

mregr_pvalu
es(expr,
array[])

float[] mregr_pvalues(y, array[1, x1, x2]) The four mregr_* aggregates
perform linear regressions
using the
ordinary-least-squares method.
mregr_pvalues calculates
the p-values for the regression.

mregr_tstat
s(expr,
array[])

float[] mregr_tstats(y, array[1, x1, x2]) The four mregr_* aggregates
perform linear regressions
using the
ordinary-least-squares method.
mregr_tstats calculates the
t-statistics for the regression.

nb_classify
(text[],
bigint,
bigint[],
bigint[])

text nb_classify(classes, attr_count,
class_count, class_total)

Classify rows using a Naive
Bayes Classifier. This
aggregate uses a baseline of
training data to predict the
classification of new rows and
returns the class with the
largest likelihood of appearing
in the new rows.

nb_probabil
ities(text[
], bigint,
bigint[],
bigint[])

text nb_probabilities(classes, attr_count,
class_count, class_total)

Determine probability for each
class using a Naive Bayes
Classifier. This aggregate uses
a baseline of training data to
predict the classification of new
rows and returns the
probabilities that each class will
appear in new rows.

Table 11.4 Advanced Aggregate Functions

Function
Return
Type

Full Syntax Description
Using Functions and Operators 121

Greenplum Database Administrator Guide 4.1 – Chapter 11: Querying Data
Table regr_example:

 id | y | x1 | x2
----+----+----+----
 1 | 5 | 2 | 1
 2 | 10 | 4 | 2
 3 | 6 | 3 | 1
 4 | 8| 3 | 1

Running the example query against this simple table yields one row of data displaying
these values:

mregr_coef:

{-7.105427357601e-15,2.00000000000003,0.999999999999943}

mregr_r2:

0.86440677966103

mregr_pvalues:

{0.999999999999999,0.454371051656992,0.783653104061216}

mregr_tstats:

{-2.24693341988919e-15,1.15470053837932,0.35355339059327}

If the results of any these aggregates are undefined, NaN (not a number) is returned.
This can happen if there is a very small amount of data.

Note: The intercept is computed by setting one of the independent variables to 1, as shown in
the example.

Naive Bayes Classification Examples

The aggregates nb_classify and nb_probabilities are used within a larger
four-step classification process that involves the creation of tables and views for
training data. The following two examples show all the steps. The first example shows
a small data set with arbitrary values, and the second example is the Greenplum
implementation of a popular Naive Bayes example based on weather conditions.

Overview

The four steps to Naive Bayes classification are as follows:

1. Unpivot the data.

Create a view with the id and classification that unpivots all the values. If the data
is already in denormalized form, it is not necessary to unpivot the data. In the
examples the value names become the values of the field attr.

2. Create a training table.

The training table shifts the view of the data to the values of the field attr.

3. Create a summary view of the training data.

4. Aggregate the data with nb_classify, nb_probabilities,or both.
Using Functions and Operators 122

Greenplum Database Administrator Guide 4.1 – Chapter 11: Querying Data
Naive Bayes Example 1 – Small Table

This example begins with the normalized data in the example table class_example
and proceeds through four discrete steps, as described below.

Table class_example:

 id | class | a1 | a2 | a3
----+-------+----+----+----
 1 | C1 | 1 | 2 | 3
 2 | C1 | 1 | 4 | 3
 3 | C2 | 0 | 2 | 2
 4 | C1 | 1 | 2 | 1
 5 | C2 | 1 | 2 | 2
 6 | C2 | 0 | 1 | 3

1. Unpivot the data

For use as training data, the data in class_example must be unpivoted because
the data is in normalized form. The terms in single quotation marks define the
values to use for the new field attr. Conventionally, these values are the same as
the field names in the normalized table. In this example, they are capitalized to
emphasize where they are created in the command.

CREATE view class_example_unpivot AS
SELECT id, class, unnest(array['A1', 'A2', 'A3']) as attr,
unnest(array[a1,a2,a3]) as value FROM class_example;

The unpivoted view shows the denormalized data. It is not necessary to use this
view. To list it, use the command SELECT * from class_example_unpivot;

 id | class | attr | value

----+-------+------+-------

 2 | C1 | A1 | 1

 2 | C1 | A2 | 2

 2 | C1 | A3 | 1

 4 | C2 | A1 | 1

 4 | C2 | A2 | 2

 4 | C2 | A3 | 2

 6 | C2 | A1 | 0

 6 | C2 | A2 | 1

 6 | C2 | A3 | 3

 1 | C1 | A1 | 1

 1 | C1 | A2 | 2

 1 | C1 | A3 | 3

 3 | C1 | A1 | 1

 3 | C1 | A2 | 4

 3 | C1 | A3 | 3

 5 | C2 | A1 | 0

 5 | C2 | A2 | 2

 5 | C2 | A3 | 2

(18 rows)
Using Functions and Operators 123

Greenplum Database Administrator Guide 4.1 – Chapter 11: Querying Data
2. Create a training table from the unpivoted data.

The terms in single quotation marks define the values to sum. The terms in the
array passed into pivot_sum must match the number and names of classifications
in the original data, here two, C1 and C2.

CREATE table class_example_nb_training AS
SELECT attr, value, pivot_sum(array['C1', 'C2'], class, 1)
as class_count
FROM class_example_unpivot
GROUP BY attr, value
DISTRIBUTED by (attr);

The resulting training table is shown below.

 attr | value | class_count

------+-------+-------------

 A3 | 1 | {1,0}

 A3 | 3 | {2,1}

 A1 | 1 | {3,1}

 A1 | 0 | {0,2}

 A3 | 2 | {0,2}

 A2 | 2 | {2,2}

 A2 | 4 | {1,0}

 A2 | 1 | {0,1}

(8 rows)

3. Create a summary view over the training data

CREATE VIEW class_example_nb_classify_functions AS
SELECT attr, value, class_count, array['C1', 'C2'] as classes,
sum(class_count) over (wa)::integer[] as class_total,
count(distinct value) over (wa) as attr_count
FROM class_example_nb_training
WINDOW wa as (partition by attr);

The resulting training table is shown below.

attr| value | class_count| classes | class_total |attr_count

-----+-------+------------+---------+-------------+---------

 A2 | 2 | {2,2} | {C1,C2} | {3,3} | 3

 A2 | 4 | {1,0} | {C1,C2} | {3,3} | 3

 A2 | 1 | {0,1} | {C1,C2} | {3,3} | 3

 A1 | 0 | {0,2} | {C1,C2} | {3,3} | 2

 A1 | 1 | {3,1} | {C1,C2} | {3,3} | 2

 A3 | 2 | {0,2} | {C1,C2} | {3,3} | 3

 A3 | 3 | {2,1} | {C1,C2} | {3,3} | 3

 A3 | 1 | {1,0} | {C1,C2} | {3,3} | 3

(8 rows)

4. Classify rows with nb_classify and display the probability with
nb_probabilities.
Using Functions and Operators 124

Greenplum Database Administrator Guide 4.1 – Chapter 11: Querying Data
Once the view is prepared, the training data is ready for use as a baseline for
determining the class of incoming rows. The following query predicts whether
rows are of class C1 or C2 by using the nb_classify aggregate:

SELECT nb_classify(classes, attr_count, class_count,
class_total) as class
FROM class_example_nb_classify_functions
where (attr = 'A1' and value = 0) or (attr = 'A2' and value =
2) or (attr = 'A3' and value = 1);

Running the example query against this simple table yields one row of data
displaying these values:

This query yields the expected single-row result of C1.

class

C2
(1 row)

Display the probabilities for each class with nb_probabilities.

Once the view is prepared, the training data is ready for use as a baseline for
determining the class of incoming rows. The following query predicts whether
rows are of class C1 or C2 by using the nb_probabilities aggregate:

SELECT nb_probabilities(classes, attr_count, class_count,
class_total) as probability
FROM class_example_nb_classify_functions
where (attr = 'A1' and value = 0) or (attr = 'A2' and value =
2) or (attr = 'A3' and value = 1);

Running the example query against this simple table yields one row of data
displaying the probabilities for each class:

This query yields the expected single-row result showing two probabilities, the
first for C1,and the second for C2.

probability

 {0.4,0.6}

(1 row)

You can display both the classification and the probabilities with the following
query.

SELECT nb_classify(classes, attr_count, class_count,
class_total) as class, nb_probabilities(classes, attr_count,
class_count, class_total) as probability FROM
class_example_nb_classify where (attr = 'A1' and value = 0)
or (attr = 'A2' and value = 2) or (attr = 'A3' and value =
1);

This query produces the following result.

class | probability

-------+-------------

 C2 | {0.4,0.6}

(1 row)
Using Functions and Operators 125

Greenplum Database Administrator Guide 4.1 – Chapter 11: Querying Data
Actual data in production scenarios is more extensive than this simple example data,
and therefore yields better results. Accuracy of classification with nb_classify and
nb_probabilities improves significantly with larger sets of training data.

Naive Bayes Example 2 – Weather and Outdoor Sports

This example calculates the probabilities of whether the user will play an outdoor
sport, such as golf or tennis, based on weather conditions. The identification field for
the table is day. There are two classifications: yes or no, held in the field play. There
are four weather attributes, outlook, temperature, humidity, and wind. The following
values are contained in the table weather_example.

 day | play | outlook | temperature | humidity | wind

-----+------+----------+-------------+----------+--------

 2 | No | Sunny | Hot | High | Strong

 4 | Yes | Rain | Mild | High | Weak

 6 | No | Rain | Cool | Normal | Strong

 8 | No | Sunny | Mild | High | Weak

 10 | Yes | Rain | Mild | Normal | Weak

 12 | Yes | Overcast | Mild | High | Strong

 14 | No | Rain | Mild | High | Strong

 1 | No | Sunny | Hot | High | Weak

 3 | Yes | Overcast | Hot | High | Weak

 5 | Yes | Rain | Cool | Normal | Weak

 7 | Yes | Overcast | Cool | Normal | Strong

 9 | Yes | Sunny | Cool | Normal | Weak

 11 | Yes | Sunny | Mild | Normal | Strong

 13 | Yes | Overcast | Hot | Normal | Weak

(14 rows)

This example contains more attributes that the first example and the data is character,
not numeric.

Because this data is normalized, all four Naive Bayes steps are required.

1. Unpivot the data.

CREATE view weather_example_unpivot AS SELECT day, play,
unnest(array['outlook','temperature', 'humidity','wind']) as
attr, unnest(array[outlook,temperature,humidity,wind]) as
value FROM weather_example;

Note the use of quotation marks in the command.

The SELECT * from weather_example_unpivot displays the denormalized
data and contains the following 56 rows.

 day | play | attr | value

-----+------+-------------+----------

 2 | No | outlook | Sunny

 2 | No | temperature | Hot

 2 | No | humidity | High

 2 | No | wind | Strong

 4 | Yes | outlook | Rain
Using Functions and Operators 126

Greenplum Database Administrator Guide 4.1 – Chapter 11: Querying Data
 4 | Yes | temperature | Mild

 4 | Yes | humidity | High

 4 | Yes | wind | Weak

 6 | No | outlook | Rain

 6 | No | temperature | Cool

 6 | No | humidity | Normal

 6 | No | wind | Strong

 8 | No | outlook | Sunny

 8 | No | temperature | Mild

 8 | No | humidity | High

 8 | No | wind | Weak

 10 | Yes | outlook | Rain

 10 | Yes | temperature | Mild

 10 | Yes | humidity | Normal

 10 | Yes | wind | Weak

 12 | Yes | outlook | Overcast

 12 | Yes | temperature | Mild

 12 | Yes | humidity | High

 12 | Yes | wind | Strong

 14 | No | outlook | Rain

 14 | No | temperature | Mild

 14 | No | humidity | High

 14 | No | wind | Strong

 1 | No | outlook | Sunny

 1 | No | temperature | Hot

 1 | No | humidity | High

 1 | No | wind | Weak

 3 | Yes | outlook | Overcast

 3 | Yes | temperature | Hot

 3 | Yes | humidity | High

 3 | Yes | wind | Weak

 5 | Yes | outlook | Rain

 5 | Yes | temperature | Cool

 5 | Yes | humidity | Normal

 5 | Yes | wind | Weak

 7 | Yes | outlook | Overcast

 7 | Yes | temperature | Cool

 7 | Yes | humidity | Normal

 7 | Yes | wind | Strong

 9 | Yes | outlook | Sunny

 9 | Yes | temperature | Cool

 9 | Yes | humidity | Normal

 9 | Yes | wind | Weak

 11 | Yes | outlook | Sunny

 11 | Yes | temperature | Mild
Using Functions and Operators 127

Greenplum Database Administrator Guide 4.1 – Chapter 11: Querying Data
 11 | Yes | humidity | Normal

 11 | Yes | wind | Strong

 13 | Yes | outlook | Overcast

 13 | Yes | temperature | Hot

 13 | Yes | humidity | Normal

 13 | Yes | wind | Weak

(56 rows)

2. Create a training table.

CREATE table weather_example_nb_training AS SELECT attr,
value, pivot_sum(array['Yes','No'], play, 1) as class_count
FROM weather_example_unpivot GROUP BY attr, value
DISTRIBUTED by (attr);

The SELECT * from weather_example_nb_training displays the training
data and contains the following 10 rows.

 attr | value | class_count

-------------+----------+-------------

 outlook | Rain | {3,2}

 humidity | High | {3,4}

 outlook | Overcast | {4,0}

 humidity | Normal | {6,1}

 outlook | Sunny | {2,3}

 wind | Strong | {3,3}

 temperature | Hot | {2,2}

 temperature | Cool | {3,1}

 temperature | Mild | {4,2}

 wind | Weak | {6,2}

(10 rows)

3. Create a summary view of the training data.

CREATE VIEW weather_example_nb_classify_functions AS SELECT
attr, value, class_count, array['Yes','No'] as
classes,sum(class_count) over (wa)::integer[] as
class_total,count(distinct value) over (wa) as attr_count
FROM weather_example_nb_training WINDOW wa as (partition by
attr);

The SELECT * from weather_example_nb_classify_function displays the
training data and contains the following 10 rows.

attr | value | class_count| classes | class_total| attr_count

------------+-------- +------------+---------+------------+-----------

temperature | Mild | {4,2} | {Yes,No}| {9,5} | 3

temperature | Cool | {3,1} | {Yes,No}| {9,5} | 3

temperature | Hot | {2,2} | {Yes,No}| {9,5} | 3

wind | Weak | {6,2} | {Yes,No}| {9,5} | 2

wind | Strong | {3,3} | {Yes,No}| {9,5} | 2

humidity | High | {3,4} | {Yes,No}| {9,5} | 2
Using Functions and Operators 128

Greenplum Database Administrator Guide 4.1 – Chapter 11: Querying Data
humidity | Normal | {6,1} | {Yes,No}| {9,5} | 2

outlook | Sunny | {2,3} | {Yes,No}| {9,5} | 3

outlook | Overcast| {4,0} | {Yes,No}| {9,5} | 3

outlook | Rain | {3,2} | {Yes,No}| {9,5} | 3

(10 rows)

4. Aggregate the data with nb_classify, nb_probabilities,or both.

First, decide what to classify. If you want to classify only one record with the
values

 temperature | wind | humidity | outlook

 ------------+------+----------+---------

 Cool | Weak | High | Overcast

the following command aggregates the data. The result gives the classification,
yes or no, and the probability for playing outdoor sports under this one particular
set of conditions.

SELECT nb_classify(classes, attr_count, class_count,
class_total) as class,

 nb_probabilities(classes, attr_count, class_count,
class_total) as probability

FROM weather_example_nb_classify_functions where

 (attr = 'temperature' and value = 'Cool') or

 (attr = 'wind' and value = 'Weak') or

 (attr = 'humidity' and value = 'High') or

 (attr = 'outlook' and value = 'Overcast');

The result is a single row.

class | probability

-------+---------------------------------------

 Yes | {0.858103353920726,0.141896646079274}

(1 row)

If you want to classify a group of records, load them into a table. In this example,
the table t1 contains the following records:

 day | outlook | temperature | humidity | wind

-----+----------+-------------+----------+--------

 15 | Sunny | Mild | High | Strong

 16 | Rain | Cool | Normal | Strong

 17 | Overcast | Hot | Normal | Weak

 18 | Rain | Hot | High | Weak

(4 rows)

The following command aggregates the data against this table.The result gives the
classification, yes or no, and the probability for playing outdoor sports for each set
of conditions in the table t1. Both the nb_classify and nb_probabilities
aggregates are used.
Using Functions and Operators 129

Greenplum Database Administrator Guide 4.1 – Chapter 11: Querying Data
SELECT t1.day,

 t1.temperature, t1.wind, t1.humidity, t1.outlook,

 nb_classify(classes, attr_count, class_count,
class_total) as class,

 nb_probabilities(classes, attr_count, class_count,
class_total) as probability

FROM t1, weather_example_nb_classify_functions

WHERE

 (attr = 'temperature' and value = t1.temperature) or

 (attr = 'wind' and value = t1.wind) or

 (attr = 'humidity' and value = t1.humidity) or

 (attr = 'outlook' and value = t1.outlook)

GROUP BY t1.day, t1.temperature, t1.wind, t1.humidity,
t1.outlook;

The result is a four rows, one for each record in t1. (Some of the column headings
are abbreviated for space.)

day| temp| wind | humidity | outlook | class | probability

---+-----+--------+----------+----------+-------+--------------

15 | Mild| Strong | High | Sunny | No | {0.244694132334582,0.755305867665418}

16 | Cool| Strong | Normal | Rain | Yes | {0.751471997809119,0.248528002190881}

18 | Hot | Weak | High | Rain | No | {0.446387538890131,0.553612461109869}

17 | Hot | Weak | Normal | Overcast | Yes | {0.9297192642788,0.0702807357212004}

(4 rows)

Query Profiling
Greenplum Database devises a query plan for each query it is given. Choosing the
right query plan to match the query and data structure is absolutely critical for good
performance. A query plan defines how the query will be executed in Greenplum
Database’s parallel execution environment. By examining the query plans of poorly
performing queries, you can identify possible performance tuning opportunities.

The query planner uses the database statistics it has to choose a query plan with the
lowest possible cost. Cost is measured in disk I/O and CPU effort (shown as units of
disk page fetches). The goal is to minimize the total execution cost for the plan.

You can view the plan for a given query using the EXPLAIN command. This will show
the query planner’s estimated plan for the query. For example:

EXPLAIN SELECT * FROM names WHERE id=22;

EXPLAIN ANALYZE causes the statement to be actually executed, not only planned.
This is useful for seeing whether the planner’s estimates are close to reality. For
example:

EXPLAIN ANALYZE SELECT * FROM names WHERE id=22;
Query Profiling 130

Greenplum Database Administrator Guide 4.1 – Chapter 11: Querying Data
Reading EXPLAIN Output

Query plans are a tree plan of nodes. Each node in the plan represents a single
operation, such as table scan, join, aggregation or a sort.

Plans should be read from the bottom up as each node feeds rows into the node
directly above it. The bottom nodes of a plan are usually table scan operations
(sequential, index or bitmap index scans). If the query requires joins, aggregations, or
sorts (or other operations on the raw rows) then there will be additional nodes above
the scan nodes to perform these operations. The topmost plan nodes are usually the
Greenplum Database motion nodes (redistribute, explicit redistribute, broadcast, or
gather motions). These are the operations responsible for moving rows between the
segment instances during query processing.

The output of EXPLAIN has one line for each node in the plan tree, showing the basic
node type plus the following cost estimates that the planner made for the execution of
that plan node:

• cost - measured in units of disk page fetches; that is, 1.0 equals one sequential
disk page read. The first estimate is the start-up cost (cost of getting to the first
row) and the second is the total cost (cost of getting all rows). Note that the total
cost assumes that all rows will be retrieved, which may not always be the case (if
using LIMIT for example).

• rows - the total number of rows output by this plan node. This is usually less than
the actual number of rows processed or scanned by the plan node, reflecting the
estimated selectivity of any WHERE clause conditions. Ideally the top-level nodes
estimate will approximate the number of rows actually returned, updated, or
deleted by the query.

• width - total bytes of all the rows output by this plan node.

It is important to note that the cost of an upper-level node includes the cost of all its
child nodes. The topmost node of the plan has the estimated total execution cost for
the plan. This is this number that the planner seeks to minimize. It is also important to
realize that the cost only reflects things that the query planner cares about. In
particular, the cost does not consider the time spent transmitting result rows to the
client.

EXPLAIN Example

To illustrate how to read an EXPLAIN query plan, consider the following example for a
very simple query:

EXPLAIN SELECT * FROM names WHERE name = 'Joelle';

 QUERY PLAN
--

Gather Motion 2:1 (slice1) (cost=0.00..20.88 rows=1 width=13)
 -> Seq Scan on 'names' (cost=0.00..20.88 rows=1 width=13)

 Filter: name::text ~~ 'Joelle'::text

If we read the plan from the bottom up, the query planner starts by doing a sequential
scan of the names table. Notice that the WHERE clause is being applied as a filter
condition. This means that the scan operation checks the condition for each row it
scans, and outputs only the ones that pass the condition.
Query Profiling 131

Greenplum Database Administrator Guide 4.1 – Chapter 11: Querying Data
The results of the scan operation are passed up to a gather motion operation. In
Greenplum Database, a gather motion is when segments send rows up to the master. In
this case we have 2 segment instances sending to 1 master instance (2:1). This
operation is working on slice1 of the parallel query execution plan. In Greenplum
Database a query plan is divided into slices so that portions of the query plan can be
worked on in parallel by the segments.

The estimated startup cost for this plan is 00.00 (no cost) and a total cost of 20.88
disk page fetches. The planner is estimating that this query will return one row.

Reading EXPLAIN ANALYZE Output

EXPLAIN ANALYZE causes the statement to be actually executed, not only planned.
The EXPLAIN ANALYZE plan shows the actual results along with the planner’s
estimates. This is useful for seeing whether the planner’s estimates are close to reality.
In addition to the information shown in the EXPLAIN plan, EXPLAIN ANALYZE will
show the following additional information:

• The total elapsed time (in milliseconds) that it took to run the query.

• The number of workers (segments) involved in a plan node operation. Only
segments that return rows are counted.

• The maximum number of rows returned by the segment that produced the most
rows for an operation. If multiple segments produce an equal number of rows, the
one with the longest time to end is the one chosen.

• The segment id number of the segment that produced the most rows for an
operation.

• For relevant operations, the work_mem used by the operation. If work_mem was
not sufficient to perform the operation in memory, the plan will show how much
data was spilled to disk and how many passes over the data were required for the
lowest performing segment. For example:
Work_mem used: 64K bytes avg, 64K bytes max (seg0).

Work_mem wanted: 90K bytes avg, 90K bytes max (seg0) to abate workfile
I/O affecting 2 workers.

[seg0] pass 0: 488 groups made from 488 rows; 263 rows written to
workfile

[seg0] pass 1: 263 groups made from 263 rows

• The time (in milliseconds) it took to retrieve the first row from the segment that
produced the most rows, and the total time taken to retrieve all rows from that
segment. The <time> to first row may be omitted if it is the same as the <time> to
end.

EXPLAIN ANALYZE Example

To illustrate how to read an EXPLAIN ANALYZE query plan, we will use the same
simple query we used in the “EXPLAIN Example” on page 131. Notice that there is
some additional information in this plan that is not in a regular EXPLAIN plan. The
parts of the plan in bold show the actual timing and rows returned for each plan node:

EXPLAIN ANALYZE SELECT * FROM names WHERE name = 'Joelle';

 QUERY PLAN
--
Query Profiling 132

Greenplum Database Administrator Guide 4.1 – Chapter 11: Querying Data
Gather Motion 2:1 (slice1) (cost=0.00..20.88 rows=1 width=13)
 recv: Total 1 rows with 0.305 ms to first row, 0.537 ms to end.
 -> Seq Scan on 'names' (cost=0.00..20.88 rows=1 width=13)
 Total 1 rows (seg0) with 0.255 ms to first row, 0.486 ms to end.

 Filter: name::text ~~ 'Joelle'::text

22.548 ms elapsed

If we read the plan from the bottom up, you will see some additional information for
each plan node operation. The total elapsed time it took to run this query was 22.548
milliseconds.

The sequential scan operation had only one segment (seg0) that returned rows, and it
returned just 1 row. It took 0.255 milliseconds to find the first row and 0.486 to scan
all rows. Notice that this is pretty close to the planner’s estimate — the query planner
estimated that it would return one row for this query, which it did. The gather motion
operation then received 1 row (segments sending up to the master). The total elapsed
time for this operation was 0.537 milliseconds.

What to Look for in a Query Plan

If a query is performing poorly, looking at its query plan can help identify problem
areas. Here are some things to look for:

• Is there one operation in the plan that is taking exceptionally long? When
looking through the query plan, is there one operation that is consuming the
majority of the query processing time? For example, if an index scan is taking
longer than expected, perhaps the index is out-of-date and needs to be reindexed.
You could also temporarily experiment with the enable_ parameters to see if you
can force the planner to choose a different (and potentially better) plan by
disabling a particular query plan operator for that query.

• Are the planner’s estimates close to reality? Run an EXPLAIN ANALYZE and see
if the number of rows estimated by the planner is close to the number of rows
actually returned by the query operation. If there is a huge discrepancy, you may
need to collect more statistics on the relevant columns. See “Maintaining
Database Statistics” on page 238.

• Are selective predicates applied early in the plan? The most selective filters
should be applied early in the plan so that less rows move up the plan tree. If the
query plan is not doing a good job at estimating the selectivity of a query
predicate, you may need to collect more statistics on the relevant columns. See
“Maintaining Database Statistics” on page 238. You can also try reordering the
WHERE clause of your SQL statement.

• Is the planner choosing the best join order? When you have a query that joins
multiple tables, make sure that the planner is choosing the most selective join
order. Joins that eliminate the largest number of rows should be done earlier in the
plan so that less rows move up the plan tree. If the plan is not choosing the optimal
join order, you can set join_collapse_limit=1 and use explicit JOIN syntax in
your SQL statement to force the planner to the specified join order. You can also
collect more statistics on the relevant join columns. See “Maintaining Database
Statistics” on page 238.
Query Profiling 133

Greenplum Database Administrator Guide 4.1 – Chapter 11: Querying Data
• Is the planner selectively scanning partitioned tables? If you are using table
partitioning, is the planner selectively scanning only the child tables required to
satisfy the query predicates? Do scans of the parent tables return 0 rows (they
should, since the parent tables should not contain any data). For an example of a
query plan that shows a selective partition scan, see “Verifying Your Partition
Strategy” on page 86.

• Is the planner choosing hash aggregate and hash join operations where
applicable? Hash operations are typically much faster than other types of joins or
aggregations. Row comparison and sorting is done in memory rather than
reading/writing from disk. In order for hash operations to be chosen, there has to
be sufficient work memory available to hold the number of estimated rows. Try
increasing work memory to see if you can get better performance for a given
query. If possible run an EXPLAIN ANALYZE for the query, which will show you
which plan operations spilled to disk, how much work memory they used, and
how much was required to not spill to disk. For example:
Work_mem used: 23430K bytes avg, 23430K bytes max (seg0).
Work_mem wanted: 33649K bytes avg, 33649K bytes max (seg0) to lessen
workfile I/O affecting 2 workers.

Note that the bytes wanted message from EXPLAIN ANALYZE is only a hint, based on
the amount of data written to work files and is not exact. The minimum work_mem
needed could be more or less than the suggested value.
Query Profiling 134

Greenplum Database Administrator Guide 4.1 – Chapter 12: Loading and Unloading Data
12. Loading and Unloading Data

This first sections of this chapter describe the various ways to load and write data into
and out of a Greenplum Database with examples. The final section describes in detail
how to format data files.

Greenplum supports fast, parallel data loading and unloading for large amounts of
data, in addition to single file, non-parallel import and export for small amounts of
data. This chapter contains the following topics:

• Greenplum Database Loading Tools Overview

• Loading Data into Greenplum Database

• Defining External Tables - Examples

• Unloading Data from Greenplum Database

• Formatting Data Files

Greenplum Database Loading Tools Overview
This section provides a brief overview of the tools Greenplum provides for loading
and unloading data.

• About External Tables

• About gpload

• About COPY

About External Tables

External tables allow you to access external files as though they were regular database
tables.Used in conjunction with Greenplum’s parallel file distribution program
(gpfdist), external tables provide full parallelism by utilizing the resources of all
Greenplum segments when loading or unloading data. Greenplum Database also
leverages the parallel architecture of the Hadoop file system to access files on that
system.

Greenplum Database provides two types of external tables – readable external tables
for data loading, and writable external tables for data unloading. External tables are
either file based or web based. Either type of external table can be readable or
writable.

Readable external tables provide an easy way to perform basic extraction,
transformation, and external table loading (ETL) tasks that are common in data
warehousing. External table data is read in parallel by all Greenplum Database
segment instances, so large load operations are processed as quickly as possible. Once
the external table is defined, you can query the data directly and in parallel using SQL
commands. You can, for example, select, join, or sort external table data. You can also
create views for external tables. However, readable external tables cannot be
modified. DML operations (UPDATE, INSERT, DELETE, or TRUNCATE) are not allowed.
Greenplum Database Loading Tools Overview 135

Greenplum Database Administrator Guide 4.1 – Chapter 12: Loading and Unloading Data
There are two types of readable external tables – regular and web. The main difference
between regular external tables and web external tables are their data sources. Regular
external tables access static flat files, while web external tables access dynamic data
sources – either on a web server with the http:// protocol or by executing OS
commands or scripts.

When a query is planned using a regular external table, the external table is considered
rescannable since the data is static for the course of the query. For web external tables,
the data is not rescannable because there is the possibility that the data could change
during the course of the execution of the query.

Writable external tables are used to select rows from other database tables and output
the rows to files, named pipes, or to other executable programs. For example, you
could unload data from Greenplum Database and send it to an executable that
connects to another database or ETL tool to load the data elsewhere. Writable external
tables can also be used as output targets for Greenplum parallel MapReduce
calculations.

Once a writable external table is defined, data can be selected from database tables
and inserted into the writable external table. Writable external tables only allow
INSERT operations – SELECT, UPDATE, DELETE, or TRUNCATE are not allowed.Writable
web external tables output data to an executable program that can accept an input
stream of data.

About gpload

gpload is a data loading utility that acts as an interface to Greenplum’s external table
parallel loading feature. Using a load specification defined in a YAML formatted
control file, gpload executes a load by invoking the Greenplum parallel file server
program (gpfdist), creating an external table definition based on the source data
defined, and executing an INSERT, UPDATE or MERGE operation to load the source data
into the target table in the database.

About COPY

Greenplum Database also offers the standard PostgreSQL COPY command for loading
and unloading data. COPY is a non-parallel load/unload mechanism, meaning that data
is loaded/unloaded in a single process via the Greenplum master instance. In cases
where a small amount of data is involved, COPY offers a simple way to move data into
or out of the database in a single transaction, without the administrative overhead of
setting up an external table.

Loading Data into Greenplum Database
This section describes how to load data into Greenplum Database using both parallel
load operations (file-based external tables, web external tables, and gpload) and
non-parallel load operations (COPY). This section contains the following topics:

• “Accessing File-Based External Tables” on page 137

• “Creating and Using Web External Tables” on page 146
Loading Data into Greenplum Database 136

Greenplum Database Administrator Guide 4.1 – Chapter 12: Loading and Unloading Data
• “Loading Data Using an External Table” on page 148

• “Handling Load Errors” on page 148

• “Loading Data with gpload” on page 150

• “Loading Data with COPY” on page 152

• “Data Loading Performance Tips” on page 152

Accessing File-Based External Tables

When you create an external table definition, you must specify the format of your
input files and the location of your external data sources. For more information on
input file formats, see “Formatting Data Files” on page 157. There are three protocols
that you can use to access external table data sources, but you cannot mix the
protocols in a CREATE EXTERNAL TABLE statement. The protocols are as follows:

gpfdist

If using the gpfdist:// protocol, you must have the Greenplum file distribution
program (gpfdist) running on the host where the external data files reside. This
program points to a given directory on the file host and serves external data files to all
Greenplum Database segments in parallel. If files are compressed using gzip or
bzip2 (have a .gz or .bz2 file extension), gpfdist will uncompress the files
automatically (provided that gunzip or bunzip2 is in your $PATH).

All primary segments access the external file(s) in parallel regardless of how many
URIs you specify when defining the external table. You can use multiple gpfdist
data sources in a CREATE EXTERNAL TABLE statement to scale the scan performance
of the external table.

When specifying which files to get using gpfdist, you can use the wildcard character
(*) or other C-style pattern matching to denote multiple files. The files specified are
assumed to be relative to the directory from which gpfdist is serving files (the
directory specified when you started the gpfdist program).

gpfdist is located in $GPHOME/bin on your Greenplum Database master host. See
the gpfdist reference documentation for more information on using this file
distribution program with external tables.

file

If using the file:// protocol the external data file(s) must reside on a segment host
in a location accessible by the Greenplum superuser (gpadmin). The number of URIs
specified corresponds to the number of segment instances that will work in parallel to
access the external table. So for example, if you have a Greenplum Database system
with 8 primary segments and you specify 2 external files, only 2 of the 8 segments will
access the external table in parallel at query time. The number of external files per
segment host cannot exceed the number of primary segment instances on that host.
For example, if your array has 4 primary segment instances per segment host, you may
place 4 external files on each segment host. Also, the host name used in the URI must
match the segment host name as registered in the gp_configuration system catalog
table.
Loading Data into Greenplum Database 137

Greenplum Database Administrator Guide 4.1 – Chapter 12: Loading and Unloading Data
gphdfs

This protocol specifies a file on a Hadoop Distributed File Sytem. There are several
restrictions for HDFS files, as follows:

• Wildcard characters are not permitted with gphdfs. Be sure to specify the file
name.

• Only one file can be specified for the external table when using the gphdfs
protocol.

• TEXT is the only format allowed for HDFS files.

When Greenplum links with HDFS files, all the data is read in parallel from the HDFS
Data Nodes into the Greenplum Segments for rapid processing. Greenplum
determines the connections between the segments and nodes

The HDFS file is split into equally-sized chunks. Each Greemplum segment reads one
chunk. For writing, each Greenplum segment writes only the data contained on it.

Figure 12.1 External Table Located on a Hadoop Distributed File System

The FORMAT clause is used to describe how the external table files are formatted. Valid
file formats are delimited text (TEXT) for all protocols and comma separated values
(CSV) format for gpfdist and html protocols, similar to the formatting options
available with the PostgreSQL COPY command. If the data in the file does not use the
default column delimiter, escape character, null string and so on, you must specify the
additional formatting options so that the data in the external file is read correctly by
Greenplum Database.The gpfdist and gphdfs protocols require one-time setup.

Errors in External Table Data

By default, if external table data contains an error, the entire command fails and no
data is loaded into the target database table. To isolate data errors in external table data
while still loading correctly formatted rows, define the external table with single row
error handling. See “Handling Load Errors” on page 148.
Loading Data into Greenplum Database 138

Greenplum Database Administrator Guide 4.1 – Chapter 12: Loading and Unloading Data
There is a system view named pg_max_external_files that you can use to
determine how many external table files are permitted per external table. This view
lists the available file slots per segment host (if using the file:// protocol). For
example:

SELECT * FROM pg_max_external_files;

If using the gpfdist:// protocol, the following server configuration parameter can
be used to set the maximum number of segment instances that will go to one gpfdist
file distribution program to get external table data in parallel. The default is 64
segment instances.

gp_external_max_segs = <integer>

The gpfdist program serves files via the HTTP protocol. Queries of external tables
that use a LIMIT clause will break off the HTTP connection after retrieving the rows
causing an HTTP socket error. If using LIMIT in queries of external tables that use the
gpfdist:// or http:// protocols, it is safe to ignore these HTTP socket errors from
the gpfdist or web server – data is still returned to the database client as expected.

During dump/restore operations, only external and web external table definitions will
be backed up and restored. The data sources are not included.

Defining External Tables - Examples
The CREATE EXTERNAL TABLE command defines an external table and specifies the
location and format of the external table data files with the LOCATION and FORMAT
parameters. This command does not load data into the table. The following examples
show how to connect to external data with different protocols. Each CREATE
EXTERNAL TABLE command can contain only one protocol. Details about each
protocol are found in the sections following these examples.

Example 1 - Starting the Greenplum file server (gpfdist)

Before creating external tables with the gpfdist protocol, the gpfdist file server
program must be running. The following code starts the gpfdist file server program
in the background on port 8081 serving files from directory /var/data/staging:

gpfdist -p 8081 -d /var/data/staging -l /home/gpadmin/log &

Example 2—Single Greenplum file server (gpfdist) instance on multiple NIC machine

Creates a readable external table named ext_expenses using the gpfdist protocol.
The files are formatted with a pipe (|) as the column delimiter.

=# CREATE EXTERNAL TABLE ext_expenses (name text,

 date date, amount float4, category text, desc1 text)

 LOCATION ('gpfdist://etlhost-1:8081/*',

 'gpfdist://etlhost-2:8081/*')

 FORMAT 'TEXT' (DELIMITER '|');

Example 3—Multiple Greenplum file server (gpfdist) instances
Defining External Tables - Examples 139

Greenplum Database Administrator Guide 4.1 – Chapter 12: Loading and Unloading Data
Creates a readable external table named ext_expenses using the gpfdist protocol
from all files with the txt extension. The files are formatted with a pipe (|) as the
column delimiter and an empty space as null.

=# CREATE EXTERNAL TABLE ext_expenses (name text,

 date date, amount float4, category text, desc1 text)

 LOCATION ('gpfdist://etlhost-1:8081/*.txt',

 'gpfdist://etlhost-2:8082/*.txt')

 FORMAT 'TEXT' (DELIMITER '|' NULL ' ') ;

Example 4—Single Greenplum file server (gpfdist) instance with error logging

Creates a readable external table named ext_expenses using the gpfdist protocol
from all files with the txt extension. The files are formatted with a pipe (|) as the
column delimiter and an empty space as null.

The external table is accessed in single row error isolation mode. An error table
(err_customer) is specified. Any data formatting errors that are found in the input
data will be discarded to err_customer, along with a description of the error.
err_customer can later be queried in order to see the nature of errors and reload the
rejected data after fixing the issues. If the count of badly formatted data rows on any
specific segment is greater than five (specified as the SEGMENT REJECT LIMIT value),
the entire external table operation will be aborted and no rows will be processed.

=# CREATE EXTERNAL TABLE ext_expenses (name text,

 date date, amount float4, category text, desc1 text)

 LOCATION ('gpfdist://etlhost-1:8081/*.txt',

 FORMAT 'TEXT' (DELIMITER '|' NULL ' ')

 LOG ERRORS INTO err_customer SEGMENT REJECT LIMIT 5;

Create the same readable external table definition as above, but with CSV formatted
files:

=# CREATE EXTERNAL TABLE ext_expenses (name text,

 date date, amount float4, category text, desc1 text)

 LOCATION ('gpfdist://etlhost-1:8081/*.txt',

 FORMAT 'CSV' (DELIMITER ',');

 LOG ERRORS INTO err_customer SEGMENT REJECT LIMIT 5;

Example 5—Hadoop Distributed File Server (HDFS)

Creates a readable external table named ext_expenses using the gphdfs protocol. The
files are formatted with a pipe (|) as the column delimiter.

=# CREATE EXTERNAL TABLE ext_expenses (name text,

 date date, amount float4, category text, desc1 text)

 LOCATION ('gphdfs://hdfshost-1:8081/data/filename.txt')

 FORMAT 'TEXT' (DELIMITER '|');

Note: Only one file is permitted with gphdfs. The file must be in TEXT format.
Defining External Tables - Examples 140

Greenplum Database Administrator Guide 4.1 – Chapter 12: Loading and Unloading Data
Example 6—Multiple file protocols in CSV format with header rows

Creates a readable external table named ext_expenses using the file protocol.The
wildcard specifications are not the same for all the files. The files are formatted in CSV
format and have a header row.

=# CREATE EXTERNAL TABLE ext_expenses (name text,

 date date, amount float4, category text, desc1 text)

 LOCATION ('file://filehost:5432/data/international/*',

 'file://filehost:5432/data/regional/*'

 'file://filehost:5432/data/supplement/*.csv')

 FORMAT 'CSV' (HEADER);

Example 7—Readable Web External Table with Script

Create a readable web external table that executes a script once per segment host:

CREATE EXTERNAL WEB TABLE log_output (linenum int, message
text) EXECUTE '/var/load_scripts/get_log_data.sh' ON HOST
 FORMAT 'TEXT' (DELIMITER '|');

Example 8—Writable External Table that Writes to a File

Create a writable external table named sales_out that uses gpfdist to write output
data to a file named sales.out. The files are formatted with a pipe (|) as the column
delimiter and an empty space as null.

CREATE WRITABLE EXTERNAL TABLE sales_out (LIKE sales)

 LOCATION ('gpfdist://etl1:8081/sales.out')

 FORMAT 'TEXT' (DELIMITER '|' NULL ' ')

 DISTRIBUTED BY (txn_id);

Example 9 – Writable External Web Table with Script

Create a writable external web table that pipes output data received by the segments to
an executable script named to_adreport_etl.sh:

CREATE WRITABLE EXTERNAL WEB TABLE campaign_out
(LIKE campaign)
 EXECUTE '/var/unload_scripts/to_adreport_etl.sh'
 FORMAT 'TEXT' (DELIMITER '|');

Use the writable external table defined above to unload selected data:

INSERT INTO campaign_out SELECT * FROM campaign WHERE
customer_id=123;

Using the Greenplum Parallel File Server (gpfdist)

For the best performance and ease of administrative setup, the gpfdist protocol is
preferred. One advantage of using the gpfdist file server program (as opposed to the
file protocol) is that it ensures that all of the segments in your Greenplum Database
system are fully utilized when reading from external table data files.
Defining External Tables - Examples 141

Greenplum Database Administrator Guide 4.1 – Chapter 12: Loading and Unloading Data
This section describes the tasks involved in setting up and managing the Greenplum
parallel file server program (gpfdist) for use with external tables.

• About gpfdist Setup and Performance

• Controlling Segment Parallelism

• Installing gpfdist

• Starting and Stopping gpfdist

• Troubleshooting gpfdist

About gpfdist Setup and Performance

The gpfdist program can serve data to the segment instances at an average rate of
about 350 MB/s for delimited text formatted files and 200 MB/s for CSV formatted
files. Therefore, you should consider the following options when running gpfdist in
order to maximize the network bandwidth of your ETL systems:

• If your ETL machine is configured with multiple network interface cards (NICs),
run one instance of gpfdist on your ETL host and then define your external table
definition so that the host name of each NIC is declared in the LOCATION clause
(see “Defining External Tables - Examples” on page 139 for an example). This
allows network traffic between your Greenplum segment hosts and your ETL host
to use all NICs simultaneously.

Figure 12.2 External Table Using Single gpfdist Instance with Multiple NICs
Defining External Tables - Examples 142

Greenplum Database Administrator Guide 4.1 – Chapter 12: Loading and Unloading Data
• Run multiple gpfdist instances on your ETL host and divide your external data
files equally between each instance. For example, if you have an ETL system with
two network interface cards (NICs), then you could run two gpfdist instances on
that machine to maximize your load performance. You would then divide the
external table data files evenly between the two gpfdist programs.

Figure 12.3 External Tables Using Multiple gpfdist Instances with Multiple NICs

Controlling Segment Parallelism

You can use the following server configuration parameter to control how many
segment instances access a single gpfdist program at a time. 64 is the default. This
allows you to control the number of segments processing external table files, while
reserving some segments for other database processing. This parameter can be set in
the postgresql.conf file of your master instance:

gp_external_max_segs

Installing gpfdist

The gpfdist program is installed in $GPHOME/bin of your Greenplum Database
master host installation. Most likely you will want to run gpfdist from a machine
other than your Greenplum Database master, such as on a machine devoted to ETL
processing. To install gpfdist on another machine:

1. Copy gpfdist from $GPHOME/bin in your Greenplum installation to the remote
machine.

2. Add gpfdist to your $PATH.

Starting and Stopping gpfdist

To start gpfdist, you must tell it from which directory it will be serving files and
optionally the port to run on (defaults to HTTP port 8080).

To start gpfdist in the background (and log output messages and errors to a log file):

$ gpfdist -d /var/load_files -p 8081 -l /home/gpadmin/log &
Defining External Tables - Examples 143

Greenplum Database Administrator Guide 4.1 – Chapter 12: Loading and Unloading Data
If starting multiple gpfdist instances on the same ETL host (see Figure 12.3), then
each should use a different port and base directory. For example:

$ gpfdist -d /var/load_files1 -p 8081 -l /home/gpadmin/log1 &

$ gpfdist -d /var/load_files2 -p 8082 -l /home/gpadmin/log2 &

To stop gpfdist when its running in the background:

--First find its process id:

$ ps ax | grep gpfdist (Linux)
$ ps –ef | grep gpfdist (Solaris)

--Then kill the process, for example:

$ kill 3456

Troubleshooting gpfdist

Keep in mind that gpfdist is accessed at runtime by the segment instances.
Therefore, you must ensure that the Greenplum segment hosts have network access to
gpfdist. The gpfdist program is a simple web server, so to test connectivity you
can run the following command from each host in your Greenplum array (segments
and master):

$ wget http://gpfdist_hostname:port/filename

Also, make sure that your CREATE EXTERNAL TABLE definition has the correct host
name, port, and file names for gpfdist. The file names and paths specified should be
relative to the directory from which gpfdist is serving files (the directory path used
when you started the gpfdist program). See “Defining External Tables - Examples”
on page 139.

Using Hadoop Distributed File System (HDFS) Tables

The Greenplum database leverages the parallel architecture of a Hadoop file system to
read and write data files efficiently with the gphdfs protocol. There are three
components to using HDFS, as follows:

• One-time setup

• Grant privileges for the HDFS protocol

• Specify Hadoop file system data in an external table definition

One-time HDFS Protocol Installation

Follow the steps below to install and configure Hadoop for use with the gphdfs
protocol:

1. Install Java 1.6 or later on all segments.

2. Install Hadoop version 0.21.0 or version 0.20.1 on all segments.

If you are using Hadoop version 0.21.0, proceed to step 3. If you are using
Hadoop version 0.20.1, you need to complete these additional steps:

a. In the $GPHOME/bin directory, rename HDFSReader.class and
HDFSWriter.class to *.class.0.21.0, respectively, as shown in the
following code:
Defining External Tables - Examples 144

Greenplum Database Administrator Guide 4.1 – Chapter 12: Loading and Unloading Data
mv $GPHOME/bin/HDFSReader.class

$GPHOME/bin/HDFSReader.class.0.21.0

mv $GPHOME/bin/HDFSWriter.class

$GPHOME/bin/HDFSWriter.class.0.21.0

b. In the $GPHOME/bin directory, rename the two class files ending with
*.class.0.20.1 to *.class, respectively, as shown in the following code:
mv $GPHOME/bin/HDFSReader.class.0.20.1

$GPHOME/bin/HDFSReader.class

mv $GPHOME/bin/HDFSWriter.class.0.20.1

$GPHOME/bin/HDFSWriter.class

3. Set the following environmental variables on all segments.

JAVA_HOME – the Java home directory

HADOOP_HOME – the Hadoop home directory

HADOOP_VERSION – the complete Hadoop version number

As an example, you could add three lines similar to the following to the gpadmin
user’s .bashrc profile.

export JAVA_HOME=/opt/jdk1.6.0_21

export HADOOP_HOME=/bin/hadoop

export HADOOP_VERSION=0.21.0

Grant Privileges for the HDFS Protocol

There are two steps to enable privileges needed to create external tables that access
files on HDFS. These privileges can be granted or revoked as needed.

1. Grant privileges to create external tables with the gphdfs or protocol.

The CREATEEXTTABLE and NOCREATEEXTTABLE clauses in the CREATE ROLE and
ALTER ROLE commands grant and revoke external table creation privileges from
non-superuser roles. Read or write access is specified in the options.

• Use the options type='readable' and protocol='gphdfs' for read
access.

• Use the options type='writable' and protocol='gphdfs' for write
access.

For example, the following command allows the hdfsadmin role to create
writable external tables:

=# ALTER ROLE hdfsadmin CREATEEXTTABLE

 (type='writable', protocol='gphdfs');

2. Greenplum Database connects to the specified Hadoop File System node using
Greenplum OS credentials. Grant read privileges and, if needed, write priviliges to
on the Hadoop File System to the the Greenplum administrative user (gpadmin
OS user).
Defining External Tables - Examples 145

Greenplum Database Administrator Guide 4.1 – Chapter 12: Loading and Unloading Data
Specify Hadoop File System Data in an External Table Definition

The location option in the CREATE EXTERNAL TABLE command for the Hadoop file
uses the following format:

LOCATION ('gphdfs://hdfs_host[:port]/path/filename.txt')

There are several restrictions for HDFS files, as follows:

• You can specify only one file for a readable external table with the gphdfs
protocol.(You can only specify a directory for a writable external table with the
gphdfs protocol.)

• Wildcard characters are not permitted with gphdfs. Be sure to specify the full
path name.

• TEXT is the only format allowed for HDFS files.

The following code defines a readable external table for a file named filename.txt on
an Hadoop file system on port 8081.

=# CREATE EXTERNAL TABLE ext_expenses (name text,

 date date, amount float4, category text, desc1 text)

 LOCATION ('gphdfs://hdfshost-1:8081/data/filename.txt')

 FORMAT 'TEXT' (DELIMITER ',');

Creating and Using Web External Tables

CREATE EXTERNAL WEB TABLE creates a web table definition in Greenplum
Database. A web table is a type of external table that allows you to access dynamic
data sources as though they were a regular database table. Web table data is considered
dynamic (meaning the data could possibly change midstream during the execution of a
query). Therefore, the query planner must choose plans that do not allow for
rescanning of the web table data.

There are two forms of defining a web external table. You can use one of the following
forms per CREATE EXTERNAL WEB TABLE statement, but you cannot mix the two
forms.

• Web URLs. Specify the LOCATION of files on a web server using the http://
protocol. The web data file(s) must reside on a web server that is accessible by the
Greenplum segment hosts. The number of URLs specified corresponds to the
number of segment instances that will work in parallel to access the web table. So
for example, if you have a Greenplum Database system with 8 primary segments
and you specify 2 external files, only 2 of the 8 segments will access the web table
in parallel at query runtime.

• OS Command. Specify a shell command or script to EXECUTE on one or more
segments, the output of which will comprise the web table’s data at the time of
access. A web table defined with an EXECUTE clause will execute the given OS
shell command or script on the specified segment host or hosts. By default, the
command is executed by all active segment instances on all segment hosts. For
example, if each segment host has four primary segment instances running, the
command will be executed four times per segment host. You can optionally limit
the number of segment instances that execute the web table command.
Defining External Tables - Examples 146

Greenplum Database Administrator Guide 4.1 – Chapter 12: Loading and Unloading Data
Web table data is comprised of the output of the command at the time the web
table statement is executed. All segment instances included in the web table
definition (as specified by the ON clause) execute the command in parallel.

Defining Command-Based Web External Tables

The command or program specified in your external table definition must reside on all
of the Greenplum segment hosts. If you use environment variables in external web
table commands (such as $PATH), keep in mind that the command is executed from
within the database and not from a login shell. Therefore the .bashrc or .profile of
the current user will not be sourced. However, you can set desired environment
variables from within the EXECUTE clause of your external web table definition, for
example:

=# CREATE EXTERNAL WEB TABLE output (output text)

 EXECUTE 'PATH=/home/gpadmin/programs; export PATH;
myprogram.sh'

 FORMAT 'TEXT';

Also, any scripts that you want to execute must be present in the same location on the
segment hosts and be executable by the gpadmin user.

For example, here is a command that defines a web table that executes a script once
per segment host:

=# CREATE EXTERNAL WEB TABLE log_output

 (linenum int, message text)

 EXECUTE '/var/load_scripts/get_log_data.sh' ON HOST

 FORMAT 'TEXT' (DELIMITER '|');

Defining URL-Based Web External Tables

A URL-based web table is similar to a file-based external table except that the data is
accessed from a web server via the HTTP protocol. Also, web table data is assumed to
be dynamic, so unlike file-based external tables, the data is not rescannable.

For example, here is a command that defines a web table that gets data from several
different URLs:

=# CREATE EXTERNAL WEB TABLE ext_expenses (name text,

 date date, amount float4, category text, description text)

 LOCATION (
 'http://intranet.company.com/expenses/sales/file.csv',

 'http://intranet.company.com/expenses/exec/file.csv',

 'http://intranet.company.com/expenses/finance/file.csv',

 'http://intranet.company.com/expenses/ops/file.csv',

 'http://intranet.company.com/expenses/marketing/file.csv',

 'http://intranet.company.com/expenses/eng/file.csv',
)

 FORMAT 'CSV' (HEADER);
Defining External Tables - Examples 147

Greenplum Database Administrator Guide 4.1 – Chapter 12: Loading and Unloading Data
Loading Data Using an External Table

Once you have defined the external table, and have placed the necessary data files in
the correct location (and have started the Greenplum files server(s) if using the
gpfdist protocol), you can then select from the external table as you would an
ordinary database table. For example, if you wanted to load a portion of the external
table data into a database table, you could do something like:

=# INSERT INTO expenses_travel

 SELECT * from ext_expenses where category='travel';

Or if you wanted to quickly load all data into a new database table:

=# CREATE TABLE expenses AS SELECT * from ext_expenses;

Handling Load Errors

The most common use of readable external tables is selecting data from them to load
into regular database tables. This is typically done by issuing a CREATE TABLE AS
SELECT or INSERT INTO SELECT command, where the SELECT statement queries
external table data. By default, if the external table data contains an error, the entire
command fails and no data is loaded into the target database table. To isolate data
errors in external table data while still loading correctly formatted rows, you can
define a readable external table with a SEGMENT REJECT LIMIT clause in the CREATE
EXTERNAL TABLE command.

• The reject limit count can be specified as number of ROWS (the default) or a
PERCENT of total rows (1-100).

• To keep error rows for further examination, declare an error table using the LOG
ERRORS INTO clause.

Defining an External Table with Single Row Error Isolation

You can specify the number of error rows acceptable (on a per-segment basis), after
which the entire external table operation will be aborted and no rows will be processed
or loaded. Note that the count of error rows is per-segment, not per entire operation. If
the per-segment reject limit is not reached, then all rows not containing an error will
be processed. If the limit is not reached, all good rows will be processed and any error
rows discarded. The following example uses a LOG ERRORS INTO clause, so any rows
containing a format error are logged to the error table file err_expenses.

For example:

=# CREATE EXTERNAL TABLE ext_expenses (name text,

 date date, amount float4, category text, desc text)

 LOCATION ('gpfdist://etlhost-1:8081/*',

 'gpfdist://etlhost-2:8082/*')

 FORMAT 'TEXT' (DELIMITER '|')

 LOG ERRORS INTO err_expenses SEGMENT REJECT LIMIT 10 ROWS;

When SEGMENT REJECT LIMIT is used, then the external data will be scanned in
single row error isolation mode. This can be helpful in isolating errors when loading
data from and external table using CREATE TABLE AS SELECT or INSERT INTO
Defining External Tables - Examples 148

Greenplum Database Administrator Guide 4.1 – Chapter 12: Loading and Unloading Data
SELECT. Single row error isolation mode only applies to external data rows with
format errors – for example, extra or missing attributes, attributes of a wrong data
type, or invalid client encoding sequences. Constraint errors are not checked, however
it is easy to filter out constraint errors when using external tables by limiting the
SELECT from an external table at runtime. For example, to eliminate duplicate key
errors:

=# INSERT INTO table_with_pkeys

 SELECT DISTINCT * FROM external_table;

Viewing Bad Rows in the Error Table

If you are using the single row error isolation feature (see “Defining an External Table
with Single Row Error Isolation” on page 148 or “Running COPY in Single Row
Error Isolation Mode” on page 152), any rows with formatting errors are logged into
an error table. The error table has the following columns:

Table 12.1 Error Table Format

column type description

cmdtime timestampz Timestamp when the error occurred.

relname text The name of the external table that
was scanned or the target table of a
COPY command.

filename text The name of the load file that
contained the error.

linenum int If COPY was used, the line number
in the load file where the error
occurred. For external tables using
file:// protocol or gpfdist:// protocol
and CSV format, the file name and
line number is logged.

bytenum int If using external tables with the
gpfdist:// protocol and data is in
TEXT format, the byte offset in the
load file where the error occurred is
logged. gpfdist parses TEXT files in
blocks, so logging a line number is
not possible.

CSV files are parsed a line at a time
so line number tracking is possible
for CSV files but not for TEXT files.

errmsg text The error message text.

rawdata text The raw data of the rejected row.

rawbytes bytea In cases where there is a database
encoding error (the client encoding
used cannot be converted to a
server-side encoding), it is not
possible to log the encoding error as
rawdata. Instead the raw bytes are
stored and you will see the octal
code for any non seven bit ASCII
characters.
Defining External Tables - Examples 149

Greenplum Database Administrator Guide 4.1 – Chapter 12: Loading and Unloading Data
You can use SQL commands to query the error table and view the rows that were not
loaded. For example:

=# SELECT * from err_expenses;

Identifying Invalid CSV Files in Error Table Data

If a comma separated values (CSV) file has invalid formatting, the rawdata field in
the error table may contain several combined rows. For example, if a closing quote for
a specific field is missing, all the following newlines are treated as embedded
newlines. When this happens, Greenplum stops parsing a row when it reaches 64K,
puts that 64K of data into the error table as a single row, resets the quote flag, and
continues. If this happens three times during load processing, the load file is
determined to be invalid and the entire load fails with the message “rejected N or
more rows”. See “Escaping in CSV Formatted Files” on page 159 for more
information on the correct use of quotes in CSV files.

Moving Data between Tables

You can use CREATE TABLE AS or INSERT...SELECT to load external and web
external table data into another (non-external) database table, and the data will be
loaded in parallel according to the external or web external table definition.

If an external table file or web external table data source has an error, any operation
that reads from that table fails. Similar to COPY, loading from external and web
external tables is an all or nothing operation.

Loading Data from Greenplum Database
There are three ways to load data from readable external tables.

• Use the gpload utility

• Use the gphdfs protocol

• Load with copy

Each method is described in the following sections.

Loading Data with gpload

gpload is a Greenplum utility that can be used to load data using readable external
tables and the Greenplum parallel file server (gpfdist). It facilitates some of the
maintenance tasks of setting up parallel file-based external tables by allowing users to
configure their data format, external table definition and gpfdist setup into one
easy-to-manage configuration file.

To use gpload

1. First, make sure your environment is set up to run gpload. You’ll need some
dependent files from your Greenplum Database installation such as gpfdist and
Python, as well as network access to the Greenplum segment hosts. See
“Prerequisites” on page 659 for details.
Loading Data from Greenplum Database 150

Greenplum Database Administrator Guide 4.1 – Chapter 12: Loading and Unloading Data
2. Create your load control file. This is a YAML-formatted file that specifies the
Greenplum Database connection information, gpfdist configuration
information, external table options, and data format. See “Control File Format” on
page 661 for details. For example:

VERSION: 1.0.0.1

DATABASE: ops

USER: gpadmin

HOST: mdw-1

PORT: 5432

GPLOAD:

 INPUT:

 - SOURCE:

 LOCAL_HOSTNAME:

 - etl1-1

 - etl1-2

 - etl1-3

 - etl1-4

 PORT: 8081

 FILE:

 - /var/load/data/*

 - COLUMNS:

 - name: text

 - amount: float4
 - category: text

 - desc: text

 - date: date

 - FORMAT: text

 - DELIMITER: '|'

 - ERROR_LIMIT: 25

 - ERROR_TABLE: payables.err_expenses

 OUTPUT:

 - TABLE: payables.expenses

 - MODE: INSERT

 SQL:
 - BEFORE: "INSERT INTO audit VALUES('start', current_timestamp)"

 - AFTER: "INSERT INTO audit VALUES('end', current_timestamp)"

3. Run gpload passing in the load control file. For example:

gpload -f my_load.yml

Loading Data with the gphdfs Protocol

If you use INSERT INTO to insert data into a Greenplum table from a table on the
Hadoop file system that was defined as an external table with the gphdfs protocol, the
data is copied in parallel. For example:

INSERT INTO gpdb_table (select * from hdfs_ext_table);
Loading Data from Greenplum Database 151

Greenplum Database Administrator Guide 4.1 – Chapter 12: Loading and Unloading Data
Loading Data with COPY

COPY FROM copies data from a file (or standard input) into a table (appending the data
to whatever is in the table already). If copying data from a file, the file must be
accessible to the master host and the name must be specified from the viewpoint of the
master host. When STDIN or STDOUT is specified, data is transmitted via the
connection between the client and the master server. COPY is non-parallel, meaning
that data is loaded in a single process via the Greenplum master instance

To maximize the performance and throughput of COPY, consider running multiple
COPY commands concurrently in separate sessions and dividing the data to be loaded
evenly across all concurrent processes. To maximize throughput, run one concurrent
COPY operation per CPU.

Running COPY in Single Row Error Isolation Mode

By default, COPY stops an operation at the first error, meaning if the data being loaded
contains an error, the entire operation fails and no data is loaded. Optionally, a COPY
FROM command can be run in single row error isolation mode. In this mode, rows
containing format errors – for example, extra or missing attributes, attributes of a
wrong data type, or invalid client encoding sequences – can be skipped over while still
loading all properly formatted rows. In this release, single row error isolation mode
only applies to rows in the input file with format errors. Constraint errors such as
violation of a NOT NULL, CHECK, or UNIQUE constraint will still be handled in
‘all-or-nothing’ input mode.

The SEGMENT REJECT LIMIT clause when added to a COPY FROM operation will run
the command in single row error isolation mode. The user can specify the number of
error rows acceptable (on a per-segment basis), after which the entire COPY FROM
operation will be aborted and no rows will be loaded. Note that the count of error rows
is per Greenplum segment, not per entire load operation. If the per-segment reject
limit is not reached, then all rows not containing an error will be loaded. If the limit is
not reached, all good rows will be loaded and any error rows discarded. If you would
like to keep error rows for further examination, you can optionally declare an error
table using the LOG ERRORS INTO clause. Any rows containing a format error would
then be logged to the specified error table. For example:

=> COPY country FROM '/data/gpdb/country_data'

 WITH DELIMITER '|' LOG ERRORS INTO err_country

 SEGMENT REJECT LIMIT 10 ROWS;

See also “Viewing Bad Rows in the Error Table” on page 149 for information on
investigating rows that were not loaded.

Data Loading Performance Tips

Drop Indexes Before Loading – If you are loading a freshly created table, the fastest
way is to create the table, load the data, then create any indexes needed for the table.
Creating an index on pre-existing data is quicker than updating it incrementally as
each row is loaded. If you are adding large amounts of data to an existing table, it may
be a faster to drop the index, load the table, and then recreate the index. Temporarily
increasing the maintenance_work_mem server configuration parameter will help to
Loading Data from Greenplum Database 152

Greenplum Database Administrator Guide 4.1 – Chapter 12: Loading and Unloading Data
speed up CREATE INDEX commands, although it will not help performance of the load
itself. Dropping and recreating indexes should be done when there are no users on the
system.

Run ANALYZE After Loads – Whenever you have significantly altered the data in a
table, running ANALYZE is strongly recommended. Running ANALYZE (or VACUUM
ANALYZE) ensures that the query planner has up-to-date statistics about the table. With
no statistics or obsolete statistics, the planner may make poor decisions during query
planning, leading to poor performance on any tables with inaccurate or nonexistent
statistics.

Run VACUUM After Load Errors – If not running in single row error isolation mode, a
load operation stops at the first encountered error. The target table will already have
received earlier rows before the error occurred. These rows will not be visible or
accessible, but they still occupy disk space. This may amount to a considerable
amount of wasted disk space if the failure happened well into a large load operation.
Invoking the VACUUM command will recover the wasted space.

Unloading Data from Greenplum Database
A writable external table allows you to select rows from other database tables and
output the rows to files, named pipes, or to other executable programs. Writable
external tables can also be used as output targets for Greenplum parallel MapReduce
calculations. There are two ways to define writable external tables, file-based and
web-based tables.

This section describes how unload data from Greenplum Database using both parallel
unload (writable external tables) and non-parallel unload (COPY). This section contains
the following topics:

• “Defining a File-Based Writable External Table” on page 153

• “Defining a Command-Based Writable External Web Table” on page 155

• “Unloading Data Using a Writable External Table” on page 156

• “Unloading Data Using COPY” on page 157

Defining a File-Based Writable External Table

Writable external tables that output data to files use the Greenplum parallel file server
program (gpfdist) or the Hadoop file system interface (gphdfs), just as file-based
readable external tables do.

Use the CREATE WRITABLE EXTERNAL TABLE command to define the external table
and specify the location and format of the output files. See “Using the Greenplum
Parallel File Server (gpfdist)” on page 141 for instructions on setting up gpfdist for
use with an external table and “Using Hadoop Distributed File System (HDFS)
Tables” on page 144 for instructions on setting up gphdfs for use with an external
table.
Unloading Data from Greenplum Database 153

Greenplum Database Administrator Guide 4.1 – Chapter 12: Loading and Unloading Data
• With a writable external table that uses the gpfdist protocol, the Greenplum
segments send their output rows to the gpfdist process, which then writes out
the data to the named file. You must have the Greenplum file distribution program
(gpfdist) running on a host that is accessible over the network by the Greenplum
segments. This program points to a given file location on the output host and
writes output data received from the Greenplum segments to this file. You can list
multiple gpfdist URIs in your writable external table definition if you want your
output data to be divided across multiple files.

• A writable external web table outputs data to an executable program. For
example, you could unload data from Greenplum Database and send it to an
executable that connects to another database or ETL tool and loads the data
elsewhere. Web tables use the EXECUTE clause to specify a shell command, script,
or executable program to run on the segment hosts. For writable external web
tables, this command must be prepared to accept an input stream of data. See also,
“Defining a Command-Based Writable External Web Table” and “Using
Environment Variables in EXECUTE commands” for more information on using
EXECUTE commands in a writable external table definition.

Unlike readable external tables, writable external tables also have the option to declare
a distribution policy. By default, writable external tables use a random distribution
policy. If the source table you are exporting data from has a hash distribution policy,
defining the same distribution key column(s) for the writable external table will
improve unload performance by eliminating the need to move rows over the
interconnect. If you are unloading data from a particular table, you can use the LIKE
clause to copy the column definitions and distribution policy from the source table.

Example 1—Greenplum file server (gpfdist)

=# CREATE WRITABLE EXTERNAL TABLE unload_expenses

 (LIKE expenses)

 LOCATION ('gpfdist://etlhost-1:8081/expenses1.out',

 'gpfdist://etlhost-2:8081/expenses2.out')

 FORMAT 'TEXT' (DELIMITER ',')

 DISTRIBUTED BY (exp_id);

Example 2—Hadoop file server (gphdfs)

=# CREATE WRITABLE EXTERNAL TABLE unload_expenses

 (LIKE expenses)

 LOCATION ('gphdfs://hdfslhost-1:8081/path')

 FORMAT 'TEXT' (DELIMITER ',')

 DISTRIBUTED BY (exp_id);

There are two additional restrictions for writing file-based external tables with the
gphdfs protocol, as follows:

• You can specify only a directory for a writable external table with the gphdfs
protocol. (You can specify only one file for a readable external table with the
gphdfs protocol.)

•

• TEXT is the only format allowed.
Unloading Data from Greenplum Database 154

Greenplum Database Administrator Guide 4.1 – Chapter 12: Loading and Unloading Data
Note: The default port number is 9000.

Defining a Command-Based Writable External Web Table

Similar to readable web external tables that execute a command or program, writable
external web tables can also be defined to send output rows to an executable program
or script. The executable program used in the writable external table definition must
be prepared to accept an input stream, reside in the same location on all of the
Greenplum segment hosts, and be executable by the gpadmin user. The command
specified in your writable external table definition is executed by all segments in the
Greenplum system, whether or not a segment has output rows to process or not.

Use the CREATE WRITABLE EXTERNAL WEB TABLE command to define the external
table and specify the executable command or program to run on the segment hosts. If
you use environment variables in the executable command (such as $PATH), keep in
mind that the command is executed from within the database and not from a login
shell. Therefore the .bashrc or .profile of the current user will not be sourced.
However, you can set desired environment variables from within the EXECUTE clause
of your writable external table definition, for example:

=# CREATE WRITABLE EXTERNAL WEB TABLE output (output text)

 EXECUTE 'export PATH=$PATH:/home/gpadmin/programs;
 myprogram.sh'

 FORMAT 'TEXT'

 DISTRIBUTED RANDOMLY;

Disabling EXECUTE for Web or Writable External Tables

External tables that execute OS commands or scripts have a certain security risk
associated with them. Some database administrators may decide that they do not want
their Greenplum Database systems exposed to this functionality. If this is the case, you
can disable the use of EXECUTE in web and writable external table definitions by
setting the following server configuration parameters in your master
postgresql.conf file:

gp_external_enable_exec = off

Using Environment Variables in EXECUTE commands

If you use environment variables in external table EXECUTE commands (such as
$PATH), keep in mind that the command is executed from within the database and not
from a login shell. Therefore the .bashrc or .profile of the current user is not
sourced. However, you can set desired environment variables from within the
EXECUTE clause of your external table definition, for example:

CREATE EXTERNAL WEB TABLE test (column1 text) EXECUTE
'MAKETEXT=text-text-text; export MAKETEXT; echo $MAKETEXT'
FORMAT 'TEXT';

SELECT * FROM test;

 column1

text-text-text
text-text-text
(2 rows)
Unloading Data from Greenplum Database 155

Greenplum Database Administrator Guide 4.1 – Chapter 12: Loading and Unloading Data
The following additional Greenplum Database variables are also available for use in
OS commands executed by a web or writable external table. These variables are set as
environment variables in the shell that executes the command(s). They can be used to
identify a set of requests made by an external table statement across the Greenplum
Database array of hosts and segment instances.

Table 12.2 External Table EXECUTE Variables

Variable Description

$GP_CID Command count of the session executing the external table
statement.

$GP_DATABASE The database that the external table definition resides in.

$GP_DATE The date the external table command was executed.

$GP_MASTER_HOST The host name of the Greenplum master host from which the external
table statement was dispatched.

$GP_MASTER_PORT The port number of the Greenplum master instance from which the
external table statement was dispatched.

$GP_SEG_DATADIR The location of the data directory of the segment instance executing
the external table command.

$GP_SEG_PG_CONF The location of the postgresql.conf file of the segment instance
executing the external table command.

$GP_SEG_PORT The port number of the segment instance executing the external table
command.

$GP_SEGMENT_COUNT The total number of primary segment instances in the Greenplum
Database system.

$GP_SEGMENT_ID The ID number of the segment instance executing the external table
command (same as dbid in gp_segment_configuration).

$GP_SESSION_ID The database session identifier number associated with the external
table statement.

$GP_SN Serial number of the external table scan node in the query plan of the
external table statement.

$GP_TIME The time the external table command was executed.

$GP_USER The database user executing the external table statement.

$GP_XID The transaction ID of the external table statement.

Unloading Data Using a Writable External Table

Because writable external tables only allow INSERT operations, users who are not the
table owner or a superuser must be granted INSERT permissions on the table in order
to use it. For example:

GRANT INSERT ON writable_ext_table TO admin;

To unload data using a writable external table, select the data from the source table(s)
and insert it into the writable external table. The rows produced by the SELECT
statement will be output to the writable external table. For example:

INSERT INTO writable_ext_table SELECT * FROM regular_table;
Unloading Data from Greenplum Database 156

Greenplum Database Administrator Guide 4.1 – Chapter 12: Loading and Unloading Data
Unloading Data Using COPY

COPY TO copies data from a table to a file (or standard input) on the Greenplum master
host. COPY is non-parallel, meaning that data is unloaded in a single process via the
Greenplum master instance. You can use COPY to output a table’s entire contents, or
filter the output using a SELECT statement. For example:

COPY (SELECT * FROM country WHERE country_name LIKE 'A%') TO
'/home/gpadmin/a_list_countries.out';

Readable External Tables and Query Planner Statistics

Because the data sources for readable external tables are outside of the database,
statistics needed by the query planner are not collected when you run the ANALYZE
command. You can set some rough statistics for a readable external table by manually
editing the system catalog table pg_class and specifying the number of rows and
database pages (calculated as data_size / 32K). By default, pg_class.reltuples
(number of rows) is set to 1000000 and pg_class.relpages (number of pages) is set to
1000 for all external tables when they are first defined. To change these defaults, you
can update these values for your external table in pg_class (as the database superuser).
For example:

UPDATE pg_class SET reltuples=500000, relpages=150 WHERE
relname='my_ext_table';

Formatting Data Files
When you use the various Greenplum tools for loading and unloading data, you need
to specify how your data is formatted. COPY, CREATE EXTERNAL TABLE and gpload
have clauses that allow you to specify how your data is formatted. Data can be in
either delimited text (TEXT) or comma separated values (CSV) format. External data
must be formatted correctly in order to be read by Greenplum Database. This section
explains the format of data files expected by Greenplum Database.

• Formatting Rows

• Formatting Columns

• Representing NULL Values

• Escaping

• Character Encoding

Formatting Rows

Greenplum Database expects rows of data to be separated by the LF character (Line
feed, 0x0A), CR (Carriage return, 0x0D), or CR followed by LF (CR+LF, 0x0D 0x0A).
LF is the standard newline representation on UNIX or UNIX-like operating systems.
Other operating systems (such as Windows or Mac OS 9) may use CR individually, or
CR+LF. All of these representations of a newline are supported by Greenplum
Database as a row delimiter.
Formatting Data Files 157

Greenplum Database Administrator Guide 4.1 – Chapter 12: Loading and Unloading Data
Formatting Columns

The default column or field delimiter is the horizontal TAB character (0x09) for text
files and the comma character (0x2C) for CSV files. However, it is possible to declare
another single character delimiter using the DELIMITER clause of COPY, CREATE
EXTERNAL TABLE or gpload when defining your data format. The delimiter character
must only appear between any two data value fields. Do not place a delimiter at the
beginning or end of a row. For example, if using the pipe character (|) as your
delimiter:

data value 1|data value 2|data value 3

Representing NULL Values

NULL is the value used to represent an unknown piece of data in a column or field.
Within your data files you can designate a string to represent null values. The default
string is \N (backslash-N) in TEXT mode, or an empty value with no quotations in CSV
mode. You can also declare a different string using the NULL clause of COPY, CREATE
EXTERNAL TABLE or gpload when defining your data format. For example, you might
prefer an empty string for cases where you do not want to distinguish nulls from
empty strings. When using the Greenplum Database loading tools, any data item that
matches the designated null string will be considered a null value.

Escaping

The data file has two reserved characters that have special meaning to Greenplum
Database:

• The designated delimiter character, which is used to separate columns or fields in
the data file.

• The newline character used to designate a new row in the data file.

If your data contains either of these characters, you must escape the character so
Greenplum treats it as data and not as a field separator or new row. By default, the
escape character is a \ (backslash) for text-formatted files and a double quote (") for
csv-formatted files.

Escaping in Text Formatted Files

By default, the escape character is a \ (backslash) for text-formatted files. If you want
to use a different escape character, use the ESCAPE clause of COPY, CREATE EXTERNAL
TABLE or gpload to declare a different escape character. In cases where your selected
escape character is present in your data, you can use it to escape itself.

For example, suppose you have a table with three columns and you want to load the
following three fields:

• backslash = \

• vertical bar = |

• exclamation point = !

Your designated delimiter character is | (pipe character), and your designated escape
character is \ (backslash). The formatted row in your data file would look like this:
Formatting Data Files 158

Greenplum Database Administrator Guide 4.1 – Chapter 12: Loading and Unloading Data
backslash = \\ | vertical bar = \| | exclamation point = !

Notice how the backslash character that is part of the data is escaped with another
backslash character, and the pipe character that is part of the data is escaped with a
backslash character.

The escape character can also be used to escape octal and hexidecimal sequences.
When used in this way, the escaped value will get converted to the equivalent
character when loaded into Greenplum Database. For example, to load the ampersand
character (&), you could use the escape character to escape its equivalent hexidecimal
(\0x26) or octal (\046) representation.

If there is no need to escape the data in text-formatted files, you can disable escaping
using the ESCAPE clause of COPY, CREATE EXTERNAL TABLE or gpload as follows:

ESCAPE 'OFF'

This is useful for input data that contains a lot of backslash characters within the data
itself (such as web log data).

Escaping in CSV Formatted Files

By default, the escape character is a " (double quote) for CSV-formatted files. If you
want to use a different escape character, use the ESCAPE clause of COPY, CREATE
EXTERNAL TABLE or gpload to declare a different escape character. In cases where
your selected escape character is present in your data, you can use it to escape itself.

For example, suppose you have a table with three columns and you want to load the
following three fields:

• Free trip to A,B

• 5.89

• Special rate "1.79"

Your designated delimiter character is , (comma), and your designated escape
character is " (double quote). The formatted row in your data file would look like this:

"Free trip to A,B","5.89","Special rate ""1.79"""

Notice how that for the comma character that is part of the data, the entire data value is
enclosed in double quotes. Also notice how the double quotes that are part of the data
are also escaped with a double quote even though the field value is enclosed in double
quotes.

Embedding the entire field inside a set of double quotes also guarantees preservation
of leading and trailing whitespace characters:

"Free trip to A,B ","5.89 ","Special rate ""1.79"" "

Note: In CSV mode, all characters are significant. A quoted value surrounded by white
space, or any characters other than DELIMITER, will include those characters. This
can cause errors if you import data from a system that pads CSV lines with white
space out to some fixed width. If such a situation arises you might need to preprocess
the CSV file to remove the trailing white space, before importing the data into
Greenplum Database.

Formatting Data Files 159

Greenplum Database Administrator Guide 4.1 – Chapter 12: Loading and Unloading Data
Character Encoding

A character encoding system consists of a code that pairs each character from a given
repertoire with something else, such as a sequence of numbers or octets, in order to
facilitate the transmission and storage of data. The character set support in Greenplum
Database allows you to store text in a variety of character sets, including single-byte
character sets such as the ISO 8859 series and multiple-byte character sets such as
EUC (Extended UNIX Code), UTF-8, and Mule internal code. All supported character
sets can be used transparently by clients, but a few are not supported for use within the
server (that is, as a server-side encoding).

Data files must be in a character encoding recognized by Greenplum Database. See
“Character Set Support” on page 974 for the supported character sets. Data files that
contain invalid or unsupported encoding sequences will encounter errors when
loading into Greenplum Database.

Note: On data files generated on a Microsoft Windows operating system, try running the
dos2unix system command to remove any Windows-only characters prior to
loading into Greenplum Database.

Formatting Data Files 160

Section IV 161

Section IV: System Administration

This section describes how to monitor and administer a Greenplum Database system.

• Starting and Stopping Greenplum

• Configuring Your Greenplum System

• Enabling High Availability Features

• Backing Up and Restoring Databases

• Expanding a Greenplum System

• Monitoring a Greenplum System

• Routine System Maintenance Tasks

Greenplum Database Administrator Guide 4.1 – Chapter 13: Starting and Stopping Greenplum
13. Starting and Stopping Greenplum

This chapter describes how to start, stop, or restart a Greenplum Database system.
This chapter contains the following topics:

• Overview

• Starting Greenplum Database

• Stopping Greenplum Database

Overview
Because a Greenplum Database system is distributed across many machines, the
process for starting and stopping a Greenplum Database DBMS is different than a
regular PostgreSQL DBMS. With a regular PostgreSQL DBMS, you run a utility
called pg_ctl, which starts, stops, or restarts the database server process (postgres).
pg_ctl also takes care of tasks such as redirecting log output and properly detaching
from the terminal and process group.

In a Greenplum Database DBMS, each database server instance (the master and all
segments) must be started or stopped across all of the hosts in the system in such a
way that they can all work together as a unified DBMS.

Greenplum provides similar functionality of the pg_ctl utility with the gpstart and
gpstop utilities, which are located in $GPHOME/bin of your Greenplum Database
master host installation.

Important: Do not issue a KILL command to end any Postgres process. Instead,
use the database command pg_cancel_backend().

Starting Greenplum Database
The database initialization process (gpinitsystem) will start your Greenplum
Database system for you once it has completed successfully. However, there may be
times when you will need to restart the system, for example to reset operational
configuration parameters or to troubleshoot a failed segment.

Use the gpstart utility to start your Greenplum Database system. This utility starts all
of the postgres database listener processes in the system (the master and all of the
segment instances). gpstart is always run on the master host.

Each instance is started in parallel (up to 60 parallel processes by default).

To start Greenplum Database

$ gpstart

Restarting Greenplum Database

The gpstop utility has a restart option that will restart the Greenplum Database system
once a successful shutdown has completed.
Overview 162

Greenplum Database Administrator Guide 4.1 – Chapter 13: Starting and Stopping Greenplum
To restart Greenplum Database

$ gpstop -r

Uploading Configuration File Changes Only

The gpstop utility has an option that will upload changes made to the pg_hba.conf
configuration file and to runtime parameters in the master postgresql.conf file
without interruption of service. Note that any active sessions will not pickup the
changes until they reconnect to the database, and that many server configuration
parameters require a full system restart (gpstop -r) to be activated. For more
information, see “Server Configuration Parameters” on page 792.

To upload runtime configuration file changes without restarting

$ gpstop -u

Starting the Master in Maintenance Mode

There may be cases where you want to start only the master. This is called
maintenance mode. In this mode, you can do things such as connect to a database on
the master instance only in utility mode and edit settings in the system catalog,
without affecting user data on the segment instances. See “System Catalog Reference”
on page 852 for more information about the system catalog tables.

To start the master in utility mode

1. Run gpstart using the -m option:

$ gpstart -m

2. Connect to the master in utility mode to do catalog maintenance. For example:

$ PGOPTIONS='-c gp_session_role=utility' psql template1

3. After completing your administrative tasks, you must stop the master in utility
mode before you can restart it again in production mode.

$ gpstop -m

Warning: Connections to segments are not supported in utility mode. If you need to
connect to a segment in utility mode, contact Technical Support.

Stopping Greenplum Database
Use the gpstop utility to stop or restart your Greenplum Database system. This utility
stops all of the postgres processes in the system (the master and all of the segment
instances). gpstop is always run on the master host.

Each instance is stopped in parallel (up to 60 parallel processes by default). By default
the system will wait for any active transactions to finish before shutting down, and
will not shutdown if the database has any active client connections.
Stopping Greenplum Database 163

Greenplum Database Administrator Guide 4.1 – Chapter 13: Starting and Stopping Greenplum
To stop Greenplum Database

$ gpstop

To stop Greenplum Database in fast mode

(all active transactions are interrupted and rolled back, all active client sessions are
cancelled)

$ gpstop -M fast
Stopping Greenplum Database 164

Greenplum Database Administrator Guide 4.1 – Chapter 14: Configuring Your Greenplum System
14. Configuring Your Greenplum System

There are many server configuration parameters that affect the behavior of a
Greenplum Database system. Most of these parameters are the same as in regular
PostgreSQL, but there are also several Greenplum-specific configuration parameters.

• About Greenplum Master and Local Parameters

• Setting Configuration Parameters

• Configuration Parameter Categories

About Greenplum Master and Local Parameters
In most database management systems, you have a server configuration file that
configures various aspects of the server. In Greenplum Database (as in PostgreSQL)
this file is called postgresql.conf. This configuration file is located in the data
directory of the database instance.

In Greenplum Database, the master and each segment instance has its own
postgresql.conf file (located in their respective data directories). Some parameters
are considered local parameters, meaning that each segment instance looks to its own
postgresql.conf file to get the value of that parameter. You must set local
parameters on every instance in the system (master and segments).

Others parameters are considered master parameters. Master parameters need only be
set at the master instance, and the value is passed down to (or in some cases ignored
by) the segment instances at query run time.

See “Server Configuration Parameters” on page 792 to see if a particular parameter is
classified as local or master.

Setting Configuration Parameters
Many of the configuration parameters have limitations on who can change them and
where or when they can be set. For example, to change certain parameters, you must
be a Greenplum Database superuser. Other parameters can only be set at the
system-level in the postgresql.conf file or require a restart of the system for the
changes to take effect.

Many configuration parameters are considered session parameters. A session
parameter can be set at the system-level, the database-level, the role-level or the
session-level. Most session parameters can be changed by any database user within
their session, but a few may require superuser permissions. See “Server Configuration
Parameters” on page 792 to see the set classifications of particular parameters.
About Greenplum Master and Local Parameters 165

Greenplum Database Administrator Guide 4.1 – Chapter 14: Configuring Your Greenplum System
Setting a Local Configuration Parameter

If you want to change a configuration parameter that is classified as local, you must
change it in every postgresql.conf file where you want that change to take effect.
In most cases, this means making the change at the master and at every segment
(primary and mirror). To set a parameter in all postgresql.conf files of a
Greenplum system, you can use the gpconfig utility. For example:

$ gpconfig -c gp_vmem_protect_limit -v 4096MB

Then restart Greenplum Database to make the configuration changes effective:

$ gpstop -r

Setting a Master Configuration Parameter

If a parameter is classified as master, you only need to set it at the Greenplum master
instance. If it is also a session parameter, you have the additional flexibility of setting
the parameter for a particular database, role or session. If a parameter is set at multiple
levels, then the more granular level takes precedence. For example, session overrides
role, role overrides database, and database overrides system.

Setting Parameters at the System Level

Setting master parameters in the master postgresql.conf file makes that setting the
new system-wide default.

1. Edit the $MASTER_DATA_DIRECTORY/postgresql.conf file.

2. Find the parameter you want to change, uncomment it (remove the preceding #
character), and set it to the desired value.

3. Save and close the file.

4. For session parameters that do not require a server restart, you can upload the
postgresql.conf changes as follows:

$ gpstop -u

5. For parameter changes that require a server restart, restart Greenplum Database as
follows:

$ gpstop -r

Note: See “Server Configuration Parameters” on page 792 for detailed descriptions of the
server configuration parameters.

Setting Parameters at the Database Level

When a session parameter is set at the database level, every session that connects to
that database will pick up that parameter setting. Settings at the database level
override those at the system level. Use the ALTER DATABASE command to set a
parameter at the database level. For example:

=# ALTER DATABASE mydatabase SET search_path TO myschema;
Setting Configuration Parameters 166

Greenplum Database Administrator Guide 4.1 – Chapter 14: Configuring Your Greenplum System
Setting Parameters at the Role Level

When a session parameter is set at the role level, every session initiated by that role
will pick up that parameter setting. Settings at the role level override those at the
database level. Use the ALTER ROLE command to set a parameter at the role level. For
example:

=# ALTER ROLE bob SET search_path TO bobschema;

Setting Parameters in a Session

Any session parameter can also be set in an active database session using the SET
command. That parameter setting is then valid for the rest of that session (or until a
RESET command is issued). Settings at the session level override those at the role
level. For example:

=# SET work_mem TO '200MB';

=# RESET work_mem;

Viewing Settings of Server Configuration Parameters
The SHOW SQL command allows you to see the settings of the server configuration
parameters used by the Greenplum Database system. For example, to see the settings
for all parameters:

$ psql -c 'SHOW ALL;'

Running SHOW will show the settings for the master instance only. If you want to see
the value of a particular parameter across the entire system (master and all segments),
you can use the gpconfig utility. For example:

$ gpconfig --show max_connections

Configuration Parameter Categories
There are many configuration parameters that affect the behavior of a Greenplum
Database system. This section explains the general categories of configuration
parameters. See “Server Configuration Parameters” on page 792 to see the details of
particular parameters.

• Connection and Authentication Parameters

• System Resource Consumption Parameters

• Query Tuning Parameters

• Error Reporting and Logging Parameters

• System Monitoring Parameters

• Runtime Statistics Collection Parameters

• Automatic Statistics Collection Parameters

• Client Connection Default Parameters

• Client Connection Default Parameters
Viewing Settings of Server Configuration Parameters 167

Greenplum Database Administrator Guide 4.1 – Chapter 14: Configuring Your Greenplum System
• Lock Management Parameters

• Workoad Management Parameters

• External Table Parameters

• Past PostgreSQL Version Compatibility Parameters

• Greenplum Array Configuration Parameters

Connection and Authentication Parameters

These parameters control how clients connect and authenticate to Greenplum
Database. See also, “Configuring Client Authentication” on page 36.

Connection Parameters

• gp_vmem_idle_resource_timeout

• listen_addresses

• max_connections

• max_prepared_transactions

• port (see “Changing the Master Port”)

• superuser_reserved_connections

• tcp_keepalives_count

• tcp_keepalives_idle

• tcp_keepalives_interval

• unix_socket_directory

• unix_socket_group

• unix_socket_permissions

Changing the Master Port

Greenplum Database comes configured with the default master port of 5432.
Administrators should follow this process to change the master port number. Perform
these steps on your Greenplum master host.

1. Shut down your Greenplum system in fast mode, interrupting and rolling back any
active transactions. There cannot be active queries in the system when the system
configuration is being altered.

$ gpstop -M fast

2. Edit the postgresql.conf file of the master. For example:

$ vi $MASTER_DATA_DIRECTORY/postgresql.conf

3. Change the following parameter to the new port number. For example if the new
port is 54321:

port=54321

Note: If you have a standby master host, you must also edit the
$MASTER_DATA_DIRECTORY/postgresql.conf file on your standby master
host. After you are finished, return to your primary master host to complete the
process.

4. Restart your Greenplum Database system.

$ gpstart

5. Start a psql client session using the new port and edit the
gp_segment_configuration system catalog to change the master port. For
example, if the new port is 54321 and the old port is 5432:
Configuration Parameter Categories 168

Greenplum Database Administrator Guide 4.1 – Chapter 14: Configuring Your Greenplum System
psql -p 54321 -c "UPDATE gp_segment_configuration SET
port=54321 WHERE port=5432"

6. Make sure that any client programs you are using are updated to connect to the
new master port. For example, if using psql update the $PGPORT environment
variable in the profile of your Greenplum superuser (gpadmin).

Security and Authentication Parameters

• authentication_timeout

• db_user_namespace

• krb_caseins_users

• krb_server_keyfile

• krb_srvname

• password_encryption

• ssl

• ssl_ciphers

System Resource Consumption Parameters

Memory Consumption Parameters

These parameters control system memory usage. The most commonly used tuning
parameter is work_mem, but you may also want to adjust gp_vmem_protect_limit and
max_work_mem to avoid running out of memory at the segment hosts during query
processing.

• gp_vmem_idle_resource_timeout

• gp_vmem_protect_limit

• gp_vmem_protect_segworker_cache_limit

• maintenance_work_mem

• max_appendonly_tables

• max_prepared_transactions

• max_stack_depth

• max_work_mem

• shared_buffers

• temp_buffers

• work_mem

Free Space Map Parameters

These parameters control the sizing of the free space map where expired rows are
held. Disk space in the free space map is reclaimed by a VACUUM command. See also,
“Vacuuming the Database” on page 103.

• max_fsm_pages

• max_fsm_relations

OS Resource Parameters

• max_files_per_process

• shared_preload_libraries

Cost-Based Vacuum Delay Parameters

Standard PostgreSQL has a number of parameters for configuring the execution cost
of VACUUM and ANALYZE commands. The intent of this feature is to allow
administrators to reduce the I/O impact of these commands on concurrent database
Configuration Parameter Categories 169

Greenplum Database Administrator Guide 4.1 – Chapter 14: Configuring Your Greenplum System
activity. When the accumulated cost of the various I/O operations reaches the limit,
the process performing the operation will sleep for a while. Then it will reset the
counter and continue execution.

Warning: Cost-based vacuum delay is not recommended in Greenplum Database
because it runs asynchronously between the segment instances. The vacuum cost
limit and delay is invoked locally at the segment level without taking into account the
state of the entire Greenplum array.

• vacuum_cost_delay

• vacuum_cost_limit

• vacuum_cost_page_dirty

• vacuum_cost_page_hit

• vacuum_cost_page_miss

Query Tuning Parameters

Query Plan Operator Control Parameters

The following parameters control the types of plan operations the query planner has to
choose from. Enabling or disabling certain plan operations is a way to force the
planner to choose a different plan. These can be useful in testing a query using
different plan types to see which plan offers the best performance.

• enable_bitmapscan

• enable_groupagg

• enable_hashagg

• enable_hashjoin

• enable_indexscan

• enable_mergejoin

• enable_nestloop

• enable_seqscan

• enable_sort

• enable_tidscan

• gp_enable_adaptive_nestloop

• gp_enable_agg_distinct

• gp_enable_agg_distinct_pruning

• gp_enable_direct_dispatch

• gp_enable_fallback_plan

• gp_enable_fast_sri

• gp_enable_groupext_distinct_gather

• gp_enable_groupext_distinct_pruning

• gp_enable_multiphase_agg

• gp_enable_predicate_propagation

• gp_enable_preunique

• gp_enable_sequential_window_plans

• gp_enable_sort_distinct

• gp_enable_sort_limit

Query Planner Costing Parameters

Greenplum recommends that you do not adjust these query costing
parameters. They have already been tuned to reflect Greenplum Database
hardware configurations and typical workloads. All of these parameters are
related. Changing one without changing the others can have adverse affects
on performance.
Configuration Parameter Categories 170

Greenplum Database Administrator Guide 4.1 – Chapter 14: Configuring Your Greenplum System
• cpu_index_tuple_cost

• cpu_operator_cost

• cpu_tuple_cost

• cursor_tuple_fraction

• effective_cache_size

• gp_motion_cost_per_row

• gp_segments_for_planner

• random_page_cost

• seq_page_cost

Database Statistics Sampling Parameters

These parameters adjust the amount of data sampled by an ANALYZE operation.
Adjusting these parameters will affect statistics collection system-wide. You can also
configure statistics collection on particular tables and columns by using the ALTER
TABLE SET STATISTICS clause.

• default_statistics_target

• gp_analyze_relative_error

Sort Operator Configuration Parameters

• gp_enable_sort_distinct

• gp_enable_sort_limit

Aggregate Operator Configuration Parameters

• gp_enable_agg_distinct

• gp_enable_agg_distinct_pruning

• gp_enable_multiphase_agg

• gp_enable_preunique

• gp_enable_groupext_distinct_gather

• gp_enable_groupext_distinct_pruning

• gp_workfile_compress_algorithm

Join Operator Configuration Parameters

• join_collapse_limit

• gp_adjust_selectivity_for_outerjoins

• gp_hashjoin_tuples_per_bucket

• gp_statistics_use_fkeys

• gp_workfile_compress_algorithm

Other Query Planner Configuration Parameters

• from_collapse_limit

• gp_enable_predicate_propagation

• gp_statistics_pullup_from_child_partition
Configuration Parameter Categories 171

Greenplum Database Administrator Guide 4.1 – Chapter 14: Configuring Your Greenplum System
Error Reporting and Logging Parameters

Log

• log_rotation_age

• log_rotation_size

• log_truncate_on_rotation

 Rotation

When to Log

• client_min_messages

• log_error_verbosity

• log_min_duration_statement

• log_min_error_statement

• log_min_messages

What to Log

• debug_pretty_print

• debug_print_parse

• debug_print_plan

• debug_print_prelim_plan

• debug_print_rewritten

• debug_print_slice_table

• log_autostats

• log_connections

• log_disconnections

• log_dispatch_stats

• log_duration

• log_executor_stats

• log_hostname

• log_parser_stats

• log_planner_stats

• log_statement

• log_statement_stats

• log_timezone

• gp_debug_linger

• gp_log_format

• gp_max_csv_line_length

• gp_reraise_signal

System Monitoring Parameters

SNMP Alerts

The following parameters are used to send SNMP notifications when events occur on
a Greenplum Database system.

• gp_snmp_community

• gp_snmp_monitor_address

• gp_snmp_use_inform_or_trap
Configuration Parameter Categories 172

Greenplum Database Administrator Guide 4.1 – Chapter 14: Configuring Your Greenplum System
Email Alerts

The following parameters are used to configure the system to send email alerts for
fatal error events, such as a segment going down or a server crash and reset.

• gp_email_from

• gp_email_smtp_password

• gp_email_smtp_server

• gp_email_smtp_userid

• gp_email_to

Greenplum Performance Monitor Agent

The following parameters are used to configure the data collection agents for the
Greenplum Performance Monitor.

• gp_enable_gpperfmon

• gp_gpperfmon_send_interval

• gpperfmon_port

Runtime Statistics Collection Parameters

These parameters control the PostgreSQL server statistics collection feature. When
statistics collection is enabled, the data that is produced can be accessed via the
pg_stat and pg_statio family of system catalog views.

• stats_queue_level

• track_activities

• track_counts

• update_process_title

Automatic Statistics Collection Parameters

When automatic statistics collection is enabled, ANALYZE can be run automatically in
the same transaction as an INSERT, UPDATE, DELETE, COPY or CREATE TABLE...AS
SELECT statement when a certain threshold of rows is affected (on_change), or when
a newly generated table has no statistics (on_no_stats). To enable this feature, set
the following server configuration parameters in your Greenplum master
postgresql.conf file and restart Greenplum Database:

• gp_autostats_mode

• gp_autostats_on_change_threshold

• log_autostats

Warning: Depending on the specific nature of your database operations, automatic
statistics collection may have a negative performance impact. Carefully evaluate
whether the default setting of on_no_stats is appropriate for your system.
Configuration Parameter Categories 173

Greenplum Database Administrator Guide 4.1 – Chapter 14: Configuring Your Greenplum System
Client Connection Default Parameters

Statement Behavior Parameters

• check_function_bodies

• default_tablespace

• default_transaction_isolation

• default_transaction_read_only

• search_path

• statement_timeout

• vacuum_freeze_min_age

Locale and Formatting Parameters

• client_encoding

• DateStyle

• extra_float_digits

• IntervalStyle

• lc_collate

• lc_ctype

• lc_messages

• lc_monetary

• lc_numeric

• lc_time

• TimeZone

Other Client Default Parameters

• dynamic_library_path

• explain_pretty_print

• local_preload_libraries

Lock Management Parameters

• deadlock_timeout

• max_locks_per_transaction

Workoad Management Parameters

The following configuration parameters are used to configure the Greenplum
Database workload management feature (resource queues), query prioritization,
memory utilization and concurrency control.

• gp_resqueue_priority

• gp_resqueue_priority_cpucores_per_segment

• gp_resqueue_priority_sweeper_interval

• gp_vmem_idle_resource_timeout

• gp_vmem_protect_limit

• gp_vmem_protect_segworker_cache_limit

• max_resource_queues

• max_resource_portals_per_transa
ction

• resource_cleanup_gangs_on_wait

• resource_select_only

• stats_queue_level
Configuration Parameter Categories 174

Greenplum Database Administrator Guide 4.1 – Chapter 14: Configuring Your Greenplum System
External Table Parameters

The following parameters are used to configure the external tables feature of
Greenplum Database. See “About External Tables” on page 135.

• gp_external_enable_exec

• gp_external_grant_privileges

• gp_external_max_segs

• gp_reject_percent_threshold

Append-Only Table Parameters

The following parameters are used to configure the append-only tables feature of
Greenplum Database. See “Choosing the Table Storage Model” on page 75 for more
information about append-only tables.

• max_appendonly_tables

Database and Tablespace/Filespace Parameters

The following parameters are used to configure the maximum number of databases,
tablespaces, and filespaces allowed in a system.

• gp_max_tablespaces

• gp_max_filespaces

• gp_max_databases

Past PostgreSQL Version Compatibility Parameters

The following parameters are for compatibility with older PostgreSQL versions. Most
likely, you do not need to change these in Greenplum Database.

• add_missing_from

• array_nulls

• backslash_quote

• escape_string_warning

• regex_flavor

• standard_conforming_strings

• transform_null_equals

Greenplum Array Configuration Parameters

The parameters in this section control the configuration of the Greenplum Database
array and its various components (segments, master, distributed transaction manager,
and interconnect).
Configuration Parameter Categories 175

Greenplum Database Administrator Guide 4.1 – Chapter 14: Configuring Your Greenplum System
Interconnect Configuration Parameters

• gp_interconnect_hash_multiplier

• gp_interconnect_queue_depth

• gp_interconnect_setup_timeout

• gp_interconnect_type

• gp_max_packet_size

Dispatch Configuration Parameters

• gp_cached_segworkers_threshold

• gp_connections_per_thread

• gp_enable_direct_dispatch

• gp_segment_connect_timeout

• gp_set_proc_affinity

Fault Operation Parameters

• gp_set_read_only

• gp_fts_probe_interval

• gp_fts_probe_threadcount

Distributed Transaction Management Parameters

• gp_max_local_distributed_cache

Read-Only Parameters

• gp_command_count

• gp_content

• gp_dbid

• gp_num_contents_in_cluster

• gp_role

• gp_session_id
Configuration Parameter Categories 176

Greenplum Database Administrator Guide 4.1 – Chapter 15: Enabling High Availability Features
15. Enabling High Availability Features

This chapter describes the high availability features of Greenplum Database, and
explains the tasks involved for segment or master instance recovery. The following
topics are covered in this chapter:

• Overview of High Availability in Greenplum Database

• Enabling Mirroring in Greenplum Database

• Knowing When a Segment is Down

• Recovering a Failed Segment

• Recovering a Failed Master

Overview of High Availability in Greenplum Database
Greenplum Database provides several optional features to ensure maximum uptime
and high-availability of your system. This section provides an overview of these
features:

• Overview of Segment Mirroring

• Overview of Master Mirroring

• Overview of Fault Detection and Recovery

Overview of Segment Mirroring

Mirror segments allow database queries to fail over to a backup segment if the primary
segment is unavailable. To configure mirroring, you must have enough nodes in your
Greenplum Database system so that the mirror segment always resides on a different
host than its primary.
Overview of High Availability in Greenplum Database 177

Greenplum Database Administrator Guide 4.1 – Chapter 15: Enabling High Availability Features
The mirror segment for a distributed table resides on a different host than its primary
segment. During database operations, only the primary segment is active. Changes to
a primary segment are copied over to its mirror using a file block replication process.
Until a failure occurs on the primary segment, there is no live segment instance
running on the mirror host -- only the replication process.

Figure 15.1 Data Mirroring in Greenplum Database

In the event of a segment failure, the file replication process is stopped and the mirror
segment is automatically brought up as the active segment instance. All database
operations then continue using the mirror. While the mirror is active, it is also logging
all transactional changes made to the database. This system state is known as Change
Tracking mode. When the failed segment is ready to be brought back online,
administrators initiate a recovery process to bring it back into operation. The recovery
process synchronizes with the mirror and only copies over the changes that were
missed while the segment was down. This system state is known as Resynchronizing
mode. Once all mirrors and their primaries are synchronized again, the system state
becomes Synchronized.

Overview of Master Mirroring

You can also optionally deploy a backup or ‘mirror’ of the master instance on a
separate host machine. A backup master (or standby master) host serves as a ‘warm
standby’ in the event of the primary master host becoming unoperational.

The standby master is kept up to date by a replication process (gpsyncagent), which
runs on the standby master host and keeps the data between the primary and standby
masters synchronized. Until a failure occurs in the primary master, no actual
Greenplum Database master server is running on the standby master host -- only the
replication process.

If the primary master fails, the replication process is shut down, and the standby
master can be activated in its place. Upon activation of the standby master, the
replicated logs are used to reconstruct the state of the master host at the time of the last
successfully committed transaction. The activated standby then functions as the
Greenplum Database master, accepting connections on the same port used for the
failed primary master.
Overview of High Availability in Greenplum Database 178

Greenplum Database Administrator Guide 4.1 – Chapter 15: Enabling High Availability Features
Since the master does not contain any user data, only the system catalog tables need to
be synchronized between the primary and standby copies. These tables are not
updated frequently, but when they are, changes are automatically copied over to the
standby master so that it is always kept current with the primary.

Figure 15.2 Master Mirroring in Greenplum Database

Overview of Fault Detection and Recovery

Fault detection is handled by a Greenplum Database server (postgres) subprocess
named ftsprobe. This fault detection process monitors the Greenplum array,
scanning all segments and database processes at configurable intervals.

Whenever the fault detection process cannot connect to a segment, it marks that
segment instance as down in the Greenplum Database system catalog. Once a segment
is down, it will remain out of operation until an administrator initiates the recovery
process to bring that segment back online.

When mirroring is enabled in a Greenplum Database system, the system will
automatically failover to the mirror copy whenever a primary copy becomes
unavailable. A Greenplum Database system can remain operational if a segment
instance or host goes down as long as all portions of data are available on the
remaining active segments.

To recover failed segments in the system, the Greenplum administrator runs a
recovery utility (gprecoverseg). This utility locates the down segments, checks if
they are valid, and compares the transactional state with the currently active segment
to find out what changes were missed when the segment was offline. It then
synchronizes only the changed database files with the active segment and brings the
segment back online. This recovery process is performed while the Greenplum
Database system is up and running.

If you do not have mirroring enabled, the system will automatically shut down if a
segment instance becomes invalid. You must manually recover all failed segments
before operations can continue.
Overview of High Availability in Greenplum Database 179

Greenplum Database Administrator Guide 4.1 – Chapter 15: Enabling High Availability Features
Enabling Mirroring in Greenplum Database
You can either configure your Greenplum Database system with mirroring at setup
time (using gpinitsystem), or enable mirroring in an existing system that was
initially configured without mirroring (using gpaddmirrors and gpinitstandby).
This section assumes you are adding mirrors to an existing system that was originally
initialized without mirrors.

There are two types of mirroring you can configure:

• Enabling Segment Mirroring

• Enabling Master Mirroring

Enabling Segment Mirroring

Mirror segments allow database queries to fail over to a backup segment if the primary
segment is unavailable. To configure mirroring, you must have enough nodes in your
Greenplum Database system so that the mirror segment always resides on a different
host than its primary. By default, mirrors are configured on the same array of hosts as
your primary segments. You can also optionally choose a completely different set of
hosts for your mirror segments so they do not share machines with your primary
segments.

To add segment mirrors to an existing system (same hosts as primaries)

1. Allocate the data storage area for mirror data on all segment hosts. This must be a
different file system location than your primary segments are using.

2. The segment hosts must be able to SSH and SCP to each other without a password
prompt. See “gpssh-exkeys” on page 702.

3. Run the gpaddmirrors utility to enable mirroring in your Greenplum Database
system. For example (where -p specifies the number to add to your primary
segment port numbers to calculate the mirror segment port numbers):

$ gpaddmirrors -p 10000

To add segment mirrors to an existing system (different hosts from
primaries)

1. Make sure that the Greenplum Database software has been installed on all hosts.
See the Greenplum Database Installation Guide for detailed instructions on
running the Greenplum Database installer.

2. Allocate the data storage area for mirror data on all segment hosts.

3. The segment hosts must be able to SSH and SCP to each other without a password
prompt. See “gpssh-exkeys” on page 702.

4. Create a configuration file that lists the host names, ports, and data directories
where you want your mirrors to be created. You can create a sample configuration
file to use as a starting point by running:

$ gpaddmirrors -o filename
Enabling Mirroring in Greenplum Database 180

Greenplum Database Administrator Guide 4.1 – Chapter 15: Enabling High Availability Features
The format of the mirror configuration file is:

filespaceOrder=[filespace1_fsname[:filespace2_fsname:...]
mirror[content]=content:address:port:mir_replication_port:pri_
replication_port:fselocation[:fselocation:...]

For example (2 segment hosts, 2 segments per host, and you do not have
additional filespaces configured besides the default pg_system filespace):

filespaceOrder=

mirror0=0:sdw1:sdw1-1:52001:53001:54001:/gpdata/mir1/gp0

mirror1=1:sdw1:sdw1-2:52002:53002:54002:/gpdata/mir1/gp1

mirror2=2:sdw2:sdw2-1:52001:53001:54001:/gpdata/mir1/gp2

mirror3=3:sdw2:sdw2-2:52002:53002:54002:/gpdata/mir1/gp3

5. Run the gpaddmirrors utility to enable mirroring in your Greenplum Database
system (where -i names the mirror configuration file you just created):

$ gpaddmirrors -i mirror_config_file

Enabling Master Mirroring

You can either configure your Greenplum Database system with a standby master at
setup time (using gpinitsystem), or enable it in an existing system that was initially
configured without a standby master (using gpinitstandby). This section assumes
you are adding a standby master to an existing system that was originally initialized
without one.

To add a standby master to an existing system

1. Make sure the standby master host is installed and configured (gpadmin system
user created, Greenplum Database binaries installed, environment variables set,
ssh keys exchanged, and data directory created). See the Greenplum Database
Installation Guide for detailed instructions.

2. Run the gpinitstandby utility on the currently active primary master host. This
will add a standby master host to your Greenplum Database system. For example
(where -s specifies the standby master host name):

$ gpinitstandby -s smdw

3. To switch operations to a standby master, see “Recovering a Failed Master” on
page 187.

To check the status of the log synchronization process

If the synchronization process (gpsyncagent) fails on the standby master, it may not
always be noticeable to users of the system. The gp_master_mirroring catalog is a
place where Greenplum Database administrators can check to see if the standby
master is currently synchronized. For example:

$ psql dbname -c 'SELECT * FROM gp_master_mirroring;'

If the result indicates that the standby master is “Not Synchronized,” check the
detail_state and error_message columns to attempt to determine the cause of the
errors.
Enabling Mirroring in Greenplum Database 181

Greenplum Database Administrator Guide 4.1 – Chapter 15: Enabling High Availability Features
To recover a standby master that has fallen behind:

$ gpinitstandby -s standby_master_hostname -n

Knowing When a Segment is Down
If mirroring is enabled, Greenplum Database will automatically failover to a mirror
segment when a primary segment goes down. As long as one segment instance is alive
per portion of data, it will not typically be apparent to users of the system that a
segment instance is down. If a transaction is in progress when a fault occurs, the in
progress transaction will roll back, and then automatically restart on the reconfigured
set of segments.

If the entire Greenplum Database system becomes unoperational due to a segment
failure (for example if mirroring is not enabled or there are not enough segments alive
to serve all the portions of user data), users will see errors when trying to connect to a
database. The errors returned to the client program may give some indication of the
failure. For example:

ERROR: All segment databases are unavailable

Enabling Alerts and Notifications

Greenplum Database administrators can enable email and/or SNMP alerts to be
notified on system events such as segment failures. See “Enabling System Alerts and
Notifications” on page 217 for more information.

Checking for Failed Segments

With mirroring enabled, you may have failed segments in the system without
interruption of service or any indication that a failure has occurred. One way to verify
the status of your system is to use the gpstate utility. This utility provides the status
of each individual component of a Greenplum Database system (primary segments,
mirror segments, master, and standby master).

To check for failed segments

1. On the master, run the gpstate utility with the -e option. This will show any
segments with error conditions:

$ gpstate -e

2. Segments that are in Change Tracking mode indicate that the corresponding
mirror segment is down.

A segment that is not in its preferred role means that the segment is not operating
in the role it was assigned at system initialization time. This means that the system
is in a potentially unbalanced state, as some segment hosts may have more active
segments that is optimal for top system performance. See “To return all segments
to their preferred role” on page 185 for instructions on how to fix this situation.

3. To get detailed information about a failed segment, look it up in the
gp_segment_configuration catalog table. For example:
Knowing When a Segment is Down 182

Greenplum Database Administrator Guide 4.1 – Chapter 15: Enabling High Availability Features
$ psql -c "SELECT * FROM gp_segment_configuration WHERE
status='d';"

4. For failed segment instances, note the host, port, preferred role, and data directory.
This will help you determine the host and segment instances to troubleshoot.

5. To see the primary to mirror segment instance mapping, run:

$ gpstate -m

Checking the Log Files

The log files may provide more information to help you determine the cause of an
error. The master and each segment instance has its own log file, which is located in
pg_log of its data directory. The master log file contains the most information and
should always be checked first.

You can use the gplogfilter utility to check the Greenplum Database log files for
any additional information. To check the segment log files, you can run gplogfilter
on the segment hosts using gpssh.

To check the log files

1. Check the master log file for WARNING, ERROR, FATAL or PANIC log level
messages:

$ gplogfilter -t

2. Using gpssh, check for WARNING, ERROR, FATAL or PANIC log level messages on
each segment instance. For example:

$ gpssh -f seg_hosts_file -e 'source
/usr/local/greenplum-db/greenplum_path.sh ; gplogfilter -t
/data1/primary/*/pg_log/gpdb*.log' > seglog.out

Recovering a Failed Segment
Whenever the master cannot connect to a segment instance, it marks that segment
down in the Greenplum Database system catalog. The segment instance will remain
out of operation until steps are taken to bring that segment back online.

The process for recovering a failed segment instance or host depends on the cause of
the failure and whether or not you have mirroring enabled. A segment instance can
become unavailable for several reasons, such as:

• A segment host is not available (network errors, hardware failures).

• A segment instance is not running (no postgres database listener process).

• The data directory of the segment instance is corrupted or missing (data not
accessible, corrupted file system, disk failure).

Figure Figure 15.3 shows the high-level steps to take for each of these failure
scenarios.
Recovering a Failed Segment 183

Greenplum Database Administrator Guide 4.1 – Chapter 15: Enabling High Availability Features
Figure 15.3 Segment Failure Troubleshooting Matrix

Recovering From Segment Failures

When an entire segment host goes down, this typically causes several segment
failures, as all primary and mirror segments on that host will be marked down and
taken out of operation. If your Greenplum Database system was deployed without
mirroring enabled, the system will automatically become unoperational whenever a
segment host goes down.

To recover with mirroring enabled

1. First, make sure that you can connect to the segment host from the master host.
For example:

$ ping failed_seg_host_address
Recovering a Failed Segment 184

Greenplum Database Administrator Guide 4.1 – Chapter 15: Enabling High Availability Features
2. Troubleshoot the problem that is preventing the master host from connecting to
the segment host. For example, the host machine may need to be restarted or
replaced.

3. Once the host is up again, and you have verified that you can connect to it, run the
gprecoverseg utility from the master host to reactivate the failed segment
instances. For example (from the master host):

$ gprecoverseg

4. The recovery process will bring up the failed segments and identify the changed
files that need to be synchronized. Do not cancel gprecoverseg during this time;
wait for it to complete. During this transition, database write activity is
momentarily suspended.

5. After gprecoverseg completes, the system goes into Resynchronizing mode and
begins copying over the changed files. This process is performed in the
background while the system is online and still accepting database requests.

6. When the resynchronization process is complete, the system state will become
Synchronized. Run the gpstate utility to verify the status of the resynchronization
process:

$ gpstate -m

To return all segments to their preferred role

When a primary segment goes down, the mirror is activated and becomes the primary
segment. After running gprecoverseg, the currently active segment remains the
primary and the failed segment is then brought up as the mirror. The segment
instances are not returned to the preferred role that they were given at system
initialization time. This can leave the system in a potentially unbalanced state, as some
segment hosts may still have more active segments that is optimal for top system
performance. To check for unbalanced segments, run:

$ gpstate -e

This procedure is run after a segment recovery to rebalance the system. In order to
rebalance, all segments must be up and fully synchronized. Database sessions remain
connected during rebalancing, but any in progress queries will be cancelled and rolled
back.

1. Run gpstate -m to make sure that all mirrors are Synchronized.

$ gpstate -m

2. If any mirrors are in Resynchronizing mode, wait for them to complete.

3. Run gprecoverseg with the -r option to return the segments to their preferred
roles.

$ gprecoverseg -r

4. After rebalancing, run gpstate -e to confirm all segments are in their preferred
roles.

$ gpstate -e
Recovering a Failed Segment 185

Greenplum Database Administrator Guide 4.1 – Chapter 15: Enabling High Availability Features
To recover from a double fault

A double fault is when a primary and its corresponding mirror are both down at the
same time. This can occur in rare situations, such as multiple hardware failures on
different segment hosts at the same time. When you have a double fault, Greenplum
Database is down and not available for query processing. To recover from a double
fault:

1. Restart Greenplum Database:

$ gpstop -r

2. After the system has restarted, run gprecoverseg:

$ gprecoverseg

3. After gprecoverseg completes, use gpstate to check the status of your mirrors:

$ gpstate -m

4. If you still have segments in Change Tracking mode, run a full copy recovery:

$ gprecoverseg -F

To recover without mirroring enabled

1. First, make sure that you can connect to the segment host from the master host.
For example:

$ ping failed_seg_host_address

2. Troubleshoot the problem that is preventing the master host from connecting to
the segment host. For example, the host machine may need to be restarted.

3. Once the host is up again, and you have verified that you can connect to it, do a
restart of the Greenplum Database system. For example:

$ gpstop -r

4. Run the gpstate utility to verify that all segment instances are up:

$ gpstate

If a segment host is not recoverable and you have lost one or more segments, you will
have to recreate your Greenplum Database system from backup files. See “Backing
Up and Restoring Databases” on page 190.

When a segment host is not recoverable

If a host is no longer operational (due to hardware failures, for example) you will need
to recover the segments on to a spare set of hardware resources. If you have mirroring
enabled, you can recover a segment from its mirror copy on to an alternate host using
gprecoverseg. For example:

$ gprecoverseg -i recover_config_file

Where recover_config_file is in the format of:

filespaceOrder=[filespace1_name[:filespace2_name:...]

failed_host_address:port:fselocation
[recovery_host_address:port:replication_port:fselocation[:fselocation:
...]]
Recovering a Failed Segment 186

Greenplum Database Administrator Guide 4.1 – Chapter 15: Enabling High Availability Features
For example (if recovering to a different host than the failed host, and you do not have
additional filespaces configured besides the default pg_system filespace):

filespaceOrder=

sdw5-2:50002:/gpdata/gpseg2 sdw9-2:50002:53002:/gpdata/gpseg2

The gp_segment_configuration and pg_filespace_entry system catalog tables can help
you determine your current segment configuration so that you can plan your mirror
recovery configuration. For example, run the following query:

=# SELECT dbid, content, hostname, address, port,

 replication_port, fselocation as datadir

 FROM gp_segment_configuration, pg_filespace_entry

 WHERE dbid=fsedbid

 ORDER BY dbid;.

The new recovery segment host must be pre-installed with the Greenplum Database
software and configured exactly the same as the existing segment hosts.

Recovering a Failed Master
If the primary master fails, the log replication process is shut down, and the standby
master can be activated in its place by using the gpactivatestandby utility. Upon
activation of the standby master, the replicated logs are used to reconstruct the state of
the master host at the time of the last successfully committed transaction. You can also
specify a new standby master host when you activate your currently configured
standby master.

To activate the standby master

1. First, you must have a standby master host configured for the system. See
“Enabling Master Mirroring” on page 181.

2. Run the gpactivatestandby utility from the standby master host you are
activating. For example, where -d specifies the data directory of the master host
you are activating:

$ gpactivatestandby -d /data/master/gpseg-1

Note that once you activate your standby, it then becomes the active or primary
master for your Greenplum Database array. If you want to configure another host
to be your new standby at this time, you can optionally use the -c option when
running the gpactivatestandby utility. For example:

$ gpactivatestandby -d /data/master/gpseg-1 -c
new_standby_hostname

3. After the utility has finished, run gpstate to check the status:

$ gpstate -f

The newly activated master should have Active status, and if you configured a new
standby host, it should have Passive status (if not configured, the status is
displayed as Not Configured).

4. After switching over, run ANALYZE on the newly active master host. For example:
Recovering a Failed Master 187

Greenplum Database Administrator Guide 4.1 – Chapter 15: Enabling High Availability Features
$ psql dbname -c 'ANALYZE;'

5. (optional) If you did not specify a new standby host when activating, you can use
gpinitstandby to configure a new standby master at a later time. Run this utility
on your currently active master host. For example:

$ gpinitstandby -s new_standby_master_hostname

Restoring Master Mirroring After a Recovery

After activating a standby master in a recovery scenario and making it your current
primary master, you can continue running that instance as your primary master. This
assumes that the capabilities and dependability of that host machine are equivalent to
the original master host.

Unless you have already done so while activating the prior standby master, you must
initialize a new standby master in order to continue to provide master mirroring. Run
gpinitstandby on the currently active master host to configure a new standby master.

Optionally, you may prefer to restore the primary and standby master instances on the
original hosts. This process essentially swaps back the roles of the primary and
standby master hosts, and should be performed only if you strongly prefer to run the
master instances on the same hosts they occupied prior to the recovery scenario.

To restore the master and standby instances on original hosts (optional)

1. Make sure the original master host is in dependable running condition. The
conditions that caused the original failure should be fully remedied.

2. Initialize a standby master on the original master host. For example:

$ gpinitstandby -s original_master_hostname

3. Stop the master process on the current master host (which was the original
standby master host). For example:

$ gpstop -m

4. Run the gpactivatestandby utility from the original master host (currently a
standby master). For example, where -d specifies the data directory of the host
you are activating:

$ gpactivatestandby -d $MASTER_DATA_DIRECTORY

5. After the utility has finished, run gpstate to check the status:

$ gpstate -f

The original primary master should now have an Active status, and the status for
the standby master should be Not Configured.

6. Once the original master host is again running the primary Greenplum Database
master, you can initialize a standby master on the original standby master host.
For example:

$ gpinitstandby -s original_standby_master_hostname
Recovering a Failed Master 188

Greenplum Database Administrator Guide 4.1 – Chapter 15: Enabling High Availability Features
To resynchronize a standby master

There may be times when the log synchronization process between the primary and
standby master has stopped or has fallen behind, and your standby master is then out
of date. Check the gp_master_mirroring system catalog table to see when the standby
master was last updated. For example:

$ psql dbname -c 'SELECT * FROM gp_master_mirroring;'

To recover a standby master and bring it up to date again, run the following
gpinitstandby command (using the -n option):

$ gpinitstandby -s standby_master_hostname -n
Recovering a Failed Master 189

Greenplum Database Administrator Guide 4.1 – Chapter 16: Backing Up and Restoring Databases
16. Backing Up and Restoring Databases

This chapter provides information on backing up and restoring databases and user data
in a Greenplum Database system. It contains the following topics:

• Overview of Backup and Restore Operations

• Backing Up a Database

• Restoring From Parallel Backup Files

Overview of Backup and Restore Operations
Greenplum recommends that you take regular backups of your databases. These
backups can be used to restore your data or to rebuild a Greenplum Database system in
the event of a system failure or data corruption. You can also use the backups to
migrate data from one Greenplum Database system to another.

About Parallel Backups

Greenplum provides a parallel dump utility called gp_dump. This utility backs up the
Greenplum master instance and each active segment instance at the same time. See
“Backing Up a Database with gp_dump” on page 193.

Because the segments are dumped in parallel, the time it takes to do a backup should
scale regardless of the number of segments in your system. The dump files on the
master host consist of DDL statements and the Greenplum-specific system catalog
tables (such as gp_segment_configuration). On the segment hosts, there is one dump
file created for each segment instance. The segment dump files contain the data for an
individual segment instance. All of the dump files that comprise a total backup set are
identified by a unique 14-digit timestamp key.

Figure 16.1 Parallel Backups in Greenplum Database
Overview of Backup and Restore Operations 190

Greenplum Database Administrator Guide 4.1 – Chapter 16: Backing Up and Restoring Databases
In order to automate routine backups, Greenplum also provides the gpcrondump
utility, which is a wrapper for gp_dump that can be called directly or from a scheduled
CRON job. gpcrondump also allows you to backup additional objects besides your
databases and data, such as database roles and server configuration files. See
“Automating Parallel Backups with gpcrondump” on page 194.

About Non-Parallel Backups

Greenplum also supports the regular PostgreSQL dump utilities: pg_dump and
pg_dumpall. The PostgreSQL dump utilities (when used on Greenplum Database)
will create one big dump file on the master host containing the data from all active
segments. In most cases, this is probably not practical, as there is most likely not
enough disk space on the master host to create a single backup file of an entire
distributed database. These utilities are mostly supported for users who are migrating
from regular PostgreSQL to Greenplum Database.

Another useful command for getting data out of a database is the COPY TO SQL
command. This allows you to copy all or a portion of a table out of the database to a
text-delimited file on the master host.

If you are migrating your data to another Greenplum Database system with a different
segment configuration (for example, if the system you are migrating to has greater or
fewer segment instances), Greenplum recommends using your parallel dump files
created by gp_dump or gpcrondump and following the restore process described in
“Restoring to a Different Greenplum System Configuration” on page 197.

About Parallel Restores

To do a parallel restore, you must have a complete backup set created by gp_dump or
gpcrondump. Greenplum provides a parallel restore utility called gp_restore. This
utility takes the timestamp key generated by gp_dump, validates the backup set, and
restores the database objects and data into a distributed database. As with a parallel
dump, each segment’s data is restored in parallel.

Figure 16.2 Parallel Restores in Greenplum Database
Overview of Backup and Restore Operations 191

Greenplum Database Administrator Guide 4.1 – Chapter 16: Backing Up and Restoring Databases
Greenplum also provides the gpdbrestore utility, which is a wrapper for gp_restore.
gpdbrestore provides additional flexibility and verification options, which are useful
if you are using automated backup files produced by gpcrondump, or have moved your
backup files off of the Greenplum array to an alternate location. See “Restoring a
Database Using gpdbrestore” on page 197.

About Non-Parallel Restores

Greenplum also supports the regular PostgreSQL restore utility: pg_restore. This
utility is mostly supported for users who are migrating to Greenplum Database from
regular PostgreSQL, and have compressed dump files created by pg_dump or
pg_dumpall. Before restoring PostgreSQL dump files into Greenplum Database,
make sure to modify the CREATE TABLE statements in the dump files to include the
Greenplum DISTRIBUTED clause.

It may also sometimes be necessary to do a non-parallel restore from a parallel backup
set. For example, suppose you are migrating from a Greenplum system that has four
segments to one that has five segments. You cannot do a parallel restore in this case,
because your backup set only has four backup files and would not be evenly
distributed across the new expanded system. A non-parallel restore using parallel
backup files involves collecting each backup file from the segment hosts, copying
them to the master host, and loading them through the master. See “Restoring to a
Different Greenplum System Configuration” on page 197.

Figure 16.3 Non-parallel Restore Using Parallel Backup Files

Backing Up a Database
There are three ways to backup a database:
Backing Up a Database 192

Greenplum Database Administrator Guide 4.1 – Chapter 16: Backing Up and Restoring Databases
• Create a dump file for each segment with gp_dump. Use this option if you are
dumping a database for backup purposes, or if you want to migrate your data to
another system with the same segment configuration (for example, same number
of segment instances, but on different hosts). To restore, you must use the
corresponding gp_restore utility. See “Backing Up a Database with gp_dump”
on page 193. You can also use dump files created by gp_dump to restore to a
different Greenplum system configuration if needed.

• Schedule routine dumps with gpcrondump. This is a wrapper utility for
gp_dump. It allows you to schedule routine backups of a Greenplum Database
database using cron (a scheduling utility for UNIX operating systems). Cron jobs
that call gpcrondump should be scheduled on the Greenplum master host.
gpcrondump also allows you to backup additional objects besides your databases
and data, such as database roles and server configuration files.

• Create a single dump file with pg_dump or pg_dumpall. Use this option if you
are migrating your data to another database vendor’s system. If restoring to a
PostgreSQL or Greenplum database, you can use the corresponding pg_restore
utility (if the dump file is in archive format), or you can use a client program such
as psql (if the dump file is in plain text format). If you plan to restore to another
Greenplum Database system, Greenplum recommends that you do a parallel dump
using gp_dump or gpcrondump and then do a non-parallel restore.

Backing Up a Database with gp_dump

The gp_dump utility dumps the contents of a Greenplum Database system into a series
of SQL utility files, which can then be used to restore a Greenplum Database system
configuration, database, and data. During a dump operation users will still have access
to the database.

The gp_dump utility performs the following actions and produces the following dump
files:

On the master host

• Dumps the Greenplum configuration system catalog tables into a SQL file in the
master data directory. The default naming convention of this file is
gp_catalog_1_<dbid>_<timestamp>.

• Dumps a CREATE DATABASE SQL statement into a file in the master data
directory. The default naming convention of this file is
gp_cdatabase_1_<dbid>_<timestamp>. This statement can be run on the
master instance to recreate the database.

• Dumps the user database schema(s) into a SQL file in the master data directory.
The default naming convention of this file is gp_dump_1_<dbid>_<timestamp>.
This file is used by gp_restore to recreate the database schema(s).

• Creates a dump file in the master data directory named
gp_dump_1_<dbid>_<timestamp>_post_data that contains commands to
rebuild objects associated with the tables.
When the database is restored with gp_restore, first, the schema and data are
restored, and then, the dump file is used to rebuilt the other objects associated with
the tables.
Backing Up a Database 193

Greenplum Database Administrator Guide 4.1 – Chapter 16: Backing Up and Restoring Databases
• gp_dump launches a gp_dump_agent for each segment instance to be backed up.
gp_dump_agent processes run on the segment hosts and report status back to the
gp_dump process running on the master host.

On the segment hosts

• Dumps the user data for each segment instance into a SQL file in the segment
instance’s data directory. By default, only primary (or active) segment instances
are backed up. The default naming convention of this file is
gp_dump_0_<dbid>_<timestamp>. This file is used by gp_restore to recreate
that particular segment of user data.

• Creates a log file in each segment instance’s data directory named
gp_dump_status_0_<dbid>_<timestamp>.

Note that the 14 digit timestamp is the number that uniquely identifies the backup job,
and is part of the filename for each dump file created by a gp_dump operation. This
timestamp must be passed to the gp_restore utility when restoring a Greenplum
database.

To backup a Greenplum database using gp_dump

1. From the master, run the gp_dump utility. For example (where mydatabase is the
name of the database you are backing up):

$ gp_dump mydatabase

Automating Parallel Backups with gpcrondump

gpcrondump is a wrapper utility for gp_dump, which can be called directly or from a
crontab entry. It also allows you to backup additional objects besides your databases
and data, such as database roles and server configuration files.

gpcrondump creates the dump files in the master and each segment instance’s data
directory in <data_directory>/db_dumps/YYYYMMDD. The segment data dump
files are compressed using gzip.

To schedule a dump operation using CRON

1. On the master, log in as the Greenplum superuser (gpadmin).

2. Define a crontab entry that calls gpcrondump. For example, to schedule a
nightly dump of the sales database at one minute past midnight (note that the
SHELL is set to /bin/bash and the PATH includes the location of the Greenplum
Database management utilities):

Linux Example:

SHELL=/bin/bash

GPHOME=/usr/local/greenplum-db-4.1.x.x

MASTER_DATA_DIRECTORY=/data/gpdb_p1/gp-1

PATH=$PATH:$GPHOME/bin

01 0 * * * gpadmin gpcrondump -x sales -c -g -G -a -q >>
gp_salesdump.log
Backing Up a Database 194

Greenplum Database Administrator Guide 4.1 – Chapter 16: Backing Up and Restoring Databases
Solaris Example (no line breaks):

01 0 * * * SHELL=/bin/bash
GPHOME=/usr/local/greenplum-db-4.1.x.x PATH=$PATH:$GPHOME/bin
HOME=/export/home/gpadmin
MASTER_DATA_DIRECTORY=/data/gpdb_p1/gp-1
/usr/local/greenplum-db/bin/gpcrondump -x sales -c -g -G -a
-q >> gp_salesdump.log

3. Create a file named mail_contacts in either the Greenplum superuser’s home
directory or in $GPHOME/bin. For example:

$ vi /home/gpadmin/mail_contacts

$ vi /export/home/gpadmin/mail_contacts

4. In this file, type one email address per line. For example:

dba@mycompany.com

jjones@mycompany.com

5. Save and close the mail_contacts file. gpcrondump will send email
notifications to the email addresses listed in this file.

Restoring From Parallel Backup Files
The procedure for restoring a database from parallel backup files depends on a few
factors. To determine the restore procedure to use, determine your answers to the
following questions:

1. Where are your backup files located? If your backup files reside in their
original location on the segment hosts where they were created by gp_dump, you
can do a simple restore using gp_restore. If you have moved your backup files
off of your Greenplum array, for example to an archive server, use gpdbrestore.

2. Do you need to restore your entire system, or just your data? If you have your
Greenplum Database up and running and just need to restore your data, you can do
a restore using gp_restore or gpdbrestore. If you have lost your entire array and
need to rebuild the entire system from backup, use gpinitsystem.

3. Are you restoring to a system with the same number of segment instances as
your backup set? If you are restoring to an array with the same number of
segment hosts and segment instances per host, use gp_restore or gpdbrestore.
If you are migrating to a different array configuration, you must do a non-parallel
restore. See “Restoring to a Different Greenplum System Configuration” on page
197.

Restoring a Database with gp_restore

The gp_restore utility recreates the data definitions (schema) and user data in a
database using the backup files created by a gp_dump operation. To do a restore, you
must have:

1. Backup files created by a gp_dump operation.
Restoring From Parallel Backup Files 195

Greenplum Database Administrator Guide 4.1 – Chapter 16: Backing Up and Restoring Databases
2. The backup files reside on the segment hosts in the location where gp_dump
created them.

3. The Greenplum Database system up and running.

4. A Greenplum Database system with the exact same number of primary segment
instances as the system that was backed up using gp_dump.

5. The database you are restoring to is created in the system.

6. If you used the options -s (schema only), -a (data only), --gp-c (compressed),
--gp-d (alternate dump file location) when performing the gp_dump operation,
you must specify these options when doing the gp_restore as well.

The gp_restore utility performs the following actions:

On the master host

• Runs the SQL DDL commands in the gp_dump_1_<dbid>_<timestamp> file
created by gp_dump to recreate the database schema and objects.

• Creates a log file in the master data directory named
gp_restore_status_1_<dbid>_<timestamp>.

• gp_restore launches a gp_restore_agent for each segment instance to be
restored. gp_restore_agent processes run on the segment hosts and report
status back to the gp_restore process running on the master host.

On the segment hosts

• Restores the user data for each segment instance using the
gp_dump_1_<dbid>_<timestamp> files created by gp_dump. Each primary and
mirror segment instance on a host is restored.

• Creates a log file for each segment instance named
gp_restore_status_1_<dbid>_<timestamp>.

Note that the 14 digit timestamp is the number that uniquely identifies the backup job
to be restored, and is part of the filename for each dump file created by a gp_dump
operation. This timestamp must be passed to the gp_restore utility when restoring a
database.

To restore from a backup created by gp_dump

1. Make sure the backup files created by gp_dump reside on the master host and
segment hosts for the Greenplum Database system you are restoring.

2. Make sure the database you are restoring to has been created in the system. For
example:

$ createdb database_name

3. From the master, run the gp_restore utility. For example (where --gp-k
specifies the timestamp key of the backup job and -d specifies the database to
connect to):

$ gp_restore -gp-k=2007103112453 -d database_name
Restoring From Parallel Backup Files 196

Greenplum Database Administrator Guide 4.1 – Chapter 16: Backing Up and Restoring Databases
Restoring a Database Using gpdbrestore

The gpdbrestore utility is a wrapper around gp_restore, which provides some
convenience and flexibility in restoring from a set of backup files created by
gpcrondump. To do a restore using gpdbrestore, you must have:

1. Backup files created by a gpcrondump operation.

2. The Greenplum Database system up and running.

3. A Greenplum Database system with the exact same number of primary segment
instances as the system that was backed up.

4. The database you are restoring to is created in the system.

To restore from an archive host using gpdbrestore

(This procedure assumes your backup set has been moved off of your Greenplum
array to another host in the network)

1. First, make sure that the archive host is reachable from the Greenplum master
host:

$ ping archive_host

2. Make sure the database you are restoring to has been created in the system. For
example:

$ createdb database_name

3. From the master, run the gpdbrestore utility. For example (where -R specifies
the host name and path to a complete backup set):

$ gpdbrestore -R archive_host:/gpdb/backups/archive/20080714

Restoring to a Different Greenplum System Configuration

In order to do a parallel restore operation using gp_restore or gpdbrestore, the
system you are restoring to must be the same configuration as the system that was
backed up. If you want to restore your database objects and data into a different
system configuration (for example, if you are expanding to a system with more
segments), you can still use your parallel backup files and restore them by loading
them through the Greenplum master. To do a non-parallel restore, you must have:

1. A complete backup set created by a gp_dump or gpcrondump operation. The
backup file of the master contains the DDL to recreate your database objects. The
backup files of the segments contain the data.

2. A Greenplum Database system up and running.

3. The database you are restoring to is created in the system.

If you look at the contents of a segment dump file, it simply contains a COPY command
for each table followed by the data in delimited text format. If you collect all of the
dump files for all of the segment instances and run them through the master, you will
have restored all of your data and redistributed it across the new system configuration.
Restoring From Parallel Backup Files 197

Greenplum Database Administrator Guide 4.1 – Chapter 16: Backing Up and Restoring Databases
To restore a database to a different system configuration

1. First make sure you have a complete backup set. This includes dump files of the
master (gp_dump_1_1_<timestamp>, gp_dump_1_1_<timestamp>_post_data)
and one for each segment instance (gp_dump_0_2_<timestamp>,
gp_dump_0_3_<timestamp>, gp_dump_0_4_<timestamp>, and so on). The
individual dump files should all have the same timestamp key. By default,
gp_dump creates the dump files in each segment instance’s data directory, so you
will need to collect all of the dump files and move them to a place on the master
host. If you do not have a lot of disk space on the master, you can copy each
segment dump file to the master, load it, and then delete it once it has loaded
successfully.

2. Make sure the database you are restoring to has been created in the system. For
example:

$ createdb database_name

3. Load the master dump file to restore the database objects. For example:

$ psql database_name -f /gpdb/backups/gp_dump_1_1_20080714

4. Load each segment dump file to restore the data. For example:

$ psql database_name -f /gpdb/backups/gp_dump_0_2_20080714

$ psql database_name -f /gpdb/backups/gp_dump_0_3_20080714

$ psql database_name -f /gpdb/backups/gp_dump_0_4_20080714

$ psql database_name -f /gpdb/backups/gp_dump_0_5_20080714

...

5. Load the post data file to restore database objects such as indexes, triggers,
primary key constraints, etc.

$ psql database_name
 -f /gpdb/backups/gp_dump_0_5_20080714_post_data
Restoring From Parallel Backup Files 198

Greenplum Database Administrator Guide 4.1 – Chapter 17: Expanding a Greenplum System
17. Expanding a Greenplum System

This chapter provides information on adding additional resources to an existing
Greenplum Database system in order to scale performance and storage capacity. It
contains the following topics:

• Planning Greenplum System Expansion

• Preparing and Adding Nodes

• Initializing New Segments

• Redistributing Tables

• Removing the Expansion Schema

Though this chapter provides some general information on preparing hardware
platforms, it focuses chiefly on software aspects of expansion. Greenplum
recommends that you work with our platform engineers when configuring hardware
resources for expanding Greenplum Database.

Planning Greenplum System Expansion
Careful planning is critical to the success of a system expansion operation. By
thoroughly preparing all new hardware and carefully planning all the steps of the
expansion procedure, you can minimize risk and down time for Greenplum Database.

Administrators of large-scale systems may want to give special attention to the
performance-related considerations covered in “Planning Table Redistribution” on
page 203.

This section provides an overview and a checklist for the system expansion process.

System Expansion Overview

System expansion consists of three phases:

• Adding and testing new hardware platforms

• Initializing new segments

• Redistributing tables

Adding and testing new hardware — General considerations for deploying new
hardware are described in “Planning New Hardware Platforms” on page 202. For
more information on hardware platforms, consult Greenplum platform engineers.
After the new hardware platforms are provisioned and networked, you must run
performance tests using Greenplum utilities.

Initializing new segments— Once Greenplum Database is installed on new
hardware, you must initialize the new segments using gpexpand (not gpinitsystem).
In this process, the utility creates a data directory and copies all user tables from all
Planning Greenplum System Expansion 199

Greenplum Database Administrator Guide 4.1 – Chapter 17: Expanding a Greenplum System
existing databases on the new segments, capturing metadata for each table in an
expansion schema for status tracking. After this process has completed successfully,
the expansion operation is committed, and cannot be reversed.

These operations are performed with the system offline. The gpexpand utility will
shut down the database during initialization if you have not already done so.

Redistributing tables — As part of the initialization process, gpexpand nullifies hash
distribution policies (except for the parent tables of a partitioned table) and sets the
distribution policy for all tables to random distribution. This action is performed on all
tables in all existing databases in the Greenplum Database instance. Users can
continue to access Greenplum Database after initialization is complete and the system
is back online, though they may experience some performance degradation on systems
that rely heavily on hash distribution of tables. During this process, normal operations
such as ETL jobs, user queries, and reporting can continue, although users might
experience slower response times.

Note: When a table has a random distribution policy, Greenplum Database cannot enforce
unique constraints (such as PRIMARY KEY). This might affect your ETL and loading
processes until table redistribution is completed, as duplicate rows will not issue a
constraint violation error as expected.

To complete system expansion, you must run gpexpand to redistribute data tables
across the newly added segments. Depending on the size and scale of your system, this
might be accomplished in a single session during low-use hours, or it might require
you to divide the process into batches over an extended period. Each table or partition
will be unavailable for read or write operations during the period in which it is being
redistributed. As each table is successfully redistributed across the new segments
according to its distribution key (if any), the performance of the database should
incrementally improve until it equals and then exceeds pre-expansion performance
levels.

In a typical operation, you will run the gpexpand utility four times with different
options during the complete expansion process.

• To interactively create an expansion input file:
gpexpand -f hosts_file

• To initialize segments and create expansion schema:
gpexpand -i input_file -D database_name

• To redistribute tables:
gpexpand -d duration

• To remove the expansion schema:
gpexpand -c

In systems whose large scale requires multiple redistribution sessions, gpexpand may
need to be run several more times to complete the expansion, and may benefit from
explicit table redistribution ranking. For more information, see “Planning Table
Redistribution” on page 203.

Planning Greenplum System Expansion 200

Greenplum Database Administrator Guide 4.1 – Chapter 17: Expanding a Greenplum System
System Expansion Checklist

This checklist provides a quick overview of the steps required for a system expansion.

Online Pre-Expansion Preparation

* System is up and available

Devise and execute a plan for ordering, building, and networking new
hardware platforms.

Devise a database expansion plan. Map the number of segments per host,
schedule the offline period for testing performance and creating the
expansion schema, and schedule the intervals for table redistribution.

Install Greenplum Database binaries on new hosts.

Copy SSH keys to the new hosts (gpssh-exkeys).

Validate the operating system environment of the new hardware (gpcheck).

Validate disk I/O and memory bandwidth of the new hardware
(gpcheckperf).

Prepare an expansion input file (gpexpand).

Offline Expansion Tasks

* The system will be locked down to all user activity during this process

Validate the operating system environment of the combined existing and
new hardware (gpcheck).

Validate disk I/O and memory bandwidth of the combined existing and new
hardware (gpcheckperf).

Initialize new segments into the array and create an expansion schema
(gpexpand -i input_file).

Online Expansion and Table Redistribution

* System is up and available

Before beginning table redistribution, stop any automated snapshot
processes or other processes that consume disk space.

Redistribute tables through the expanded system (gpexpand).

Remove expansion schema (gpexpand -c).
Planning Greenplum System Expansion 201

Greenplum Database Administrator Guide 4.1 – Chapter 17: Expanding a Greenplum System
Planning New Hardware Platforms

Careful preparation of new hardware for system expansion is extremely important.
Deliberate and thorough deployment of compatible hardware can greatly minimize the
risk of issues developing later in the system expansion process.

All new segment hosts for the expanded Greenplum Database array should have
hardware resources and configurations matching those of the existing hosts.
Greenplum recommends that you work with Greenplum Platform Engineering prior to
making a hardware purchase decision for expanding Greenplum Database.

The steps to plan and set up new hardware platforms will vary greatly for each unique
deployment. Some of the possible considerations include:

• Preparing the physical space for the new hardware. Consider cooling, power
supply, and other physical factors.

• Determining the physical networking and cabling required to connect the new and
existing hardware.

• Mapping the existing IP address spaces and developing a networking plan for the
expanded system.

• Capturing the system configuration (users, profiles, NICs, etc.) from existing
hardware to list it in detail for ordering the new hardware.

• Creating a custom build plan for deploying hardware with the desired
configuration in the particular site and environment.

After selecting and adding new hardware to your network environment, make sure
you perform the burn-in tasks described in “Verifying OS Settings” on page 208.

Planning Initialization of New Segments

Expanding Greenplum Database requires a limited period of system down time.
During this period, you must run gpexpand to initialize new segments into the array
and create an expansion schema.

The time required will depend on the number of schema objects in the Greenplum
system, and other factors related to hardware performance. In most environments, the
initialization of new segments will require less than thirty minutes offline.

Note: After you begin initializing new segments, you can no longer restore the system
using gp_dump files created for the pre-expansion system. When initialization is
successfully completed, the expansion is committed and cannot be rolled back.

Planning Mirror Segments

If your existing array has mirror segments, the new segments are required to have
mirroring configured. Conversely, if there are no mirrors configured for existing
segments, you cannot add mirrors to new hosts with the gpexpand utility.

For Greenplum Database arrays with mirror segments, you must make sure that you
have added enough new host machines to accommodate the new mirror segments. The
number of new hosts required depends on your mirroring strategy:

Planning Greenplum System Expansion 202

Greenplum Database Administrator Guide 4.1 – Chapter 17: Expanding a Greenplum System
Spread Mirroring — add at least one more host to the array than the number of
segments per host. The number of separate hosts must be greater than the number of
segment instances per host to ensure even spreading.

Grouped Mirroring — add no fewer than two new hosts. In a minimum case with
two hosts, this ensures that the mirrors for the first host can reside on the second host,
and vice versa.

For more information, see “About Segment Mirroring” on page 8.

Increasing Segments Per Host

By default, new hosts are initialized with the same number of primary segments as
existing hosts. Optionally, you can increase the number of segments per host, or add
new segments only to existing hosts.

For example, if existing hosts currently have two segments per host, you can use
gpexpand to initialize two additional segments on existing hosts (for a total of four),
and four new segments on new hosts.

The interactive process for creating an expansion input file prompts for this option,
and the input file format allows you to specify new segment directories manually as
well. For more information, see “Creating an Input File for System Expansion” on
page 209.

About the Expansion Schema

At initialization time, gpexpand creates an expansion schema. If you do not specify a
particular database at initialization time (gpexpand -D), the schema is created in the
database indicated by the PGDATABASE environment variable.

The expansion schema stores metadata for each table in the system so that its status
can be tracked throughout the expansion process. It consists of two tables and a view
for tracking the progress of an expansion operation:

• gpexpand.status

• gpexpand.status_detail

• gpexpand.expansion_progress

You can control aspects of the expansion process by modifying
gpexpand.status_detail. For example, removing a record from this table prevents the
table from being expanded across new segments. By updating the rank value for a
record, you can control the order in which tables are processes for redistribution. For
more information, see “Ranking Tables for Redistribution” on page 213.

Planning Table Redistribution

The redistribution of tables is performed with the system online. For many Greenplum
systems, table redistribution can be completed in a single gpexpand session scheduled
during a low-use period. Larger systems may require you to plan multiple sessions and
Planning Greenplum System Expansion 203

Greenplum Database Administrator Guide 4.1 – Chapter 17: Expanding a Greenplum System
to set the order of table redistribution in order to minimize the performance impact.
Greenplum recommends completing the table redistribution in one session if your
database size and design permit it.

Important: To perform table redistribution, you must have enough disk space on
your segment hosts to temporarily hold a copy of your largest table.
Each table is unavailable for read and write operations while
gpexpand is redistributing it among the segments.

The performance impact of table redistribution depends on the size, storage type, and
partitioning design of a table. Redistributing a table with gpexpand takes
approximately as much time per table as a CREATE TABLE AS SELECT operation
would take. When redistributing a terabyte-scale fact table, the expansion utility may
use a significant portion of available system resources, with resulting impact on the
performance of queries or other database workload.

Managing Redistribution in Large-Scale Greenplum Systems

You can manage the order in which tables are redistributed by adjusting their ranking
as described in “Ranking Tables for Redistribution” on page 213. Manipulating the
redistribution order can help you adjust for limited disk space and restore optimal
query performance more quickly.

When planning the redistribution phase, you should consider the impact of the
exclusive lock taken on each table while it is actively being redistributed. User activity
on a table may delay the beginning of its scheduled redistribution. Likewise, a table
will be unavailable for all other operations while the gpexpand utility is redistributing
it among the new segments.

Systems with Abundant Free Disk Space

In systems with abundant free disk space (required to store a copy of the largest table),
you can focus on restoring optimum query performance as soon as possible by first
redistributing important tables that are heavily used by common queries. Accordingly,
assign high ranking to these tables, and schedule the redistribution operations for
times of low system usage. Run only one redistribution process at a time until large or
critical tables have been successfully redistributed.

Systems with Limited Free Disk Space

If your existing hosts have limited disk space, you may prefer to first redistribute
smaller tables (such as dimension tables) in order to clear the space needed to store a
copy of the largest table. Disk space on the original segments will increase as each
table is redistributed across the expanded array. Once the amount of free space on all
segments is adequate to store a copy of the largest table, you can redistribute large and
critical tables. Again, because of the exclusive lock required, you should schedule
large tables for off-hours.

Also consider the following:

• Run multiple parallel redistribution processes in off-hours to maximize the
available system resources.

• When running multiple process, make sure you operate within the connection
limits for your Greenplum system. For more information, see “Limiting
Concurrent Connections” on page 38.
Planning Greenplum System Expansion 204

Greenplum Database Administrator Guide 4.1 – Chapter 17: Expanding a Greenplum System
Redistributing Append-Only and Compressed Tables

Append-only and compressed append-only tables are redistributed by gpexpand at
different rates from heap tables. The CPU capacity required to compress and
decompress data tends to increase the impact on system performance. For
similar-sized tables with similar data, you may find overall performances differences
like the following:

• Uncompressed append-only tables expand 10% faster than heap tables

• Zlib-compressed append-only tables expand at a significantly slower rate than
uncompressed append-only tables, potentially up to 80% slower.

• Systems with data compression such as ZFS/LZJB experience a significantly
slower rate of redistribution..

Important: If data compression is used on the existing nodes in the system,
identical compression must be used on new nodes to avoid disk
space shortage.

Redistributing Tables with Primary Key Constraints

Between the initialization of new segments and the successful redistribution of tables,
there is a window during which primary key constraints cannot be enforced. Any
duplicate data inserted into tables during this window will prevent the expansion
utility from redistributing the affected tables.Once a table is successfully redistributed,
the primary key constraint is again properly enforced.

If constraints are violated during the expansion process, the expansion utility logs
errors and prints warnings to the screen after attempting to redistribute all tables. You
have the following options to remedy constraint violations:

• Clean up duplicate data in the primary key columns, and re-run gpexpand.

• Drop the primary key constraints, and re-run gpexpand.

Redistributing Tables with User-Defined Data Types

With tables that have dropped columns of user-defined data types, you cannot perform
redistribution with the expansion utility. To redistribute tables with dropped columns
of user-defined types, first re-create the table using CREATE TABLE AS SELECT.
Once the dropped columns are removed by this process, you can proceed to
redistribute the table with the expansion utility.

Redistributing Partitioned Tables

Because the expansion utility can process a large table partition by partition, an
efficient partition design reduces the performance impact of table redistribution. Only
the child tables of a partitioned table are set to a random distribution policy, and the
read/write lock for redistribution applies to only one child table at a time.

Redistributing Indexed Tables

Because the gpexpand utility must re-index each indexed table after redistribution, a
high level of indexing has a high performance impact. Systems with intensive
indexing will have significantly slower rates of table redistribution.
Planning Greenplum System Expansion 205

Greenplum Database Administrator Guide 4.1 – Chapter 17: Expanding a Greenplum System
Preparing and Adding Nodes
To prepare new system nodes for expansion, install the Greenplum Database software
binaries, exchange the required SSH keys and run performance tests. Greenplum
recommends running performance tests at least twice: first on the new nodes only, and
then on both the new and existing nodes together. The second set of tests must be run
with the system offline in order to prevent user activity from distorting test results.

Beyond these general guidelines, Greenplum recommends running performance tests
any time that the networking of nodes is modified, or for any special conditions in the
system environment. For example, if you plan to run the expanded system on two
network clusters, run the performance tests on each cluster.

This rest of this section describes how to run Greenplum administrative utilities to
verify that your new nodes are ready for integration into the existing Greenplum
system.

Adding New Nodes to the Trusted Host Environment

New nodes must exchange SSH keys with the existing nodes in order to enable
Greenplum administrative utilities to connect to all segments without a password
prompt.

Greenplum recommends performing the key exchange process twice: once as root
(for administration convenience) and once as the gpadmin user (required for the
Greenplum management utilities). Perform the following tasks in this order:

• “To exchange SSH keys as root” on page 206

• “To create the gpadmin user” on page 207

• “To exchange SSH keys as the gpadmin user” on page 208

To exchange SSH keys as root

1. Create two separate host list files: one that has all of the existing host names in
your Greenplum Database array, and one that has all of the new expansion hosts.
For existing hosts, you can use the same host file that you used for the initial setup
of SSH keys in the system.
Preparing and Adding Nodes 206

Greenplum Database Administrator Guide 4.1 – Chapter 17: Expanding a Greenplum System
The files should include all hosts (master, backup master and segment hosts) and
list one host name per line. If using a multi-NIC configuration, make sure to
exchange SSH keys using all of the configured host names for a given host. Make
sure there are no blank lines or extra spaces. For example:

mdw

sdw1-1

sdw1-2

sdw1-3

sdw1-4

sdw2-1

sdw2-2

sdw2-3

sdw2-4

sdw3-1

sdw3-2

sdw3-3

sdw3-4

OR masterhost
seghost1
seghost2
seghost3

2. Log in as root on the master host, and source the greenplum_path.sh file from
your Greenplum installation.

$ su -

source /usr/local/greenplum-db/greenplum_path.sh

3. Run the gpssh-exkeys utility referencing the host list files. For example:

gpssh-exkeys -f /home/gpadmin/existing_hosts_file -x
/home/gpadmin/new_hosts_file

4. gpssh-exkeys will check the remote hosts and perform the key exchange
between all hosts. Enter the root user password when prompted. For example:

***Enter password for root@hostname: <root_password>

To create the gpadmin user

1. Use gpssh to create the gpadmin user on all of the new segment hosts (if it does
not exist already). Use the list of new hosts that you created for the key exchange.
For example:

gpssh -f new_hosts_file '/usr/sbin/useradd gpadmin -d
/home/gpadmin -s /bin/bash'

2. Set the new gpadmin user’s password. On Linux, you can do this on all segment
hosts at once using gpssh. For example:

gpssh -f new_hosts_file 'echo gpadmin_password | passwd
gpadmin --stdin'

On Solaris, you must log in to each segment host and set the gpadmin user’s
password on each host. For example:

ssh segment_hostname
Preparing and Adding Nodes 207

Greenplum Database Administrator Guide 4.1 – Chapter 17: Expanding a Greenplum System
passwd gpadmin

New password: <gpadmin_password>

Retype new password: <gpadmin_password>

3. Verify that the gpadmin user has been created by looking for its home directory:

gpssh -f new_hosts_file ls -l /home

To exchange SSH keys as the gpadmin user

1. Log in as gpadmin, and run the gpssh-exkeys utility referencing the host list
files. For example:

gpssh-exkeys -f /home/gpadmin/existing_hosts_file -x
/home/gpadmin/new_hosts_file

2. gpssh-exkeys will check the remote hosts and perform the key exchange
between all hosts. Enter the gpadmin user password when prompted. For
example:

***Enter password for gpadmin@hostname: <gpadmin_password>

Verifying OS Settings

Use the gpcheck utility to verify that all the new hosts in your array have the correct
OS settings for running the Greenplum Database software.

To run gpcheck

1. Log in on the master host as the user who will be running your Greenplum
Database system (for example, gpadmin).

$ su - gpadmin

2. Run the gpcheck utility using your host file for new hosts. For example:

$ gpcheck -f new_hosts_file

Validating Disk I/O and Memory Bandwidth

Use the gpcheckperf utility to test disk I/O and memory bandwidth.

To run gpcheckperf

1. Run the gpcheckperf utility using the host file for new hosts. Use the -d option
to specify the file systems you want to test on each host (you must have write
access to these directories). For example:

$ gpcheckperf -f new_hosts_file -d /data1 -d /data2 -v

2. The utility may take a while to perform the tests as it is copying very large files
between the hosts. When it is finished, you will see the summary results for the
Disk Write, Disk Read, and Stream tests.

If your network is divided into subnets, repeat this procedure with a separate host file
for each subnet.
Preparing and Adding Nodes 208

Greenplum Database Administrator Guide 4.1 – Chapter 17: Expanding a Greenplum System
Integrating New Hardware into the System

Before initializing the system with all new segments, repeat the performance tests on
all nodes in the system, new and existing. Shut down the system and run these same
tests using host files that include all nodes, existing and new:

• Verifying OS Settings

• Validating Disk I/O and Memory Bandwidth

Because user activity may skew the results of these test, you must shut down
Greenplum Database (gpstop) before running them.

Initializing New Segments
Use the gpexpand utility to initialize the new segments, create the expansion schema,
and set a system-wide random distribution policy for the database. The utility
performs these tasks by default the first time you run it with a valid input file on a
Greenplum Database master. Subsequently, it will detect that an expansion schema has
been created, and will perform table redistribution.

Creating an Input File for System Expansion

To begin expansion, the gpexpand utility requires an input file containing information
about the new segments and hosts. If you run gpexpand without specifying an input
file, the utility displays an interactive interview that collects the required information
and automatically creates an input file for you.

If you choose to create the input file using the interactive interview, you can optionally
specify a file containing a list of expansion hosts. If your platform or command shell
limits the length of the list of hostnames that you can type when prompted in the
interview, specifying the hosts with -f may be mandatory.

Creating an input file in Interactive Mode

Before running gpexpand to create an input file in interactive mode, make sure you
have the required information:

• Number of new hosts (or a hosts file)

• New hostnames (or a hosts file)

• The mirroring strategy used in existing hosts, if any

• Number of segments to add per host, if any

The utility automatically generates an input file based on this information and dbid,
content ID, and data directory values stored in gp_segment_configuration, and saves it
in the current directory.

To create an input file in interactive mode

1. Log in on the master host as the user who will be running your Greenplum
Database system (for example, gpadmin).
Initializing New Segments 209

Greenplum Database Administrator Guide 4.1 – Chapter 17: Expanding a Greenplum System
2. Run gpexpand. The utility displays messages about preparing for an expansion
operation and prompts you to quit or continue.

Optionally, specify a hosts file using -f. For example:

$ gpexpand -f /home/gpadmin/new_hosts_file

3. At the prompt, select Y to continue.

4. Unless you specified a hosts file using -f, you will be prompted to enter
hostnames. Enter a comma separated list of the hostnames of the new expansion
hosts. Do not include interface hostnames. For example:

> sdw4-1, sdw4-2, sdw4-3, sdw4-4

To add segments to existing hosts only, enter a blank line at this prompt. Do not
specify localhost or any existing host name.

5. Enter the mirroring strategy used in your system, if any. Options are
spread|grouped|none, default is grouped.

Make sure you have enough hosts for your selected grouping strategy. For more
information, see “Planning Mirror Segments” on page 202.

6. Enter the number of new primary segments to add, if any. By default, new hosts
are initialized with the same number of primary segments as existing hosts.
Optionally, you can increase the number of segments per host.

If you want to increase the number of segments per host, enter a number greater
than zero. This number of additional segments will be initialized on all hosts. For
example, if existing hosts currently have two segments per host, entering a value
of 2 will initialize two additional segments on existing hosts, and four new
segments on new hosts.

7. If you are adding new primary segments, enter the new primary data directory root
for the new segments. Do not specify the actual data directory name, which is
created automatically by gpxpand based on the existing data directory names.

For example, if your existing data directories are as follows:

/gpdata/primary/gp0
/gpdata/primary/gp1

you should enter the following (one at each prompt) to specify the data directories
for two new primary segments:

/gpdata/primary
/gpdata/primary

When the initialization is run, the utility will create the new directories gp2 and
gp3 under /gpdata/primary

8. If you are adding new mirror segments, enter the new mirror data directory root
for the new segments. Do not specify the actual data directory name, which is
created automatically by gpxpand based on the existing data directory names.

For example, if your existing data directories are as follows:

/gpdata/mirror/gp0
/gpdata/mirror/gp1
Initializing New Segments 210

Greenplum Database Administrator Guide 4.1 – Chapter 17: Expanding a Greenplum System
you should enter the following (one at each prompt) to specify the data directories
for two new mirror segments:

/gpdata/mirror
/gpdata/mirror

When the initialization is run, the utility will create the new directories gp2 and
gp3 under /gpdata/mirror

Important: These primary and mirror root directories for new segments must exist
on the hosts, and the user running gpxpand must have permissions to create
directories in them.

After you have entered all required information, the utility generates an input file
and saves it in the current directory. For example:

gpexpand_inputfile_yyyymmdd_145134

Expansion Input File Format

You can create your own input file in the required format. Unless you have special
needs for your expansion scenario, Greenplum recommends creating the input file
using the interactive interview process.

The format for expansion input files is:

hostname:address:port:fselocation:dbid:content:preferred_role:rep
lication_port

For example:

sdw5:sdw5-1:50011:/gpdata/primary/gp9:11:9:p:53011

sdw5:sdw5-2:50012:/gpdata/primary/gp10:12:10:p:53011

sdw5:sdw5-2:60011:/gpdata/mirror/gp9:13:9:m:63011

sdw5:sdw5-1:60012:/gpdata/mirror/gp10:14:10:m:63011

An expansion input file in this format requires the following information for each new
segment:

Table 17.1 Data for the expansion configuration file

Parameter Valid Values Description

hostname Hostname Hostname for the segment host.

port An available port number Database listener port for the segment,
incremented on the existing segment port
base number.

fselocation Directory name The data directory (filespace) location for a
segment as per the pg_filespace_entry
system catalog.
Initializing New Segments 211

Greenplum Database Administrator Guide 4.1 – Chapter 17: Expanding a Greenplum System
Running gpexpand to Initialize New Segments

After you have created an input file, run gpexpand to initialize new segments. The
utility will automatically stop Greenplum Database for the time required to initialize
the segments, and then restart the system when finished.

To run gpexpand with an input file

1. Log in on the master host as the user who will be running your Greenplum
Database system (for example, gpadmin).

2. Run the gpexpand utility, specifying the input file with -i. Optionally, use -D to
specify the database in which to create the expansion schema. For example:

$ gpexpand -i input_file -D database1

The utility detects if there is an existing expansion schema for the Greenplum
system. If there is an existing schema, you must remove it with gpexpand -c
before beginning a new expansion operation. See “Removing the Expansion
Schema” on page 215.

When the new segments are initialized and the expansion schema is successfully
created, the utility prints a success message and exits.

When the initialization process is complete, you can connect to Greenplum Database
and view the expansion schema. The schema resides in the database you specified
with -D, or in the database specified by the PGDATABASE environment variable. For
more information, see “About the Expansion Schema” on page 203.

dbid Integer. Must not conflict with existing
dbid values.

Database ID for the segment. The values
you enter should be incremented
sequentially from existing dbid values shown
in the system catalog

gp_segment_configuration. For example, to
add four nodes to an existing ten-segment
array with dbid values of 1-10, list new dbid
values of 11, 12, 13 and 14.

content Integer. Must not conflict with existing
content values.

The content ID of the segment. A primary
segment and its mirror should have the
same content ID, incremented sequentially
from existing values. For more information,
see content in the reference for

gp_segment_configuration.

preferred_role p | m Determines whether this segment is a
primary or mirror. Specify p for primary, m
for mirror.

replication_port An available port number File replication port for the segment,
incremented on the existing segment
replication_port base number.

Table 17.1 Data for the expansion configuration file

Parameter Valid Values Description
Initializing New Segments 212

Greenplum Database Administrator Guide 4.1 – Chapter 17: Expanding a Greenplum System
Rolling Back an Failed Expansion Setup

You can roll back a failed expansion setup operation using the command gpexpand
-r | --rollback. However, this command is only allowed in a failure scenario.
Once a setup operation has completed successfully, the expansion is committed, and
you cannot roll back.

To roll back a failed expansion setup, use the following command, specifying the
database that contains the expansion schema:

gpexpand --rollback -D database_name

Redistributing Tables
After successfully creating an expansion schema, you can bring Greenplum Database
back online and redistribute tables across the entire array. You can redistribute tables
with gpexpand at specified intervals, targeting low-use hours when the utility’s CPU
usage and table locks will have the least impact on database operations. Also, you can
rank tables to ensure that the largest or most critical tables are redistributed in your
preferred order.

While the redistribution of tables is underway:

• Any new tables or partitions created will be distributed across all segments
exactly as they would be under normal operating conditions.

• Queries will use all segments, even though the relevant data may not have yet
been redistributed to the tables on the new segments.

• The table or partition currently being redistributed will be locked and unavailable
for read or write operations. When its redistribution is completed, normal
operations resume.

Ranking Tables for Redistribution

For large systems, it is recommended to control the order in which tables are
redistributed by adjusting their rank values in the expansion schema. This allows you
to redistribute heavily-used tables first and minimize the performance hit on the
system. The amount of free disk space available can affect table ranking; see
“Managing Redistribution in Large-Scale Greenplum Systems” on page 204 for more
information.

To rank tables for redistribution by updating rank values in gpexpand.status_detail,
connect to Greenplum Database using psql or another supported client. Update
gpexpand.status_detail with commands like the following:

=> UPDATE gpexpand.status_detail SET rank= 10;

UPDATE gpexpand.status_detail SET rank=1 WHERE fq_name =
‘public.lineitem’;

UPDATE gpexpand.status_detail SET rank=2 WHERE fq_name =
‘public.orders’;
Redistributing Tables 213

Greenplum Database Administrator Guide 4.1 – Chapter 17: Expanding a Greenplum System
These commands first lower the priority of all tables to 10, and then assign a rank of 1
to lineitem and then a rank of 2 to orders. When table redistribution begins, lineitem
will be redistributed first, followed by orders and then all other tables in
gpexpand.status_detail.

Note: For any table that you do not want to redistribute, you must remove the
corresponding entry from gpexpand.status_detail.

Redistributing Tables Using gpexpand

To redistribute tables with gpexpand

1. Log in on the master host as the user who will be running your Greenplum
Database system (for example, gpadmin).

2. Run the gpexpand utility. Optionally, you can use either the -d or -e option to
define the time period for the expansion session. For example, to run the utility for
a maximum of 60 consecutive hours:

$ gpexpand -d 60:00:00

The utility redistributes tables until the last table in the schema is successfully
marked completed, or until the specified duration or end time is reached. Each
time a session is started or finished, the utility updates the status and updated time
in gpexpand.status.

Monitoring Table Redistribution

At any time during the process of redistributing tables, you can query the expansion
schema. The view gpexpand.expansion_progress provides a summary of the current
progress, including calculations of the estimated rate of table redistribution and
estimated time to completion. The table gpexpand.status_detail can be queried for
per-table status information.

Viewing Expansion Status

Because the estimates in gpexpand.expansion_progress are based on the rates
achieved for each table, the view cannot calculate an accurate estimate until the first
table has completed. Calculations are restarted each time you re-run gpexpand to start
a new table redistribution session.

To monitor progress by querying gpexpand.expansion_progress, connect to
Greenplum Database using psql or another supported client. Query
gpexpand.expansion_progress with a command like the following:

=# select * from gpexpand.expansion_progress;

 name | value

------------------------------+-----------------------

 Bytes Left | 5534842880

 Bytes Done | 142475264

 Estimated Expansion Rate | 680.75667095996092 MB/s

Redistributing Tables 214

Greenplum Database Administrator Guide 4.1 – Chapter 17: Expanding a Greenplum System
 Estimated Time to Completion | 00:01:01.008047

 Tables Expanded | 4

 Tables Left | 4

(6 rows)

Viewing Table Status

The table gpexpand.status_detail stores status, last updated time, and other useful
information about each table in the schema. To monitor the status of a particular table
by querying gpexpand.status_detail, connect to Greenplum Database using psql or
another supported client. Query gpexpand.status_detail with a command like the
following:

=> SELECT status, expansion_started, source_bytes FROM
gpexpand.status_detail WHERE fq_name = ‘public.sales’;

status | expansion_started | source_bytes

-----------+----------------------------+--------------

 COMPLETED | 2009-02-20 10:54:10.043869 | 4929748992

(1 row)

Removing the Expansion Schema
The expansion schema can safely be removed after the expansion operation is
completed and verified. To run another expansion operation on a Greenplum system,
you must first remove the existing expansion schema.

To remove the expansion schema

1. Log in on the master host as the user who will be running your Greenplum
Database system (for example, gpadmin).

2. Run the gpexpand utility with the -c option. For example:

$ gpexpand -c
Removing the Expansion Schema 215

Greenplum Database Administrator Guide 4.1 – Chapter 18: Monitoring a Greenplum System
18. Monitoring a Greenplum System

As the Greenplum administrator, it is often necessary to know what is going on in the
Greenplum Database system in order to plan workflow and troubleshoot problems.
This chapter discusses the various tools available for monitoring database
performance and activity.

• Monitoring Database Activity and Performance

• Monitoring System State

• Viewing the Database Server Log Files

• Using gp_toolkit

Also, once one has identified a poorly-performing query, further investigation may be
needed using the EXPLAIN command. See “Query Profiling” on page 130 for more
information.

Monitoring Database Activity and Performance
Greenplum provides an optional performance monitoring feature that administrators
can enable within Greenplum Database 4.1.

Enabling Greenplum Performance Monitor is a two part process. First you must
enable the Greenplum Database server to collect and store query performance data and
system metrics. After data collection is enabled on the server side, the next step is to
install and configure the Greenplum Performance Monitor Console (a Web application
used to view the performance monitor data stored in Greenplum Database).

The Greenplum Performance Monitor console is shipped separately from your
Greenplum Database 4.1 installation. You can download the Greenplum Performance
Monitor console package and documentation from the EMC Download Center. See
the Greenplum Database Performance Monitor Administrator Guide for more
information on installing and using the Greenplum Performance Monitor Console.

Monitoring System State
As a Greenplum Database administrator, you will need to monitor the system for
certain problem events (such as a segment going down or running out of disk space on
a segment host). This section describes how to monitor the health of a Greenplum
Database system and how to examine certain state information for a Greenplum
Database system.

• Enabling System Alerts and Notifications

• Checking System State

• Checking Disk Space Usage

• Checking for Data Distribution Skew
Monitoring Database Activity and Performance 216

https://emc.subscribenet.com
https://emc.subscribenet.com

Greenplum Database Administrator Guide 4.1 – Chapter 18: Monitoring a Greenplum System
Enabling System Alerts and Notifications

You can configure a Greenplum Database system to trigger SNMP alerts or send email
notifications to system administrators whenever certain database events occur. These
events include:

• All PANIC-level error conditions

• All FATAL-level error conditions

• ERROR-level conditions that are "internal errors" (for example, SIGSEGV errors)

• Database system shutdown and restart

• Segment failure and recovery

• Standby master out-of-sync conditions

• Master host manual shutdown or other software problem (in certain failure
scenarios, Greenplum Database will not be able to send an alert or notification)

This section includes the following topics:

• Using SNMP with a Greenplum Database System

• Enabling Email Notifications

Note that SNMP alerts and email notifications report the same event information.
There is no difference in the event information that either tool reports.

Using SNMP with a Greenplum Database System

Greenplum’s gpsnmpd agent is an SNMP (Simple Network Management Protocol)
daemon that support SNMP requests on the health and state of a Greenplum Database
system by using a set of MIBs (Management Information Bases).

MIBs are a collection of objects that describe an SNMP-manageable entity — in this
case, a Greenplum Database system. An Agent is any SNMP software running on a
managed device that responds to queries or set requests. The gpsnmpd daemon
currently supports the generic RDBMS MIB and typically operates on the master host.

gpsnmpd works in conjunction with the SNMP support that already exists on the
Greenplum Database system. You can install and run gpsnmpd as a AgentX (Agent
Extensibility Protocol) sub-agent to the operating system’s SNMP agent (usually
called snmpd). This allows a Network Management System to get hardware and
operating system information, as well as Greenplum Database information from the
same port (161) and IP address. It also enables the auto-discovery of Greenplum
Database instances.

However, if required, you can run the Greenplum SNMP agent as a stand-alone agent
and use the gpsnmpd agent or SNMP notification features independently of each other.
As a standalone SNMP agent, gpsnmpd listens (on a network socket) for SNMP
queries, and requires the same extensive configuration as the system SNMP agent.

Greenplum recommends that you run gpsnmpd as a sub-agent to the system agent.
When it starts, the gpsnmpd sub-agent registers itself with the system-level SNMP
agent, and communicates to the system agent the parts of the MIB of which it is
Monitoring System State 217

Greenplum Database Administrator Guide 4.1 – Chapter 18: Monitoring a Greenplum System
aware. The system agent communicates with the SNMP client/network monitoring
application and forwards requests for particular sections of the MIB to the gpsnmpd
sub-agent.

To get information about a Greenplum Database instance, gpsnmpd logs into
Greenplum Database through a normal libpq client session. SNMP GetRequests
trigger SELECT statements against Greenplum Database to get the requested
information. It is important to note that gpsnmpd does not send SNMP trap
notifications; Greenplum Database itself sends this information to the network
monitor application.

The gpsnmpd sub-agent communicates with the system agent through UNIX sockets;
it does not listen on network sockets when used as a sub-agent.

Prerequisites

Before setting up SNMP support on Greenplum Database, make sure SNMP is
installed on the master host. If the snmpd file is not present in the /usr/sbin
directory (/usr/sfw/sbin/ on Solaris), then SNMP is not installed on the system.
Depending on the platform on which you are running Greenplum Database, install the
following:

Table 18.1 SNMP Prerequisites

Operating System Packages1

1. SNMP is installed by default on SUSE, Solaris, and OSX platforms.

Red Hat Enterprise net-snmp

net-snmp-libs

net-snmp-utils

CentOS net-snmp

SUSE, Solaris, OSX N/A

The snmp.conf configuration file is located in /etc/snmp/. On Solaris platforms,
the snmp.conf file is in /etc/sma/snmp/.

Pre-installation Tasks

After installing SNMP (or determining that SMNP is already installed), log in as
root, open a text editor, and edit the path_to/snmp/snmpd.conf file. To use SNMP
with Greenplum Database, the minimum configuration change required to the
snmpd.conf file it to specify a community name. For example:

rocommunity public

Note: Replace public with the name of your SNMP community. Greenplum also
recommends configuring syslocation and syscontact. Configure other SNMP
settings as required for your environment and save the file.

For more information about the snmpd.conf file, enter:

man snmpd.conf

Note: On SUSE Linux platforms, make sure to review and configure security setting in the
snmp.conf file so that snmpd accepts connections from sub-agents and returns all
available Object IDs (OIDs).

Monitoring System State 218

Greenplum Database Administrator Guide 4.1 – Chapter 18: Monitoring a Greenplum System
After you finish configuring the snmpd.conf file, start the system snmpd daemon:

/sbin/chkconfig snmpd on

Then, verify that the system snmpd daemon is running. Enter:

snmpwalk -v 1 -c community_name localhost .1.3.6.1.2.1.1.1.0

For example:

snmpwalk -v 1 -c public localhost .1.3.6.1.2.1.1.1.0

If this command returns “Timeout: No Response from localhost”, then the
system snmpd daemon is not running. If the daemon is running, output similar to the
following displays:

SNMPv2-MIB::sysDescr.0 = STRING: Linux hostname
2.6.18-92.el5 #1 SMP Tue Jun 10 18:51:06 EDT 2010 x86_64

Installing and Configuring Greenplum’s SNMP Agent

The following information describes how to configure the Greenplum SNMP agent
(gpsnmpd) to collect and return database information to a network monitor.

If required, gpsnmpd can run as a stand-alone agent on a port other than port 161.

1. Log in as root and source the greenplum_path.sh file from your Greenplum
installation.

$ su -

source $GPHOME/greenplum_path.sh

2. Determine the default location for MIBs on the system:

net-snmp-config --default-mibdirs

Typically, the default location is path_to/snmp/mibs.

3. Copy NETWORK-SERVICES-MIB.txt, GPDB-MIB.txt, and RDBMS-MIB.txt from
the $GPHOME/share/postgres directory to the default location for MIBs on the
system. For example:

cp NETWORK-SERVICES-MIB.txt GPDB-MIB.txt RDBMS-MIB.txt \
path_to/snmp/mibs

4. Determine how you want to use gpsnmpd. If you want run gpsnmpd as a sub-agent
to the existing SNMP agent, open path_to/snmp/snmpd.conf in a text editor
and enter the following line:

master agentx

On SUSE Linux, enter:

agentXSocket /var/run/agentx/master

Greenplum recommends running gpsnmpd as a sub-agent. This allows the
monitoring application to use standard SNMP ports to communicate with both the
system agent and gpsnmpd. This enables you to monitor both system and
Greenplum Database status and events.

Alternatively, you can run gpsnmpd as stand-alone agent. To do this, skip this step
and go to Step 7b.
Monitoring System State 219

Greenplum Database Administrator Guide 4.1 – Chapter 18: Monitoring a Greenplum System
5. Perform platform-specific tasks:

a. On SUSE Linux platforms, create the following link:
/var $ ln -s /var/run/agentx /var/agent

b. On Solaris platforms, start the System Management Agent:
enable svc:/application/management/sma

6. Restart the snmpd daemon.

/etc/init.d/snmpd restart

7. Start gpsnmpd.

a. To start gpsnmpd as an agentx subagent, enter the following command (as
root):
gpsnmpd -s -b -C "dbname=postgres user=username \
password=password"

For example:

gpsnmpd -s -b -C "dbname=postgres user=gpadmin \
password=secret"

b. To start gpsnmpd as a stand-alone agent, enter the following command (as
root):
gpsnmpd -b -c path_to/snmp/snmpd.conf -x \
nic_ip_address:port -C "dbname=postgres user=username \
password=password"

For example:

gpsnmpd -b -c /etc/snmp/snmpd.conf -x \
192.168.100.24:10161 -C "dbname=postgres user=gpadmin \
password=secret"

Greenplum recommends using the postgres database in the connection string
(dbname=postgres).

You do not need to specify the –C option if you create a database role (user
id) called root, and add the following line in the pg_hba.conf file:

local postgres root ident

This allows the UNIX user root to connect to the postgres database over the
local connection. The root user does not require special permissions. The
user and password parameters are only required when starting gpsnmpd as a
user other than root.

Note that you can specify any configuration file to run gpsnmpd as a
stand-alone agent; you do not have to use the path_to/snmp/snmpd.conf
file. The configuration file you use must include a value for rocommunity.

The -x option allows you to specify an IP address for a network interface
card on the host, and specify a port other than the default SNMP port of 161.
This enables you to run gpsnmpd without root permissions (you must have
root permissions to use ports 1024 and lower). You do not need to specify this
option if you are running gpsnmpd as an AgentX sub-agent (-s).

By default, gpsnmpd loads a default set of MIBs. However, you can use -m
Monitoring System State 220

Greenplum Database Administrator Guide 4.1 – Chapter 18: Monitoring a Greenplum System
option to load specific MIBs when starting gpsnmpd. You can also use -M
option to specify a list of directories from which you want to load MIBs.

Note: Greenplum recommends not entering a password in the gpsnmpd command as
shown in Step 7, or using the PGPASSWORD environment variable. Some operating
systems allow non-root users to see process environment variables and passwords
through the ps command.

Instead, use the .pgpass file. If you do not specify a password in the gpsnmpd
command, the agent reads from the .pgpass file in the home directory of the user
you specify in the command. See the The Password File section in the PostgreSQL
documentation for more information.

8. To verify that the gpsnmpd agent is enabled and responding, perform the
following tests:

a. Test server access to the Greenplum Database:
snmpwalk -c communityname hostname:161 -v2c \
RDBMS-MIB::rdbmsRelState

You should see the following output:

Resetting connectionapplIndex for 0 is 0

applIndex for 1 is 1

RDBMS-MIB::rdbmsRelState.1.1 = INTEGER: active(2)

RDBMS-MIB::rdbmsRelState.2.0 = INTEGER: active(2)

RDBMS-MIB::rdbmsRelState.2.1 = INTEGER: active(2)

b. Verify that Greenplum Database appears in the rdbmsDbTable. This table
describes each database monitored by gpsnmpd agent.
snmpwalk -c communityname hostname:161 -v2c \
RDBMS-MIB::rdbmsDbTable

You should see output similar to the following:

...

RDBMS-MIB::rdbmsDbPrivateMibOID.10888 = OID:
SNMPv2-SMI::enterprises.31327.10888

RDBMS-MIB::rdbmsDbPrivateMibOID.10889 = OID:
SNMPv2-SMI::enterprises.31327.10889

RDBMS-MIB::rdbmsDbVendorName.1 = STRING: Greenplum
Corporation

RDBMS-MIB::rdbmsDbVendorName.10888 = STRING: Greenplum
Corporation

RDBMS-MIB::rdbmsDbVendorName.10889 = STRING: Greenplum
Corporation

RDBMS-MIB::rdbmsDbName.1 = STRING: postgres

RDBMS-MIB::rdbmsDbName.10888 = STRING: template0

RDBMS-MIB::rdbmsDbName.10889 = STRING: postgres

...

9. In your network monitor application (such as Nagios, Cacti, OpenView), import
RDBMS-MIB.txt, GPDB-MIB.txt, and NETWORK-SERVICES-MIB.txt. Make sure
to specify the host name of the Greenplum master in your monitoring application.

Monitoring System State 221

http://www.postgresql.org/docs/8.2/static/libpq-pgpass.html

Greenplum Database Administrator Guide 4.1 – Chapter 18: Monitoring a Greenplum System
Setting up SNMP Notifications

1. To configure a Greenplum Database system to send SNMP notifications when
alerts occur, open the postgresql.conf file on the master host, and uncomment
and set the following parameters:

• gp_snmp_community: Set this parameter to the community name you
specified for your environment.

• gp_snmp_monitor_address: Enter the hostname:port of your network
monitor application. Typically, the port number is 162. If there are multiple
monitor addresses, separate them with a comma.

• gp_snmp_use_inform_or_trap: Enter either trap or inform. Trap
notifications are SNMP messages sent from one application to another (for
example, between Greenplum Database and a network monitoring
application). These messages are unacknowledged by the monitoring
application, but generate less network overhead.
Inform notifications are the same as trap messages, except that the application
sends an acknowledgement to the application that generated the alert. In this
case, the monitoring application sends acknowledgement messages to
Greenplum Database-generated traps. While informs create more overhead,
they inform Greenplum Database that the traps are being received by the
monitoring application.

2. To test SNMP notifications, you can use the snmptrapd trap receiver. As root,
enter:

/usr/sbin/snmptrapd -m ALL -Lf ~/filename.log

On Solaris, enter:

/usr/sfw/sbin/snmptrapd -m ALL -Lf ~/filename.log

-Lf indicates that traps are logged to a file. -Le indicates that traps are logged to
stderr instead. -m ALL loads all available MIBs (you can also specify specific
MIBs if required).

Enabling Email Notifications

To enable Greenplum Database to send email notifications to system administrators
whenever certain database events occur, do the following steps.

1. Open $MASTER_DATA_DIRECTORY/postgresql.conf in a text editor.

2. In the EMAIL ALERTS section, uncomment the following parameters and enter the
appropriate values for your email server and domain. For example:

gp_email_smtp_server='smtp.company.com:25'

gp_email_smtp_userid='gpadmin@company.com'

gp_email_smtp_password='mypassword'

gp_email_from='Greenplum Database <gpadmin@company.com>'

gp_email_to='dba@company.com;John Smith
<jsmith@company.com>'

You might want to create specific email accounts/groups in your email system that
send and receive email alerts from the Greenplum Database system. For example:

gp_email_from='GPDB Production Instance <gpdb@company.com>'
Monitoring System State 222

Greenplum Database Administrator Guide 4.1 – Chapter 18: Monitoring a Greenplum System
gp_email_to='gpdb_dba_group@company.com'

You can also specify multiple email addresses for both gp_email parameters. Use
a semi-colon (;) to separate each email address. For example:

gp_email_to='gpdb_dba_group@company.com';'admin@company.com'

3. Save and close the postgresql.conf file.

4. Restart Greenplum Database:

$ gpstop -r

Testing Email Notifications

The Greenplum Database master host must be able to connect to the SMTP email
server you specify for the gp_email_smtp_server parameter. To test connectivity,
use the ping command:

$ ping my_email_server

If the master host can contact the SMTP server, log in to psql and test email
notifications with the following command:

$ psql template1

=# SELECT gp_elog('Test GPDB Email',true); gp_elog

The address you specified for the gp_email_to parameter should receive an email
with Test GPDB Email in the subject line.

You can also test email notifications by using a public SMTP server, such as Google’s
Gmail SMTP server, and an external email address. For example:

gp_email_smtp_server='smtp.gmail.com:25'

#gp_email_smtp_userid=''

#gp_email_smtp_password=''

gp_email_from='gpadmin@company.com'

gp_email_to='test_account@gmail.com'

Note: If you are having difficulty sending and receiving email notifications, verify the
security settings for you organization’s email server and firewall.

Checking System State

A Greenplum Database system is comprised of multiple PostgreSQL instances (the
master and segments) spanning multiple machines. To monitor a Greenplum Database
system, you need to know information about the system as a whole, as well as status
information of the individual instances. The gpstate utility provides status
information about a Greenplum Database system.

Viewing Master and Segment Status and Configuration

The default behavior of gpstate is to check the segment instances and show a brief
status of the valid and failed segments. For example, to see a quick status of the state
of your Greenplum Database system:

Monitoring System State 223

Greenplum Database Administrator Guide 4.1 – Chapter 18: Monitoring a Greenplum System
$ gpstate

To see more detailed information about your Greenplum array configuration, use
gpstate with the -s option:

$ gpstate -s

Viewing Your Mirroring Configuration and Status

If you are using mirroring for data redundancy, you may want to see the list of mirror
segment instances in the system, their current synchronization status, and the mirror to
primary mapping. For example, to see the mirror segments in the system and their
status:

$ gpstate -m

To see the primary to mirror segment mappings:

$ gpstate -c

To see the status of the standby master mirror:

$ gpstate -f

Checking Disk Space Usage

The most important monitoring task of a database administrator is to make sure that
the file systems where the master and segment data directories reside do not grow to
more than 70 percent full. A filled data disk will not result in data corruption, but it
may prevent normal database activity from occurring. If the disk grows too full, it can
cause the database server to panic and consequent shutdown may occur.

You can use the gp_disk_free external table in the gp_toolkit administrative schema to
check for remaining free space (in bytes) on the segment host file systems. For
example:

=# SELECT * FROM gp_toolkit.gp_disk_free
 ORDER BY dfsegment;

Checking Sizing of Distributed Databases and Tables

The gp_toolkit administrative schema contains a number of views that can be used to
determine the disk space usage for a distributed Greenplum database, schema, table,
or index. See “Checking Database Object Sizes and Disk Space” on page 961 for the
list of all available sizing views.

Viewing Disk Space Usage for a Database

To see the total size of a database (in bytes), use the gp_size_of_database view in the
gp_toolkit administrative schema. For example:

=> SELECT * FROM gp_toolkit.gp_size_of_database
 ORDER BY soddatname;

Viewing Disk Space Usage for a Table

The gp_toolkit administrative schema contains a number of views for checking the
size of a table. The table sizing views list the table by object ID (not by name). To
check the size of a table by name, you must look up the relation name (relname) in the
pg_class table. For example:
Monitoring System State 224

Greenplum Database Administrator Guide 4.1 – Chapter 18: Monitoring a Greenplum System
=> SELECT relname as name, sotdsize as size, sotdtoastsize
 as toast, sotdadditionalsize as other

 FROM gp_size_of_table_disk as sotd, pg_class

 WHERE sotd.sotdoid=pg_class.oid ORDER BY relname;

See “Checking Database Object Sizes and Disk Space” on page 961 for the list of all
available table sizing views.

Viewing Disk Space Usage for Indexes

The gp_toolkit administrative schema contains a number of views for checking index
sizes. To see the total size of all index(es) on a table, use the
gp_size_of_all_table_indexes view. To see the size of a particular index, use the
gp_size_of_index view. The index sizing views list tables and indexes by object ID
(not by name). To check the size of an index by name, you must look up the relation
name (relname) in the pg_class table. For example:

=> SELECT soisize, relname as indexname

 FROM pg_class, gp_size_of_index

 WHERE pg_class.oid=gp_size_of_index.soioid

 AND pg_class.relkind='i';

Checking for Data Distribution Skew

All tables in Greenplum Database are distributed, meaning their data is divided across
all of the segments in the system. If the data is not distributed evenly, then query
processing performance may suffer. A table’s distribution policy is determined at table
creation time. See “Choosing the Table Distribution Policy” on page 74 for more
information.

• Viewing a Table’s Distribution Key

• Viewing Data Distribution

• Checking for Query Processing Skew

The gp_toolkit administrative schema also contains a number of views for checking
data distribution skew on a table. See “Checking for Uneven Data Distribution” on
page 965.

Viewing a Table’s Distribution Key

To see the columns used as the data distribution key for a table, you can use the \d+
meta-command in psql to examine the definition of a table. For example:

=# \d+ sales

 Table "retail.sales"

 Column | Type | Modifiers | Description

-------------+--------------+-----------+-------------

 sale_id | integer | |

 amt | float | |

 date | date | |

Has OIDs: no
Distributed by: (sale_id)
Monitoring System State 225

Greenplum Database Administrator Guide 4.1 – Chapter 18: Monitoring a Greenplum System
Viewing Data Distribution

To see the data distribution of a table’s rows (the number of rows on each segment),
you can run a query such as:

=# SELECT gp_segment_id, count(*)

 FROM table_name GROUP BY gp_segment_id;

A table is considered to have a balanced distribution if all of the segments have
roughly the same number of rows.

Checking for Query Processing Skew

When a query is being processed, you want all of the segments to handle an equal
amount of the query workload to get the best possible performance. In some cases,
query processing workload can be skewed if the table’s data distribution policy and
the query predicates are not well matched. To check for processing skew, you can run
a query such as:

=# SELECT gp_segment_id, count(*) FROM table_name

 WHERE column='value' GROUP BY gp_segment_id;

This will show the number of rows returned by segment for the given WHERE
predicate.

Viewing Metadata Information about Database Objects

Greenplum Database tracks various metadata information in its system catalogs about
the objects stored in a database, such as tables, views, indexes and so on, as well as
global objects such as roles and tablespaces. For example, administrators may want to
examine information about a table, such as its definition, when it was created or the
last operation performed.

Viewing the Last Operation Performed

The system views pg_stat_operations and pg_stat_partition_operations can be used
to look up actions performed on an object, such as a table. For example, to see the
actions performed on a table, such as when it was created and when it was last
vacuumed and analyzed:

=> SELECT schemaname as schema, objname as table,

 usename as role, actionname as action,

 subtype as type, statime as time

 FROM pg_stat_operations

 WHERE objname='cust';

 schema | table | role | action | type | time

--------+-------+------+---------+-------+--------------------------

 sales | cust | main | CREATE | TABLE | 2010-02-09 18:10:07.867977-08

 sales | cust | main | VACUUM | | 2010-02-10 13:32:39.068219-08

 sales | cust | main | ANALYZE | | 2010-02-25 16:07:01.157168-08

(3 rows)
Monitoring System State 226

Greenplum Database Administrator Guide 4.1 – Chapter 18: Monitoring a Greenplum System
Viewing the Definition of an Object

To see the definition of an object, such as a table or view, you can use the \d+ meta
command when working in psql. For example to see the definition of a table:

=> \d+ mytable

Viewing the Database Server Log Files
Every database instance in Greenplum Database (master and segments) is a running a
PostgreSQL database server with its own server log file. Daily log files are created in
the pg_log directory of the master and each segment data directory.

Log File Format

The server log files are written in comma-separated values (CSV) format. Not all log
entries will have values for all of the log fields. For example, only log entries
associated with a query worker process will have the slice_id populated. Related
log entries of a particular query can be identified by its session identifier
(gp_session_id) and command identifier (gp_command_count).

The following fields are written to the log:

Table 18.2 Greenplum Database Server Log Format

Field Name Data Type Description

1 event_time timestamp with time zone Time that the log entry was written to the log

2 user_name varchar(100) The database user name

3 database_name varchar(100) The database name

4 process_id varchar(10) The system process id (prefixed with "p")

5 thread_id varchar(50) The thread count (prefixed with "th")

6 remote_host varchar(100) The segment or master host name

7 remote_port varchar(10) The segment or master port number

8 session_start_time timestamp with time zone Time session connection was opened

9 transaction_id int Global transaction ID

10 gp_session_id text Session identifier number (prefixed with "con")

11 gp_command_count text The command number within a session (prefixed with
"cmd")

12 gp_segment text The segment content identifier (prefixed with "seg" for
primaries or "mir" for mirrors). The master always has
a content id of -1.

13 slice_id text The slice id (portion of the query plan being executed)

14 distr_tranx_id text Distributed transaction ID

15 local_tranx_id text Local transaction ID

16 sub_tranx_id text Subtransaction ID
Viewing the Database Server Log Files 227

Greenplum Database Administrator Guide 4.1 – Chapter 18: Monitoring a Greenplum System
Searching the Greenplum Database Server Log Files

Greenplum provides a utility called gplogfilter that can be used to search through a
Greenplum Database log file for entries matching the specified criteria. By default,
this utility searches through the Greenplum master log file in the default logging
location. For example, to display the last three lines of the master log file:

$ gplogfilter -n 3

You can also use gplogfilter to search through all segment log files at once by
running it through the gpssh utility. For example, to display the last three lines of each
segment log file:

$ gpssh -f seg_host_file

=> source /usr/local/greenplum-db/greenplum_path.sh

=> gplogfilter -n 3 /gpdata/gp*/pg_log/gpdb*.log

Using gp_toolkit
Greenplum provides an administrative schema called gp_toolkit that you can use to
query the system catalogs, log files, and operating environment for system status
information. The gp_toolkit schema contains a number of views that you can access

17 event_severity varchar(10) Values include: LOG, ERROR, FATAL, PANIC,
DEBUG1, DEBUG2

18 sql_state_code varchar(10) SQL state code associated with the log message

19 event_message text Log or error message text

20 event_detail text Detail message text associated with an error or
warning message

21 event_hint text Hint message text associated with an error or warning
message

22 internal_query text The internally-generated query text

23 internal_query_pos int The cursor index into the internally-generated query
text

24 event_context text The context in which this message gets generated

25 debug_query_string text Query string with full detail for debugging

26 error_cursor_pos int The cursor index into the query string

27 func_name text The function in which this message is generated

28 file_name text The internal code file where the message originated

29 file_line int The line of the code file where the message originated

30 stack_trace text Stack trace text associated with this message

Table 18.2 Greenplum Database Server Log Format

Field Name Data Type Description
Using gp_toolkit 228

Greenplum Database Administrator Guide 4.1 – Chapter 18: Monitoring a Greenplum System
using SQL commands. The gp_toolkit schema is accessible to all database users,
although some objects may require superuser permissions. For convenience, you may
want to add the gp_toolkit schema to your schema search path. For example:

=> ALTER ROLE myrole SET search_path TO myschema,gp_toolkit;

See Appendix I, “The gp_toolkit Administrative Schema” for a description of the
views and their usages.
Using gp_toolkit 229

Greenplum Database Administrator Guide 4.1 – Chapter 19: Routine System Maintenance Tasks
19. Routine System Maintenance Tasks

Greenplum Database, like any database software, requires that certain tasks be
performed regularly to achieve optimum performance. The tasks discussed here are
required, but they are repetitive in nature and can easily be automated using standard
UNIX tools such as cron scripts. But it is the database administrator’s responsibility
to set up appropriate scripts, and to check that they execute successfully.

• Routine Vacuum and Analyze

• Routine Reindexing

• Managing Greenplum Database Log Files

Routine Vacuum and Analyze
Because of the MVCC transaction concurrency model used in Greenplum Database,
data rows that are deleted or updated still occupy physical space on disk even though
they are not visible to any new transactions. If you have a database with lots of
updates and deletes, you will generate a lot of expired rows. The VACUUM command
also collects table-level statistics such as number of rows and pages, so it is also
necessary to vacuum append-only tables. Vacuuming append-only tables should be
instantaneous since there will be no space to reclaim. See “Vacuuming the Database”
on page 103.

Transaction ID Management

Greenplum’s MVCC transaction semantics depend on being able to compare
transaction ID (XID) numbers to determine visibility to other transactions. But since
transaction IDs have limited size, a Greenplum system that runs for a long time (more
than 4 billion transactions) would suffer transaction ID wraparound: the XID counter
wraps around to zero, and all of a sudden transactions that were in the past appear to
be in the future — which means their outputs become invisible. To avoid this, it is
necessary to VACUUM every table in every database at least once every two billion
transactions.

System Catalog Maintenance

Numerous database updates with CREATE and DROP commands can cause growth in
the size of the system catalog that affects system performance. For example, after a
large number of DROP TABLE statements, the overall performance of the system
begins to degrade due to excessive data scanning during metadata operations on the
catalog tables. Depending on your system, the performance loss may occur between
thousands to tens of thousands of DROP TABLE statements.

Greenplum recommends that you regularly run a system catalog maintenance
procedure to reclaim the space occupied by deleted objects. If a regular procedure has
not been run for a long time, you may need to run a more intensive procedure to clear
the system catalog. Both types of procedures are described in this section.
Routine Vacuum and Analyze 230

Greenplum Database Administrator Guide 4.1 – Chapter 19: Routine System Maintenance Tasks
Regular System Catalog Maintenance

Greenplum recommends that you periodically run VACUUM on the system catalog to
clear the space occupied by deleted objects. If numerous DROP statements are a part of
regular database operations, it is safe and appropriate to run a system catalog
maintenance procedure with VACUUM daily at off-peak hours. This can be done while
the system is running and available.

The following example script performs a VACUUM of the Greenplum Database system
catalog:

#!/bin/bash

DBNAME="<database_name>"

VCOMMAND="VACUUM ANALYZE"

psql -tc "select '$VCOMMAND' || ' pg_catalog.' || relname || ';'
from pg_class a,pg_namespace b where a.relnamespace=b.oid and
b.nspname= 'pg_catalog' and a.relkind='r'" $DBNAME | psql -a
$DBNAME

Intensive System Catalog Maintenance

If a system catalog maintenance procedure has not been performed in a long time, the
catalog may become bloated with dead space, causing excessively long wait times for
simple metadata operations. A wait of more than one or two seconds to list user tables,
such as with the \d metacommand from within psql, is an indication of catalog bloat.

If you see indications of system catalog bloat, an intensive system catalog
maintenance procedure with VACUUM FULL must be performed during a scheduled
downtime period. During this period you must stop all catalog activity on the system
due to the exclusive locks taken against the system catalog by the FULL system catalog
maintenance procedure.

Running regular system catalog maintenance procedures can prevent the need for the
more costly intensive procedure.

Vacuum and Analyze for Query Optimization

Greenplum Database uses a cost-based query planner that relies on database statistics.
Accurate statistics allow the query planner to better estimate selectivity and the
number of rows retrieved by a query operation in order to choose the most efficient
query plan. The ANALYZE command collects column-level statistics needed by the
query planner.

Both VACUUM and ANALYZE operations can be run in the same command. For example:

=# VACUUM ANALYZE mytable;

Routine Reindexing
For B-tree indexes, a freshly-constructed index is somewhat faster to access than one
that has been updated many times, because logically adjacent pages are usually also
physically adjacent in a newly built index. It might be worthwhile to reindex
periodically to improve access speed. Also, if all but a few index keys on a page have
Routine Reindexing 231

Greenplum Database Administrator Guide 4.1 – Chapter 19: Routine System Maintenance Tasks
been deleted, there will be wasted space on the index page. A reindex will reclaim that
wasted space. In Greenplum Database it is often faster to drop an index (DROP INDEX)
and then recreate it (CREATE INDEX) than it is to use the REINDEX command.

Bitmap indexes are not updated when changes are made to the indexed column(s). If
you have updated a table that has a bitmap index, you must drop and recreate the index
for it to remain current.

Managing Greenplum Database Log Files
• Database Server Log Files

• Management Utility Log Files

Database Server Log Files

Greenplum Database log output tends to be voluminous (especially at higher debug
levels) and you do not need to save it indefinitely. Administrators need to rotate the
log files periodically so that new log files are started and old ones are removed after a
reasonable period of time.

Greenplum Database has log file rotation enabled on the master and all segment
instances. Daily log files are created in pg_log of the master and each segment data
directory using the naming convention of: gpdb-YYYY-MM-DD.log. Although log
files are rolled over daily, they are not automatically truncated or deleted.
Administrators will need to implement some script or program to periodically clean up
old log files in the pg_log directory of the master and each segment instance.

See also, “Viewing the Database Server Log Files” on page 227.

Management Utility Log Files

Log files for the Greenplum Database management utilities are written to
~/gpAdminLogs by default. The naming convention for management log files is:

<script_name>_<date>.log

The log entry format is:

<timestamp>:<utility>:<host>:<user>:[INFO|WARN|FATAL]:<message>

The log file for a particular utility execution is appended to its daily log file each time
that utility is run.
Managing Greenplum Database Log Files 232

Section V 233

Section V: Performance Tuning

This section describes the different performance tuning opportunities of Greenplum
Database and how to troubleshoot certain performance problems. It contains the
following topics:

• Defining Database Performance

• Common Causes of Performance Issues

• Investigating a Performance Problem

Greenplum Database Administrator Guide 4.1 – Chapter 20: Defining Database Performance
20. Defining Database Performance

For a data warehouse database system, such as Greenplum Database, database
performance can be defined as the rate at which the database management system
(DBMS) supplies information to those requesting it.

• Understanding the Performance Factors

• Determining Acceptable Performance

Understanding the Performance Factors
There are several factors that influence database performance. Understanding the key
performance factors can help avoid performance problems or identify performance
opportunities:

• System Resources

• Workload

• Throughput

• Contention

• Optimization

System Resources

Database performance relies heavily on disk I/O and memory usage. Knowing the
baseline performance of the hardware on which your DBMS is deployed is essential is
setting performance expectations. Performance of hardware components such as
CPUs, hard disks, disk controllers, RAM, and network interfaces (and the interaction
of these resources) will have a profound effect on how fast your database performs.

Workload

Your workload equals the total demand from the DBMS. The total workload is a
combination of ad-hoc user queries, applications, batch jobs, transactions, and system
commands directed through the DBMS at any given time. Workload, or demand, can
change over time. For example, it may increase when month-end reports need to be
run, or decrease on weekends when most users are out of the office. Workload is a
major influence on database performance. Knowing your workload and peak demand
times will help you plan for the most efficient use of your system resources, and
enable the largest possible workload to be processed.

Throughput

A system’s throughput defines its overall capability to process data. DBMS
throughput can be measured in queries per second, transactions per second, or average
response times. DBMS throughput is closely related to the processing capacity of the
Understanding the Performance Factors 234

Greenplum Database Administrator Guide 4.1 – Chapter 20: Defining Database Performance
underlying systems (disk I/O, CPU speed, memory bandwidth, and so on), so it is
important to know the throughput capacity of your hardware when setting DBMS
throughput goals.

Contention

Contention is the condition in which two or more components of the workload are
attempting to use the system in a conflicting way — for example, trying to update the
same piece of data at the same time, or running multiple large workloads at once that
compete with each other for system resources. As contention increases, throughput
decreases.

Optimization

Optimizations that you make to your DBMS can affect the overall performance of
your system. SQL formulation, database configuration parameters, table design, data
distribution, and so on can enable the database query planner and optimizer to create
the most efficient access plans.

Determining Acceptable Performance
When approaching a performance tuning initiative, it is important to know your
system’s expected level of performance and to define measurable performance
requirements. Without setting an acceptable threshold for database performance, you
will end up chasing a carrot always out of reach. Consider the following when setting
performance goals:

• Baseline Hardware Performance

• Performance Benchmarks

Baseline Hardware Performance

The majority of database performance problems are caused not by the database itself,
but by the underlying systems on which the database is running. I/O bottlenecks,
memory problems, and network problems can significantly degrade database
performance. Therefore, it is important to know the baseline capabilities of your
hardware and operating system (OS). This will help you to identify and troubleshoot
hardware-related problems before undertaking database-level or query-level tuning
initiatives. See “gpcheckperf” on page 618 for more information on running this
utility to validate hardware and network performance.

Performance Benchmarks

In order to maintain good performance or improve upon performance issues, you need
to know the capabilities of your DBMS on a defined workload. A benchmark is a
predefined workload that produces a known result set, which can then be used for
comparison purposes. Periodically running the same benchmark tests can help identify
Determining Acceptable Performance 235

Greenplum Database Administrator Guide 4.1 – Chapter 20: Defining Database Performance
system-related performance degradation over time. Benchmarks can also be used as a
comparison to other workloads in an effort to identify queries or applications in need
of optimization.

There are many third-party organizations which provide benchmark tools for the
database industry, one of those being the Transaction Processing Performance Council
(TPC). TPC-H is the ad-hoc, decision support benchmark. This benchmark illustrates
decision support systems that examine large volumes of data, execute queries with a
high degree of complexity, and give answers to critical business questions. For more
information about TPC-H, go to:

http://www.tpc.org/tpch
Determining Acceptable Performance 236

http://www.tpc.org/tpch

Greenplum Database Administrator Guide 4.1 – Chapter 21: Common Causes of Performance Issues
21. Common Causes of Performance Issues

This chapter describes the common causes of performance issues and potential
solutions to these issues. The following issues are the most common cause of
performance problems in Greenplum Database:

• Hardware failures and invalid segments

• Multiple workloads competing for system resources

• Contention between concurrent transactions

• Inaccurate database statistics

• Unbalanced data distribution across the segments

• Unoptimized database design

Identifying Hardware and Segment Failures
As with any database system, the performance of Greenplum Database is dependant
upon the hardware and IT infrastructure on which it is running. Greenplum Database
is comprised of several servers (or hosts) acting together as one cohesive system.
Greenplum Database’s performance will be as fast as the slowest host in the array.
Problems with CPU utilization, memory management, I/O processing, or network
load will affect performance. Common hardware-related issues are:

• Disk Failure – Although a single disk failure should not dramatically effect
database performance if you are using RAID, there is some impact caused by disk
resynching consuming resources on the host with failed disks. The gpcheckperf
utility can help identify segment hosts that have disk I/O issues.

• Host Failure – When a host is offline the segments on that host are out of
operation. This means that other hosts in the array are doing double duty as they
are running both the primary segments and a number of mirrors. If mirrors are not
enabled – service is interrupted. There is also a temporary interruption of service
to recover failed segments. The gpstate utility can help identify failed segments.

• Network Failure – Failure of a network interface card, a switch, or DNS server
can bring down segments. If host names or IP addresses cannot be resolved within
your Greenplum array, these manifest themselves as interconnect errors in
Greenplum Database. The gpcheckperf utility can help identify segment hosts
that have network issues.

• Disk Capacity – Disk capacity on your segment hosts should never exceed 70
percent full. Greenplum needs some free space for runtime processing. You can
reclaim disk space occupied by deleted rows by running VACUUM after loads or
updates. The gp_toolkit administrative schema has a number of views for
checking the size of distributed database objects. See “Checking Database Object
Sizes and Disk Space” on page 961.
Identifying Hardware and Segment Failures 237

Greenplum Database Administrator Guide 4.1 – Chapter 21: Common Causes of Performance Issues
Managing Workload
A database system has a limited capacity of CPU, memory, and disk I/O resources.
When multiple workloads compete for access to these resources, database
performance suffers. Workload management can be used to maximize system
throughput while still meeting varied business requirements. Greenplum Database
workload management limits the number of active queries in the system at any given
time in order to avoid exhausting system resources. This is accomplished by creating
role-based resource queues. A resource queue has attributes that limit the size and/or
total number of queries that can be executed by the users (or roles) in that queue. By
assigning all of your database roles to the appropriate resource queue, administrators
can control concurrent user queries and prevent the system from being overloaded.
See Chapter 8, “Managing Workload and Resources” for more information about
setting up resource queues.

As the Greenplum Database administrator, run maintenance workloads such as data
loads and VACUUM ANALYZE operations after regular business hours. Do not compete
with database users for system resources by performing administrative tasks at peak
usage times.

Avoiding Contention
Contention arises when two or more users or workloads try to use the system in a
conflicting way. For example, if two transactions are trying to update the same table at
once. A transaction seeking either a table-level or row-level lock will wait indefinitely
for conflicting locks to be released. This means it is a bad idea for applications to hold
transactions open for long periods of time (e.g., while waiting for user input).

Maintaining Database Statistics
Greenplum Database uses a cost-based query planner that relies on database statistics.
Accurate statistics allow the query planner to better estimate the number of rows
retrieved by a query in order to choose the most efficient query plan. Without database
statistics, the query planner can not estimate how many records might be returned, and
therefore cannot assume it has sufficient memory to perform certain operations such
as aggregations. In this case, the planner always takes the safe route and does
aggregations by reading/writing from disk, which is significantly slower than doing
them in memory. The ANALYZE command collects statistics about the database needed
by the query planner.

Identifying Statistics Problems in Query Plans

When looking at the query plan for a query using EXPLAIN or EXPLAIN ANALYZE, it
helps to know your data in order to identify possible statistics problems. Check the
plan for the following indicators of inaccurate statistics:

• Are the planner’s estimates close to reality? Run an EXPLAIN ANALYZE and see
if the number of rows estimated by the planner is close to the number of rows
actually returned by the query operation.
Managing Workload 238

Greenplum Database Administrator Guide 4.1 – Chapter 21: Common Causes of Performance Issues
• Are selective predicates applied early in the plan? The most selective filters
should be applied early in the plan so that less rows move up the plan tree.

• Is the planner choosing the best join order? When you have a query that joins
multiple tables, make sure that the planner is choosing the most selective join
order. Joins that eliminate the largest number of rows should be done earlier in the
plan so that less rows move up the plan tree.

See also, “Query Profiling” on page 130 for more information on reading query plans.

Tuning Statistics Collection

The following configuration parameters control the amount of data sampled for
statistics collection:

• default_statistics_target

• gp_analyze_relative_error

These parameters control statistics sampling at the system level. It is probably better
to only sample increased statistics for the columns used most frequently in query
predicates. You can adjust statistics for a particular column using the
ALTER TABLE...SET STATISTICS command. For example:

ALTER TABLE sales ALTER COLUMN region SET STATISTICS 50;

This is equivalent to increasing default_statistics_target for a particular
column. Subsequent ANALYZE operations will then gather more statistics data for that
column, and hopefully produce better query plans as a result.

Optimizing Data Distribution
When you create a table in Greenplum Database, it is important to declare a
distribution key that allows for even data distribution across all segments in the
system. Because the segments work on a query in parallel, Greenplum Database will
always be as fast as the slowest segment. If the data is unbalanced, the segments that
have more data will return their results slower.

Optimizing Your Database Design
Many performance issues can be improved by database design. Examine your
database design and ask yourself the following:

• Does the schema reflect the way the data is accessed?

• Can larger tables be broken down into partitions?

• Are you using the smallest data type possible to store column values?

• Are columns used to join tables of the same datatype?

• Are your indexes being used?
Optimizing Data Distribution 239

Greenplum Database Administrator Guide 4.1 – Chapter 21: Common Causes of Performance Issues
Greenplum Database Maximum Limits

Knowing these maximum limits supported by Greenplum Database can help you
optimize database design:

Table 21.1 Maximum Limits of Greenplum Database

Dimension Limit

Database Size Unlimited

Table Size 128 TB per partition per segment

Row Size 1 GB

Field Size 1 GB

Rows per Table 2^48 (2 to the power of 48)

Columns per Table/View 1600

Indexes per Table Unlimited

Columns per Index 32

Table-level Constraints per Table Unlimited

Table Name Length 64 Bytes (Limited by name data type)

Dimensions listed as unlimited are not intrinsically limited by Greenplum Database.
However, they are limited in practice to available disk space and memory/swap space.
Performance may suffer when these values get unusually large.

Note: Limits for all database objects are limited by the number of available OIDs. There are
4 GB of OIDs in total, and all objects consume OIDs from a single namespace per
database.

Optimizing Your Database Design 240

Greenplum Database Administrator Guide 4.1 – Chapter 22: Investigating a Performance Problem
22. Investigating a Performance Problem

Many of the performance management steps taken by database administrators are
reactive — a business user calls with a response time problem, a batch job fails, the
system suddenly becomes unavailable. This section lists some steps an administrator
can take to help identify the cause of a performance problem. If the problem is related
to a particular workload or query, then you can focus your efforts on tuning that
particular workload. If the performance problem is system-wide, then hardware
problems, system failures, or resource contention may be the cause.

Checking System State
The gpstate utility can be used to identify failed segments. A Greenplum Database
system will incur performance degradation when it has segment instances down
because it requires some hosts to pick up the processing responsibilities of the downed
segments.

Failed segments can be an indicator of some type of hardware failure, such as a failed
disk drive or network card. Greenplum Database provides the hardware verification
tool gpcheckperf to help identify segment hosts that have hardware issues.

Checking Database Activity
• Checking for Active Sessions (Workload)

• Checking for Locks (Contention)

• Checking Query Status and System Utilization

Checking for Active Sessions (Workload)

The pg_stat_activity system catalog view shows one row per server process, showing
database OID, database name, process ID, user OID, user name, current query, time at
which the current query began execution, time at which the process was started, and
client address and port number. Querying this view can provide more information
about the current workload on the system. For example:

SELECT * FROM pg_stat_activity;

This view should be queried as the database superuser to obtain the most information
possible. Also note that the information does not update instantaneously.

Checking for Locks (Contention)

If a transaction is holding a lock on an object, there may be other queries that are
waiting for that lock to be released before they can continue. This may appear to the
user as if their query is hanging. The pg_locks system catalog view allows you to view
information about outstanding locks. Examining pg_locks for ungranted locks can
help identify contention between database client sessions. pg_locks provides a global
Checking System State 241

Greenplum Database Administrator Guide 4.1 – Chapter 22: Investigating a Performance Problem
view of all locks in the database system, not only those relevant to the current
database. Although its relation column can be joined against pg_class.oid to
identify locked relations (such as tables), this will only work correctly for relations in
the current database. The pid column can be joined to the
pg_stat_activity.procpid to get more information on the session holding or
waiting to hold a lock. For example:

SELECT locktype, database, c.relname, l.relation,
l.transactionid, l.transaction, l.pid, l.mode, l.granted,
a.current_query
 FROM pg_locks l, pg_class c, pg_stat_activity a
 WHERE l.relation=c.oid AND l.pid=a.procpid
 ORDER BY c.relname;

If you are using resource queues for workload management, queries that are waiting in
a queue will also show in pg_locks. To see how many queries are waiting to run from
a particular resource queue, use the pg_resqueue_status - Deprecated system catalog
view. For example:

SELECT * FROM gp_tookit.gp_resqueue_status;

Checking Query Status and System Utilization

System monitoring utilities such as ps, top, iostat, vmstat, netstat and so on can
be used to monitor database activity on the hosts in your Greenplum Database array.
These tools can be used to help identify Greenplum Database processes (postgres
processes) currently running on the system and the most resource intensive tasks with
regards to CPU, memory, disk I/O, or network activity. Looking at these system
statistics can help identify queries that are overloading the system by consuming
excessive resources and thereby degrading database performance. Greenplum
Database comes with an management tool called gpssh, which allows you to run these
system monitoring commands on several hosts at once.

The Greenplum Performance Monitor also collects query and system utilization
metrics. See the Greenplum Database Performance Monitor Guide for information on
enabling Greenplum Performance Monitor.

Troubleshooting Problem Queries
If a query is performing poorly, looking at its query plan can help identify problem
areas. You can use the EXPLAIN command to see the query plan for a given query. See
“Query Profiling” on page 130 for more information on reading query plans and
identifying problems with a plan.

Investigating Error Messages
Greenplum Database log messages are written to files in the pg_log directory within
the master’s or segment’s data directory. Log files are rolled over daily and are named
using the naming convention: gpdb-YYYY-MM-DD. For example, to locate the log files
on the master host:
Troubleshooting Problem Queries 242

Greenplum Database Administrator Guide 4.1 – Chapter 22: Investigating a Performance Problem
$ cd $MASTER_DATA_DIRECTORY/pg_log

The master log file contains the most information and should always be checked first.
Log lines have the format of:

timestamp | user | database | statement_id | con# cmd#
|:-LOG_LEVEL: log_message

You may want to focus your search for WARNING, ERROR, FATAL or PANIC log level
messages. The Greenplum utility, gplogfilter, can be used to search through
Greenplum Database log files. For example, the following command (when run on the
master host) will check for problem log messages in the standard logging locations:

$ gplogfilter -t

To search for any related log entries in the segment log files, you can run
gplogfilter on the segment hosts using gpssh. One way to identify corresponding
log entries is by the statement_id or con# (session identifier). For example, to
search for log messages in the segment log files containing the string con6 and save
output to a file:

gpssh -f seg_hosts_file -e 'source
/usr/local/greenplum-db/greenplum_path.sh ; gplogfilter -f
con6 /gpdata/*/pg_log/gpdb*.log' > seglog.out

Gathering Information for Greenplum Support

The gpdetective utility collects information from a running Greenplum Database
system and creates a bzip2-compressed tar output file. This output file can then be sent
to Greenplum Customer Support to help with the diagnosis of Greenplum Database
errors or system failures. Run gpdetective on your master host, for example:

$ gpdetective -f /var/data/my043008gp.tar
Investigating Error Messages 243

Section VI 244

Section VI: Extending Greenplum Database

This section describes how to extend the functionality of Greenplum Database by
developing your own functions and programs.

• Using Greenplum MapReduce

Greenplum Database Administrator Guide 4.1 – Chapter 23: Using Greenplum MapReduce
23. Using Greenplum MapReduce

• About Greenplum MapReduce

• Programming Greenplum MapReduce

• Submitting MapReduce Jobs for Execution

• Troubleshooting Problems with MapReduce Jobs

About Greenplum MapReduce
MapReduce is a programming model developed by Google for processing and
generating large data sets on an array of commodity servers. Greenplum MapReduce
allows programmers who are familiar with the MapReduce paradigm to write map and
reduce functions and submit them to the Greenplum Database parallel data flow
engine for processing. The Greenplum Database system takes care of the details of
distributing the input data, executing the program across a set of machines, handling
machine failures, and managing the required inter-machine communication.

The Basics of MapReduce

In general, MapReduce is a simple dataflow programming model that utilizes
user-defined functions to pass data items from one stage of processing to the next.
MapReduce programs typically start with a large data file that is broken down into
smaller, contiguous pieces called splits, which are akin to database rows. Typically
each split is parsed into (key, value) pairs that are then sent to a Map module. The Map
module invokes a user-defined Map function on each pair and produces new (key,
output_list) pairs. Each new (key, output_list) pair is then passed to a Reduce module.
The Reduce module gathers these pairs together, grouping them by key, and then calls
a user-defined Reduce function to produce one reduced output list for each distinct
input key. Both the Map and Reduce modules utilize parallelism to enable many Map
tasks and Reduce tasks to be worked on at the same time on a number of machines.
About Greenplum MapReduce 245

http://en.wikipedia.org/wiki/MapReduce

Greenplum Database Administrator Guide 4.1 – Chapter 23: Using Greenplum MapReduce
The MapReduce engine acts as an abstraction allowing programmers to focus on their
desired data computations while hiding the details of parallelism, distribution, load
balancing and fault tolerance.

Figure 23.1 Basic MapReduce Data Flow

How Greenplum MapReduce Works

In order for Greenplum to be able to process the Map and Reduce functions written by
a user, the functions need to be defined in a specially formatted Greenplum
MapReduce document, which is then passed to the Greenplum MapReduce program,
gpmapreduce, for execution by the Greenplum Database parallel engine.

The Greenplum MapReduce document defines the parts that comprise a complete
MapReduce job:

• Input Data - Input data can come from a number of sources either inside or
outside the database. Greenplum Database supports a number of file formats for
external data as well as SQL for data already stored in the database.

• Map Function - Users provide their own map function(s) written in Python,
PERL, or C.

• Reduce Function - Users provide their own reduce function(s) written in Python,
PERL, or C or use one of the built-in reduce functions.

• Output Data - Output can be persistently stored in the database, sent to a writable
external table, or directed to standard output or an external file.
About Greenplum MapReduce 246

Greenplum Database Administrator Guide 4.1 – Chapter 23: Using Greenplum MapReduce
Once you have defined your MapReduce job in the specification document, you then
use the gpmapreduce client program to submit your job to the Greenplum Database
parallel data flow engine for execution.

Programming Greenplum MapReduce
In order to submit a MapReduce job to Greenplum Database for execution, you must
define your MapReduce job in a special Greenplum MapReduce specification
document. Greenplum MapReduce uses the YAML document framework and
implements its own YAML schema. See “Greenplum MapReduce Specification” on
page 824.

This section walks through the stages of the Greenplum MapReduce specification and
provides examples for each stage:

• Defining Inputs

• Defining Map Functions

• Defining Reduce Functions

• Defining Outputs

• Putting Together a Complete MapReduce Specification

These stages are specified in the DEFINE section of a Greenplum MapReduce
specification document.

Defining Inputs

Every MapReduce job requires at least one INPUT data source. A data source can be a
single file, files served by the Greenplum parallel file distribution program (gpfdist),
a table in the database, an SQL SELECT statement, or an operating system command
that outputs data.

External File Inputs

A FILE input describes a single file located on a machine that is a Greenplum segment
host. The file must be in either text-delimited or comma-separated values (CSV)
format. See “Loading Data into Greenplum Database” on page 136 for more
information about the format requirements of input data files. If COLUMNS (delimited
Programming Greenplum MapReduce 247

Greenplum Database Administrator Guide 4.1 – Chapter 23: Using Greenplum MapReduce
fields in the file) are not specified, the entire file is treated as one big text column
named value by default. You must be a Greenplum Database superuser to run
MapReduce jobs with a FILE input.

 - INPUT:

 NAME: my_file_input

 FILE: seghostname:/var/data/gpfiles/employees.txt

 COLUMNS

 - first_name text

 - last_name text

 - dept text

 - hire_date text

 FORMAT: TEXT

 DELIMITER: '|'

A GPFDIST input is similar to FILE, except that the file is served by gpfdist, rather
than the file system on a single segment host. See “Using the Greenplum Parallel File
Server (gpfdist)” on page 141 for instructions on setting up a gpfdist file server. One
advantage of using the gpfdist file server (as opposed to the FILE input) is that it
ensures that all of the segments in your Greenplum Database system are fully utilized
when reading the external data file(s). You must be a Greenplum Database superuser
to run MapReduce jobs with GPFDIST input unless the server configuration parameter
gp_external_grant_privileges is set to on.

 - INPUT:

 NAME: my_distributed_input

 # specifies the host, port and the desired files served

 # by gpfdist. /* denotes all files on the gpfdist server

 GPFDIST:

 - gpfdisthost:8080/*

 COLUMNS

 - first_name text

 - last_name text

 - dept text

 - hire_date text

 FORMAT: TEXT

 DELIMITER: '|'
Programming Greenplum MapReduce 248

Greenplum Database Administrator Guide 4.1 – Chapter 23: Using Greenplum MapReduce
Database Inputs

You can use data already stored in Greenplum Database as your MapReduce data
source. A TABLE input simply takes all data from the table name you specify. The
columns and data types are already defined by the table definition.

 - INPUT:

 NAME: my_table_input

 TABLE: sales

Similarly, a QUERY input specifies a SELECT statement that returns selected data from
one or more tables. The columns and data types are already defined by the sourced
table columns.

 - INPUT:

 NAME: my_query_input

 QUERY: SELECT vendor, amt FROM sales WHERE region='usa';

OS Executable Inputs

An EXEC input allows you to specify a shell command or script that will be executed
by all Greenplum segments. The combined output of all the segment processes
comprise your data source. The command is executed by all active segment instances
on all segment hosts. For example, if each segment host has four primary segment
instances running, the command will be executed four times per segment host. Data is
comprised of the output of the command at the time the MapReduce job is executed
on each segment instance. All segment instances execute the command in parallel. If
your command calls a script or program, that executable must reside on all Greenplum
segment hosts.

 - INPUT:

 NAME: my_query_input

 EXEC: /var/load_scripts/get_log_data.sh

 COLUMNS

 - url text

 - date timestamp

 FORMAT: TEXT

 DELIMITER: '|'

If you use environment variables in external web table commands (such as $PATH),
keep in mind that the command is executed from within the database and not from a
login shell. Therefore the .bashrc or .profile of the current user will not be
sourced. However, you can set desired environment variables from within the EXEC
definition itself, for example:

EXEC 'export PATH=/var/myscripts:$PATH; get_log_data.sh;'
Programming Greenplum MapReduce 249

Greenplum Database Administrator Guide 4.1 – Chapter 23: Using Greenplum MapReduce
In order to use this input type, you must be a Greenplum Database superuser and have
the server configuration parameter gp_external_enable_exec set to on in your
master postgresql.conf file.

Defining Map Functions

To borrow from database terminology, a Map function takes as input a single row (a
set of values assigned to parameters), and produces zero or more rows of output. By
default, the input and output are both defined to have two parameters of type text,
called key and value. However, Greenplum MapReduce allows arbitrary parameter
lists to be defined for both the input and the output, in the style of SQL table
definitions. The input format is specified in the PARAMETERS definition in the MAP
specification; the output format is specified in the RETURNS definition. The RETURNS
definition requires each output parameter to be assigned a SQL data type for use in
subsequent steps involving table outputs or SQL query inputs. When in doubt, SQL’s
text data type will usually work fine, since both PERL and Python will interpret text
strings appropriately.

The MAP specification also includes a FUNCTION definition that provides the code for
the function, in a scripting language specified via LANGUAGE. Supported languages
currently include PERL and PYTHON.

A typical Map function definition uses the values in the PARAMETERS in some way to
generate appropriate output values matching the format of the RETURNS declaration.
So the main issue for defining a Map function is to know how to access the
PARAMETERS from within the scripting language, and how to prepare the output
needed for RETURNS.

Map Functions in PERL

Following PERL style, the PARAMETERS to a Map function are available in the usual
@_ parameters list. A typical first step in a PERL function is to extract the parameters
into local variables via an assignment statement.

The output of a Map function must be a PERL hash, with a hash-key for each
parameter in the RETURNS definition. Output is typically returned to the MapReduce
runtime engine via a special PERL function called return_next. This function
behaves like a normal return, except that when the map code is re-invoked to generate
another output row, it will pick up processing on the line after the last return_next
that was executed (analogous to Python’s yield statement). This programming style
makes it possible to take a single row as input, and return multiple outputs (each being
passed back via return_next from within a PERL loop). When there are no more
results to pass back, a standard PERL return undef call will tell the MapReduce
harness to proceed with the next row of input, starting at the top of the Map function.

If you know that your Map function will only return one row of output for every input,
you can specify the definition MODE: SINGLE in your MAP specification, and pass back
a hash using a standard PERL return call, rather than return_next.
Programming Greenplum MapReduce 250

Greenplum Database Administrator Guide 4.1 – Chapter 23: Using Greenplum MapReduce
The following simple Map example converts a row containing a comma-separated
value into multiple rows, one per value. Note the vertical bar (the YAML ‘literal’
marker) after the FUNCTION: declaration, indicating that the subsequent indented lines
are to be considered a single literal string.

- MAP:

 NAME: perl_splitter

 LANGUAGE: PERL

 PARAMETERS: [key, value]

 RETURNS: [key text, value text]

 FUNCTION: |

 my ($key, $value) = @_;

 my @list = split(/,/, $value);

 for my $item(@list) {

 return_next({"key" => $key, "value" => $item});

 }

 return undef;

Map Functions in Python

In Python, the PARAMETERS specified for a Map function are available as local Python
variables. No PERL-style parameter interpretation is necessary.

The output of a Map function must be a (Python) dictionary, with a key for each
parameter in the RETURNS definition. Output is typically returned to the MapReduce
harness via the Python yield construct - but when the Map code is re-invoked to
generate another output row, it will pick up processing on the line after the last yield
that was executed. This programming style makes it possible to take a single row as
input, and return multiple outputs (each being passed back via yield from within a
Python loop). When there are no more results to pass back, the Python code should
simply ‘drop through’ to the end of the script. This tells the MapReduce harness to
proceed with the next row of input, starting at the top of the Map function.

If you know that your Map function will only return one row of output for every input,
you can specify the definition MODE: SINGLE in your MAP specification, and pass back
a hash using a standard Python return call, rather than yield.
Programming Greenplum MapReduce 251

Greenplum Database Administrator Guide 4.1 – Chapter 23: Using Greenplum MapReduce
The following simple Map example converts a row containing a comma-separated
value into multiple rows, one per value. Note the vertical bar - a YAML ‘literal’
marker - after the FUNCTION: declaration, indicating that the subsequent indented
lines are to be considered a single literal string.

- MAP:

 NAME: py_splitter

 LANGUAGE: PYTHON

 PARAMETERS: [key, value]

 RETURNS: [key text, value text]

 FUNCTION: |

 list = value.split(',')

 for item in list:

 yield {'key': key, 'value': item}

Defining Reduce Functions

Reduce functions handle a set of input rows that have matching values in a particular
attribute (or set of attributes), and produce a single ‘reduced’ row.

Greenplum Database provides several predefined REDUCE functions you can execute,
which all operate over a column named value:

• IDENTITY - returns (key, value) pairs unchanged

• SUM - calculates the sum of numeric data

• AVG - calculates the average of numeric data

• COUNT - calculates the count of input data

• MIN - calculates minimum value of numeric data

• MAX - calculates maximum value of numeric data

To use one of the predefined REDUCE jobs, you can simply declare it by name in the
EXECUTE portion of your MapReduce specification document. For example:

EXECUTE

 - RUN

 SOURCE: input_or_task_name

 MAP: map_function_name

 REDUCE: IDENTITY

Writing custom Reduce functions is a bit more involved than writing Map functions,
because the Reduce has to be defined to work through a set of input rows, not just a
single row. To achieve this, you must define a TRANSITION function associated with
the REDUCE, which is called once for each input row. In order to allow you to
remember information between calls of the transition function, it takes as its first input
Programming Greenplum MapReduce 252

Greenplum Database Administrator Guide 4.1 – Chapter 23: Using Greenplum MapReduce
parameter a variable called state. Before a set of tuples is to be Reduced, the state
variable is initialized to the value specified in your INITIALIZE definition. This value
must be an SQL data type. For example, a (single-quoted) SQL text string. During the
processing of a set, the state variable records the most recent return value of the
TRANSITION function. After the last row in the set is processed by the TRANSITION
function, the state variable is passed to the FINALIZE function, which can return
multiple rows (via PERL’s return_next or Python’s yield). Each row returned must
be a hash representing the reduced output row.

By default, the parameters to a Reduce are (key, value) pairs. However, for custom
Reduce functions, an arbitrary list of columns can be passed in. The KEYS definition
defines the column or columns used to partition the input into subsets to be Reduced;
the default value of the KEYS definition is the column called key. In the absence of a
KEYS definition, the key is defined to be the set of parameters not mentioned in the
TRANSITION function’s PARAMETERS list.

As a performance optimization, you can optionally define a CONSOLIDATE function,
which consolidates multiple state variables into a single state variable. This allows
Greenplum Database to send a state variable between machines in lieu of a set of
input tuples, substantially lowering the amount of network traffic over the Greenplum
interconnect. CONSOLIDATE is similar to TRANSITION in its structure, taking two
state variables at each invocation and returning a single state.

Below is a complete PERL Reduce function definition for computing the average of
all positive values:

- REDUCE:

 NAME: perl_pos_avg

 TRANSITION: perl_pos_avg_trans

 CONSOLIDATE: perl_pos_avg_cons

 FINALIZE: perl_pos_avg_final

 INITIALIZE: '0,0'

 KEYS: [key]
Programming Greenplum MapReduce 253

Greenplum Database Administrator Guide 4.1 – Chapter 23: Using Greenplum MapReduce
- TRANSITION:

 NAME: perl_pos_avg_trans

 PARAMETERS: [state, value]

 RETURNS: [state text]

 LANGUAGE: perl

 FUNCTION: |

 my ($state, $value) = @_;

 my ($count, $sum) = split(/,/, $state);

 if ($value > 0) {

 $sum += $value;

 $count++;

 $state = $count . "," . $sum;

 }

 return $state;

 - CONSOLIDATE:

 NAME: perl_pos_avg_cons

 PARAMETERS: [state, value]

 RETURNS: [state text]

 LANGUAGE: perl

 FUNCTION: |

 my ($state, $value) = @_;

 my ($scount, $ssum) = split(/,/, $state);

 my ($vcount, $vsum) = split(/,/, $value);

 my $count = $scount + $vcount;

 my $sum = $ssum + $vsum;

 return ($count . "," . $sum);
Programming Greenplum MapReduce 254

Greenplum Database Administrator Guide 4.1 – Chapter 23: Using Greenplum MapReduce
- FINALIZE:

 NAME: perl_pos_avg_final

 PARAMETERS: [state]

 RETURNS: [value float]

 LANGUAGE: perl

 FUNCTION: |

 my ($state) = @_;

 my ($count, $sum) = split(/,/, $state);

 return_next ($count*1.0/$sum);

 return undef;

Defining Outputs

Defining an OUTPUT specification is optional. If no output is defined, the default is to
send the final results to standard output of the Greenplum MapReduce client. You can
also direct output to a file on the Greenplum MapReduce client or to a table in the
database by defining an OUTPUT specification.

Table Outputs

A TABLE output defines a table in the database where the final output of your
MapReduce job will be stored. By default, a table of the given TABLE name will be
created in the database if it does not already exist. If the named table does exist in the
database, you must declare a MODE to specify if you want to add the output to the table
(APPEND) or drop and recreate the table (REPLACE). By default, the table will be
distributed by the REDUCE keys or you can optionally declare a distribution column
using the KEYS specification.

 - OUTPUT:

 NAME: gpmr_output

 TABLE: wordcount_out

 KEYS:

 - value

 MODE: REPLACE

An output table may also be a writable external table that pipes data out of the
database and into a file or another program for further processing. If using writable
external tables, the table must already be created prior to running your MapReduce job
(see CREATE EXTERNAL TABLE). MODE must be set to APPEND for output tables that are
writable external tables.
Programming Greenplum MapReduce 255

Greenplum Database Administrator Guide 4.1 – Chapter 23: Using Greenplum MapReduce
File Outputs

A FILE output defines a file location on the Greenplum MapReduce client where the
output data will be written to. The named file will be created when the MapReduce job
is run. The file cannot already exist or else the job will return an error.

 - OUTPUT:

 NAME: gpmr_output

 FILE: /var/data/mapreduce/wordcount.out

Defining Tasks

A TASK specification is optional, but can be useful in multi-stage MapReduce jobs. A
task defines a complete end-to-end INPUT/MAP/REDUCE stage within a complete
Greenplum MapReduce job pipeline. Once defined, a TASK object can be called as
input to further processing stages.

For example, suppose you have defined a table INPUT called documents and another
called keywords. Each respective table input is processed by its own MAP function
document_map and keyword_map. If you wanted to use the results of these
processing stages as input to further stages in your MapReduce job, you could define
two tasks as follows:

 - TASK:

 NAME: document_prep

 SOURCE: documents

 MAP: document_map

 - TASK:

 NAME: keyword_prep

 SOURCE: keywords

 MAP: keyword_map
Programming Greenplum MapReduce 256

Greenplum Database Administrator Guide 4.1 – Chapter 23: Using Greenplum MapReduce
These named tasks can then be called as input in a later processing stage. In this
example, we are defining an SQL QUERY input that joins the results of the two tasks
we defined earlier (document_prep and keyword_prep).

 - INPUT:

 NAME: term_join

 QUERY: |

 SELECT doc.doc_id, kw.keyword_id, kw.term, kw.nterms,

 doc.positions as doc_positions,

 kw.positions as kw_positions

 FROM document_prep doc INNER JOIN keyword_prep kw

 ON (doc.term = kw.term)

Putting Together a Complete MapReduce Specification

Once you have defined all of the stages of your MapReduce job in the DEFINE section
of your Greenplum MapReduce Specification document, you must define an EXECUTE
section to specify the final INPUT/MAP/REDUCE stage. All of the objects named in the
EXECUTE section are defined earlier in the Greenplum MapReduce specification
DEFINE section.

EXECUTE:

 - RUN:

 SOURCE: input_or_task_name

 TARGET: output_name

 MAP: map_function_name

 REDUCE: reduce_function_name

Submitting MapReduce Jobs for Execution
Once you have defined your MapReduce program in a Greenplum MapReduce
Specification document, you can submit the document to Greenplum Database for
execution using the gpmapreduce client program. This is a database client program
similar to psql in that it requires you to supply connection information such as the
database you are connecting to, the database user you are connecting as, the host and
port of the Greenplum master, and so on. You can either specify the connection
options on the command-line or use the environment variable settings $PGDATABASE,
$PGUSER, $PGHOST and $PGPORT (if set). For example:

gpmapreduce -h gpmasterhost -p 54321 -f my_gpmr_spec.yml
mydatabase
Submitting MapReduce Jobs for Execution 257

Greenplum Database Administrator Guide 4.1 – Chapter 23: Using Greenplum MapReduce
Creating the Languages in the Database

During execution of your map and reduce functions, Greenplum MapReduce makes
use of the procedural languages built in to the database. Greenplum requires these
languages to be created in the database prior to executing your MapReduce jobs. Use
the CREATE LANGUAGE command to create the language in the database you will be
using to execute your MapReduce jobs. You must be a database superuser to create a
language. For example to create the PERL procedural language:

$ psql -c 'CREATE LANGUAGE plperl;'

And to create the Python procedural language:

$ psql -c 'CREATE LANGUAGE plpythonu;'

Installing Library Files (for Custom C Functions)

If you are using custom C map or reduce functions, the library files containing your
function definitions must be installed in the same location on all Greenplum hosts
(master and segments). For example, if you have a C function definition in your
MapReduce specification YAML file such as:

DEFINE:

 - TRANSITION:

 NAME: int4_accum

 PARAMETERS: [state int8, value int4]

 RETURNS: [state int8]

 LANGUAGE: C

 LIBRARY: $libdir/gpmr.so

 FUNCTION: int4_accum

The $libdir/gpmr.so file that is declared in the LIBRARY attribute must exist in
$GPHOME/lib (the default library directory) on all Greenplum hosts. The FUNCTION
attribute specifies the name of the function to call in the specified library file.

Troubleshooting Problems with MapReduce Jobs
This section describes some common errors encountered when executing Greenplum
MapReduce jobs and how to resolve them.

Language Does Not Exist

Symptom:

ERROR: language "pl*" does not exist

HINT: Use CREATE LANGUAGE to load the language into the
database.
Troubleshooting Problems with MapReduce Jobs 258

Greenplum Database Administrator Guide 4.1 – Chapter 23: Using Greenplum MapReduce
Explanation:

During execution of your map and reduce functions, Greenplum MapReduce makes
use of the procedural languages built in to the database. Greenplum requires these
languages to be created in the database prior to executing your MapReduce jobs.

Solution:

If the language you are trying to use has not been created in the database you are
connecting to, you (or your Greenplum administrator) will need to create the language
for you before you can proceed. For example:

psql database_name -c 'CREATE LANGUAGE plperl;'

See CREATE LANGUAGE for more information. Some languages may require database
superuser privileges to use.

Generic Python Iterator Error

Symptom:

ERROR: plpython: function “function_name” error fetching
next item from iterator

DETAIL:

<type 'exceptions.IOError'>: [Errno 2] No such file or
directory: '/tmp/file/doesnt/exist' (, line 39)

Explanation:

This is an error returned from Python that occurs whenever there was an error in an
iterator function (such as a function which makes use of yield). This usually
indicates a bug in your Python code.

Solution:

The easiest way to debug the problem is to wrap your function with additional
exception handling. For example:

FUNCTION: |

 try:

 ...

 user code

 ...

 except Exception, e:

 plpy.warning('my function name:' + str(e))

This will generate a warning message that is more useful for debugging.

Function Defined Using Wrong MODE

Symptom:

ERROR: set-returning PERL function must return reference to
array or use return_next

Troubleshooting Problems with MapReduce Jobs 259

Greenplum Database Administrator Guide 4.1 – Chapter 23: Using Greenplum MapReduce
--

 ERROR: composite-returning PERL function must return
reference to hash

--

 ERROR: returned sequence's length must be same as tuple's
length

--

 ERROR: no attribute named "key"

 HINT: to return null in specific column, let returned
object to have attribute named after column with value None

--

Explanation:

There are two primary modes that a Greenplum MapReduce function can be in:

• MODE: SINGLE returns precisely one row for every row received.

• MODE: MULTI may return any number of rows from 0-N for every row received.

TRANSITION and CONSOLIDATE functions only support SINGLE mode since they are
effectively finite state functions and must return the next state.

MAP and FINALIZE functions support both modes defaulting to MULTI mode since it is
more general.

Solution:

In a SINGLE mode function you must use the language’s return method to return a
single row of data.

In MULTI mode it is best to write the function as a generator function. In Python this is
done by using yield. in PERL this is done using return_next. For example:

- MAP:

 NAME: perl_single

 MODE: SINGLE

 PARAMETERS: [key text, value text]

 RETURNS: [key text, value text]

 LANGUAGE: perl

 FUNCTION: |

 my ($key, $value) = @_;

 return {'key' => $key, 'value' => $value}
Troubleshooting Problems with MapReduce Jobs 260

Greenplum Database Administrator Guide 4.1 – Chapter 23: Using Greenplum MapReduce
- MAP:

 NAME: perl_multi

 MODE: MULTI

 PARAMETERS: [key text, value text]

 RETURNS: [key text, value text]

 LANGUAGE: perl

 FUNCTION: |

 my ($key, $value) = @_;

 for my $i (0..10) {

 return_next {'key' => $key, 'value' => $value}

 }

 return undef

- MAP:

 NAME: python_single

 MODE: SINGLE

 PARAMETERS: [key text, value text]

 RETURNS: [key text, value text]

 LANGUAGE: python

 FUNCTION: |

 return {'key': key, 'value': value}

 - MAP:

 NAME: python_multi

 MODE: MULTI

 PARAMETERS: [key text, value text]

 RETURNS: [key text, value text]

 LANGUAGE: python

 FUNCTION: |

 try:

 for i in range(0,10):

 yield {'key': key, 'value': value}

 except Exception, e:

 plpy.warning('python_multi: ' +str(e))

The most common occurrence of the ‘returned sequence’s length ...’ error
occurs when you try to use return from a MULTI mode function. In this context, the
single row is interpreted not as a single row with columns, but as a set of rows each
one column wide. Each column is too small to be a full row, so the returned sequence’s
length does not match and an error is given.
Troubleshooting Problems with MapReduce Jobs 261

Greenplum Database Administrator Guide 4.1 – Chapter 23: Using Greenplum MapReduce
A less common scenario that can generate the same error is when the number of
columns returned does not match the declared number. For example:

 - MAP:

 NAME: python_error

 MODE: SINGLE

 PARAMETERS: [key text, value text]

 RETURNS: [key text, value text]

 LANGUAGE: python

 FUNCTION: |

 return {'key': key}

Because the function declared that it returns a key and a value but actually only
returns a key, this can also cause the ‘returned sequence’s length ...’ error.
Troubleshooting Problems with MapReduce Jobs 262

Section VII 263

Section VII: References

This section contains the following references:

• SQL Command Reference

• Management Utility Reference

• Client Utility Reference

• Server Configuration Parameters

• Greenplum MapReduce Specification

• Greenplum Environment Variables

• Greenplum Database Data Types

• System Catalog Reference

• Oracle Compatibility Functions

• Character Set Support

• SQL 2008 Optional Feature Compliance

• Glossary

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
A. SQL Command Reference

This appendix provides references for the SQL commands available in Greenplum
Database:

• ABORT

• ALTER AGGREGATE

• ALTER CONVERSION

• ALTER DATABASE

• ALTER DOMAIN

• ALTER EXTERNAL TABLE

• ALTER FILESPACE

• ALTER FOREIGN DATA WRAPPER*

• ALTER FOREIGN TABLE*

• ALTER FUNCTION

• ALTER GROUP

• ALTER INDEX

• ALTER LANGUAGE

• ALTER OPERATOR

• ALTER OPERATOR CLASS

• ALTER RESOURCE QUEUE

• ALTER ROLE

• ALTER SCHEMA

• ALTER SEQUENCE

• ALTER SERVER*

• ALTER TABLE

• ALTER TABLESPACE

• ALTER TRIGGER

• ALTER TYPE

• ALTER USER

• ALTER USER MAPPING*

• ANALYZE

• BEGIN

• CHECKPOINT

• CLOSE

• CLUSTER

• COMMENT

• COMMIT

• COPY

• CREATE AGGREGATE

• CREATE CAST

• CREATE CONVERSION

• CREATE DATABASE

• CREATE DOMAIN

• CREATE EXTERNAL TABLE

• CREATE FOREIGN DATA WRAPPER*

• CREATE FOREIGN TABLE*

• CREATE FUNCTION

• CREATE GROUP

• CREATE INDEX

• CREATE LANGUAGE

• CREATE OPERATOR

• CREATE OPERATOR CLASS

• CREATE RESOURCE QUEUE

• CREATE ROLE

• CREATE RULE

• CREATE SCHEMA

• CREATE SEQUENCE

• CREATE SERVER*

• CREATE TABLE

• CREATE TABLE AS

• CREATE TABLESPACE

• CREATE TRIGGER

• CREATE TYPE

• CREATE USER

• CREATE USER MAPPING*

• CREATE VIEW
SQL Command Reference 264

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
• DEALLOCATE

• DECLARE

• DELETE

• DROP AGGREGATE

• DROP CAST

• DROP CONVERSION

• DROP DATABASE

• DROP DOMAIN

• DROP EXTERNAL TABLE

• DROP FILESPACE

• DROP FOREIGN DATA WRAPPER*

• DROP FOREIGN TABLE*

• DROP FUNCTION

• DROP GROUP

• DROP INDEX

• DROP LANGUAGE

• DROP OPERATOR

• DROP OPERATOR CLASS

• DROP OWNED

• DROP RESOURCE QUEUE

• DROP ROLE

• DROP RULE

• DROP SCHEMA

• DROP SEQUENCE

• DROP SERVER*

• DROP TABLE

• DROP TABLESPACE

• DROP TRIGGER

• DROP TYPE

• DROP USER

• DROP USER MAPPING*

• DROP VIEW

• END

• EXECUTE

• EXPLAIN

• FETCH

• GRANT

• INSERT

• LOAD

• LOCK

• MOVE

• PREPARE

• REASSIGN OWNED

• REINDEX

• RELEASE SAVEPOINT

• RESET

• REVOKE

• ROLLBACK

• ROLLBACK TO SAVEPOINT

• SAVEPOINT

• SELECT

• SELECT INTO

• SET

• SET ROLE

• SET SESSION AUTHORIZATION

• SET TRANSACTION

• SHOW

• START TRANSACTION

• TRUNCATE

• UPDATE

• VACUUM

• VALUES

* Not implemented in 4.1
SQL Command Reference 265

Greenplum Database Administrator Guide 4.1 – Appendix A: SQL Syntax Summary
SQL Syntax Summary

ABORT
Aborts the current transaction.

ABORT [WORK | TRANSACTION]

ALTER AGGREGATE
Changes the definition of an aggregate function

ALTER AGGREGATE name (type [, ...]) RENAME TO new_name

ALTER AGGREGATE name (type [, ...]) OWNER TO new_owner

ALTER AGGREGATE name (type [, ...]) SET SCHEMA new_schema

ALTER CONVERSION
Changes the definition of a conversion.

ALTER CONVERSION name RENAME TO newname

ALTER CONVERSION name OWNER TO newowner

ALTER DATABASE
Changes the attributes of a database.

ALTER DATABASE name [WITH CONNECTION LIMIT connlimit]

ALTER DATABASE name SET parameter { TO | = } { value | DEFAULT }

ALTER DATABASE name RESET parameter

ALTER DATABASE name RENAME TO newname

ALTER DATABASE name OWNER TO new_owner

ALTER DOMAIN
Changes the definition of a domain.

ALTER DOMAIN name { SET DEFAULT expression | DROP DEFAULT }

ALTER DOMAIN name { SET | DROP } NOT NULL

ALTER DOMAIN name ADD domain_constraint

ALTER DOMAIN name DROP CONSTRAINT constraint_name [RESTRICT | CASCADE]

ALTER DOMAIN name OWNER TO new_owner

ALTER DOMAIN name SET SCHEMA new_schema

ALTER EXTERNAL TABLE
Changes the definition of an external table.

ALTER EXTERNAL TABLE name RENAME [COLUMN] column TO new_column

ALTER EXTERNAL TABLE name RENAME TO new_name

ALTER EXTERNAL TABLE name SET SCHEMA new_schema

ALTER EXTERNAL TABLE name action [, ...]

where action is one of:
 ADD [COLUMN] column_name type
 DROP [COLUMN] column
 ALTER [COLUMN] column TYPE type [USING expression]
 OWNER TO new_owner
ABORT 266

Greenplum Database Administrator Guide 4.1 – Appendix A: SQL Syntax Summary
ALTER FILESPACE
Changes the definition of a filespace.

ALTER FILESPACE name RENAME TO newname

ALTER FILESPACE name OWNER TO newowner

ALTER FUNCTION
Changes the definition of a function.

ALTER FUNCTION name ([[argmode] [argname] argtype [, ...]]) action [, ...]
[RESTRICT]

ALTER FUNCTION name ([[argmode] [argname] argtype [, ...]]) RENAME TO new_name

ALTER FUNCTION name ([[argmode] [argname] argtype [, ...]]) OWNER TO new_owner

ALTER FUNCTION name ([[argmode] [argname] argtype [, ...]]) SET SCHEMA
new_schema

where action is one of:
{CALLED ON NULL INPUT | RETURNS NULL ON NULL INPUT | STRICT}
{IMMUTABLE | STABLE | VOLATILE}
{[EXTERNAL] SECURITY INVOKER | [EXTERNAL] SECURITY DEFINER}

ALTER GROUP
Changes a role name or membership.

ALTER GROUP groupname ADD USER username [, ...]

ALTER GROUP groupname DROP USER username [, ...]

ALTER GROUP groupname RENAME TO newname

ALTER INDEX
Changes the definition of an index.

ALTER INDEX name RENAME TO new_name

ALTER INDEX name SET TABLESPACE tablespace_name

ALTER INDEX name SET (FILLFACTOR = value)

ALTER INDEX name RESET (FILLFACTOR)

ALTER LANGUAGE
Changes the name of a procedural language.

ALTER LANGUAGE name RENAME TO newname

ALTER OPERATOR
Changes the definition of an operator.

ALTER OPERATOR name ({lefttype | NONE} , {righttype | NONE}) OWNER TO newowner

ALTER OPERATOR CLASS
Changes the definition of an operator class.

ALTER OPERATOR CLASS name USING index_method RENAME TO newname

ALTER OPERATOR CLASS name USING index_method OWNER TO newowner
ALTER FILESPACE 267

Greenplum Database Administrator Guide 4.1 – Appendix A: SQL Syntax Summary
ALTER RESOURCE QUEUE
Changes the limits of a resource queue.

ALTER RESOURCE QUEUE name WITH (queue_attribute=value [, ...])

where queue_attribute is:
 ACTIVE_STATEMENTS=integer
 MEMORY_LIMIT='memory_units'
 MAX_COST=float
 COST_OVERCOMMIT={TRUE|FALSE}
 MIN_COST=float
 PRIORITY={MIN|LOW|MEDIUM|HIGH|MAX}

ALTER RESOURCE QUEUE name WITHOUT (queue_attribute=value [, ...])

where queue_attribute is:
 ACTIVE_STATEMENTS=integer
 MEMORY_LIMIT='memory_units'
 MAX_COST=float
 COST_OVERCOMMIT={TRUE|FALSE}
 MIN_COST=float

ALTER ROLE
Changes a database role (user or group).

ALTER ROLE name RENAME TO newname

ALTER ROLE name SET config_parameter {TO | =} {value | DEFAULT}

ALTER ROLE name RESET config_parameter

ALTER ROLE name RESOURCE QUEUE {queue_name | NONE}

ALTER ROLE name [[WITH] option [...]]

where option can be:
 SUPERUSER | NOSUPERUSER
 | CREATEDB | NOCREATEDB
 | CREATEROLE | NOCREATEROLE
 | CREATEEXTTABLE | NOCREATEEXTTABLE
 [(attribute='value'[, ...])]
 where attributes and values are:
 type='readable'|'writable'
 protocol='gpfdist'|'http'|'gphdfs'
| INHERIT | NOINHERIT
 | LOGIN | NOLOGIN
 | CONNECTION LIMIT connlimit
 | [ENCRYPTED | UNENCRYPTED] PASSWORD 'password'
 | VALID UNTIL 'timestamp'

ALTER SCHEMA
Changes the definition of a schema.

ALTER SCHEMA name RENAME TO newname

ALTER SCHEMA name OWNER TO newowner
ALTER RESOURCE QUEUE 268

Greenplum Database Administrator Guide 4.1 – Appendix A: SQL Syntax Summary
ALTER SEQUENCE
Changes the definition of a sequence generator.

ALTER SEQUENCE name [INCREMENT [BY] increment]
 [MINVALUE minvalue | NO MINVALUE]
 [MAXVALUE maxvalue | NO MAXVALUE]
 [RESTART [WITH] start]
 [CACHE cache] [[NO] CYCLE]
 [OWNED BY {table.column | NONE}]

ALTER SEQUENCE name SET SCHEMA new_schema

ALTER TABLE
Changes the definition of a table.

ALTER TABLE [ONLY] name RENAME [COLUMN] column TO new_column

ALTER TABLE name RENAME TO new_name

ALTER TABLE name SET SCHEMA new_schema

ALTER TABLE [ONLY] name SET
 DISTRIBUTED BY (column, [...])
 | DISTRIBUTED RANDOMLY
 | WITH (REORGANIZE=true|false)

ALTER TABLE [ONLY] name action [, ...]

ALTER TABLE name
 [ALTER PARTITION { partition_name | FOR (RANK(number)) | FOR (value) }
ALTER SEQUENCE 269

Greenplum Database Administrator Guide 4.1 – Appendix A: SQL Syntax Summary
partition_action [...]]
 partition_action

where action is one of:
 ADD [COLUMN] column_name type [column_constraint [...]]
 DROP [COLUMN] column [RESTRICT | CASCADE]
 ALTER [COLUMN] column TYPE type [USING expression]
 ALTER [COLUMN] column SET DEFAULT expression
 ALTER [COLUMN] column DROP DEFAULT
 ALTER [COLUMN] column { SET | DROP } NOT NULL
 ALTER [COLUMN] column SET STATISTICS integer
 ADD table_constraint
 DROP CONSTRAINT constraint_name [RESTRICT | CASCADE]
 DISABLE TRIGGER [trigger_name | ALL | USER]
 ENABLE TRIGGER [trigger_name | ALL | USER]
 CLUSTER ON index_name
 SET WITHOUT CLUSTER
 SET WITHOUT OIDS
 SET (FILLFACTOR = value)
 RESET (FILLFACTOR)
 INHERIT parent_table
 NO INHERIT parent_table
 OWNER TO new_owner
 SET TABLESPACE new_tablespace
 ALTER DEFAULT PARTITION
 DROP DEFAULT PARTITION [IF EXISTS]
 DROP PARTITION [IF EXISTS] { partition_name |
 FOR (RANK(number)) | FOR (value) } [CASCADE]
 TRUNCATE DEFAULT PARTITION
 TRUNCATE PARTITION { partition_name | FOR (RANK(number)) |
 FOR (value) }
 RENAME DEFAULT PARTITION TO new_partition_name
 RENAME PARTITION { partition_name | FOR (RANK(number)) |
 FOR (value) } TO new_partition_name
 ADD DEFAULT PARTITION name [(subpartition_spec)]
 ADD PARTITION [name] partition_element
 [(subpartition_spec)]
 EXCHANGE PARTITION { partition_name | FOR (RANK(number)) |
 FOR (value) } WITH TABLE table_name
 [WITH | WITHOUT VALIDATION]
 EXCHANGE DEFAULT PARTITION WITH TABLE table_name
 [WITH | WITHOUT VALIDATION]
 SET SUBPARTITION TEMPLATE (subpartition_spec)
 SPLIT DEFAULT PARTITION
 { AT (list_value)
 | START([datatype] range_value) [INCLUSIVE | EXCLUSIVE]
 END([datatype] range_value) [INCLUSIVE | EXCLUSIVE] }
 [INTO (PARTITION new_partition_name,
 PARTITION default_partition_name)]
 SPLIT PARTITION { partition_name | FOR (RANK(number)) |
 FOR (value) } AT (value)
 [INTO (PARTITION partition_name, PARTITION partition_name)]

where partition_element is:
 VALUES (list_value [,...])

 | START ([datatype] 'start_value') [INCLUSIVE | EXCLUSIVE]
 [END ([datatype] 'end_value') [INCLUSIVE | EXCLUSIVE]]

 | END ([datatype] 'end_value') [INCLUSIVE | EXCLUSIVE]
ALTER TABLE 270

Greenplum Database Administrator Guide 4.1 – Appendix A: SQL Syntax Summary
[WITH (partition_storage_parameter=value [, ...])]
[TABLESPACE tablespace]

where subpartition_spec is:
subpartition_element [, ...]

and subpartition_element is:
 DEFAULT SUBPARTITION name

 | [SUBPARTITION name] VALUES (list_value [,...])

 | [SUBPARTITION name]
 START ([datatype] 'start_value') [INCLUSIVE | EXCLUSIVE]
 [END ([datatype] 'end_value') [INCLUSIVE | EXCLUSIVE]]
 [EVERY ([number | datatype] 'interval_value')]

 | [SUBPARTITION name]
 END ([datatype] 'end_value') [INCLUSIVE | EXCLUSIVE]
 [EVERY ([number | datatype] 'interval_value')]

[WITH (partition_storage_parameter=value [, ...])]
[TABLESPACE tablespace]

where storage_parameter is:
 APPENDONLY={TRUE|FALSE}
 BLOCKSIZE={8192-2097152}
 COMPRESSTYPE={ZLIB|QUICKLZ}
 COMPRESSLEVEL={0-9|1}
 ORIENTATION={COLUMN|ROW}
 FILLFACTOR={10-100}

ALTER TABLESPACE
Changes the definition of a tablespace.

ALTER TABLESPACE name RENAME TO newname

ALTER TABLESPACE name OWNER TO newowner

ALTER TRIGGER
Changes the definition of a trigger.

ALTER TRIGGER name ON table RENAME TO newname

ALTER TYPE
Changes the definition of a data type.

ALTER TYPE name OWNER TO new_owner

ALTER TYPE name SET SCHEMA new_schema
ALTER TABLESPACE 271

Greenplum Database Administrator Guide 4.1 – Appendix A: SQL Syntax Summary
ALTER USER
Changes the definition of a database role (user).

ALTER USER name RENAME TO newname

ALTER USER name SET config_parameter {TO | =} {value | DEFAULT}

ALTER USER name RESET config_parameter

ALTER USER name [[WITH] option [...]]

where option can be:
 SUPERUSER | NOSUPERUSER
 | CREATEDB | NOCREATEDB
 | CREATEROLE | NOCREATEROLE
 | CREATEUSER | NOCREATEUSER
 | INHERIT | NOINHERIT
 | LOGIN | NOLOGIN
 | [ENCRYPTED | UNENCRYPTED] PASSWORD 'password'
 | VALID UNTIL 'timestamp'

ANALYZE
Collects statistics about a database.

ANALYZE [VERBOSE] [table [(column [, ...])]]

BEGIN
Starts a transaction block.

BEGIN [WORK | TRANSACTION] [SERIALIZABLE | REPEATABLE READ | READ COMMITTED | READ
UNCOMMITTED] [READ WRITE | READ ONLY]

CHECKPOINT
Forces a transaction log checkpoint.

CHECKPOINT

CLOSE
Closes a cursor.

CLOSE cursor_name

CLUSTER
Physically reorders a heap storage table on disk according to an index. Not a recommended operation
in Greenplum Database.

CLUSTER indexname ON tablename

CLUSTER tablename

CLUSTER
ALTER USER 272

Greenplum Database Administrator Guide 4.1 – Appendix A: SQL Syntax Summary
COMMENT
Defines or change the comment of an object.

COMMENT ON
{ TABLE object_name |
 COLUMN table_name.column_name |
 AGGREGATE agg_name (agg_type [, ...]) |
 CAST (sourcetype AS targettype) |
 CONSTRAINT constraint_name ON table_name |
 CONVERSION object_name |
 DATABASE object_name |
 DOMAIN object_name |
 FILESPACE object_name |
 FUNCTION func_name ([[argmode] [argname] argtype [, ...]]) |
 INDEX object_name |
 LARGE OBJECT large_object_oid |
 OPERATOR op (leftoperand_type, rightoperand_type) |
 OPERATOR CLASS object_name USING index_method |
 [PROCEDURAL] LANGUAGE object_name |
 RESOURCE QUEUE object_name |
 ROLE object_name |
 RULE rule_name ON table_name |
 SCHEMA object_name |
 SEQUENCE object_name |
 TABLESPACE object_name |
 TRIGGER trigger_name ON table_name |
 TYPE object_name |
 VIEW object_name }
IS 'text'

COMMIT
Commits the current transaction.

COMMIT [WORK | TRANSACTION]
COMMENT 273

Greenplum Database Administrator Guide 4.1 – Appendix A: SQL Syntax Summary
COPY
Copies data between a file and a table.

COPY table [(column [, ...])] FROM {'file' | STDIN}
 [[WITH]
 [OIDS]
 [HEADER]
 [DELIMITER [AS] 'delimiter']
 [NULL [AS] 'null string']
 [ESCAPE [AS] 'escape' | 'OFF']
 [NEWLINE [AS] 'LF' | 'CR' | 'CRLF']
 [CSV [QUOTE [AS] 'quote']
 [FORCE NOT NULL column [, ...]]
 [FILL MISSING FIELDS]
 [[LOG ERRORS INTO error_table] [KEEP]
 SEGMENT REJECT LIMIT count [ROWS | PERCENT]]

COPY {table [(column [, ...])] | (query)} TO {'file' | STDOUT}
 [[WITH]
 [OIDS]
 [HEADER]
 [DELIMITER [AS] 'delimiter']
 [NULL [AS] 'null string']
 [ESCAPE [AS] 'escape' | 'OFF']
 [CSV [QUOTE [AS] 'quote']
 [FORCE QUOTE column [, ...]]]

CREATE AGGREGATE
Defines a new aggregate function.

CREATE [ORDERED] AGGREGATE name (input_data_type [, ...])
 (SFUNC = sfunc,
 STYPE = state_data_type
 [, PREFUNC = prefunc]
 [, FINALFUNC = ffunc]
 [, INITCOND = initial_condition]
 [, SORTOP = sort_operator])

CREATE CAST
Defines a new cast.

CREATE CAST (sourcetype AS targettype)
 WITH FUNCTION funcname (argtypes)
 [AS ASSIGNMENT | AS IMPLICIT]

CREATE CAST (sourcetype AS targettype) WITHOUT FUNCTION
 [AS ASSIGNMENT | AS IMPLICIT]

CREATE CONVERSION
Defines a new encoding conversion.

CREATE [DEFAULT] CONVERSION name FOR source_encoding TO dest_encoding FROM funcname
COPY 274

Greenplum Database Administrator Guide 4.1 – Appendix A: SQL Syntax Summary
CREATE DATABASE
Creates a new database.

CREATE DATABASE name [[WITH] [OWNER [=] dbowner]
 [TEMPLATE [=] template]
 [ENCODING [=] encoding]
 [TABLESPACE [=] tablespace]
 [CONNECTION LIMIT [=] connlimit]]

CREATE DOMAIN
Defines a new domain.

CREATE DOMAIN name [AS] data_type [DEFAULT expression]
 [CONSTRAINT constraint_name
 | NOT NULL | NULL
 | CHECK (expression) [...]]
CREATE DATABASE 275

Greenplum Database Administrator Guide 4.1 – Appendix A: SQL Syntax Summary
CREATE EXTERNAL TABLE
Defines a new external table.

CREATE [READABLE] EXTERNAL TABLE table_name
 (column_name data_type [, ...] | LIKE other_table)
 LOCATION ('file://seghost[:port]/path/file' [, ...])
 | ('gpfdist://filehost[:port]/file_pattern' [, ...])
 | ('gphdfs://hdfs_host[:port]/path/file')
 FORMAT 'TEXT'
 [([HEADER]
 [DELIMITER [AS] 'delimiter' | 'OFF']
 [NULL [AS] 'null string']
 [ESCAPE [AS] 'escape' | 'OFF']
 [NEWLINE [AS] 'LF' | 'CR' | 'CRLF']
 [FILL MISSING FIELDS])]
 | 'CSV'
 [([HEADER]
 [QUOTE [AS] 'quote']
 [DELIMITER [AS] 'delimiter']
 [NULL [AS] 'null string']
 [FORCE NOT NULL column [, ...]]
 [ESCAPE [AS] 'escape']
 [NEWLINE [AS] 'LF' | 'CR' | 'CRLF']
 [FILL MISSING FIELDS])]
 [ENCODING 'encoding']
 [[LOG ERRORS INTO error_table] SEGMENT REJECT LIMIT count
 [ROWS | PERCENT]]

CREATE [READABLE] EXTERNAL WEB TABLE table_name
 (column_name data_type [, ...] | LIKE other_table)
 LOCATION ('http://webhost[:port]/path/file' [, ...])
 | EXECUTE 'command' [ON ALL
 | MASTER
 | number_of_segments
 | HOST ['segment_hostname']
 | SEGMENT segment_id]
 FORMAT 'TEXT'
 [([HEADER]
 [DELIMITER [AS] 'delimiter' | 'OFF']
 [NULL [AS] 'null string']
 [ESCAPE [AS] 'escape' | 'OFF']
 [NEWLINE [AS] 'LF' | 'CR' | 'CRLF']
 [FILL MISSING FIELDS])]
 | 'CSV'
 [([HEADER]
 [QUOTE [AS] 'quote']
 [DELIMITER [AS] 'delimiter']
 [NULL [AS] 'null string']
 [FORCE NOT NULL column [, ...]]
 [ESCAPE [AS] 'escape']
 [NEWLINE [AS] 'LF' | 'CR' | 'CRLF']
 [FILL MISSING FIELDS])]
 [ENCODING 'encoding']
 [[LOG ERRORS INTO error_table] SEGMENT REJECT LIMIT count
 [ROWS | PERCENT]]

CREATE WRITABLE EXTERNAL TABLE table_name
 (column_name data_type [, ...] | LIKE other_table)
 LOCATION ('gpfdist://outputhost[:port]/filename' [, ...])
CREATE EXTERNAL TABLE 276

Greenplum Database Administrator Guide 4.1 – Appendix A: SQL Syntax Summary
 | ('gphdfs://hdfs_host[:port]/path')
 FORMAT 'TEXT'
 [([DELIMITER [AS] 'delimiter']
 [NULL [AS] 'null string']
 [ESCAPE [AS] 'escape' | 'OFF'])]
 | 'CSV'
 [([QUOTE [AS] 'quote']
 [DELIMITER [AS] 'delimiter']
 [NULL [AS] 'null string']
 [FORCE QUOTE column [, ...]]]
 [ESCAPE [AS] 'escape'])]
 [ENCODING 'write_encoding']
 [DISTRIBUTED BY (column, [...]) | DISTRIBUTED RANDOMLY]

CREATE WRITABLE EXTERNAL WEB TABLE table_name
 (column_name data_type [, ...] | LIKE other_table)
 EXECUTE 'command' [ON ALL]
 FORMAT 'TEXT'
 [([DELIMITER [AS] 'delimiter']
 [NULL [AS] 'null string']
 [ESCAPE [AS] 'escape' | 'OFF'])]
 | 'CSV'
 [([QUOTE [AS] 'quote']
 [DELIMITER [AS] 'delimiter']
 [NULL [AS] 'null string']
 [FORCE QUOTE column [, ...]]]
 [ESCAPE [AS] 'escape'])]
 [ENCODING 'write_encoding']
 [DISTRIBUTED BY (column, [...]) | DISTRIBUTED RANDOMLY]

CREATE FUNCTION
Defines a new function.

CREATE [OR REPLACE] FUNCTION name
 ([[argmode] [argname] argtype [, ...]])
 [RETURNS [SETOF] rettype]
 { LANGUAGE langname
 | IMMUTABLE | STABLE | VOLATILE
 | CALLED ON NULL INPUT | RETURNS NULL ON NULL INPUT | STRICT
 | [EXTERNAL] SECURITY INVOKER | [EXTERNAL] SECURITY DEFINER
 | AS 'definition'
 | AS 'obj_file', 'link_symbol' } ...
CREATE FUNCTION 277

Greenplum Database Administrator Guide 4.1 – Appendix A: SQL Syntax Summary
CREATE GROUP
Defines a new database role.

CREATE GROUP name [[WITH] option [...]]

where option can be:
 SUPERUSER | NOSUPERUSER
 | CREATEDB | NOCREATEDB
 | CREATEROLE | NOCREATEROLE
 | CREATEUSER | NOCREATEUSER
 | INHERIT | NOINHERIT
 | LOGIN | NOLOGIN
 | [ENCRYPTED | UNENCRYPTED] PASSWORD 'password'
 | VALID UNTIL 'timestamp'
 | IN ROLE rolename [, ...]
 | IN GROUP rolename [, ...]
 | ROLE rolename [, ...]
 | ADMIN rolename [, ...]
 | USER rolename [, ...]
 | SYSID uid

CREATE INDEX
Defines a new index.

CREATE [UNIQUE] INDEX name ON table
 [USING btree|bitmap|gist]
 ({column | (expression)} [opclass] [, ...])
 [WITH (FILLFACTOR = value)]
 [TABLESPACE tablespace]
 [WHERE predicate]

CREATE LANGUAGE
Defines a new procedural language.

CREATE [PROCEDURAL] LANGUAGE name

CREATE [TRUSTED] [PROCEDURAL] LANGUAGE name
 HANDLER call_handler [VALIDATOR valfunction]

CREATE OPERATOR
Defines a new operator.

CREATE OPERATOR name (
 PROCEDURE = funcname
 [, LEFTARG = lefttype] [, RIGHTARG = righttype]
 [, COMMUTATOR = com_op] [, NEGATOR = neg_op]
 [, RESTRICT = res_proc] [, JOIN = join_proc]
 [, HASHES] [, MERGES]
 [, SORT1 = left_sort_op] [, SORT2 = right_sort_op]
 [, LTCMP = less_than_op] [, GTCMP = greater_than_op])
CREATE GROUP 278

Greenplum Database Administrator Guide 4.1 – Appendix A: SQL Syntax Summary
CREATE OPERATOR CLASS
Defines a new operator class.

CREATE OPERATOR CLASS name [DEFAULT] FOR TYPE data_type
 USING index_method AS
 {
 OPERATOR strategy_number op_name [(op_type, op_type)] [RECHECK]
 | FUNCTION support_number funcname (argument_type [, ...])
 | STORAGE storage_type
 } [, ...]

CREATE RESOURCE QUEUE
Defines a new resource queue.

CREATE RESOURCE QUEUE name WITH (queue_attribute=value [, ...])

where queue_attribute is:
 ACTIVE_STATEMENTS=integer
 [MAX_COST=float [COST_OVERCOMMIT={TRUE|FALSE}]]
 [MIN_COST=float]
 [PRIORITY={MIN|LOW|MEDIUM|HIGH|MAX}]
 [MEMORY_LIMIT='memory_units']

| MAX_COST=float [COST_OVERCOMMIT={TRUE|FALSE}]
 [ACTIVE_STATEMENTS=integer]
 [MIN_COST=float]
 [PRIORITY={MIN|LOW|MEDIUM|HIGH|MAX}]
 [MEMORY_LIMIT='memory_units']

CREATE ROLE
Defines a new database role (user or group).

CREATE ROLE name [[WITH] option [...]]

where option can be:
 SUPERUSER | NOSUPERUSER
 | CREATEDB | NOCREATEDB
 | CREATEROLE | NOCREATEROLE
 | CREATEEXTTABLE | NOCREATEEXTTABLE
 [(attribute='value'[, ...])]
 where attributes and values are:
 type='readable'|'writable'
 protocol='gpfdist'|'http'|'gphdfs'
 | INHERIT | NOINHERIT
 | LOGIN | NOLOGIN
 | CONNECTION LIMIT connlimit
 | [ENCRYPTED | UNENCRYPTED] PASSWORD 'password'
 | VALID UNTIL 'timestamp'
 | IN ROLE rolename [, ...]
 | ROLE rolename [, ...]
 | ADMIN rolename [, ...]
 | RESOURCE QUEUE queue_name

CREATE RULE
Defines a new rewrite rule.

CREATE [OR REPLACE] RULE name AS ON event
 TO table [WHERE condition]
 DO [ALSO | INSTEAD] { NOTHING | command | (command; command ...) }
CREATE OPERATOR CLASS 279

Greenplum Database Administrator Guide 4.1 – Appendix A: SQL Syntax Summary
CREATE SCHEMA
Defines a new schema.

CREATE SCHEMA schema_name [AUTHORIZATION username] [schema_element [...]]

CREATE SCHEMA AUTHORIZATION rolename [schema_element [...]]

CREATE SEQUENCE
Defines a new sequence generator.

CREATE [TEMPORARY | TEMP] SEQUENCE name
 [INCREMENT [BY] value]
 [MINVALUE minvalue | NO MINVALUE]
 [MAXVALUE maxvalue | NO MAXVALUE]
 [START [WITH] start]
 [CACHE cache]
 [[NO] CYCLE]
 [OWNED BY { table.column | NONE }]
CREATE SCHEMA 280

Greenplum Database Administrator Guide 4.1 – Appendix A: SQL Syntax Summary
CREATE TABLE
Defines a new table.

CREATE [[GLOBAL | LOCAL] {TEMPORARY | TEMP}] TABLE table_name (
 [{ column_name data_type [DEFAULT default_expr]
 [column_constraint [...]]
 | table_constraint
 | LIKE other_table [{INCLUDING | EXCLUDING}
 {DEFAULTS | CONSTRAINTS}] ...}
 [, ...]])
 [INHERITS (parent_table [, ...])]
 [WITH (storage_parameter=value [, ...])
 [ON COMMIT {PRESERVE ROWS | DELETE ROWS | DROP}]
 [TABLESPACE tablespace]
 [DISTRIBUTED BY (column, [...]) | DISTRIBUTED RANDOMLY]
 [PARTITION BY partition_type (column)
 [SUBPARTITION BY partition_type (column)]
 [SUBPARTITION TEMPLATE (template_spec)]
 [...]
 (partition_spec)
 | [SUBPARTITION BY partition_type (column)]
 [...]
 (partition_spec
 [(subpartition_spec
 [(...)]
)]
)

where storage_parameter is:
 APPENDONLY={TRUE|FALSE}
 BLOCKSIZE={8192-2097152}
 ORIENTATION={COLUMN|ROW}
 COMPRESSTYPE={ZLIB|QUICKLZ}
 COMPRESSLEVEL={0-9 | 1}
 FILLFACTOR={10-100}
 OIDS[=TRUE|FALSE]

where column_constraint is:
 [CONSTRAINT constraint_name]
 NOT NULL | NULL
 | UNIQUE [USING INDEX TABLESPACE tablespace]
 [WITH (FILLFACTOR = value)]
 | PRIMARY KEY [USING INDEX TABLESPACE tablespace]
 [WITH (FILLFACTOR = value)]
 | CHECK (expression)

and table_constraint is:
 [CONSTRAINT constraint_name]
 UNIQUE (column_name [, ...])
 [USING INDEX TABLESPACE tablespace]
 [WITH (FILLFACTOR=value)]
 | PRIMARY KEY (column_name [, ...])
 [USING INDEX TABLESPACE tablespace]
 [WITH (FILLFACTOR=value)]
 | CHECK (expression)

where partition_type is:
 LIST
 | RANGE

where partition_specification is:
CREATE TABLE 281

Greenplum Database Administrator Guide 4.1 – Appendix A: SQL Syntax Summary
partition_element [, ...]

and partition_element is:
 DEFAULT PARTITION name

 | [PARTITION name] VALUES (list_value [,...])

 | [PARTITION name]
 START ([datatype] 'start_value') [INCLUSIVE | EXCLUSIVE]
 [END ([datatype] 'end_value') [INCLUSIVE | EXCLUSIVE]]
 [EVERY ([datatype] [number | INTERVAL] 'interval_value')]

 | [PARTITION name]
 END ([datatype] 'end_value') [INCLUSIVE | EXCLUSIVE]
 [EVERY ([datatype] [number | INTERVAL] 'interval_value')]

[WITH (partition_storage_parameter=value [, ...])]
[TABLESPACE tablespace]

where subpartition_spec or template_spec is:
subpartition_element [, ...]

and subpartition_element is:
 DEFAULT SUBPARTITION name

 | [SUBPARTITION name] VALUES (list_value [,...])

 | [SUBPARTITION name]
 START ([datatype] 'start_value') [INCLUSIVE | EXCLUSIVE]
 [END ([datatype] 'end_value') [INCLUSIVE | EXCLUSIVE]]
 [EVERY ([datatype] [number | INTERVAL] 'interval_value')]

 | [SUBPARTITION name]
 END ([datatype] 'end_value') [INCLUSIVE | EXCLUSIVE]
 [EVERY ([datatype] [number | INTERVAL] 'interval_value')]

[WITH (partition_storage_parameter=value [, ...])]
[TABLESPACE tablespace]

CREATE TABLE AS
Defines a new table from the results of a query.

CREATE [[GLOBAL | LOCAL] {TEMPORARY | TEMP}] TABLE table_name
 [(column_name [, ...])]
 [WITH (storage_parameter=value [, ...])]
 [ON COMMIT {PRESERVE ROWS | DELETE ROWS | DROP}]
 [TABLESPACE tablespace]
 AS query
 [DISTRIBUTED BY (column, [...]) | DISTRIBUTED RANDOMLY]

where storage_parameter is:
 APPENDONLY={TRUE|FALSE}
 BLOCKSIZE={8192-2097152}
 ORIENTATION={COLUMN|ROW}
 COMPRESSTYPE={ZLIB|QUICKLZ}
 COMPRESSLEVEL={0-9 | 1}
 FILLFACTOR={10-100}
 OIDS[=TRUE|FALSE]

CREATE TABLESPACE
Defines a new tablespace.

CREATE TABLESPACE tablespace_name [OWNER username]
 FILESPACE filespace_name
CREATE TABLE AS 282

Greenplum Database Administrator Guide 4.1 – Appendix A: SQL Syntax Summary
CREATE TRIGGER
Defines a new trigger. User-defined triggers are not supported in Greenplum Database.

CREATE TRIGGER name {BEFORE | AFTER} {event [OR ...]}
 ON table [FOR [EACH] {ROW | STATEMENT}]
 EXECUTE PROCEDURE funcname (arguments)

CREATE TYPE
Defines a new data type.

CREATE TYPE name AS (attribute_name data_type [, ...])

CREATE TYPE name (
 INPUT = input_function,
 OUTPUT = output_function
 [, RECEIVE = receive_function]
 [, SEND = send_function]
 [, ANALYZE = analyze_function]
 [, INTERNALLENGTH = {internallength | VARIABLE}]
 [, PASSEDBYVALUE]
 [, ALIGNMENT = alignment]
 [, STORAGE = storage]
 [, DEFAULT = default]
 [, ELEMENT = element]
 [, DELIMITER = delimiter]
)

CREATE TYPE name

CREATE USER
Defines a new database role with the LOGIN privilege by default.

CREATE USER name [[WITH] option [...]]

where option can be:
 SUPERUSER | NOSUPERUSER
 | CREATEDB | NOCREATEDB
 | CREATEROLE | NOCREATEROLE
 | CREATEUSER | NOCREATEUSER
 | INHERIT | NOINHERIT
 | LOGIN | NOLOGIN
 | [ENCRYPTED | UNENCRYPTED] PASSWORD 'password'
 | VALID UNTIL 'timestamp'
 | IN ROLE rolename [, ...]
 | IN GROUP rolename [, ...]
 | ROLE rolename [, ...]
 | ADMIN rolename [, ...]
 | USER rolename [, ...]
 | SYSID uid
 | RESOURCE QUEUE queue_name

CREATE VIEW
Defines a new view.

CREATE [OR REPLACE] [TEMP | TEMPORARY] VIEW name
 [(column_name [, ...])]
 AS query
CREATE TRIGGER 283

Greenplum Database Administrator Guide 4.1 – Appendix A: SQL Syntax Summary
DEALLOCATE
Deallocates a prepared statement.

DEALLOCATE [PREPARE] name

DECLARE
Defines a cursor.

DECLARE name [BINARY] [INSENSITIVE] [NO SCROLL] CURSOR
 [{WITH | WITHOUT} HOLD]
 FOR query [FOR READ ONLY]

DELETE
Deletes rows from a table.

DELETE FROM [ONLY] table [[AS] alias]
 [USING usinglist]
 [WHERE condition]

DROP AGGREGATE
Removes an aggregate function.

DROP AGGREGATE [IF EXISTS] name (type [, ...]) [CASCADE | RESTRICT]

DROP CAST
Removes a cast.

DROP CAST [IF EXISTS] (sourcetype AS targettype) [CASCADE | RESTRICT]

DROP CONVERSION
Removes a conversion.

DROP CONVERSION [IF EXISTS] name [CASCADE | RESTRICT]

DROP DATABASE
Removes a database.

DROP DATABASE [IF EXISTS] name

DROP DOMAIN
Removes a domain.

DROP DOMAIN [IF EXISTS] name [, ...] [CASCADE | RESTRICT]

DROP EXTERNAL TABLE
Removes an external table definition.

DROP EXTERNAL [WEB] TABLE [IF EXISTS] name [CASCADE | RESTRICT]

DROP FILESPACE
Removes a filespace.

DROP FILESPACE [IF EXISTS] filespacename

DROP FUNCTION
Removes a function.

DROP FUNCTION [IF EXISTS] name ([[argmode] [argname] argtype [, ...]]) [CASCADE
| RESTRICT]
DEALLOCATE 284

Greenplum Database Administrator Guide 4.1 – Appendix A: SQL Syntax Summary
DROP GROUP
Removes a database role.

DROP GROUP [IF EXISTS] name [, ...]

DROP INDEX
Removes an index.

DROP INDEX [IF EXISTS] name [, ...] [CASCADE | RESTRICT]

DROP LANGUAGE
Removes a procedural language.

DROP [PROCEDURAL] LANGUAGE [IF EXISTS] name [CASCADE | RESTRICT]

DROP OPERATOR
Removes an operator.

DROP OPERATOR [IF EXISTS] name ({lefttype | NONE} , {righttype | NONE}) [CASCADE
| RESTRICT]

DROP OPERATOR CLASS
Removes an operator class.

DROP OPERATOR CLASS [IF EXISTS] name USING index_method [CASCADE | RESTRICT]

DROP OWNED
Removes database objects owned by a database role.

DROP OWNED BY name [, ...] [CASCADE | RESTRICT]

DROP RESOURCE QUEUE
Removes a resource queue.

DROP RESOURCE QUEUE queue_name

DROP ROLE
Removes a database role.

DROP ROLE [IF EXISTS] name [, ...]

DROP RULE
Removes a rewrite rule.

DROP RULE [IF EXISTS] name ON relation [CASCADE | RESTRICT]

DROP SCHEMA
Removes a schema.

DROP SCHEMA [IF EXISTS] name [, ...] [CASCADE | RESTRICT]

DROP SEQUENCE
Removes a sequence.

DROP SEQUENCE [IF EXISTS] name [, ...] [CASCADE | RESTRICT]
DROP GROUP 285

Greenplum Database Administrator Guide 4.1 – Appendix A: SQL Syntax Summary
DROP TABLE
Removes a table.

DROP TABLE [IF EXISTS] name [, ...] [CASCADE | RESTRICT]

DROP TABLESPACE
Removes a tablespace.

DROP TABLESPACE [IF EXISTS] tablespacename

DROP TRIGGER
Removes a trigger.

DROP TRIGGER [IF EXISTS] name ON table [CASCADE | RESTRICT]

DROP TYPE
Removes a data type.

DROP TYPE [IF EXISTS] name [, ...] [CASCADE | RESTRICT]

DROP USER
Removes a database role.

DROP USER [IF EXISTS] name [, ...]

DROP VIEW
Removes a view.

DROP VIEW [IF EXISTS] name [, ...] [CASCADE | RESTRICT]

END
Commits the current transaction.

END [WORK | TRANSACTION]

EXECUTE
Executes a prepared SQL statement.

EXECUTE name [(parameter [, ...])]

EXPLAIN
Shows the query plan of a statement.

EXPLAIN [ANALYZE] [VERBOSE] statement
DROP TABLE 286

Greenplum Database Administrator Guide 4.1 – Appendix A: SQL Syntax Summary
FETCH
Retrieves rows from a query using a cursor.

FETCH [forward_direction { FROM | IN }] cursorname

where forward_direction can be empty or one of:
 NEXT
 FIRST
 LAST
 ABSOLUTE count
 RELATIVE count
 count
 ALL
 FORWARD
 FORWARD count
 FORWARD ALL

GRANT
Defines access privileges.

GRANT { {SELECT | INSERT | UPDATE | DELETE | REFERENCES | TRIGGER} [,...] | ALL [PRIV-
ILEGES] }
 ON [TABLE] tablename [, ...]
 TO {rolename | PUBLIC} [, ...] [WITH GRANT OPTION]

GRANT { {USAGE | SELECT | UPDATE} [,...] | ALL [PRIVILEGES] }
 ON SEQUENCE sequencename [, ...]
 TO { rolename | PUBLIC } [, ...] [WITH GRANT OPTION]

GRANT { {CREATE | CONNECT | TEMPORARY | TEMP} [,...] | ALL [PRIVILEGES] }
 ON DATABASE dbname [, ...]
 TO {rolename | PUBLIC} [, ...] [WITH GRANT OPTION]

GRANT { EXECUTE | ALL [PRIVILEGES] }
 ON FUNCTION funcname ([[argmode] [argname] argtype [, ...]]) [, ...]
 TO {rolename | PUBLIC} [, ...] [WITH GRANT OPTION]

GRANT { USAGE | ALL [PRIVILEGES] }
 ON LANGUAGE langname [, ...]
 TO {rolename | PUBLIC} [, ...] [WITH GRANT OPTION]

GRANT { {CREATE | USAGE} [,...] | ALL [PRIVILEGES] }
 ON SCHEMA schemaname [, ...]
 TO {rolename | PUBLIC} [, ...] [WITH GRANT OPTION]

GRANT { CREATE | ALL [PRIVILEGES] }
 ON TABLESPACE tablespacename [, ...]
 TO {rolename | PUBLIC} [, ...] [WITH GRANT OPTION]

GRANT parent_role [, ...]
 TO member_role [, ...] [WITH ADMIN OPTION]

INSERT
Creates new rows in a table.

INSERT INTO table [(column [, ...])]
 {DEFAULT VALUES | VALUES ({expression | DEFAULT} [, ...]) [, ...] | query}

LOAD
Loads or reloads a shared library file.

LOAD 'filename'
FETCH 287

Greenplum Database Administrator Guide 4.1 – Appendix A: SQL Syntax Summary
LOCK
Locks a table.

LOCK [TABLE] name [, ...] [IN lockmode MODE] [NOWAIT]

where lockmode is one of:
ACCESS SHARE | ROW SHARE | ROW EXCLUSIVE | SHARE UPDATE EXCLUSIVE | SHARE | SHARE ROW
EXCLUSIVE | EXCLUSIVE | ACCESS EXCLUSIVE

MOVE
Positions a cursor.

MOVE [forward_direction {FROM | IN}] cursorname

where direction can be empty or one of:
 NEXT
 FIRST
 LAST
 ABSOLUTE count
 RELATIVE count
 count
 ALL
 FORWARD
 FORWARD count
 FORWARD ALL

PREPARE
Prepare a statement for execution.

PREPARE name [(datatype [, ...])] AS statement

REASSIGN OWNED
Changes the ownership of database objects owned by a database role.

REASSIGN OWNED BY old_role [, ...] TO new_role

REINDEX
Rebuilds indexes.

REINDEX {INDEX | TABLE | DATABASE | SYSTEM} name

RELEASE SAVEPOINT
Destroys a previously defined savepoint.

RELEASE [SAVEPOINT] savepoint_name

RESET
Restores the value of a system configuration parameter to the default value.

RESET configuration_parameter

RESET ALL
LOCK 288

Greenplum Database Administrator Guide 4.1 – Appendix A: SQL Syntax Summary
REVOKE
Removes access privileges.

REVOKE [GRANT OPTION FOR] { {SELECT | INSERT | UPDATE | DELETE
 | REFERENCES | TRIGGER} [,...] | ALL [PRIVILEGES] }
 ON [TABLE] tablename [, ...]
 FROM {rolename | PUBLIC} [, ...]
 [CASCADE | RESTRICT]

REVOKE [GRANT OPTION FOR] { {USAGE | SELECT | UPDATE} [,...]
 | ALL [PRIVILEGES] }
 ON SEQUENCE sequencename [, ...]
 FROM { rolename | PUBLIC } [, ...]
 [CASCADE | RESTRICT]

REVOKE [GRANT OPTION FOR] { {CREATE | CONNECT
 | TEMPORARY | TEMP} [,...] | ALL [PRIVILEGES] }
 ON DATABASE dbname [, ...]
 FROM {rolename | PUBLIC} [, ...]
 [CASCADE | RESTRICT]

REVOKE [GRANT OPTION FOR] {EXECUTE | ALL [PRIVILEGES]}
 ON FUNCTION funcname ([[argmode] [argname] argtype
 [, ...]]) [, ...]
 FROM {rolename | PUBLIC} [, ...]
 [CASCADE | RESTRICT]

REVOKE [GRANT OPTION FOR] {USAGE | ALL [PRIVILEGES]}
 ON LANGUAGE langname [, ...]
 FROM {rolename | PUBLIC} [, ...]
 [CASCADE | RESTRICT]

REVOKE [GRANT OPTION FOR] { {CREATE | USAGE} [,...]
 | ALL [PRIVILEGES] }
 ON SCHEMA schemaname [, ...]
 FROM {rolename | PUBLIC} [, ...]
 [CASCADE | RESTRICT]

REVOKE [GRANT OPTION FOR] { CREATE | ALL [PRIVILEGES] }
 ON TABLESPACE tablespacename [, ...]
 FROM { rolename | PUBLIC } [, ...]
 [CASCADE | RESTRICT]

REVOKE [ADMIN OPTION FOR] parent_role [, ...]
 FROM member_role [, ...]
 [CASCADE | RESTRICT]

ROLLBACK
Aborts the current transaction.

ROLLBACK [WORK | TRANSACTION]

ROLLBACK TO SAVEPOINT
Rolls back the current transaction to a savepoint.

ROLLBACK [WORK | TRANSACTION] TO [SAVEPOINT] savepoint_name

SAVEPOINT
Defines a new savepoint within the current transaction.

SAVEPOINT savepoint_name
REVOKE 289

Greenplum Database Administrator Guide 4.1 – Appendix A: SQL Syntax Summary
SELECT
Retrieves rows from a table or view.

SELECT [ALL | DISTINCT [ON (expression [, ...])]]
 * | expression [[AS] output_name] [, ...]
 [FROM from_item [, ...]]
 [WHERE condition]
 [GROUP BY grouping_element [, ...]]
 [HAVING condition [, ...]]
 [WINDOW window_name AS (window_specification)]
 [{UNION | INTERSECT | EXCEPT} [ALL] select]
 [ORDER BY expression [ASC | DESC | USING operator] [, ...]]
 [LIMIT {count | ALL}]
 [OFFSET start]
 [FOR {UPDATE | SHARE} [OF table_name [, ...]] [NOWAIT] [...]]

where grouping_element can be one of:
 ()
 expression
 ROLLUP (expression [,...])
 CUBE (expression [,...])
 GROUPING SETS ((grouping_element [, ...]))

where window_specification can be:
 [window_name]
 [PARTITION BY expression [, ...]]
 [ORDER BY expression [ASC | DESC | USING operator] [, ...]
 [{RANGE | ROWS}
 { UNBOUNDED PRECEDING
 | expression PRECEDING
 | CURRENT ROW
 | BETWEEN window_frame_bound AND window_frame_bound }]]

 where window_frame_bound can be one of:
 UNBOUNDED PRECEDING
 expression PRECEDING
 CURRENT ROW
 expression FOLLOWING
 UNBOUNDED FOLLOWING

where from_item can be one of:
[ONLY] table_name [[AS] alias [(column_alias [, ...])]]
(select) [AS] alias [(column_alias [, ...])]
function_name ([argument [, ...]]) [AS] alias
 [(column_alias [, ...]
 | column_definition [, ...])]
function_name ([argument [, ...]]) AS
 (column_definition [, ...])
from_item [NATURAL] join_type from_item
 [ON join_condition | USING (join_column [, ...])]
SELECT 290

Greenplum Database Administrator Guide 4.1 – Appendix A: SQL Syntax Summary
SELECT INTO
Defines a new table from the results of a query.

SELECT [ALL | DISTINCT [ON (expression [, ...])]]
 * | expression [AS output_name] [, ...]
 INTO [TEMPORARY | TEMP] [TABLE] new_table
 [FROM from_item [, ...]]
 [WHERE condition]
 [GROUP BY expression [, ...]]
 [HAVING condition [, ...]]
 [{UNION | INTERSECT | EXCEPT} [ALL] select]
 [ORDER BY expression [ASC | DESC | USING operator] [, ...]]
 [LIMIT {count | ALL}]
 [OFFSET start]
 [FOR {UPDATE | SHARE} [OF table_name [, ...]] [NOWAIT] [...]]

SET
Changes the value of a Greenplum Database configuration parameter.

SET [SESSION | LOCAL] configuration_parameter {TO | =} value | 'value' | DEFAULT}

SET [SESSION | LOCAL] TIME ZONE {timezone | LOCAL | DEFAULT}

SET ROLE
Sets the current role identifier of the current session.

SET [SESSION | LOCAL] ROLE rolename

SET [SESSION | LOCAL] ROLE NONE

RESET ROLE

SET SESSION AUTHORIZATION
Sets the session role identifier and the current role identifier of the current session.

SET [SESSION | LOCAL] SESSION AUTHORIZATION rolename

SET [SESSION | LOCAL] SESSION AUTHORIZATION DEFAULT

RESET SESSION AUTHORIZATION

SET TRANSACTION
Sets the characteristics of the current transaction.

SET TRANSACTION transaction_mode [, ...]

SET SESSION CHARACTERISTICS AS TRANSACTION transaction_mode [, ...]

where transaction_mode is one of:
ISOLATION LEVEL {SERIALIZABLE | REPEATABLE READ | READ COMMITTED | READ UNCOMMITTED}
READ WRITE | READ ONLY

SHOW
Shows the value of a system configuration parameter.

SHOW configuration_parameter

SHOW ALL

START TRANSACTION
Starts a transaction block.

START TRANSACTION [SERIALIZABLE | REPEATABLE READ | READ COMMITTED | READ UNCOMMITTED]
[READ WRITE | READ ONLY]
SELECT INTO 291

Greenplum Database Administrator Guide 4.1 – Appendix A: SQL Syntax Summary
TRUNCATE
Empties a table of all rows.

TRUNCATE [TABLE] name [, ...] [CASCADE | RESTRICT]

UPDATE
Updates rows of a table.

UPDATE [ONLY] table [[AS] alias]
 SET {column = {expression | DEFAULT} |
 (column [, ...]) = ({expression | DEFAULT} [, ...])} [, ...]
 [FROM fromlist]
 [WHERE condition]

VACUUM
Garbage-collects and optionally analyzes a database.

VACUUM [FULL] [FREEZE] [VERBOSE] [table]

VACUUM [FULL] [FREEZE] [VERBOSE] ANALYZE
 [table [(column [, ...])]]

VALUES
Computes a set of rows.

VALUES (expression [, ...]) [, ...]
[ORDER BY sort_expression [ASC | DESC | USING operator] [, ...]]
[LIMIT {count | ALL}] [OFFSET start]
TRUNCATE 292

ABORT 293

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference

ABORT
Aborts the current transaction.

Synopsis
ABORT [WORK | TRANSACTION]

Description

ABORT rolls back the current transaction and causes all the updates made by the
transaction to be discarded. This command is identical in behavior to the standard
SQL command ROLLBACK, and is present only for historical reasons.

Parameters

WORK
TRANSACTION

Optional key words. They have no effect.

Notes

Use COMMIT to successfully terminate a transaction.

Issuing ABORT when not inside a transaction does no harm, but it will provoke a
warning message.

Compatibility

This command is a Greenplum Database extension present for historical reasons.
ROLLBACK is the equivalent standard SQL command.

See Also

BEGIN, COMMIT, ROLLBACK

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
ALTER AGGREGATE
Changes the definition of an aggregate function

Synopsis
ALTER AGGREGATE name (type [, ...]) RENAME TO new_name

ALTER AGGREGATE name (type [, ...]) OWNER TO new_owner

ALTER AGGREGATE name (type [, ...]) SET SCHEMA new_schema

Description

ALTER AGGREGATE changes the definition of an aggregate function.

You must own the aggregate function to use ALTER AGGREGATE. To change the
schema of an aggregate function, you must also have CREATE privilege on the new
schema. To alter the owner, you must also be a direct or indirect member of the new
owning role, and that role must have CREATE privilege on the aggregate function’s
schema. (These restrictions enforce that altering the owner does not do anything you
could not do by dropping and recreating the aggregate function. However, a superuser
can alter ownership of any aggregate function anyway.)

Parameters

name

The name (optionally schema-qualified) of an existing aggregate function.

type

An input data type on which the aggregate function operates. To reference a
zero-argument aggregate function, write * in place of the list of input data types.

new_name

The new name of the aggregate function.

new_owner

The new owner of the aggregate function.

new_schema

The new schema for the aggregate function.

Examples

To rename the aggregate function myavg for type integer to my_average:

ALTER AGGREGATE myavg(integer) RENAME TO my_average;

To change the owner of the aggregate function myavg for type integer to joe:

ALTER AGGREGATE myavg(integer) OWNER TO joe;
ALTER AGGREGATE 294

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
To move the aggregate function myavg for type integer into schema myschema:

ALTER AGGREGATE myavg(integer) SET SCHEMA myschema;

Compatibility

There is no ALTER AGGREGATE statement in the SQL standard.

See Also

CREATE AGGREGATE, DROP AGGREGATE
ALTER AGGREGATE 295

ALTER CONVERSION 296

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference

ALTER CONVERSION
Changes the definition of a conversion.

Synopsis
ALTER CONVERSION name RENAME TO newname

ALTER CONVERSION name OWNER TO newowner

Description

ALTER CONVERSION changes the definition of a conversion.

You must own the conversion to use ALTER CONVERSION. To alter the owner, you
must also be a direct or indirect member of the new owning role, and that role must
have CREATE privilege on the conversion’s schema. (These restrictions enforce that
altering the owner does not do anything you could not do by dropping and recreating
the conversion. However, a superuser can alter ownership of any conversion anyway.)

Parameters

name

The name (optionally schema-qualified) of an existing conversion.

newname

The new name of the conversion.

newowner

The new owner of the conversion.

Examples

To rename the conversion iso_8859_1_to_utf8 to latin1_to_unicode:

ALTER CONVERSION iso_8859_1_to_utf8 RENAME TO
latin1_to_unicode;

To change the owner of the conversion iso_8859_1_to_utf8 to joe:

ALTER CONVERSION iso_8859_1_to_utf8 OWNER TO joe;

Compatibility

There is no ALTER CONVERSION statement in the SQL standard.

See Also

CREATE CONVERSION, DROP CONVERSION

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
ALTER DATABASE
Changes the attributes of a database.

Synopsis
ALTER DATABASE name [WITH CONNECTION LIMIT connlimit]

ALTER DATABASE name SET parameter { TO | = } { value | DEFAULT }

ALTER DATABASE name RESET parameter

ALTER DATABASE name RENAME TO newname

ALTER DATABASE name OWNER TO new_owner

Description

ALTER DATABASE changes the attributes of a database.

The first form changes the allowed connection limit for a database. Only the database
owner or a superuser can change this setting.

The second and third forms change the session default for a configuration parameter
for a Greenplum database. Whenever a new session is subsequently started in that
database, the specified value becomes the session default value. The database-specific
default overrides whatever setting is present in the server configuration file
(postgresql.conf). Only the database owner or a superuser can change the session
defaults for a database. Certain parameters cannot be set this way, or can only be set
by a superuser.

The fourth form changes the name of the database. Only the database owner or a
superuser can rename a database; non-superuser owners must also have the CREATEDB
privilege. You cannot rename the current database. Connect to a different database
first.

The fifth form changes the owner of the database. To alter the owner, you must own
the database and also be a direct or indirect member of the new owning role, and you
must have the CREATEDB privilege. (Note that superusers have all these privileges
automatically.)

Parameters

name

The name of the database whose attributes are to be altered.

connlimit

The maximum number of concurrent connections possible. The default of -1 means
there is no limitation.
ALTER DATABASE 297

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
parameter
value

Set this database’s session default for the specified configuration parameter to the
given value. If value is DEFAULT or, equivalently, RESET is used, the
database-specific setting is removed, so the system-wide default setting will be
inherited in new sessions. Use RESET ALL to clear all database-specific settings. See
“Server Configuration Parameters” on page 792 for information about all
user-settable configuration parameters.

newname

The new name of the database.

new_owner

The new owner of the database.

Notes

It is also possible to set a configuration parameter session default for a specific role
(user) rather than to a database. Role-specific settings override database-specific ones
if there is a conflict. See ALTER ROLE.

Examples

To set the default schema search path for the mydatabase database:

ALTER DATABASE mydatabase SET search_path TO myschema,
public, pg_catalog;

Compatibility

The ALTER DATABASE statement is a Greenplum Database extension.

See Also

CREATE DATABASE, DROP DATABASE, SET
ALTER DATABASE 298

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
ALTER DOMAIN
Changes the definition of a domain.

Synopsis
ALTER DOMAIN name { SET DEFAULT expression | DROP DEFAULT }

ALTER DOMAIN name { SET | DROP } NOT NULL

ALTER DOMAIN name ADD domain_constraint

ALTER DOMAIN name DROP CONSTRAINT constraint_name [RESTRICT |
CASCADE]

ALTER DOMAIN name OWNER TO new_owner

ALTER DOMAIN name SET SCHEMA new_schema

Description

ALTER DOMAIN changes the definition of an existing domain. There are several
sub-forms:

• SET/DROP DEFAULT — These forms set or remove the default value for a domain.
Note that defaults only apply to subsequent INSERT commands. They do not
affect rows already in a table using the domain.

• SET/DROP NOT NULL — These forms change whether a domain is marked to
allow NULL values or to reject NULL values. You may only SET NOT NULL when
the columns using the domain contain no null values.

• ADD domain_constraint — This form adds a new constraint to a domain using
the same syntax as CREATE DOMAIN. This will only succeed if all columns using
the domain satisfy the new constraint.

• DROP CONSTRAINT — This form drops constraints on a domain.

• OWNER — This form changes the owner of the domain to the specified user.

• SET SCHEMA — This form changes the schema of the domain. Any constraints
associated with the domain are moved into the new schema as well.

You must own the domain to use ALTER DOMAIN. To change the schema of a domain,
you must also have CREATE privilege on the new schema. To alter the owner, you must
also be a direct or indirect member of the new owning role, and that role must have
CREATE privilege on the domain’s schema. (These restrictions enforce that altering the
owner does not do anything you could not do by dropping and recreating the domain.
However, a superuser can alter ownership of any domain anyway.)

Parameters

name

The name (optionally schema-qualified) of an existing domain to alter.
ALTER DOMAIN 299

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
domain_constraint

New domain constraint for the domain.

constraint_name

Name of an existing constraint to drop.

CASCADE

Automatically drop objects that depend on the constraint.

RESTRICT

Refuse to drop the constraint if there are any dependent objects. This is the default
behavior.

new_owner

The user name of the new owner of the domain.

new_schema

The new schema for the domain.

Examples

To add a NOT NULL constraint to a domain:

ALTER DOMAIN zipcode SET NOT NULL;

To remove a NOT NULL constraint from a domain:

ALTER DOMAIN zipcode DROP NOT NULL;

To add a check constraint to a domain:

ALTER DOMAIN zipcode ADD CONSTRAINT zipchk CHECK
(char_length(VALUE) = 5);

To remove a check constraint from a domain:

ALTER DOMAIN zipcode DROP CONSTRAINT zipchk;

To move the domain into a different schema:

ALTER DOMAIN zipcode SET SCHEMA customers;

Compatibility

ALTER DOMAIN conforms to the SQL standard, except for the OWNER and SET SCHEMA
variants, which are Greenplum Database extensions.

See Also

CREATE DOMAIN, DROP DOMAIN
ALTER DOMAIN 300

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
ALTER EXTERNAL TABLE
Changes the definition of an external table.

Synopsis
ALTER EXTERNAL TABLE name RENAME [COLUMN] column TO new_column

ALTER EXTERNAL TABLE name RENAME TO new_name

ALTER EXTERNAL TABLE name SET SCHEMA new_schema

ALTER EXTERNAL TABLE name action [, ...]

where action is one of:
 ADD [COLUMN] column_name type
 DROP [COLUMN] column
 ALTER [COLUMN] column TYPE type [USING expression]
 OWNER TO new_owner

Description

ALTER EXTERNAL TABLE changes the definition of an existing external table. There
are several subforms:

• ADD COLUMN — Adds a new column to the external table definition.

• DROP COLUMN — Drops a column from the external table definition. Note that if
you drop readable external table columns, it only changes the table definition in
Greenplum Database. External data files are not changed.

• ALTER COLUMN TYPE — Changes the data type of a column of a table. The
optional USING clause specifies how to compute the new column value from the
old. If omitted, the default conversion is the same as an assignment cast from old
data type to new. A USING clause must be provided if there is no implicit or
assignment cast from the old to new type.

• OWNER — Changes the owner of the external table to the specified user.

• RENAME — Changes the name of an external table or the name of an individual
column in the table. There is no effect on the external data.

• SET SCHEMA — Moves the external table into another schema.

You must own the external table to use ALTER EXTERNAL TABLE. To change the
schema of an external table, you must also have CREATE privilege on the new schema.
To alter the owner, you must also be a direct or indirect member of the new owning
role, and that role must have CREATE privilege on the external table’s schema. A
superuser has these privileges automatically.

In this release, ALTER EXTERNAL TABLE cannot modify the external table type, the
data format, or the location of the external data. To modify this information, you must
drop and recreate the external table definition.
ALTER EXTERNAL TABLE 301

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
Parameters

name

The name (possibly schema-qualified) of an existing external table definition to
alter.

column

Name of a new or existing column.

new_column

New name for an existing column.

new_name

New name for the external table.

type

Data type of the new column, or new data type for an existing column.

new_owner

The role name of the new owner of the external table.

new_schema

The name of the schema to which the external table will be moved.

Examples

Add a new column to an external table definition:

ALTER EXTERNAL TABLE ext_expenses ADD COLUMN manager text;

Change the name of an external table:

ALTER EXTERNAL TABLE ext_data RENAME TO ext_sales_data;

Change the owner of an external table:

ALTER EXTERNAL TABLE ext_data OWNER TO jojo;

Change the schema of an external table:

ALTER EXTERNAL TABLE ext_leads SET SCHEMA marketing;

Compatibility

ALTER EXTERNAL TABLE is a Greenplum Database extension. There is no ALTER
EXTERNAL TABLE statement in the SQL standard or regular PostgreSQL.

See Also

CREATE EXTERNAL TABLE, DROP EXTERNAL TABLE
ALTER EXTERNAL TABLE 302

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
ALTER EXTERNAL TABLE 303

ALTER FILESPACE 304

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference

ALTER FILESPACE
Changes the definition of a filespace.

Synopsis
ALTER FILESPACE name RENAME TO newname

ALTER FILESPACE name OWNER TO newowner

Description

ALTER FILESPACE changes the definition of a filespace.

You must own the filespace to use ALTER FILESPACE. To alter the owner, you must
also be a direct or indirect member of the new owning role (note that superusers have
these privileges automatically).

Parameters

name

The name of an existing filespace.

newname

The new name of the filespace. The new name cannot begin with pg_ or gp_
(reserved for system filespaces).

newowner

The new owner of the filespace.

Examples

Rename filespace myfs to fast_ssd:

ALTER FILESPACE myfs RENAME TO fast_ssd;

Change the owner of tablespace mysf:

ALTER FILESPACE myfs OWNER TO dba;

Compatibility

There is no ALTER FILESPACE statement in the SQL standard or in PostgreSQL.

See Also

gpfilespace, DROP FILESPACE

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
ALTER FUNCTION
Changes the definition of a function.

Synopsis
ALTER FUNCTION name ([[argmode] [argname] argtype [, ...]])
action [, ...] [RESTRICT]

ALTER FUNCTION name ([[argmode] [argname] argtype [, ...]])
RENAME TO new_name

ALTER FUNCTION name ([[argmode] [argname] argtype [, ...]])
OWNER TO new_owner

ALTER FUNCTION name ([[argmode] [argname] argtype [, ...]])
SET SCHEMA new_schema

where action is one of:

{CALLED ON NULL INPUT | RETURNS NULL ON NULL INPUT | STRICT}
{IMMUTABLE | STABLE | VOLATILE}
{[EXTERNAL] SECURITY INVOKER | [EXTERNAL] SECURITY DEFINER}

Description

ALTER FUNCTION changes the definition of a function.

You must own the function to use ALTER FUNCTION. To change a function’s schema,
you must also have CREATE privilege on the new schema. To alter the owner, you must
also be a direct or indirect member of the new owning role, and that role must have
CREATE privilege on the function’s schema. (These restrictions enforce that altering
the owner does not do anything you could not do by dropping and recreating the
function. However, a superuser can alter ownership of any function anyway.)

Parameters

name

The name (optionally schema-qualified) of an existing function.

argmode

The mode of an argument: either IN, OUT, or INOUT. If omitted, the default is IN.
Note that ALTER FUNCTION does not actually pay any attention to OUT arguments,
since only the input arguments are needed to determine the function’s identity. So it
is sufficient to list the IN and INOUT arguments.

argname

The name of an argument. Note that ALTER FUNCTION does not actually pay any
attention to argument names, since only the argument data types are needed to
determine the function’s identity.
ALTER FUNCTION 305

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
argtype

The data type(s) of the function’s arguments (optionally schema-qualified), if any.

new_name

The new name of the function.

new_owner

The new owner of the function. Note that if the function is marked SECURITY
DEFINER, it will subsequently execute as the new owner.

new_schema

The new schema for the function.

CALLED ON NULL INPUT
RETURNS NULL ON NULL INPUT
STRICT

CALLED ON NULL INPUT changes the function so that it will be invoked when some
or all of its arguments are null. RETURNS NULL ON NULL INPUT or STRICT changes
the function so that it is not invoked if any of its arguments are null; instead, a null
result is assumed automatically. See CREATE FUNCTION for more information.

IMMUTABLE
STABLE
VOLATILE

Change the volatility of the function to the specified setting. See CREATE FUNCTION
for details.

[EXTERNAL] SECURITY INVOKER
[EXTERNAL] SECURITY DEFINER

Change whether the function is a security definer or not. The key word EXTERNAL is
ignored for SQL conformance. See CREATE FUNCTION for more information about
this capability.

RESTRICT

Ignored for conformance with the SQL standard.

Notes

Greenplum Database has limitations on the use of functions defined as STABLE or
VOLATILE. See CREATE FUNCTION for more information.

Examples

To rename the function sqrt for type integer to square_root:

ALTER FUNCTION sqrt(integer) RENAME TO square_root;

To change the owner of the function sqrt for type integer to joe:

ALTER FUNCTION sqrt(integer) OWNER TO joe;
ALTER FUNCTION 306

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
To change the schema of the function sqrt for type integer to math:

ALTER FUNCTION sqrt(integer) SET SCHEMA math;

Compatibility

This statement is partially compatible with the ALTER FUNCTION statement in the
SQL standard. The standard allows more properties of a function to be modified, but
does not provide the ability to rename a function, make a function a security definer,
or change the owner, schema, or volatility of a function. The standard also requires the
RESTRICT key word, which is optional in Greenplum Database.

See Also

CREATE FUNCTION, DROP FUNCTION
ALTER FUNCTION 307

ALTER GROUP 308

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference

ALTER GROUP
Changes a role name or membership.

Synopsis
ALTER GROUP groupname ADD USER username [, ...]

ALTER GROUP groupname DROP USER username [, ...]

ALTER GROUP groupname RENAME TO newname

Description

ALTER GROUP is an obsolete command, though still accepted for backwards
compatibility. Groups (and users) have been superseded by the more general concept
of roles. See ALTER ROLE for more information.

Parameters

groupname

The name of the group (role) to modify.

username

Users (roles) that are to be added to or removed from the group. The users (roles)
must already exist.

newname

The new name of the group (role).

Examples

To add users to a group:

ALTER GROUP staff ADD USER karl, john;

To remove a user from a group:

ALTER GROUP workers DROP USER beth;

Compatibility

There is no ALTER GROUP statement in the SQL standard.

See Also

ALTER ROLE, GRANT, REVOKE

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
ALTER INDEX
Changes the definition of an index.

Synopsis
ALTER INDEX name RENAME TO new_name

ALTER INDEX name SET TABLESPACE tablespace_name

ALTER INDEX name SET (FILLFACTOR = value)

ALTER INDEX name RESET (FILLFACTOR)

Description

ALTER INDEX changes the definition of an existing index. There are several subforms:

• RENAME — Changes the name of the index. There is no effect on the stored data.

• SET TABLESPACE — Changes the index’s tablespace to the specified tablespace
and moves the data file(s) associated with the index to the new tablespace. See
also CREATE TABLESPACE.

• SET FILLFACTOR — Changes the index-method-specific storage parameters for
the index. The built-in index methods all accept a single parameter: FILLFACTOR.
The fillfactor for an index is a percentage that determines how full the index
method will try to pack index pages. Index contents will not be modified
immediately by this command. Use REINDEX to rebuild the index to get the
desired effects.

• RESET FILLFACTOR — Resets FILLFACTOR to the default. As with SET, a
REINDEX may be needed to update the index entirely.

Parameters

name

The name (optionally schema-qualified) of an existing index to alter.

new_name

New name for the index.

tablespace_name

The tablespace to which the index will be moved.

FILLFACTOR

The fillfactor for an index is a percentage that determines how full the index method
will try to pack index pages. For B-trees, leaf pages are filled to this percentage
during initial index build, and also when extending the index at the right (largest key
values). If pages subsequently become completely full, they will be split, leading to
gradual degradation in the index’s efficiency.
ALTER INDEX 309

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
B-trees use a default fillfactor of 90, but any value from 10 to 100 can be selected. If
the table is static then fillfactor 100 is best to minimize the index's physical size, but
for heavily updated tables a smaller fillfactor is better to minimize the need for page
splits. The other index methods use fillfactor in different but roughly analogous
ways; the default fillfactor varies between methods.

Notes

These operations are also possible using ALTER TABLE.

Changing any part of a system catalog index is not permitted.

Examples

To rename an existing index:

ALTER INDEX distributors RENAME TO suppliers;

To move an index to a different tablespace:

ALTER INDEX distributors SET TABLESPACE fasttablespace;

To change an index’s fill factor (assuming that the index method supports it):

ALTER INDEX distributors SET (fillfactor = 75);

REINDEX INDEX distributors;

Compatibility

ALTER INDEX is a Greenplum Database extension.

See Also

CREATE INDEX, REINDEX, ALTER TABLE
ALTER INDEX 310

ALTER LANGUAGE 311

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference

ALTER LANGUAGE
Changes the name of a procedural language.

Synopsis
ALTER LANGUAGE name RENAME TO newname

Description

ALTER LANGUAGE changes the name of a procedural language. Only a superuser can
rename languages.

Parameters

name

Name of a language.

newname

The new name of the language.

Compatibility

There is no ALTER LANGUAGE statement in the SQL standard.

See Also

CREATE LANGUAGE, DROP LANGUAGE

ALTER OPERATOR 312

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference

ALTER OPERATOR
Changes the definition of an operator.

Synopsis
ALTER OPERATOR name ({lefttype | NONE} , {righttype | NONE})
OWNER TO newowner

Description

ALTER OPERATOR changes the definition of an operator. The only currently available
functionality is to change the owner of the operator.

You must own the operator to use ALTER OPERATOR. To alter the owner, you must also
be a direct or indirect member of the new owning role, and that role must have CREATE
privilege on the operator’s schema. (These restrictions enforce that altering the owner
does not do anything you could not do by dropping and recreating the operator.
However, a superuser can alter ownership of any operator anyway.)

Parameters

name

The name (optionally schema-qualified) of an existing operator.

lefttype

The data type of the operator’s left operand; write NONE if the operator has no left
operand.

righttype

The data type of the operator’s right operand; write NONE if the operator has no right
operand.

newowner

The new owner of the operator.

Examples

Change the owner of a custom operator a @@ b for type text:

ALTER OPERATOR @@ (text, text) OWNER TO joe;

Compatibility

There is no ALTER OPERATOR statement in the SQL standard.

See Also

CREATE OPERATOR, DROP OPERATOR

ALTER OPERATOR CLASS 313

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference

ALTER OPERATOR CLASS
Changes the definition of an operator class.

Synopsis
ALTER OPERATOR CLASS name USING index_method RENAME TO newname

ALTER OPERATOR CLASS name USING index_method OWNER TO newowner

Description

ALTER OPERATOR CLASS changes the definition of an operator class.

You must own the operator class to use ALTER OPERATOR CLASS. To alter the owner,
you must also be a direct or indirect member of the new owning role, and that role
must have CREATE privilege on the operator class’s schema. (These restrictions
enforce that altering the owner does not do anything you could not do by dropping and
recreating the operator class. However, a superuser can alter ownership of any
operator class anyway.)

Parameters

name

The name (optionally schema-qualified) of an existing operator class.

index_method

The name of the index method this operator class is for.

newname

The new name of the operator class.

newowner

The new owner of the operator class

Compatibility

There is no ALTER OPERATOR CLASS statement in the SQL standard.

See Also

CREATE OPERATOR CLASS, DROP OPERATOR CLASS

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
ALTER RESOURCE QUEUE
Changes the limits of a resource queue.

Synopsis
ALTER RESOURCE QUEUE name WITH (queue_attribute=value [, ...])

where queue_attribute is:
 ACTIVE_STATEMENTS=integer
 MEMORY_LIMIT='memory_units'
 MAX_COST=float
 COST_OVERCOMMIT={TRUE|FALSE}
 MIN_COST=float
 PRIORITY={MIN|LOW|MEDIUM|HIGH|MAX}

ALTER RESOURCE QUEUE name WITHOUT (queue_attribute=value [, ...
])

where queue_attribute is:
 ACTIVE_STATEMENTS=integer
 MEMORY_LIMIT='memory_units'
 MAX_COST=float
 COST_OVERCOMMIT={TRUE|FALSE}
 MIN_COST=float

Description

ALTER RESOURCE QUEUE changes the limits of a resource queue. Only a superuser
can alter a resource queue. A resource queue must have either an
ACTIVE_STATEMENTS or a MAX_COST value (or it can have both). You can also set or
reset priority for a resource queue to control the relative share of available CPU
resources used by queries associated with the queue, or memory limit of a resource
queue to control the amount of memory that all queries submitted through the queue
can consume on a segment host.

Parameters

name

The name of the resource queue whose limits are to be altered.

ACTIVE_STATEMENTS integer

The number of active statements submitted from users in this resource queue
allowed on the system at any one time. The value for ACTIVE_STATEMENTS should
be an integer greater than 0. To reset ACTIVE_STATEMENTS to have no limit, enter a
value of -1.
ALTER RESOURCE QUEUE 314

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
MEMORY_LIMIT 'memory_units'

Sets the total memory quota for all statements submitted from users in this resource
queue. Memory units can be specified in kB, MB or GB. The minimum memory
quota for a resource queue is 10MB. There is no maximum, however the upper
boundary at query execution time is limited by the physical memory of a segment
host. The default is no limit (-1).

MAX_COST float

The total query planner cost of statements submitted from users in this resource
queue allowed on the system at any one time. The value for MAX_COST is specified
as a floating point number (for example 100.0) or can also be specified as an
exponent (for example 1e+2). To reset MAX_COST to have no limit, enter a value of
-1.0.

COST_OVERCOMMIT boolean

If a resource queue is limited based on query cost, then the administrator can allow
cost overcommit (COST_OVERCOMMIT=TRUE, the default). This means that a query
that exceeds the allowed cost threshold will be allowed to run but only when the
system is idle. If COST_OVERCOMMIT=FALSE is specified, queries that exceed the
cost limit will always be rejected and never allowed to run.

MIN_COST float

Queries with a cost under this limit will not be queued and run immediately. Cost is
measured in units of disk page fetches; 1.0 equals one sequential disk page read. The
value for MIN_COST is specified as a floating point number (for example 100.0) or
can also be specified as an exponent (for example 1e+2). To reset MIN_COST to have
no limit, enter a value of -1.0.

PRIORITY={MIN|LOW|MEDIUM|HIGH|MAX}

Sets the priority of queries associated with a resource queue. Queries or statements
in queues with higher priority levels will receive a larger share of available CPU
resources in case of contention. Queries in low-priority queues may be delayed
while higher priority queries are executed.

Notes

Use CREATE ROLE or ALTER ROLE to add a role (user) to a resource queue.

Examples

Change the active query limit for a resource queue:

ALTER RESOURCE QUEUE myqueue WITH (ACTIVE_STATEMENTS=20);

Change the memory limit for a resource queue:

ALTER RESOURCE QUEUE myqueue WITH (MEMORY_LIMIT='2GB');

Reset the maximum and minimum query cost limit for a resource queue to no limit:

ALTER RESOURCE QUEUE myqueue WITH (MAX_COST=-1.0, MIN_COST=
ALTER RESOURCE QUEUE 315

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
-1.0);

Reset the query cost limit for a resource queue to 310 (or 30000000000.0) and do not
allow overcommit:

ALTER RESOURCE QUEUE myqueue WITH (MAX_COST=3e+10,
COST_OVERCOMMIT=FALSE);

Reset the priority of queries associated with a resource queue to the minimum level:

ALTER RESOURCE QUEUE myqueue WITH (PRIORITY=MIN);

Compatibility

The ALTER RESOURCE QUEUE statement is a Greenplum Database extension. This
command does not exist in standard PostgreSQL.

See Also

CREATE RESOURCE QUEUE, DROP RESOURCE QUEUE, CREATE ROLE, ALTER ROLE
ALTER RESOURCE QUEUE 316

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
ALTER ROLE
Changes a database role (user or group).

Synopsis
ALTER ROLE name RENAME TO newname

ALTER ROLE name SET config_parameter {TO | =} {value | DEFAULT}

ALTER ROLE name RESET config_parameter

ALTER ROLE name RESOURCE QUEUE {queue_name | NONE}

ALTER ROLE name [[WITH] option [...]]

where option can be:
 SUPERUSER | NOSUPERUSER
 | CREATEDB | NOCREATEDB
 | CREATEROLE | NOCREATEROLE
 | CREATEEXTTABLE | NOCREATEEXTTABLE
 [(attribute='value'[, ...])]
 where attributes and values are:
 type='readable'|'writable'
 protocol='gpfdist'|'http'|'gphdfs'
| INHERIT | NOINHERIT
 | LOGIN | NOLOGIN
 | CONNECTION LIMIT connlimit
 | [ENCRYPTED | UNENCRYPTED] PASSWORD 'password'
 | VALID UNTIL 'timestamp'

Description

ALTER ROLE changes the attributes of a Greenplum Database role. There are several
variants of this command:

• RENAME — Changes the name of the role. Database superusers can rename any
role. Roles having CREATEROLE privilege can rename non-superuser roles. The
current session user cannot be renamed (connect as a different user to rename a
role). Because MD5-encrypted passwords use the role name as cryptographic salt,
renaming a role clears its password if the password is MD5-encrypted.

• SET | RESET — changes a role’s session default for a specified configuration
parameter. Whenever the role subsequently starts a new session, the specified
value becomes the session default, overriding whatever setting is present in server
configuration file (postgresql.conf). For a role without LOGIN privilege,
session defaults have no effect. Ordinary roles can change their own session
defaults. Superusers can change anyone’s session defaults. Roles having
CREATEROLE privilege can change defaults for non-superuser roles. See “Server
Configuration Parameters” on page 792 for more information on all user-settable
configuration parameters.
ALTER ROLE 317

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
• RESOURCE QUEUE — Assigns the role to a workload management resource queue.
The role would then be subject to the limits assigned to the resource queue when
issuing queries. Specify NONE to assign the role to the default resource queue. A
role can only belong to one resource queue. For a role without LOGIN privilege,
resource queues have no effect. See CREATE RESOURCE QUEUE for more
information.

• WITH option — Changes many of the role attributes that can be specified in
CREATE ROLE. Attributes not mentioned in the command retain their previous
settings. Database superusers can change any of these settings for any role. Roles
having CREATEROLE privilege can change any of these settings, but only for
non-superuser roles. Ordinary roles can only change their own password.

Parameters

name

The name of the role whose attributes are to be altered.

newname

The new name of the role.

config_parameter=value

Set this role’s session default for the specified configuration parameter to the given
value. If value is DEFAULT or if RESET is used, the role-specific variable setting is
removed, so the role will inherit the system-wide default setting in new sessions.
Use RESET ALL to clear all role-specific settings. See SET and “Server
Configuration Parameters” on page 792 for more information on user-settable
configuration parameters.

queue_name

The name of the resource queue to which the user-level role is to be assigned. Only
roles with LOGIN privilege can be assigned to a resource queue. To unassign a role
from a resource queue and put it in the default resource queue, specify NONE. A role
can only belong to one resource queue.

SUPERUSER | NOSUPERUSER
CREATEDB | NOCREATEDB
CREATEROLE | NOCREATEROLE
CREATEEXTTABLE | NOCREATEEXTTABLE [(attribute='value')]

If CREATEEXTTABLE is specified, the role being defined is allowed to create external
tables. The default type is readable and the default protocol is gpfdist if not
specified. NOCREATEEXTTABLE (the default) denies the role the ability to create
external tables. Note that external tables that use the file or execute protocols can
only be created by superusers.

INHERIT | NOINHERIT
LOGIN | NOLOGIN
CONNECTION LIMIT connlimit
PASSWORD password
ALTER ROLE 318

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
ENCRYPTED | UNENCRYPTED
VALID UNTIL 'timestamp'

These clauses alter role attributes originally set by CREATE ROLE.

Notes

Use GRANT and REVOKE for adding and removing role memberships.

Caution must be exercised when specifying an unencrypted password with this
command. The password will be transmitted to the server in clear text, and it might
also be logged in the client’s command history or the server log. The psql
command-line client contains a meta-command \password that can be used to safely
change a role’s password.

It is also possible to tie a session default to a specific database rather than to a role.
Role-specific settings override database-specific ones if there is a conflict. See ALTER
DATABASE.

Examples

Change a role’s password:

ALTER ROLE daria WITH PASSWORD 'passwd123';

Change a password expiration date:

ALTER ROLE scott VALID UNTIL 'May 4 12:00:00 2015 +1';

Make a password valid forever:

ALTER ROLE luke VALID UNTIL 'infinity';

Give a role the ability to create other roles and new databases:

ALTER ROLE joelle CREATEROLE CREATEDB;

Give a role a non-default setting of the maintenance_work_mem parameter:

ALTER ROLE admin SET maintenance_work_mem = 100000;

Assign a role to a resource queue:

ALTER ROLE sammy RESOURCE QUEUE poweruser;

Give a role permission to create writable external tables:

ALTER ROLE load CREATEEXTTABLE (type='writable');

Compatibility

The ALTER ROLE statement is a Greenplum Database extension.

See Also

CREATE ROLE, DROP ROLE, SET, CREATE RESOURCE QUEUE, GRANT, REVOKE
ALTER ROLE 319

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
ALTER ROLE 320

ALTER SCHEMA 321

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference

ALTER SCHEMA
Changes the definition of a schema.

Synopsis
ALTER SCHEMA name RENAME TO newname

ALTER SCHEMA name OWNER TO newowner

Description

ALTER SCHEMA changes the definition of a schema.

You must own the schema to use ALTER SCHEMA. To rename a schema you must also
have the CREATE privilege for the database. To alter the owner, you must also be a
direct or indirect member of the new owning role, and you must have the CREATE
privilege for the database. Note that superusers have all these privileges automatically.

Parameters

name

The name of an existing schema.

newname

The new name of the schema. The new name cannot begin with pg_, as such names
are reserved for system schemas.

newowner

The new owner of the schema.

Compatibility

There is no ALTER SCHEMA statement in the SQL standard.

See Also

CREATE SCHEMA, DROP SCHEMA

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
ALTER SEQUENCE
Changes the definition of a sequence generator.

Synopsis
ALTER SEQUENCE name [INCREMENT [BY] increment]
 [MINVALUE minvalue | NO MINVALUE]
 [MAXVALUE maxvalue | NO MAXVALUE]
 [RESTART [WITH] start]
 [CACHE cache] [[NO] CYCLE]
 [OWNED BY {table.column | NONE}]

ALTER SEQUENCE name SET SCHEMA new_schema

Description

ALTER SEQUENCE changes the parameters of an existing sequence generator. Any
parameters not specifically set in the ALTER SEQUENCE command retain their prior
settings.

You must own the sequence to use ALTER SEQUENCE. To change a sequence’s schema,
you must also have CREATE privilege on the new schema. Note that superusers have
all these privileges automatically.

Parameters

name

The name (optionally schema-qualified) of a sequence to be altered.

increment

The clause INCREMENT BY increment is optional. A positive value will make an
ascending sequence, a negative one a descending sequence. If unspecified, the old
increment value will be maintained.

minvalue
NO MINVALUE

The optional clause MINVALUE minvalue determines the minimum value a
sequence can generate. If NO MINVALUE is specified, the defaults of 1 and -263-1 for
ascending and descending sequences, respectively, will be used. If neither option is
specified, the current minimum value will be maintained.

maxvalue
NO MAXVALUE

The optional clause MAXVALUE maxvalue determines the maximum value for the
sequence. If NO MAXVALUE is specified, the defaults are 263-1 and -1 for ascending
and descending sequences, respectively, will be used. If neither option is specified,
the current maximum value will be maintained.
ALTER SEQUENCE 322

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
start

The optional clause RESTART WITH start changes the current value of the sequence.

cache

The clause CACHE cache enables sequence numbers to be preallocated and stored in
memory for faster access. The minimum value is 1 (only one value can be generated
at a time, i.e., no cache). If unspecified, the old cache value will be maintained.

CYCLE

The optional CYCLE key word may be used to enable the sequence to wrap around
when the maxvalue or minvalue has been reached by an ascending or descending
sequence. If the limit is reached, the next number generated will be the respective
minvalue or maxvalue.

NO CYCLE

If the optional NO CYCLE key word is specified, any calls to nextval after the
sequence has reached its maximum value will return an error. If neither CYCLE or NO
CYCLE are specified, the old cycle behavior will be maintained.

OWNED BY table.column
OWNED BY NONE

The OWNED BY option causes the sequence to be associated with a specific table
column, such that if that column (or its whole table) is dropped, the sequence will be
automatically dropped as well. If specified, this association replaces any previously
specified association for the sequence. The specified table must have the same
owner and be in the same schema as the sequence. Specifying OWNED BY NONE
removes any existing table column association.

new_schema

The new schema for the sequence.

Notes

To avoid blocking of concurrent transactions that obtain numbers from the same
sequence, ALTER SEQUENCE’s effects on the sequence generation parameters are never
rolled back; those changes take effect immediately and are not reversible. However,
the OWNED BY and SET SCHEMA clauses are ordinary catalog updates and can be rolled
back.

ALTER SEQUENCE will not immediately affect nextval results in sessions, other than
the current one, that have preallocated (cached) sequence values. They will use up all
cached values prior to noticing the changed sequence generation parameters. The
current session will be affected immediately.

Some variants of ALTER TABLE can be used with sequences as well. For example, to
rename a sequence use ALTER TABLE RENAME.
ALTER SEQUENCE 323

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
Examples

Restart a sequence called serial, at 105:

ALTER SEQUENCE serial RESTART WITH 105;

Compatibility

ALTER SEQUENCE conforms to the SQL standard, except for the OWNED BY and SET
SCHEMA clauses, which are Greenplum Database extensions.

See Also

CREATE SEQUENCE, DROP SEQUENCE, ALTER TABLE
ALTER SEQUENCE 324

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
ALTER TABLE
Changes the definition of a table.

Synopsis
ALTER TABLE [ONLY] name RENAME [COLUMN] column TO new_column

ALTER TABLE name RENAME TO new_name

ALTER TABLE name SET SCHEMA new_schema

ALTER TABLE [ONLY] name SET
 DISTRIBUTED BY (column, [...])
 | DISTRIBUTED RANDOMLY
 | WITH (REORGANIZE=true|false)

ALTER TABLE [ONLY] name action [, ...]

ALTER TABLE name
 [ALTER PARTITION { partition_name | FOR (RANK(number)) | FOR
(value) } partition_action [...]]
 partition_action

where action is one of:
 ADD [COLUMN] column_name type [column_constraint [...]]
 DROP [COLUMN] column [RESTRICT | CASCADE]
 ALTER [COLUMN] column TYPE type [USING expression]
 ALTER [COLUMN] column SET DEFAULT expression
 ALTER [COLUMN] column DROP DEFAULT
 ALTER [COLUMN] column { SET | DROP } NOT NULL
 ALTER [COLUMN] column SET STATISTICS integer
 ADD table_constraint
 DROP CONSTRAINT constraint_name [RESTRICT | CASCADE]
 DISABLE TRIGGER [trigger_name | ALL | USER]
 ENABLE TRIGGER [trigger_name | ALL | USER]
 CLUSTER ON index_name
 SET WITHOUT CLUSTER
 SET WITHOUT OIDS
 SET (FILLFACTOR = value)
 RESET (FILLFACTOR)
 INHERIT parent_table
 NO INHERIT parent_table
 OWNER TO new_owner
 SET TABLESPACE new_tablespace

where partition_action is one of:

 ALTER DEFAULT PARTITION
 DROP DEFAULT PARTITION [IF EXISTS]
 DROP PARTITION [IF EXISTS] { partition_name |
 FOR (RANK(number)) | FOR (value) } [CASCADE]
ALTER TABLE 325

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
 TRUNCATE DEFAULT PARTITION
 TRUNCATE PARTITION { partition_name | FOR (RANK(number)) |
 FOR (value) }
 RENAME DEFAULT PARTITION TO new_partition_name
 RENAME PARTITION { partition_name | FOR (RANK(number)) |
 FOR (value) } TO new_partition_name
 ADD DEFAULT PARTITION name [(subpartition_spec)]
 ADD PARTITION [name] partition_element
 [(subpartition_spec)]
 EXCHANGE PARTITION { partition_name | FOR (RANK(number)) |
 FOR (value) } WITH TABLE table_name
 [WITH | WITHOUT VALIDATION]
 EXCHANGE DEFAULT PARTITION WITH TABLE table_name
 [WITH | WITHOUT VALIDATION]
 SET SUBPARTITION TEMPLATE (subpartition_spec)
 SPLIT DEFAULT PARTITION
 { AT (list_value)
 | START([datatype] range_value) [INCLUSIVE | EXCLUSIVE]
 END([datatype] range_value) [INCLUSIVE | EXCLUSIVE] }
 [INTO (PARTITION new_partition_name,
 PARTITION default_partition_name)]
 SPLIT PARTITION { partition_name | FOR (RANK(number)) |
 FOR (value) } AT (value)
 [INTO (PARTITION partition_name, PARTITION
partition_name)]

where partition_element is:

 VALUES (list_value [,...])

 | START ([datatype] 'start_value') [INCLUSIVE | EXCLUSIVE]
 [END ([datatype] 'end_value') [INCLUSIVE | EXCLUSIVE]]

 | END ([datatype] 'end_value') [INCLUSIVE | EXCLUSIVE]

[WITH (partition_storage_parameter=value [, ...])]
[TABLESPACE tablespace]

where subpartition_spec is:
subpartition_element [, ...]

and subpartition_element is:
 DEFAULT SUBPARTITION name

 | [SUBPARTITION name] VALUES (list_value [,...])

 | [SUBPARTITION name]
 START ([datatype] 'start_value') [INCLUSIVE | EXCLUSIVE]
 [END ([datatype] 'end_value') [INCLUSIVE | EXCLUSIVE]]
 [EVERY ([number | datatype] 'interval_value')]

 | [SUBPARTITION name]
 END ([datatype] 'end_value') [INCLUSIVE | EXCLUSIVE]
 [EVERY ([number | datatype] 'interval_value')]
ALTER TABLE 326

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
[WITH (partition_storage_parameter=value [, ...])]
[TABLESPACE tablespace]

where storage_parameter is:
 APPENDONLY={TRUE|FALSE}
 BLOCKSIZE={8192-2097152}
 COMPRESSTYPE={ZLIB|QUICKLZ}
 COMPRESSLEVEL={0-9|1}
 ORIENTATION={COLUMN|ROW}
 FILLFACTOR={10-100}

Description

ALTER TABLE changes the definition of an existing table. There are several subforms:

• ADD COLUMN — Adds a new column to the table, using the same syntax as CREATE
TABLE.

• DROP COLUMN — Drops a column from a table. Note that if you drop table
columns that are being used as the Greenplum Database distribution key, the
distribution policy for the table will be changed to DISTRIBUTED RANDOMLY.
Indexes and table constraints involving the column will be automatically dropped
as well. You will need to say CASCADE if anything outside the table depends on the
column (such as views).

• ALTER COLUMN TYPE — Changes the data type of a column of a table. Note that
you cannot alter column data types that are being used as the Greenplum Database
distribution key. Indexes and simple table constraints involving the column will be
automatically converted to use the new column type by reparsing the originally
supplied expression. The optional USING clause specifies how to compute the new
column value from the old. If omitted, the default conversion is the same as an
assignment cast from old data type to new. A USING clause must be provided if
there is no implicit or assignment cast from old to new type.

• SET/DROP DEFAULT — Sets or removes the default value for a column. The
default values only apply to subsequent INSERT commands. They do not cause
rows already in the table to change. Defaults may also be created for views, in
which case they are inserted into statements on the view before the view’s ON
INSERT rule is applied.

• SET/DROP NOT NULL — Changes whether a column is marked to allow null
values or to reject null values. You can only use SET NOT NULL when the column
contains no null values.

• SET STATISTICS — Sets the per-column statistics-gathering target for
subsequent ANALYZE operations. The target can be set in the range 0 to 1000, or
set to -1 to revert to using the system default statistics target
(default_statistics_target).

• ADD table_constraint — Adds a new constraint to a table using the same
syntax as CREATE TABLE.

• DROP CONSTRAINT — Drops the specified constraint on a table.
ALTER TABLE 327

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
• DISABLE/ENABLE TRIGGER — Disables or enables trigger(s) belonging to the
table. A disabled trigger is still known to the system, but is not executed when its
triggering event occurs. For a deferred trigger, the enable status is checked when
the event occurs, not when the trigger function is actually executed. One may
disable or enable a single trigger specified by name, or all triggers on the table, or
only user-created triggers. Disabling or enabling constraint triggers requires
superuser privileges. Note that foreign key constraint triggers are not currently
supported in Greenplum Database, and triggers in general have very limited
functionality due to the parallelism of Greenplum Database. See CREATE
TRIGGER for more information.

• CLUSTER/SET WITHOUT CLUSTER — Selects or removes the default index for
future CLUSTER operations. It does not actually re-cluster the table. Note that
CLUSTER is not the recommended way to physically reorder a table in Greenplum
Database because it takes so long. It is better to recreate the table with CREATE
TABLE AS and order it by the index column(s).

• SET WITHOUT OIDS — Removes the OID system column from the table. Note
that there is no variant of ALTER TABLE that allows OIDs to be restored to a table
once they have been removed.

• SET (FILLFACTOR = value) / RESET (FILLFACTOR) — Changes the
fillfactor for the table. The fillfactor for a table is a percentage between 10 and
100. 100 (complete packing) is the default. When a smaller fillfactor is specified,
INSERT operations pack table pages only to the indicated percentage; the
remaining space on each page is reserved for updating rows on that page. This
gives UPDATE a chance to place the updated copy of a row on the same page as the
original, which is more efficient than placing it on a different page. For a table
whose entries are never updated, complete packing is the best choice, but in
heavily updated tables smaller fillfactors are appropriate. Note that the table
contents will not be modified immediately by this command. You will need to
rewrite the table to get the desired effects.

• SET DISTRIBUTED — Changes the distribution policy of a table. Changes to
a hash distribution policy will cause the table data to be physically redistributed
on disk, which can be resource intensive.

• INHERIT parent_table / NO INHERIT parent_table — Adds or removes
the target table as a child of the specified parent table. Queries against the parent
will include records of its child table. To be added as a child, the target table must
already contain all the same columns as the parent (it could have additional
columns, too). The columns must have matching data types, and if they have NOT
NULL constraints in the parent then they must also have NOT NULL constraints in
the child. There must also be matching child-table constraints for all CHECK
constraints of the parent.

• OWNER — Changes the owner of the table, sequence, or view to the specified user.

• SET TABLESPACE — Changes the table’s tablespace to the specified tablespace
and moves the data file(s) associated with the table to the new tablespace. Indexes
on the table, if any, are not moved; but they can be moved separately with
additional SET TABLESPACE commands. See also CREATE TABLESPACE. If
changing the tablespace of a partitioned table, all child table partitions will also be
moved to the new tablespace.
ALTER TABLE 328

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
• RENAME — Changes the name of a table (or an index, sequence, or view) or the
name of an individual column in a table. There is no effect on the stored data.
Note that Greenplum Database distribution key columns cannot be renamed.

• SET SCHEMA — Moves the table into another schema. Associated indexes,
constraints, and sequences owned by table columns are moved as well.

• ALTER PARTITION | DROP PARTITION | RENAME PARTITION | TRUNCATE
PARTITION | ADD PARTITION | SPLIT PARTITION | EXCHANGE PARTITION
| SET SUBPARTITION TEMPLATE — Changes the structure of a partitioned
table. In most cases, you must go through the parent table to alter one of its child
table partitions.

You must own the table to use ALTER TABLE. To change the schema of a table, you
must also have CREATE privilege on the new schema. To add the table as a new child
of a parent table, you must own the parent table as well. To alter the owner, you must
also be a direct or indirect member of the new owning role, and that role must have
CREATE privilege on the table’s schema. A superuser has these privileges
automatically.

Parameters

ONLY

Only perform the operation on the table name specified. If the ONLY keyword is not
used, the operation will be performed on the named table and any child table
partitions associated with that table.

name

The name (possibly schema-qualified) of an existing table to alter. If ONLY is
specified, only that table is altered. If ONLY is not specified, the table and all its
descendant tables (if any) are updated.

column

Name of a new or existing column. Note that Greenplum Database distribution key
columns must be treated with special care. Altering or dropping these columns can
change the distribution policy for the table.

new_column

New name for an existing column.

new_name

New name for the table.

type

Data type of the new column, or new data type for an existing column. If changing
the data type of a Greenplum distribution key column, you are only allowed to
change it to a compatible type (for example, text to varchar is OK, but text to
int is not).
ALTER TABLE 329

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
table_constraint

New table constraint for the table. Note that foreign key constraints are currently not
supported in Greenplum Database. Also a table is only allowed one unique
constraint and the uniqueness must be within the Greenplum Database distribution
key.

constraint_name

Name of an existing constraint to drop.

CASCADE

Automatically drop objects that depend on the dropped column or constraint (for
example, views referencing the column).

RESTRICT

Refuse to drop the column or constraint if there are any dependent objects. This is
the default behavior.

trigger_name

Name of a single trigger to disable or enable. Note that Greenplum Database has
limited support of triggers. See CREATE TRIGGER for more information.

ALL

Disable or enable all triggers belonging to the table including constraint related
triggers. This requires superuser privilege.

USER

Disable or enable all user-created triggers belonging to the table.

index_name

The index name on which the table should be marked for clustering. Note that
CLUSTER is not the recommended way to physically reorder a table in Greenplum
Database because it takes so long. It is better to recreate the table with CREATE
TABLE AS and order it by the index column(s).

FILLFACTOR

Set the fillfactor percentage for a table.

value

The new value for the FILLFACTOR parameter, which is a percentage between 10
and 100. 100 is the default.

DISTRIBUTED BY (column) | DISTRIBUTED RANDOMLY

Specifies the distribution policy for a table. Changing a hash distribution policy will
cause the table data to be physically redistributed on disk, which can be resource
intensive. If you declare the same hash distribution policy or change from hash to
random distribution, data will not be redistributed unless you declare SET WITH
(REORGANIZE=true).
ALTER TABLE 330

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
REORGANIZE=true|false

Use REORGANIZE=true when the hash distribution policy has not changed or when
you have changed from a hash to a random distribution, and you want to redistribute
the data anyways.

parent_table

A parent table to associate or de-associate with this table.

new_owner

The role name of the new owner of the table.

new_tablespace

The name of the tablespace to which the table will be moved.

new_schema

The name of the schema to which the table will be moved.

parent_table_name

When altering a partitioned table, the name of the top-level parent table.

ALTER [DEFAULT] PARTITION

If altering a partition deeper than the first level of partitions, the ALTER PARTITION
clause is used to specify which subpartition in the hierarchy you want to alter.

DROP [DEFAULT] PARTITION

Drops the specified partition. If the partition has subpartitions, the subpartitions are
automatically dropped as well.

TRUNCATE [DEFAULT] PARTITION

Truncates the specified partition. If the partition has subpartitions, the subpartitions
are automatically truncated as well.

RENAME [DEFAULT] PARTITION

Changes the partition name of a partition (not the relation name). Partitioned tables
are created using the naming convention:
<parentname>_<level>_prt_<partition_name>.

ADD DEFAULT PARTITION

Adds a default partition to an existing partition design. When data does not match to
an existing partition, it is inserted into the default partition. Partition designs that do
not have a default partition will reject incoming rows that do not match to an
existing partition. Default partitions must be given a name.

ADD PARTITION

partition_element - Using the existing partition type of the table (range or
list), defines the boundaries of new partition you are adding.

name - A name for this new partition.
ALTER TABLE 331

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
VALUES - For list partitions, defines the value(s) that the partition will contain.

START - For range partitions, defines the starting range value for the partition. By
default, start values are INCLUSIVE. For example, if you declared a start date of
‘2008-01-01’, then the partition would contain all dates greater than or equal to
‘2008-01-01’. Typically the data type of the START expression is the same type
as the partition key column. If that is not the case, then you must explicitly cast to
the intended data type.

END - For range partitions, defines the ending range value for the partition. By
default, end values are EXCLUSIVE. For example, if you declared an end date of
‘2008-02-01’, then the partition would contain all dates less than but not equal to
‘2008-02-01’. Typically the data type of the END expression is the same type as
the partition key column. If that is not the case, then you must explicitly cast to the
intended data type.

WITH - Sets the table storage options for a partition. For example, you may want
older partitions to be append-only tables and newer partitions to be regular heap
tables. See “CREATE TABLE” on page 426 for a description of the storage
options.

TABLESPACE - The name of the tablespace in which the partition is to be created.

subpartition_spec - Only allowed on partition designs that were created
without a subpartition template. Declares a subpartition specification for the new
partition you are adding. If the partitioned table was originally defined using a
subpartition template, then the template will be used to generate the subpartitions
automatically.

EXCHANGE [DEFAULT] PARTITION

Exchanges another table into the partition hierarchy into the place of an existing
partition. In a multi-level partition design, you can only exchange the lowest level
partitions (those that contain data).

WITH TABLE table_name - The name of the table you are swapping in to the
partition design.

WITH | WITHOUT VALIDATION - Validates that the data in the table matches
the CHECK constraint of the partition you are exchanging. The default is to validate
the data against the CHECK constraint.

SET SUBPARTITION TEMPLATE

Modifies the subpartition template for an existing partition. After a new subpartition
template is set, all new partitions added will have the new subpartition design
(existing partitions are not modified).

SPLIT DEFAULT PARTITION

Splits a default partition. In a multi-level partition design, you can only split the
lowest level default partitions (those that contain data). Splitting a default partition
creates a new partition containing the values specified and leaves the default
partition containing any values that do not match to an existing partition.
ALTER TABLE 332

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
AT - For list partitioned tables, specifies a single list value that should be used as
the criteria for the split.

START - For range partitioned tables, specifies a starting value for the new
partition.

END - For range partitioned tables, specifies an ending value for the new partition.

INTO - Allows you to specify a name for the new partition. When using the INTO
clause to split a default partition, the second partition name specified should
always be that of the existing default partition. If you do not know the name of the
default partition, you can look it up using the pg_partitions view.

SPLIT PARTITION

Splits an existing partition into two partitions. In a multi-level partition design, you
can only split the lowest level partitions (those that contain data).

AT - Specifies a single value that should be used as the criteria for the split. The
partition will be divided into two new partitions with the split value specified
being the starting range for the latter partition.

INTO - Allows you to specify names for the two new partitions created by the
split.

partition_name

The given name of a partition.

FOR (RANK(number))

For range partitions, the rank of the partition in the range.

FOR ('value')

Specifies a partition by declaring a value that falls within the partition boundary
specification. If the value declared with FOR matches to both a partition and one of
its subpartitions (for example, if the value is a date and the table is partitioned by
month and then by day), then FOR will operate on the first level where a match is
found (for example, the monthly partition). If your intent is to operate on a
subpartition, you must declare so as follows:
ALTER TABLE name ALTER PARTITION FOR ('2008-10-01') DROP
PARTITION FOR ('2008-10-01');

Notes

Take special care when altering or dropping columns that are part of the Greenplum
Database distribution key as this can change the distribution policy for the table.

Greenplum Database does not currently support foreign key constraints. For a unique
constraint to be enforced in Greenplum Database, the table must be hash-distributed
(not DISTRIBUTED RANDOMLY), and all of the distribution key columns must be the
same as the initial columns of the unique constraint columns.

Adding a CHECK or NOT NULL constraint requires scanning the table to verify that
existing rows meet the constraint.
ALTER TABLE 333

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
When a column is added with ADD COLUMN, all existing rows in the table are
initialized with the column’s default value (NULL if no DEFAULT clause is specified).
Adding a column with a non-null default or changing the type of an existing column
will require the entire table to be rewritten. This may take a significant amount of time
for a large table; and it will temporarily require double the disk space.

You can specify multiple changes in a single ALTER TABLE command, which will be
done in a single pass over the table.

The DROP COLUMN form does not physically remove the column, but simply makes it
invisible to SQL operations. Subsequent insert and update operations in the table will
store a null value for the column. Thus, dropping a column is quick but it will not
immediately reduce the on-disk size of your table, as the space occupied by the
dropped column is not reclaimed. The space will be reclaimed over time as existing
rows are updated.

The fact that ALTER TYPE requires rewriting the whole table is sometimes an
advantage, because the rewriting process eliminates any dead space in the table. For
example, to reclaim the space occupied by a dropped column immediately, the fastest
way is: ALTER TABLE table ALTER COLUMN anycol TYPE sametype; Where
anycol is any remaining table column and sametype is the same type that column
already has. This results in no semantically-visible change in the table, but the
command forces rewriting, which gets rid of no-longer-useful data.

If a table is partitioned or has any descendant tables, it is not permitted to add, rename,
or change the type of a column in the parent table without doing the same to the
descendants. This ensures that the descendants always have columns matching the
parent.

To see the structure of a partitioned table, you can use the view pg_partitions. This
view can help identify the particular partitions you may want to alter.

A recursive DROP COLUMN operation will remove a descendant table’s column only if
the descendant does not inherit that column from any other parents and never had an
independent definition of the column. A nonrecursive DROP COLUMN (ALTER TABLE
ONLY ... DROP COLUMN) never removes any descendant columns, but instead marks
them as independently defined rather than inherited.

The TRIGGER, CLUSTER, OWNER, and TABLESPACE actions never recurse to descendant
tables; that is, they always act as though ONLY were specified. Adding a constraint can
recurse only for CHECK constraints.

Changing any part of a system catalog table is not permitted.

Examples

Add a column to a table:

ALTER TABLE distributors ADD COLUMN address varchar(30);

Rename an existing column:

ALTER TABLE distributors RENAME COLUMN address TO city;

Rename an existing table:

ALTER TABLE distributors RENAME TO suppliers;
ALTER TABLE 334

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
Add a not-null constraint to a column:

ALTER TABLE distributors ALTER COLUMN street SET NOT NULL;

Add a check constraint to a table:

ALTER TABLE distributors ADD CONSTRAINT zipchk CHECK
(char_length(zipcode) = 5);

Move a table to a different schema:

ALTER TABLE myschema.distributors SET SCHEMA yourschema;

Add a new partition to a partitioned table:

ALTER TABLE sales ADD PARTITION

 START (date '2009-02-01') INCLUSIVE

 END (date '2009-03-01') EXCLUSIVE;

Add a default partition to an existing partition design:

ALTER TABLE sales ADD DEFAULT PARTITION other;

Rename a partition:

ALTER TABLE sales RENAME PARTITION FOR ('2008-01-01') TO
jan08;

Drop the first (oldest) partition in a range sequence:

ALTER TABLE sales DROP PARTITION FOR (RANK(1));

Exchange a table into your partition design:

ALTER TABLE sales EXCHANGE PARTITION FOR ('2008-01-01') WITH
TABLE jan08;

Split the default partition (where the existing default partition’s name is ‘other’) to add
a new monthly partition for January 2009:

ALTER TABLE sales SPLIT DEFAULT PARTITION

START ('2009-01-01') INCLUSIVE

END ('2009-02-01') EXCLUSIVE

INTO (PARTITION jan09, PARTITION other);

Split a monthly partition into two with the first partition containing dates January 1-15
and the second partition containing dates January 16-31:

ALTER TABLE sales SPLIT PARTITION FOR ('2008-01-01')

AT ('2008-01-16')

INTO (PARTITION jan081to15, PARTITION jan0816to31);

Compatibility

The ADD, DROP, and SET DEFAULT forms conform with the SQL standard. The other
forms are Greenplum Database extensions of the SQL standard. Also, the ability to
specify more than one manipulation in a single ALTER TABLE command is an
extension.
ALTER TABLE 335

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
ALTER TABLE DROP COLUMN can be used to drop the only column of a table, leaving
a zero-column table. This is an extension of SQL, which disallows zero-column
tables.

See Also

CREATE TABLE, DROP TABLE
ALTER TABLE 336

ALTER TABLESPACE 337

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference

ALTER TABLESPACE
Changes the definition of a tablespace.

Synopsis
ALTER TABLESPACE name RENAME TO newname

ALTER TABLESPACE name OWNER TO newowner

Description

ALTER TABLESPACE changes the definition of a tablespace.

You must own the tablespace to use ALTER TABLESPACE. To alter the owner, you must
also be a direct or indirect member of the new owning role. (Note that superusers have
these privileges automatically.)

Parameters

name

The name of an existing tablespace.

newname

The new name of the tablespace. The new name cannot begin with pg_ or gp_
(reserved for system tablespaces).

newowner

The new owner of the tablespace.

Examples

Rename tablespace index_space to fast_raid:

ALTER TABLESPACE index_space RENAME TO fast_raid;

Change the owner of tablespace index_space:

ALTER TABLESPACE index_space OWNER TO mary;

Compatibility

There is no ALTER TABLESPACE statement in the SQL standard.

See Also

CREATE TABLESPACE, DROP TABLESPACE

ALTER TRIGGER 338

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference

ALTER TRIGGER
Changes the definition of a trigger.

Synopsis
ALTER TRIGGER name ON table RENAME TO newname

Description

ALTER TRIGGER changes properties of an existing trigger. The RENAME clause changes
the name of the given trigger without otherwise changing the trigger definition. You
must own the table on which the trigger acts to be allowed to change its properties.

Parameters

name

The name of an existing trigger to alter.

table

The name of the table on which this trigger acts.

newname

The new name for the trigger.

Notes

The ability to temporarily enable or disable a trigger is provided by ALTER TABLE, not
by ALTER TRIGGER, because ALTER TRIGGER has no convenient way to express the
option of enabling or disabling all of a table’s triggers at once.

Note that Greenplum Database has limited support of triggers in this release. See
CREATE TRIGGER for more information.

Examples

To rename an existing trigger:

ALTER TRIGGER emp_stamp ON emp RENAME TO emp_track_chgs;

Compatibility

ALTER TRIGGER is a Greenplum Database extension of the SQL standard.

See Also

ALTER TABLE, CREATE TRIGGER, DROP TRIGGER

ALTER TYPE 339

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference

ALTER TYPE
Changes the definition of a data type.

Synopsis
ALTER TYPE name OWNER TO new_owner

ALTER TYPE name SET SCHEMA new_schema

Description

ALTER TYPE changes the definition of an existing type. The only currently available
capabilities are changing the owner and schema of a type.

You must own the type to use ALTER TYPE. To change the schema of a type, you must
also have CREATE privilege on the new schema. To alter the owner, you must also be a
direct or indirect member of the new owning role, and that role must have CREATE
privilege on the type’s schema. (These restrictions enforce that altering the owner
doesn't do anything you couldn't do by dropping and recreating the type. However, a
superuser can alter ownership of any type anyway.)

Parameters

name

The name (optionally schema-qualified) of an existing type to alter.

new_owner

The user name of the new owner of the type.

new_schema

The new schema for the type.

Examples

To change the owner of the user-defined type email to joe:

ALTER TYPE email OWNER TO joe;

To change the schema of the user-defined type email to customers:

ALTER TYPE email SET SCHEMA customers;

Compatibility

There is no ALTER TYPE statement in the SQL standard.

See Also

CREATE TYPE, DROP TYPE

ALTER USER 340

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference

ALTER USER
Changes the definition of a database role (user).

Synopsis
ALTER USER name RENAME TO newname

ALTER USER name SET config_parameter {TO | =} {value | DEFAULT}

ALTER USER name RESET config_parameter

ALTER USER name [[WITH] option [...]]

where option can be:
 SUPERUSER | NOSUPERUSER
 | CREATEDB | NOCREATEDB
 | CREATEROLE | NOCREATEROLE
 | CREATEUSER | NOCREATEUSER
 | INHERIT | NOINHERIT
 | LOGIN | NOLOGIN
 | [ENCRYPTED | UNENCRYPTED] PASSWORD 'password'
 | VALID UNTIL 'timestamp'

Description

ALTER USER is a deprecated command but is still accepted for historical reasons. It is
an alias for ALTER ROLE. See ALTER ROLE for more information.

Compatibility

The ALTER USER statement is a Greenplum Database extension. The SQL standard
leaves the definition of users to the implementation.

See Also

ALTER ROLE

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
ANALYZE
Collects statistics about a database.

Synopsis
ANALYZE [VERBOSE] [table [(column [, ...])]]

Description

ANALYZE collects statistics about the contents of tables in the database, and stores the
results in the system table pg_statistic. Subsequently, the query planner uses these
statistics to help determine the most efficient execution plans for queries.

With no parameter, ANALYZE examines every table in the current database. With a
parameter, ANALYZE examines only that table. It is further possible to give a list of
column names, in which case only the statistics for those columns are collected.

Parameters

VERBOSE

Enables display of progress messages. When specified, ANALYZE emits progress
messages to indicate which table is currently being processed. Various statistics
about the tables are printed as well.

table

The name (possibly schema-qualified) of a specific table to analyze. Defaults to all
tables in the current database.

column

The name of a specific column to analyze. Defaults to all columns.

Notes

It is a good idea to run ANALYZE periodically, or just after making major changes in the
contents of a table. Accurate statistics will help the query planner to choose the most
appropriate query plan, and thereby improve the speed of query processing. A
common strategy is to run VACUUM and ANALYZE once a day during a low-usage time of
day.

ANALYZE requires only a read lock on the target table, so it can run in parallel with
other activity on the table.

The statistics collected by ANALYZE usually include a list of some of the most common
values in each column and a histogram showing the approximate data distribution in
each column. One or both of these may be omitted if ANALYZE deems them
uninteresting (for example, in a unique-key column, there are no common values) or if
the column data type does not support the appropriate operators.
ANALYZE 341

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
For large tables, ANALYZE takes a random sample of the table contents, rather than
examining every row. This allows even very large tables to be analyzed in a small
amount of time. Note, however, that the statistics are only approximate, and will
change slightly each time ANALYZE is run, even if the actual table contents did not
change. This may result in small changes in the planner’s estimated costs shown by
EXPLAIN. In rare situations, this non-determinism will cause the query optimizer to
choose a different query plan between runs of ANALYZE. To avoid this, raise the
amount of statistics collected by ANALYZE by adjusting the default_statistics_target
configuration parameter, or on a column-by-column basis by setting the per-column
statistics target with ALTER TABLE ... ALTER COLUMN ... SET STATISTICS (see
ALTER TABLE). The target value sets the maximum number of entries in the
most-common-value list and the maximum number of bins in the histogram. The
default target value is 10, but this can be adjusted up or down to trade off accuracy of
planner estimates against the time taken for ANALYZE and the amount of space
occupied in pg_statistic. In particular, setting the statistics target to zero disables
collection of statistics for that column. It may be useful to do that for columns that are
never used as part of the WHERE, GROUP BY, or ORDER BY clauses of queries, since the
planner will have no use for statistics on such columns.

The largest statistics target among the columns being analyzed determines the number
of table rows sampled to prepare the statistics. Increasing the target causes a
proportional increase in the time and space needed to do ANALYZE.

Examples

Collect statistics for the table mytable:

ANALYZE mytable;

Compatibility

There is no ANALYZE statement in the SQL standard.

See Also

ALTER TABLE, EXPLAIN, VACUUM
ANALYZE 342

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
BEGIN
Starts a transaction block.

Synopsis
BEGIN [WORK | TRANSACTION] [SERIALIZABLE | REPEATABLE READ |
READ COMMITTED | READ UNCOMMITTED] [READ WRITE | READ ONLY]

Description

BEGIN initiates a transaction block, that is, all statements after a BEGIN command will
be executed in a single transaction until an explicit COMMIT or ROLLBACK is given. By
default (without BEGIN), Greenplum Database executes transactions in autocommit
mode, that is, each statement is executed in its own transaction and a commit is
implicitly performed at the end of the statement (if execution was successful,
otherwise a rollback is done).

Statements are executed more quickly in a transaction block, because transaction
start/commit requires significant CPU and disk activity. Execution of multiple
statements inside a transaction is also useful to ensure consistency when making
several related changes: other sessions will be unable to see the intermediate states
wherein not all the related updates have been done.

If the isolation level or read/write mode is specified, the new transaction has those
characteristics, as if SET TRANSACTION was executed.

Parameters

WORK
TRANSACTION

Optional key words. They have no effect.

SERIALIZABLE
REPEATABLE READ
READ COMMITTED
READ UNCOMMITTED

The SQL standard defines four transaction isolation levels: READ COMMITTED, READ
UNCOMMITTED, SERIALIZABLE, and REPEATABLE READ. The default behavior is that
a statement can only see rows committed before it began (READ COMMITTED). In
Greenplum Database READ UNCOMMITTED is treated the same as READ COMMITTED.
SERIALIZABLE is supported the same as REPEATABLE READ wherein all statements
of the current transaction can only see rows committed before the first statement
was executed in the transaction. SERIALIZABLE is the strictest transaction isolation.
This level emulates serial transaction execution, as if transactions had been executed
one after another, serially, rather than concurrently. Applications using this level
must be prepared to retry transactions due to serialization failures.
BEGIN 343

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
READ WRITE
READ ONLY

Determines whether the transaction is read/write or read-only. Read/write is the
default. When a transaction is read-only, the following SQL commands are
disallowed: INSERT, UPDATE, DELETE, and COPY FROM if the table they would write
to is not a temporary table; all CREATE, ALTER, and DROP commands; GRANT,
REVOKE, TRUNCATE; and EXPLAIN ANALYZE and EXECUTE if the command they
would execute is among those listed.

Notes

START TRANSACTION has the same functionality as BEGIN.

Use COMMIT or ROLLBACK to terminate a transaction block.

Issuing BEGIN when already inside a transaction block will provoke a warning
message. The state of the transaction is not affected. To nest transactions within a
transaction block, use savepoints (see SAVEPOINT).

Examples

To begin a transaction block:

BEGIN;

Compatibility

BEGIN is a Greenplum Database language extension. It is equivalent to the
SQL-standard command START TRANSACTION.

Incidentally, the BEGIN key word is used for a different purpose in embedded SQL.
You are advised to be careful about the transaction semantics when porting database
applications.

See Also

COMMIT, ROLLBACK, START TRANSACTION, SAVEPOINT
BEGIN 344

CHECKPOINT 345

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference

CHECKPOINT
Forces a transaction log checkpoint.

Synopsis
CHECKPOINT

Description

Write-Ahead Logging (WAL) puts a checkpoint in the transaction log every so often.
The automatic checkpoint interval is set per Greenplum Database segment instance by
the server configuration parameters checkpoint_segments and checkpoint_timeout.
The CHECKPOINT command forces an immediate checkpoint when the command is
issued, without waiting for a scheduled checkpoint.

A checkpoint is a point in the transaction log sequence at which all data files have
been updated to reflect the information in the log. All data files will be flushed to disk.

Only superusers may call CHECKPOINT. The command is not intended for use during
normal operation.

Compatibility

The CHECKPOINT command is a Greenplum Database language extension.

CLOSE 346

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference

CLOSE
Closes a cursor.

Synopsis
CLOSE cursor_name

Description

CLOSE frees the resources associated with an open cursor. After the cursor is closed,
no subsequent operations are allowed on it. A cursor should be closed when it is no
longer needed.

Every non-holdable open cursor is implicitly closed when a transaction is terminated
by COMMIT or ROLLBACK. A holdable cursor is implicitly closed if the transaction that
created it aborts via ROLLBACK. If the creating transaction successfully commits, the
holdable cursor remains open until an explicit CLOSE is executed, or the client
disconnects.

Parameters

cursor_name

The name of an open cursor to close.

Notes

Greenplum Database does not have an explicit OPEN cursor statement. A cursor is
considered open when it is declared. Use the DECLARE statement to declare (and open)
a cursor.

You can see all available cursors by querying the pg_cursors system view.

Examples

Close the cursor portala:

CLOSE portala;

Compatibility

CLOSE is fully conforming with the SQL standard.

See Also

DECLARE, FETCH, MOVE

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
CLUSTER
Physically reorders a heap storage table on disk according to an index. Not a
recommended operation in Greenplum Database.

Synopsis
CLUSTER indexname ON tablename

CLUSTER tablename

CLUSTER

Description

CLUSTER orders a heap storage table based on an index. CLUSTER is not supported on
append-only storage tables. Clustering an index means that the records are physically
ordered on disk according to the index information. If the records you need are
distributed randomly on disk, then the database has to seek across the disk to get the
records requested. If those records are stored more closely together, then the fetching
from disk is more sequential. A good example for a clustered index is on a date
column where the data is ordered sequentially by date. A query against a specific date
range will result in an ordered fetch from the disk, which leverages faster sequential
access.

Clustering is a one-time operation: when the table is subsequently updated, the
changes are not clustered. That is, no attempt is made to store new or updated rows
according to their index order. If one wishes, one can periodically recluster by issuing
the command again.

When a table is clustered using this command, Greenplum Database remembers on
which index it was clustered. The form CLUSTER tablename reclusters the table on
the same index that it was clustered before. CLUSTER without any parameter reclusters
all previously clustered tables in the current database that the calling user owns, or all
tables if called by a superuser. This form of CLUSTER cannot be executed inside a
transaction block.

When a table is being clustered, an ACCESS EXCLUSIVE lock is acquired on it. This
prevents any other database operations (both reads and writes) from operating on the
table until the CLUSTER is finished.

Parameters

indexname

The name of an index.

tablename

The name (optionally schema-qualified) of a table.
CLUSTER 347

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
Notes

In cases where you are accessing single rows randomly within a table, the actual order
of the data in the table is unimportant. However, if you tend to access some data more
than others, and there is an index that groups them together, you will benefit from
using CLUSTER. If you are requesting a range of indexed values from a table, or a
single indexed value that has multiple rows that match, CLUSTER will help because
once the index identifies the table page for the first row that matches, all other rows
that match are probably already on the same table page, and so you save disk accesses
and speed up the query.

During the cluster operation, a temporary copy of the table is created that contains the
table data in the index order. Temporary copies of each index on the table are created
as well. Therefore, you need free space on disk at least equal to the sum of the table
size and the index sizes.

Because the query planner records statistics about the ordering of tables, it is advisable
to run ANALYZE on the newly clustered table. Otherwise, the planner may make poor
choices of query plans.

There is another way to cluster data. The CLUSTER command reorders the original
table by scanning it using the index you specify. This can be slow on large tables
because the rows are fetched from the table in index order, and if the table is
disordered, the entries are on random pages, so there is one disk page retrieved for
every row moved. (Greenplum Database has a cache, but the majority of a big table
will not fit in the cache.) The other way to cluster a table is to use a statement such as:

CREATE TABLE newtable AS SELECT * FROM table ORDER BY column;

This uses the Greenplum Database sorting code to produce the desired order, which is
usually much faster than an index scan for disordered data. Then you drop the old
table, use ALTER TABLE ... RENAME to rename newtable to the old name, and
recreate the table’s indexes. The big disadvantage of this approach is that it does not
preserve OIDs, constraints, granted privileges, and other ancillary properties of the
table — all such items must be manually recreated. Another disadvantage is that this
way requires a sort temporary file about the same size as the table itself, so peak disk
usage is about three times the table size instead of twice the table size.

Examples

Cluster the table employees on the basis of its index emp_ind:

CLUSTER emp_ind ON emp;

Cluster a large table by recreating it and loading it in the correct index order:

CREATE TABLE newtable AS SELECT * FROM table ORDER BY column;

DROP table;

ALTER TABLE newtable RENAME TO table;

CREATE INDEX column_ix ON table (column);

VACUUM ANALYZE table;
CLUSTER 348

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
Compatibility

There is no CLUSTER statement in the SQL standard.

See Also

CREATE TABLE AS, CREATE INDEX
CLUSTER 349

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
COMMENT
Defines or change the comment of an object.

Synopsis
COMMENT ON
{ TABLE object_name |
 COLUMN table_name.column_name |
 AGGREGATE agg_name (agg_type [, ...]) |
 CAST (sourcetype AS targettype) |
 CONSTRAINT constraint_name ON table_name |
 CONVERSION object_name |
 DATABASE object_name |
 DOMAIN object_name |
 FILESPACE object_name |
 FUNCTION func_name ([[argmode] [argname] argtype [, ...]]) |
 INDEX object_name |
 LARGE OBJECT large_object_oid |
 OPERATOR op (leftoperand_type, rightoperand_type) |
 OPERATOR CLASS object_name USING index_method |
 [PROCEDURAL] LANGUAGE object_name |
 RESOURCE QUEUE object_name |
 ROLE object_name |
 RULE rule_name ON table_name |
 SCHEMA object_name |
 SEQUENCE object_name |
 TABLESPACE object_name |
 TRIGGER trigger_name ON table_name |
 TYPE object_name |
 VIEW object_name }
IS 'text'

Description

COMMENT stores a comment about a database object. To modify a comment, issue a
new COMMENT command for the same object. Only one comment string is stored for
each object. To remove a comment, write NULL in place of the text string. Comments
are automatically dropped when the object is dropped.

Comments can be easily retrieved with the psql meta-commands \dd, \d+, and \l+.
Other user interfaces to retrieve comments can be built atop the same built-in
functions that psql uses, namely obj_description, col_description, and
shobj_description.

Parameters

object_name
table_name.column_name
COMMENT 350

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
agg_name
constraint_name
func_name
op
rule_name
trigger_name

The name of the object to be commented. Names of tables, aggregates, domains,
functions, indexes, operators, operator classes, sequences, types, and views may be
schema-qualified.

agg_type

An input data type on which the aggregate function operates. To reference a
zero-argument aggregate function, write * in place of the list of input data types.

sourcetype

The name of the source data type of the cast.

targettype

The name of the target data type of the cast.

argmode

The mode of a function argument: either IN, OUT, or INOUT. If omitted, the default is
IN. Note that COMMENT ON FUNCTION does not actually pay any attention to OUT
arguments, since only the input arguments are needed to determine the function’s
identity. So it is sufficient to list the IN and INOUT arguments.

argname

The name of a function argument. Note that COMMENT ON FUNCTION does not
actually pay any attention to argument names, since only the argument data types are
needed to determine the function’s identity.

argtype

The data type(s) of the function’s arguments (optionally schema-qualified), if any.

large_object_oid

The OID of the large object.

PROCEDURAL

This is a noise word.

text

The new comment, written as a string literal; or NULL to drop the comment.

Notes

There is presently no security mechanism for comments: any user connected to a
database can see all the comments for objects in that database (although only
superusers can change comments for objects that they do not own). For shared objects
COMMENT 351

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
such as databases, roles, and tablespaces comments are stored globally and any user
connected to any database can see all the comments for shared objects. Therefore, do
not put security-critical information in comments.

Examples

Attach a comment to the table mytable:

COMMENT ON TABLE mytable IS 'This is my table.';

Remove it again:

COMMENT ON TABLE mytable IS NULL;

Compatibility

There is no COMMENT statement in the SQL standard.
COMMENT 352

COMMIT 353

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference

COMMIT
Commits the current transaction.

Synopsis
COMMIT [WORK | TRANSACTION]

Description

COMMIT commits the current transaction. All changes made by the transaction become
visible to others and are guaranteed to be durable if a crash occurs.

Parameters

WORK
TRANSACTION

Optional key words. They have no effect.

Notes

Use ROLLBACK to abort a transaction.

Issuing COMMIT when not inside a transaction does no harm, but it will provoke a
warning message.

Examples

To commit the current transaction and make all changes permanent:

COMMIT;

Compatibility

The SQL standard only specifies the two forms COMMIT and COMMIT WORK.
Otherwise, this command is fully conforming.

See Also

BEGIN, END, START TRANSACTION, ROLLBACK

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
COPY
Copies data between a file and a table.

Synopsis
COPY table [(column [, ...])] FROM {'file' | STDIN}
 [[WITH]
 [OIDS]
 [HEADER]
 [DELIMITER [AS] 'delimiter']
 [NULL [AS] 'null string']
 [ESCAPE [AS] 'escape' | 'OFF']
 [NEWLINE [AS] 'LF' | 'CR' | 'CRLF']
 [CSV [QUOTE [AS] 'quote']
 [FORCE NOT NULL column [, ...]]
 [FILL MISSING FIELDS]
 [[LOG ERRORS INTO error_table] [KEEP]
 SEGMENT REJECT LIMIT count [ROWS | PERCENT]]

COPY {table [(column [, ...])] | (query)} TO {'file' | STDOUT}
 [[WITH]
 [OIDS]
 [HEADER]
 [DELIMITER [AS] 'delimiter']
 [NULL [AS] 'null string']
 [ESCAPE [AS] 'escape' | 'OFF']
 [CSV [QUOTE [AS] 'quote']
 [FORCE QUOTE column [, ...]]]

Description

COPY moves data between Greenplum Database tables and standard file-system files.
COPY TO copies the contents of a table to a file, while COPY FROM copies data from a
file to a table (appending the data to whatever is in the table already). COPY TO can
also copy the results of a SELECT query.

If a list of columns is specified, COPY will only copy the data in the specified columns
to or from the file. If there are any columns in the table that are not in the column list,
COPY FROM will insert the default values for those columns.

COPY with a file name instructs the Greenplum Database master host to directly read
from or write to a file. The file must be accessible to the master host and the name
must be specified from the viewpoint of the master host. When STDIN or STDOUT is
specified, data is transmitted via the connection between the client and the master.

If SEGMENT REJECT LIMIT is used, then a COPY FROM operation will operate in single
row error isolation mode. In this release, single row error isolation mode only applies
to rows in the input file with format errors — for example, extra or missing attributes,
attributes of a wrong data type, or invalid client encoding sequences. Constraint errors
such as violation of a NOT NULL, CHECK, or UNIQUE constraint will still be handled in
COPY 354

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
‘all-or-nothing’ input mode. The user can specify the number of error rows acceptable
(on a per-segment basis), after which the entire COPY FROM operation will be aborted
and no rows will be loaded. Note that the count of error rows is per-segment, not per
entire load operation. If the per-segment reject limit is not reached, then all rows not
containing an error will be loaded. If the limit is not reached, all good rows will be
loaded and any error rows discarded. If you would like to keep error rows for further
examination, you can optionally declare an error table using the LOG ERRORS INTO
clause. Any rows containing a format error would then be logged to the specified error
table.

Outputs

On successful completion, a COPY command returns a command tag of the form,
where count is the number of rows copied:

COPY count

If running a COPY FROM command in single row error isolation mode, the following
notice message will be returned if any rows were not loaded due to format errors,
where count is the number of rows rejected:

NOTICE: Rejected count badly formatted rows.

Parameters

table

The name (optionally schema-qualified) of an existing table.

column

An optional list of columns to be copied. If no column list is specified, all columns
of the table will be copied.

query

A SELECT or VALUES command whose results are to be copied. Note that
parentheses are required around the query.

file

The absolute path name of the input or output file.

STDIN

Specifies that input comes from the client application.

STDOUT

Specifies that output goes to the client application.

OIDS

Specifies copying the OID for each row. (An error is raised if OIDS is specified for
a table that does not have OIDs, or in the case of copying a query.)
COPY 355

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
delimiter

The single ASCII character that separates columns within each row (line) of the file.
The default is a tab character in text mode, a comma in CSV mode.

null string

The string that represents a null value. The default is \N (backslash-N) in text mode,
and a empty value with no quotes in CSV mode. You might prefer an empty string
even in text mode for cases where you don’t want to distinguish nulls from empty
strings. When using COPY FROM, any data item that matches this string will be stored
as a null value, so you should make sure that you use the same string as you used
with COPY TO.

escape

Specifies the single character that is used for C escape sequences (such as
\n,\t,\100, and so on) and for quoting data characters that might otherwise be
taken as row or column delimiters. Make sure to choose an escape character that is
not used anywhere in your actual column data. The default escape character is \
(backslash) for text files or " (double quote) for CSV files, however it is possible to
specify any other character to represent an escape. It is also possible to disable
escaping on text-formatted files by specifying the value 'OFF' as the escape value.
This is very useful for data such as web log data that has many embedded
backslashes that are not intended to be escapes.

NEWLINE

Specifies the newline used in your data files — LF (Line feed, 0x0A), CR (Carriage
return, 0x0D), or CRLF (Carriage return plus line feed, 0x0D 0x0A). If not specified,
a Greenplum Database segment will detect the newline type by looking at the first
row of data it receives and using the first newline type encountered.

CSV

Selects Comma Separated Value (CSV) mode.

HEADER

Specifies that a file contains a header line with the names of each column in the file.
On output, the first line contains the column names from the table, and on input, the
first line is ignored.

quote

Specifies the quotation character in CSV mode. The default is double-quote.

FORCE QUOTE

In CSV COPY TO mode, forces quoting to be used for all non-NULL values in each
specified column. NULL output is never quoted.
COPY 356

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
FORCE NOT NULL

In CSV COPY FROM mode, process each specified column as though it were quoted
and hence not a NULL value. For the default null string in CSV mode (nothing
between two delimiters), this causes missing values to be evaluated as zero-length
strings.

FILL MISSING FIELDS

In COPY FROM more for both TEXT and CSV, specifying FILL MISSING FIELDS will
set missing trailing field values to NULL (instead of reporting an error) when a row of
data has missing data fields at the end of a line or row. Blank rows, fields with a NOT
NULL constraint, and trailing delimiters on a line will still report an error.

LOG ERRORS INTO error_table [KEEP]

This is an optional clause that may precede a SEGMENT REJECT LIMIT clause. It
specifies an error table where rows with formatting errors will be logged when
running in single row error isolation mode. You can then examine this error table to
see error rows that were not loaded (if any). If the error_table specified already
exists, it will be used. If it does not exist, it will be automatically generated. If the
command auto-generates the error table and no errors are produced, the default is to
drop the error table after the operation completes unless KEEP is specified. If the
table is auto-generated and the error limit is exceeded, the entire transaction is rolled
back and no error data is saved. If you want the error table to persist in this case,
create the error table prior to running the COPY. An error table is defined as follows:

CREATE TABLE error_table_name (cmdtime timestamptz,
relname text, filename text, linenum int, bytenum int,
errmsg text, rawdata text, rawbytes bytea)
DISTRIBUTED RANDOMLY;

SEGMENT REJECT LIMIT count [ROWS | PERCENT]

Runs a COPY FROM operation in single row error isolation mode. If the input rows
have format errors they will be discarded provided that the reject limit count is not
reached on any Greenplum segment instance during the load operation. The reject
limit count can be specified as number of rows (the default) or percentage of total
rows (1-100). If PERCENT is used, the percentage of rows per segment is calculated
based on the parameter gp_reject_percent_threshold (default is 300 rows).
Constraint errors such as violation of a NOT NULL, CHECK, or UNIQUE constraint will
still be handled in ‘all-or-nothing’ input mode. If the limit is not reached, all good
rows will be loaded and any error rows discarded.

Notes

COPY can only be used with tables, not with views. However, you can write COPY
(SELECT * FROM viewname) TO

The BINARY key word causes all data to be stored/read as binary format rather than as
text. It is somewhat faster than the normal text mode, but a binary-format file is less
portable across machine architectures and Greenplum Database versions. Also, you
cannot run COPY FROM in single row error isolation mode if the data is in binary
format.
COPY 357

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
You must have SELECT privilege on the table whose values are read by COPY TO, and
insert privilege on the table into which values are inserted by COPY FROM.

Files named in a COPY command are read or written directly by the database server,
not by the client application. Therefore, they must reside on or be accessible to the
Greenplum Database master host machine, not the client. They must be accessible to
and readable or writable by the Greenplum Database administrative user (the user ID
the server runs as), not the client. COPY naming a file is only allowed to database
superusers, since it allows reading or writing any file that the server has privileges to
access.

COPY FROM will invoke any triggers and check constraints on the destination table.
However, it will not invoke rewrite rules. Note that in this release, violations of
constraints are not evaluated for single row error isolation mode.

COPY input and output is affected by DateStyle. To ensure portability to other
Greenplum Database installations that might use non-default DateStyle settings,
DateStyle should be set to ISO before using COPY TO.

By default, COPY stops operation at the first error. This should not lead to problems in
the event of a COPY TO, but the target table will already have received earlier rows in a
COPY FROM. These rows will not be visible or accessible, but they still occupy disk
space. This may amount to a considerable amount of wasted disk space if the failure
happened well into a large COPY FROM operation. You may wish to invoke VACUUM to
recover the wasted space. Another option would be to use single row error isolation
mode to filter out error rows while still loading good rows.

File Formats

Text Format

When COPY is used without the BINARY or CSV options, the data read or written is a
text file with one line per table row. Columns in a row are separated by the
delimiter character (tab by default). The column values themselves are strings
generated by the output function, or acceptable to the input function, of each
attribute’s data type. The specified null string is used in place of columns that are null.
COPY FROM will raise an error if any line of the input file contains more or fewer
columns than are expected. If OIDS is specified, the OID is read or written as the first
column, preceding the user data columns.

The data file has two reserved characters that have special meaning to COPY:

• The designated delimiter character (tab by default), which is used to separate
fields in the data file.

• A UNIX-style line feed (\n or 0x0a), which is used to designate a new row in the
data file. It is strongly recommended that applications generating COPY data
convert data line feeds to UNIX-style line feeds rather than Microsoft Windows
style carriage return line feeds (\r\n or 0x0a 0x0d).

If your data contains either of these characters, you must escape the character so COPY
treats it as data and not as a field separator or new row.
COPY 358

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
By default, the escape character is a \ (backslash) for text-formatted files and a "
(double quote) for csv-formatted files. If you want to use a different escape character,
you can do so using the ESCAPE AS clause. Make sure to choose an escape character
that is not used anywhere in your data file as an actual data value. You can also disable
escaping in text-formatted files by using ESCAPE 'OFF'.

For example, suppose you have a table with three columns and you want to load the
following three fields using COPY.

• percentage sign = %

• vertical bar = |

• backslash = \

Your designated DELIMITER character is | (pipe character), and your designated
ESCAPE character is * (asterisk). The formatted row in your data file would look like
this:

percentage sign = % | vertical bar = *| | backslash = \

Notice how the pipe character that is part of the data has been escaped using the
asterisk character (*). Also notice that we do not need to escape the backslash since
we are using an alternative escape character.

The following characters must be preceded by the escape character if they appear as
part of a column value: the escape character itself, newline, carriage return, and the
current delimiter character. You can specify a different escape character using the
ESCAPE AS clause.

CSV Format

This format is used for importing and exporting the Comma Separated Value (CSV)
file format used by many other programs, such as spreadsheets. Instead of the
escaping used by Greenplum Database standard text mode, it produces and recognizes
the common CSV escaping mechanism.

The values in each record are separated by the DELIMITER character. If the value
contains the delimiter character, the QUOTE character, the ESCAPE character (which is
double quote by default), the NULL string, a carriage return, or line feed character, then
the whole value is prefixed and suffixed by the QUOTE character. You can also use
FORCE QUOTE to force quotes when outputting non-NULL values in specific columns.

The CSV format has no standard way to distinguish a NULL value from an empty
string. Greenplum Database COPY handles this by quoting. A NULL is output as the
NULL string and is not quoted, while a data value matching the NULL string is quoted.
Therefore, using the default settings, a NULL is written as an unquoted empty string,
while an empty string is written with double quotes (""). Reading values follows
similar rules. You can use FORCE NOT NULL to prevent NULL input comparisons for
specific columns.

Because backslash is not a special character in the CSV format, \., the end-of-data
marker, could also appear as a data value. To avoid any misinterpretation, a \. data
value appearing as a lone entry on a line is automatically quoted on output, and on
input, if quoted, is not interpreted as the end-of-data marker. If you are loading a file
created by another application that has a single unquoted column and might have a
value of \., you might need to quote that value in the input file.
COPY 359

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
Note: In CSV mode, all characters are significant. A quoted value surrounded by white
space, or any characters other than DELIMITER, will include those characters. This can
cause errors if you import data from a system that pads CSV lines with white space
out to some fixed width. If such a situation arises you might need to preprocess the
CSV file to remove the trailing white space, before importing the data into Greenplum
Database.

Note: CSV mode will both recognize and produce CSV files with quoted values
containing embedded carriage returns and line feeds. Thus the files are not strictly one
line per table row like text-mode files.

Note: Many programs produce strange and occasionally perverse CSV files, so the
file format is more a convention than a standard. Thus you might encounter some files
that cannot be imported using this mechanism, and COPY might produce files that other
programs cannot process.

Binary Format

The BINARY format consists of a file header, zero or more tuples containing the row
data, and a file trailer. Headers and data are in network byte order.

• File Header — The file header consists of 15 bytes of fixed fields, followed by a
variable-length header extension area. The fixed fields are:

• Signature — 11-byte sequence PGCOPY\n\377\r\n\0 — note that the zero
byte is a required part of the signature. (The signature is designed to allow
easy identification of files that have been munged by a non-8-bit-clean
transfer. This signature will be changed by end-of-line-translation filters,
dropped zero bytes, dropped high bits, or parity changes.)

• Flags field — 32-bit integer bit mask to denote important aspects of the file
format. Bits are numbered from 0 (LSB) to 31 (MSB). Note that this field is
stored in network byte order (most significant byte first), as are all the integer
fields used in the file format. Bits 16-31 are reserved to denote critical file
format issues; a reader should abort if it finds an unexpected bit set in this
range. Bits 0-15 are reserved to signal backwards-compatible format issues; a
reader should simply ignore any unexpected bits set in this range. Currently
only one flag is defined, and the rest must be zero (Bit 16: 1 if data has OIDs,
0 if not).

• Header extension area length — 32-bit integer, length in bytes of remainder
of header, not including self. Currently, this is zero, and the first tuple follows
immediately. Future changes to the format might allow additional data to be
present in the header. A reader should silently skip over any header extension
data it does not know what to do with. The header extension area is
envisioned to contain a sequence of self-identifying chunks. The flags field is
not intended to tell readers what is in the extension area. Specific design of
header extension contents is left for a later release.

• Tuples — Each tuple begins with a 16-bit integer count of the number of fields in
the tuple. (Presently, all tuples in a table will have the same count, but that might
not always be true.) Then, repeated for each field in the tuple, there is a 32-bit
length word followed by that many bytes of field data. (The length word does not
include itself, and can be zero.) As a special case, -1 indicates a NULL field value.
No value bytes follow in the NULL case.
There is no alignment padding or any other extra data between fields.
COPY 360

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
Presently, all data values in a COPY BINARY file are assumed to be in binary
format (format code one). It is anticipated that a future extension may add a
header field that allows per-column format codes to be specified.

If OIDs are included in the file, the OID field immediately follows the field-count
word. It is a normal field except that it's not included in the field-count. In
particular it has a length word — this will allow handling of 4-byte vs. 8-byte
OIDs without too much pain, and will allow OIDs to be shown as null if that ever
proves desirable.

• File Trailer — The file trailer consists of a 16-bit integer word containing -1.
This is easily distinguished from a tuple’s field-count word. A reader should
report an error if a field-count word is neither -1 nor the expected number of
columns. This provides an extra check against somehow getting out of sync with
the data.

Examples

Copy a table to the client using the vertical bar (|) as the field delimiter:

COPY country TO STDOUT WITH DELIMITER '|';

Copy data from a file into the country table:

COPY country FROM '/home/usr1/sql/country_data';

Copy into a file just the countries whose names start with 'A':

COPY (SELECT * FROM country WHERE country_name LIKE 'A%') TO
'/home/usr1/sql/a_list_countries.copy';

Create an error table called err_sales to use with single row error isolation mode:

CREATE TABLE err_sales (cmdtime timestamptz, relname
text, filename text, linenum int, bytenum int, errmsg
text, rawdata text, rawbytes bytea)
DISTRIBUTED RANDOMLY;

Copy data from a file into the sales table using single row error isolation mode:

COPY sales FROM '/home/usr1/sql/sales_data' LOG ERRORS INTO
err_sales SEGMENT REJECT LIMIT 10 ROWS;

Compatibility

There is no COPY statement in the SQL standard.

See Also

CREATE EXTERNAL TABLE
COPY 361

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
CREATE AGGREGATE
Defines a new aggregate function.

Synopsis
CREATE [ORDERED] AGGREGATE name (input_data_type [, ...])
 (SFUNC = sfunc,
 STYPE = state_data_type
 [, PREFUNC = prefunc]
 [, FINALFUNC = ffunc]
 [, INITCOND = initial_condition]
 [, SORTOP = sort_operator])

Description

CREATE AGGREGATE defines a new aggregate function. Some basic and
commonly-used aggregate functions such as count, min, max, sum, avg and so on are
already provided in Greenplum Database. If one defines new types or needs an
aggregate function not already provided, then CREATE AGGREGATE can be used to
provide the desired features.

An aggregate function is identified by its name and input data type(s). Two aggregates
in the same schema can have the same name if they operate on different input types.
The name and input data type(s) of an aggregate must also be distinct from the name
and input data type(s) of every ordinary function in the same schema.

An aggregate function is made from one, two or three ordinary functions (all of which
must be IMMUTABLE functions): a state transition function sfunc, an optional
preliminary segment-level calculation function prefunc, and an optional final
calculation function ffunc. These are used as follows:

sfunc(internal-state, next-data-values) ---> next-internal-state

prefunc(internal-state, internal-state) ---> next-internal-state

ffunc(internal-state) ---> aggregate-value

Greenplum Database creates a temporary variable of data type stype to hold the
current internal state of the aggregate. At each input row, the aggregate argument
value(s) are calculated and the state transition function is invoked with the current
state value and the new argument value(s) to calculate a new internal state value. After
all the rows have been processed, the final function is invoked once to calculate the
aggregate’s return value. If there is no final function then the ending state value is
returned as-is.

An aggregate function may provide an initial condition, that is, an initial value for the
internal state value. This is specified and stored in the database as a value of type text,
but it must be a valid external representation of a constant of the state value data type.
If it is not supplied then the state value starts out null.

If the state transition function is declared strict, then it cannot be called with null
inputs. With such a transition function, aggregate execution behaves as follows. Rows
with any null input values are ignored (the function is not called and the previous state
CREATE AGGREGATE 362

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
value is retained). If the initial state value is null, then at the first row with all-nonnull
input values, the first argument value replaces the state value, and the transition
function is invoked at subsequent rows with all-nonnull input values. This is handy for
implementing aggregates like max. Note that this behavior is only available when
state_data_type is the same as the first input_data_type. When these types are
different, you must supply a nonnull initial condition or use a nonstrict transition
function.

If the state transition function is not strict, then it will be called unconditionally at each
input row, and must deal with null inputs and null transition values for itself. This
allows the aggregate author to have full control over the aggregate’s handling of null
values.

If the final function is declared strict, then it will not be called when the ending state
value is null; instead a null result will be returned automatically. (Of course this is just
the normal behavior of strict functions.) In any case the final function has the option of
returning a null value. For example, the final function for avg returns null when it sees
there were zero input rows.

Single argument aggregate functions, such as min or max, can sometimes be
optimized by looking into an index instead of scanning every input row. If this
aggregate can be so optimized, indicate it by specifying a sort operator. The basic
requirement is that the aggregate must yield the first element in the sort ordering
induced by the operator; in other words

SELECT agg(col) FROM tab;

must be equivalent to:

SELECT col FROM tab ORDER BY col USING sortop LIMIT 1;

Further assumptions are that the aggregate ignores null inputs, and that it delivers a
null result if and only if there were no non-null inputs. Ordinarily, a data type’s <
operator is the proper sort operator for MIN, and > is the proper sort operator for MAX.
Note that the optimization will never actually take effect unless the specified operator
is the “less than” or “greater than” strategy member of a B-tree index operator class.

Ordered Aggregates

If the optional qualification ORDERED appears, the created aggregate function is an
ordered aggregate. In this case, the preliminary aggregation function, prefunc cannot
be specified.

An ordered aggregate is called with the following syntax.

name (arg [, ...] [ORDER BY sortspec [, ...]])

If the optional ORDER BY is omitted, a system-defined ordering is used. The transition
function of an ordered aggregate sfunc is called on its input arguments in the
specified order and on a single segment. There is a new column aggordered in the
pg_aggregate table to indicate the aggregate function is defined as an ordered
aggregate.
CREATE AGGREGATE 363

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
Parameters

name

The name (optionally schema-qualified) of the aggregate function to create.

input_data_type

An input data type on which this aggregate function operates. To create a
zero-argument aggregate function, write * in place of the list of input data types. An
example of such an aggregate is count(*).

sfunc

The name of the state transition function to be called for each input row. For an
N-argument aggregate function, the sfunc must take N+1 arguments, the first being
of type state_data_type and the rest matching the declared input data type(s) of
the aggregate. The function must return a value of type state_data_type. This
function takes the current state value and the current input data value(s), and returns
the next state value.

state_data_type

The data type for the aggregate’s state value.

prefunc

The name of a preliminary aggregation function. This is a function of two
arguments, both of type state_data_type. It must return a value of
state_data_type. A preliminary function takes two transition state values and
returns a new transition state value representing the combined aggregation. In
Greenplum Database, if the result of the aggregate function is computed in a
segmented fashion, the preliminary aggregation function is invoked on the
individual internal states in order to combine them into an ending internal state.

ffunc

The name of the final function called to compute the aggregate’s result after all input
rows have been traversed. The function must take a single argument of type
state_data_type. The return data type of the aggregate is defined as the return type of
this function. If ffunc is not specified, then the ending state value is used as the
aggregate's result, and the return type is state_data_type.

initial_condition

The initial setting for the state value. This must be a string constant in the form
accepted for the data type state_data_type. If not specified, the state value starts out
null.

sort_operator

The associated sort operator for a MIN- or MAX-like aggregate. This is just an
operator name (possibly schema-qualified). The operator is assumed to have the
same input data types as the aggregate (which must be a single-argument aggregate).
CREATE AGGREGATE 364

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
Notes

The ordinary functions used to define a new aggregate function must be defined first.
Note that in this release of Greenplum Database, it is required that the sfunc, ffunc,
and prefunc functions used to create the aggregate are defined as IMMUTABLE.

Any compiled code (shared library files) for custom functions must be placed in the
same location on every host in your Greenplum Database array (master and all
segments). This location must also be in the LD_LIBRARY_PATH so that the server can
locate the files.

Examples

Create a sum of cubes aggregate:

CREATE FUNCTION scube_accum(numeric, numeric) RETURNS
numeric

 AS 'select $1 + $2 * $2 * $2'

 LANGUAGE SQL

 IMMUTABLE

 RETURNS NULL ON NULL INPUT;

CREATE AGGREGATE scube(numeric) (

 SFUNC = scube_accum,

 STYPE = numeric,

 INITCOND = 0);

To test this aggregate:

CREATE TABLE x(a INT);

INSERT INTO x VALUES (1),(2),(3);

SELECT scube(a) FROM x;

Correct answer for reference:

SELECT sum(a*a*a) FROM x;

Compatibility

CREATE AGGREGATE is a Greenplum Database language extension. The SQL standard
does not provide for user-defined aggregate functions.

See Also

ALTER AGGREGATE, DROP AGGREGATE, CREATE FUNCTION
CREATE AGGREGATE 365

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
CREATE CAST
Defines a new cast.

Synopsis
CREATE CAST (sourcetype AS targettype)
 WITH FUNCTION funcname (argtypes)
 [AS ASSIGNMENT | AS IMPLICIT]

CREATE CAST (sourcetype AS targettype) WITHOUT FUNCTION
 [AS ASSIGNMENT | AS IMPLICIT]

Description

CREATE CAST defines a new cast. A cast specifies how to perform a conversion
between two data types. For example,

SELECT CAST(42 AS text);

converts the integer constant 42 to type text by invoking a previously specified
function, in this case text(int4). If no suitable cast has been defined, the conversion
fails.

Two types may be binary compatible, which means that they can be converted into
one another without invoking any function. This requires that corresponding values
use the same internal representation. For instance, the types text and varchar are
binary compatible.

By default, a cast can be invoked only by an explicit cast request, that is an explicit
CAST(x AS typename) or x::typename construct.

If the cast is marked AS ASSIGNMENT then it can be invoked implicitly when assigning
a value to a column of the target data type. For example, supposing that foo.f1 is a
column of type text, then

INSERT INTO foo (f1) VALUES (42);

will be allowed if the cast from type integer to type text is marked AS
ASSIGNMENT, otherwise not. The term assignment cast is typically used to describe
this kind of cast.

If the cast is marked AS IMPLICIT then it can be invoked implicitly in any context,
whether assignment or internally in an expression. The term implicit cast is typically
used to describe this kind of cast. For example, since || takes text operands,

SELECT 'The time is ' || now();

will be allowed only if the cast from type timestamp to text is marked AS
IMPLICIT. Otherwise, it will be necessary to write the cast explicitly, for example

SELECT 'The time is ' || CAST(now() AS text);

It is wise to be conservative about marking casts as implicit. An overabundance of
implicit casting paths can cause Greenplum Database to choose surprising
interpretations of commands, or to be unable to resolve commands at all because there
CREATE CAST 366

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
are multiple possible interpretations. A good rule of thumb is to make a cast implicitly
invokable only for information-preserving transformations between types in the same
general type category. For example, the cast from int2 to int4 can reasonably be
implicit, but the cast from float8 to int4 should probably be assignment-only.
Cross-type-category casts, such as text to int4, are best made explicit-only.

To be able to create a cast, you must own the source or the target data type. To create a
binary-compatible cast, you must be superuser.

Parameters

sourcetype

The name of the source data type of the cast.

targettype

The name of the target data type of the cast.

funcname(argtypes)

The function used to perform the cast. The function name may be schema-qualified.
If it is not, the function will be looked up in the schema search path. The function’s
result data type must match the target type of the cast.

Cast implementation functions may have one to three arguments. The first argument
type must be identical to the cast’s source type. The second argument, if present,
must be type integer; it receives the type modifier associated with the destination
type, or -1 if there is none. The third argument, if present, must be type boolean; it
receives true if the cast is an explicit cast, false otherwise. The SQL specification
demands different behaviors for explicit and implicit casts in some cases. This
argument is supplied for functions that must implement such casts. It is not
recommended that you design your own data types this way.

Ordinarily a cast must have different source and target data types. However, it is
allowed to declare a cast with identical source and target types if it has a cast
implementation function with more than one argument. This is used to represent
type-specific length coercion functions in the system catalogs. The named function
is used to coerce a value of the type to the type modifier value given by its second
argument. (Since the grammar presently permits only certain built-in data types to
have type modifiers, this feature is of no use for user-defined target types.)

When a cast has different source and target types and a function that takes more than
one argument, it represents converting from one type to another and applying a
length coercion in a single step. When no such entry is available, coercion to a type
that uses a type modifier involves two steps, one to convert between data types and a
second to apply the modifier.

WITHOUT FUNCTION

Indicates that the source type and the target type are binary compatible, so no
function is required to perform the cast.
CREATE CAST 367

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
AS ASSIGNMENT

Indicates that the cast may be invoked implicitly in assignment contexts.

AS IMPLICIT

Indicates that the cast may be invoked implicitly in any context.

Notes

Note that in this release of Greenplum Database, user-defined functions used in a
user-defined cast must be defined as IMMUTABLE. Any compiled code (shared library
files) for custom functions must be placed in the same location on every host in your
Greenplum Database array (master and all segments). This location must also be in the
LD_LIBRARY_PATH so that the server can locate the files.

Remember that if you want to be able to convert types both ways you need to declare
casts both ways explicitly.

It is recommended that you follow the convention of naming cast implementation
functions after the target data type, as the built-in cast implementation functions are
named. Many users are used to being able to cast data types using a function-style
notation, that is typename(x).

Examples

To create a cast from type text to type int4 using the function int4(text) (This cast is
already predefined in the system.):

CREATE CAST (text AS int4) WITH FUNCTION int4(text);

Compatibility

The CREATE CAST command conforms to the SQL standard, except that SQL does not
make provisions for binary-compatible types or extra arguments to implementation
functions. AS IMPLICIT is a Greenplum Database extension, too.

See Also

CREATE FUNCTION, CREATE TYPE, DROP CAST
CREATE CAST 368

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
CREATE CONVERSION
Defines a new encoding conversion.

Synopsis
CREATE [DEFAULT] CONVERSION name FOR source_encoding TO
dest_encoding FROM funcname

Description

CREATE CONVERSION defines a new conversion between character set encodings.
Conversion names may be used in the convert function to specify a particular
encoding conversion. Also, conversions that are marked DEFAULT can be used for
automatic encoding conversion between client and server. For this purpose, two
conversions, from encoding A to B and from encoding B to A, must be defined.

To create a conversion, you must have EXECUTE privilege on the function and CREATE
privilege on the destination schema.

Parameters

DEFAULT

Indicates that this conversion is the default for this particular source to destination
encoding. There should be only one default encoding in a schema for the encoding
pair.

name

The name of the conversion. The conversion name may be schema-qualified. If it is
not, the conversion is defined in the current schema. The conversion name must be
unique within a schema.

source_encoding

The source encoding name.

dest_encoding

The destination encoding name.

funcname

The function used to perform the conversion. The function name may be
schema-qualified. If it is not, the function will be looked up in the path. The function
must have the following signature:

conv_proc(

 integer, -- source encoding ID

 integer, -- destination encoding ID

 cstring, -- source string (null terminated C string)

 internal, -- destination (fill with a null terminated C string)

 integer -- source string length
CREATE CONVERSION 369

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
) RETURNS void;

Notes

Note that in this release of Greenplum Database, user-defined functions used in a
user-defined conversion must be defined as IMMUTABLE. Any compiled code (shared
library files) for custom functions must be placed in the same location on every host in
your Greenplum Database array (master and all segments). This location must also be
in the LD_LIBRARY_PATH so that the server can locate the files.

Examples

To create a conversion from encoding UTF8 to LATIN1 using myfunc:

CREATE CONVERSION myconv FOR 'UTF8' TO 'LATIN1' FROM myfunc;

Compatibility

There is no CREATE CONVERSION statement in the SQL standard.

See Also

ALTER CONVERSION, CREATE FUNCTION, DROP CONVERSION
CREATE CONVERSION 370

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
CREATE DATABASE
Creates a new database.

Synopsis
CREATE DATABASE name [[WITH] [OWNER [=] dbowner]
 [TEMPLATE [=] template]
 [ENCODING [=] encoding]
 [TABLESPACE [=] tablespace]
 [CONNECTION LIMIT [=] connlimit]]

Description

CREATE DATABASE creates a new database. To create a database, you must be a
superuser or have the special CREATEDB privilege.

The creator becomes the owner of the new database by default. Superusers can create
databases owned by other users by using the OWNER clause. They can even create
databases owned by users with no special privileges. Non-superusers with CREATEDB
privilege can only create databases owned by themselves.

By default, the new database will be created by cloning the standard system database
template1. A different template can be specified by writing TEMPLATE name. In
particular, by writing TEMPLATE template0, you can create a clean database
containing only the standard objects predefined by Greenplum Database. This is
useful if you wish to avoid copying any installation-local objects that may have been
added to template1.

Parameters

name

The name of a database to create.

dbowner

The name of the database user who will own the new database, or DEFAULT to use
the default owner (the user executing the command).

template

The name of the template from which to create the new database, or DEFAULT to use
the default template (template1).

encoding

Character set encoding to use in the new database. Specify a string constant (such as
'SQL_ASCII'), an integer encoding number, or DEFAULT to use the default
encoding. See “Character Set Support” on page 974.
CREATE DATABASE 371

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
tablespace

The name of the tablespace that will be associated with the new database, or
DEFAULT to use the template database’s tablespace. This tablespace will be the
default tablespace used for objects created in this database.

connlimit

The maximum number of concurrent connections posible. The default of -1 means
there is no limitation.

Notes

CREATE DATABASE cannot be executed inside a transaction block.

When you copy a database by specifying its name as the template, no other sessions
can be connected to the template database while it is being copied. New connections
to the template database are locked out until CREATE DATABASE completes.

The CONNECTION LIMIT is not enforced against superusers.

Examples

To create a new database:

CREATE DATABASE gpdb;

To create a database sales owned by user salesapp with a default tablespace of
salesspace:

CREATE DATABASE sales OWNER salesapp TABLESPACE salesspace;

To create a database music which supports the ISO-8859-1 character set:

CREATE DATABASE music ENCODING 'LATIN1';

Compatibility

There is no CREATE DATABASE statement in the SQL standard. Databases are
equivalent to catalogs, whose creation is implementation-defined.

See Also

ALTER DATABASE, DROP DATABASE
CREATE DATABASE 372

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
CREATE DOMAIN
Defines a new domain.

Synopsis
CREATE DOMAIN name [AS] data_type [DEFAULT expression]
 [CONSTRAINT constraint_name
 | NOT NULL | NULL
 | CHECK (expression) [...]]

Description

CREATE DOMAIN creates a new domain. A domain is essentially a data type with
optional constraints (restrictions on the allowed set of values). The user who defines a
domain becomes its owner. The domain name must be unique among the data types
and domains existing in its schema.

Domains are useful for abstracting common constraints on fields into a single location
for maintenance. For example, several tables might contain email address columns, all
requiring the same CHECK constraint to verify the address syntax. It is easier to define
a domain rather than setting up a column constraint for each table that has an email
column.

Parameters

name

The name (optionally schema-qualified) of a domain to be created.

data_type

The underlying data type of the domain. This may include array specifiers.

DEFAULT expression

Specifies a default value for columns of the domain data type. The value is any
variable-free expression (but subqueries are not allowed). The data type of the
default expression must match the data type of the domain. If no default value is
specified, then the default value is the null value. The default expression will be
used in any insert operation that does not specify a value for the column. If a default
value is defined for a particular column, it overrides any default associated with the
domain. In turn, the domain default overrides any default value associated with the
underlying data type.

CONSTRAINT constraint_name

An optional name for a constraint. If not specified, the system generates a name.

NOT NULL

Values of this domain are not allowed to be null.
CREATE DOMAIN 373

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
NULL

Values of this domain are allowed to be null. This is the default. This clause is only
intended for compatibility with nonstandard SQL databases. Its use is discouraged
in new applications.

CHECK (expression)

CHECK clauses specify integrity constraints or tests which values of the domain must
satisfy. Each constraint must be an expression producing a Boolean result. It should
use the key word VALUE to refer to the value being tested. Currently, CHECK
expressions cannot contain subqueries nor refer to variables other than VALUE.

Examples

Create the us_zip_code data type. A regular expression test is used to verify that the
value looks like a valid US zip code.

CREATE DOMAIN us_zip_code AS TEXT CHECK
 (VALUE ~ '^\\d{5}$' OR VALUE ~ '^\\d{5}-\\d{4}$');

Compatibility

CREATE DOMAIN conforms to the SQL standard.

See Also

ALTER DOMAIN, DROP DOMAIN
CREATE DOMAIN 374

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
CREATE EXTERNAL TABLE
Defines a new external table.

Synopsis
CREATE [READABLE] EXTERNAL TABLE table_name
 (column_name data_type [, ...] | LIKE other_table)
 LOCATION ('file://seghost[:port]/path/file' [, ...])
 | ('gpfdist://filehost[:port]/file_pattern' [, ...])
 | ('gphdfs://hdfs_host[:port]/path/file')
 FORMAT 'TEXT'
 [([HEADER]
 [DELIMITER [AS] 'delimiter' | 'OFF']
 [NULL [AS] 'null string']
 [ESCAPE [AS] 'escape' | 'OFF']
 [NEWLINE [AS] 'LF' | 'CR' | 'CRLF']
 [FILL MISSING FIELDS])]
 | 'CSV'
 [([HEADER]
 [QUOTE [AS] 'quote']
 [DELIMITER [AS] 'delimiter']
 [NULL [AS] 'null string']
 [FORCE NOT NULL column [, ...]]
 [ESCAPE [AS] 'escape']
 [NEWLINE [AS] 'LF' | 'CR' | 'CRLF']
 [FILL MISSING FIELDS])]
 [ENCODING 'encoding']
 [[LOG ERRORS INTO error_table] SEGMENT REJECT LIMIT count
 [ROWS | PERCENT]]

CREATE [READABLE] EXTERNAL WEB TABLE table_name
 (column_name data_type [, ...] | LIKE other_table)
 LOCATION ('http://webhost[:port]/path/file' [, ...])
 | EXECUTE 'command' [ON ALL
 | MASTER
 | number_of_segments
 | HOST ['segment_hostname']
 | SEGMENT segment_id]
 FORMAT 'TEXT'
 [([HEADER]
 [DELIMITER [AS] 'delimiter' | 'OFF']
 [NULL [AS] 'null string']
 [ESCAPE [AS] 'escape' | 'OFF']
 [NEWLINE [AS] 'LF' | 'CR' | 'CRLF']
 [FILL MISSING FIELDS])]
 | 'CSV'
 [([HEADER]
 [QUOTE [AS] 'quote']
CREATE EXTERNAL TABLE 375

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
 [DELIMITER [AS] 'delimiter']
 [NULL [AS] 'null string']
 [FORCE NOT NULL column [, ...]]
 [ESCAPE [AS] 'escape']
 [NEWLINE [AS] 'LF' | 'CR' | 'CRLF']
 [FILL MISSING FIELDS])]
 [ENCODING 'encoding']
 [[LOG ERRORS INTO error_table] SEGMENT REJECT LIMIT count
 [ROWS | PERCENT]]

CREATE WRITABLE EXTERNAL TABLE table_name
 (column_name data_type [, ...] | LIKE other_table)
 LOCATION ('gpfdist://outputhost[:port]/filename' [, ...])
 | ('gphdfs://hdfs_host[:port]/path')
 FORMAT 'TEXT'
 [([DELIMITER [AS] 'delimiter']
 [NULL [AS] 'null string']
 [ESCAPE [AS] 'escape' | 'OFF'])]
 | 'CSV'
 [([QUOTE [AS] 'quote']
 [DELIMITER [AS] 'delimiter']
 [NULL [AS] 'null string']
 [FORCE QUOTE column [, ...]]]
 [ESCAPE [AS] 'escape'])]
 [ENCODING 'write_encoding']
 [DISTRIBUTED BY (column, [...]) | DISTRIBUTED RANDOMLY]

CREATE WRITABLE EXTERNAL WEB TABLE table_name
 (column_name data_type [, ...] | LIKE other_table)
 EXECUTE 'command' [ON ALL]
 FORMAT 'TEXT'
 [([DELIMITER [AS] 'delimiter']
 [NULL [AS] 'null string']
 [ESCAPE [AS] 'escape' | 'OFF'])]
 | 'CSV'
 [([QUOTE [AS] 'quote']
 [DELIMITER [AS] 'delimiter']
 [NULL [AS] 'null string']
 [FORCE QUOTE column [, ...]]]
 [ESCAPE [AS] 'escape'])]
 [ENCODING 'write_encoding']
 [DISTRIBUTED BY (column, [...]) | DISTRIBUTED RANDOMLY]

Description
For more information see Chapter 12, “Loading and Unloading Data” for detailed
information about external tables and examples.

CREATE EXTERNAL TABLE or CREATE EXTERNAL WEB TABLE creates a new readable
external table definition in Greenplum Database. Readable external tables are
typically used for fast, parallel data loading. Once an external table is defined, you can
CREATE EXTERNAL TABLE 376

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
query its data directly (and in parallel) using SQL commands. For example, you can
select, join, or sort external table data. You can also create views for external tables.
DML operations (UPDATE, INSERT, DELETE, or TRUNCATE) are not allowed on
readable external tables, and you cannot create indexes on readable external tables.

CREATE WRITABLE EXTERNAL TABLE or CREATE WRITABLE EXTERNAL WEB TABLE
creates a new writable external table definition in Greenplum Database. Writable
external tables are typically used for unloading data from the database into a set of
files or named pipes. Writable external web tables can also be used to output data to an
executable program. Writable external tables can also be used as output targets for
Greenplum parallel MapReduce calculations. Once a writable external table is
defined, data can be selected from database tables and inserted into the writable
external table. Writable external tables only allow INSERT operations – SELECT,
UPDATE, DELETE or TRUNCATE are not allowed.

The main difference between regular external tables and web external tables is their
data sources. Regular readable external tables access static flat files, whereas web
external tables access dynamic data sources – either on a web server or by executing
OS commands or scripts.

The FORMAT clause is used to describe how the external table files are formatted. Valid
file formats are delimited text (TEXT) for all protocols and comma separated values
(CSV) format for gpdist and html protocols, similar to the formatting options
available with the PostgreSQL COPY command. If the data in the file does not use the
default column delimiter, escape character, null string and so on, you must specify the
additional formatting options so that the data in the external file is read correctly by
Greenplum Database.

Parameters

READABLE | WRITABLE

Specifiies the type of external table, readable being the default. Readable external
tables are used for loading data into Greenplum Database. Writable external tables
are used for unloading data.

WEB

Creates a readable or wrtiable web external table definition in Greenplum Database.
There are two forms of readable web external tables – those that access files via the
http:// protocol or those that access data by executing OS commands. Writable
web external tables output data to an executable program that can accept an input
stream of data. Web external tables are not rescannable during query execution.

table_name

The name of the new external table.

column_name

The name of a column to create in the external table definition. Unlike regular
tables, external tables do not have column constraints or default values, so do not
specify those.
CREATE EXTERNAL TABLE 377

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
LIKE other_table

The LIKE clause specifies a table from which the new external table automatically
copies all column names, data types and Greenplum distribution policy. If the
original table specifies any column constraints or default column values, those will
not be copied over to the new external table definition.

data_type

The data type of the column.

LOCATION ('protocol://host[:port]/path/file' [, ...])

For readable external tables, specifies the URI of the external data source(s) to be
used to populate the external table or web table. Regular readable external tables
allow the gpfdist or file protocols. Web external tables allow the http protocol.
If port is omitted, port 8080 is assumed for http and gpfdist protocols, and port
9000 for the gphdfs protocol. If using the gpfdist protocol, the path is relative to
the directory from which gpfdist is serving files (the directory specified when you
started the gpfdist program). Also, gpfdist can use wildcards (or other C-style
pattern matching) to denote multiple files in a directory. For example:

'gpfdist://filehost:8081/*'

'gpfdist://masterhost/my_load_file'

'file://seghost1/dbfast1/external/myfile.txt'

'http://intranet.mycompany.com/finance/expenses.csv'

For writable external tables, specifies the URI location of the gpfdist process that
will collect data output from the Greenplum segments and write it to the named file.
The path is relative to the directory from which gpfdist is serving files (the
directory specified when you started the gpfdist program). If multiple gpfdist
locations are listed, the segments sending data will be evenly divided across the
available output locations. For example:

'gpfdist://outputhost:8081/data1.out',

'gpfdist://outputhost:8081/data2.out'

With two gpfdist locations listed as in the above example, half of the segments
would send their output data to the data1.out file and the other half to the
data2.out file.

EXECUTE 'command' [ON ...]

Allowed for readable web external tables or writable external tables only. For
readable web external tables, specifies the OS command to be executed by the
segment instances. The command can be a single OS command or a script. The ON
clause is used to specify which segment instances will execute the given command.

• ON ALL is the default. The command will be executed by every active
(primary) segment instance on all segment hosts in the Greenplum Database
system. If the command executes a script, that script must reside in the same
location on all of the segment hosts and be executable by the Greenplum
superuser (gpadmin).

• ON MASTER runs the command on the master host only.
CREATE EXTERNAL TABLE 378

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
• ON number means the command will be executed by the specified number
of segments. The particular segments are chosen randomly at runtime by the
Greenplum Database system. If the command executes a script, that script
must reside in the same location on all of the segment hosts and be executable
by the Greenplum superuser (gpadmin).

• HOST means the command will be executed by one segment on each segment
host (once per segment host), regardless of the number of active segment
instances per host.

• HOST segment_hostname means the command will be executed by all
active (primary) segment instances on the specified segment host.

• SEGMENT segment_id means the command will be executed only once
by the specified segment. You can determine a segment instance’s ID by
looking at the content number in the system catalog table
gp_segment_configuration. The content ID of the Greenplum Database
master is always -1.

For writable external tables, the command specified in the EXECUTE clause must be
prepared to have data piped into it. Since all segments that have data to send will
write their output to the specified command or program, the only available option
for the ON clause is ON ALL.

FORMAT 'TEXT | CSV' (options)

Specifies the format of the external or web table data - either plain text (TEXT) or
comma separated values (CSV) format.

DELIMITER

Specifies a single ASCII character that separates columns within each row (line) of
data. The default is a tab character in TEXT mode, a comma in CSV mode. In TEXT
mode for readable external tables, the delimiter can be set to OFF for special use
cases in which unstructured data is loaded into a single-column table.

NULL

Specifies the string that represents a null value. The default is \N (backslash-N) in
TEXT mode, and an empty value with no quotations in CSV mode. You might prefer
an empty string even in TEXT mode for cases where you do not want to distinguish
nulls from empty strings. When using external and web tables, any data item that
matches this string will be considered a null value.

ESCAPE

Specifies the single character that is used for C escape sequences (such as
\n,\t,\100, and so on) and for escaping data characters that might otherwise be
taken as row or column delimiters. Make sure to choose an escape character that is
not used anywhere in your actual column data. The default escape character is a \
(backslash) for text-formatted files and a " (double quote) for csv-formatted files,
however it is possible to specify another character to represent an escape. It is also
possible to disable escaping in text-formatted files by specifying the value 'OFF' as
the escape value. This is very useful for data such as text-formatted web log data
that has many embedded backslashes that are not intended to be escapes.
CREATE EXTERNAL TABLE 379

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
NEWLINE

Specifies the newline used in your data files – LF (Line feed, 0x0A), CR (Carriage
return, 0x0D), or CRLF (Carriage return plus line feed, 0x0D 0x0A). If not specified,
a Greenplum Database segment will detect the newline type by looking at the first
row of data it receives and using the first newline type encountered.

HEADER

For readable external tables, specifies that the first line in the data file(s) is a header
row (contains the names of the table columns) and should not be included as data for
the table. If using multiple data source files, all files must have a header row.

QUOTE

Specifies the quotation character for CSV mode. The default is double-quote (").

FORCE NOT NULL

In CSV mode, processes each specified column as though it were quoted and hence
not a NULL value. For the default null string in CSV mode (nothing between two
delimiters), this causes missing values to be evaluated as zero-length strings.

FORCE QUOTE

In CSV mode for writable external tables, forces quoting to be used for all non-NULL
values in each specified column. NULL output is never quoted.

FILL MISSING FIELDS

In both TEXT and CSV mode for readable external tables, specifying FILL MISSING
FIELDS will set missing trailing field values to NULL (instead of reporting an error)
when a row of data has missing data fields at the end of a line or row. Blank rows,
fields with a NOT NULL constraint, and trailing delimiters on a line will still report an
error.

ENCODING 'encoding'

Character set encoding to use for the external table. Specify a string constant (such
as 'SQL_ASCII'), an integer encoding number, or DEFAULT to use the default client
encoding. See “Character Set Support” on page 974.

LOG ERRORS INTO error_table

This is an optional clause that may precede a SEGMENT REJECT LIMIT clause. It
specifies an error table where rows with formatting errors will be logged when
running in single row error isolation mode. You can then examine this error table to
see error rows that were not loaded (if any). If the error_table specified already
exists, it will be used. If it does not exist, it will be automatically generated.

SEGMENT REJECT LIMIT count [ROWS | PERCENT]

Runs a SELECT from a readable external table operation in single row error isolation
mode. If the input rows have format errors they will be discarded provided that the
reject limit count is not reached on any Greenplum segment instance during the load
operation. The reject limit count can be specified as number of rows (the default) or
percentage of total rows (1-100). If PERCENT is used, the percentage of rows per
CREATE EXTERNAL TABLE 380

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
segment is calculated based on the parameter gp_reject_percent_threshold
(default is 300 rows). Constraint errors such as violation of a NOT NULL, CHECK, or
UNIQUE constraint will still be handled in ‘all-or-nothing’ mode, meaning a single
constraint error will cause the entire external table operation to fail. If the limit is not
reached, all good rows will be processed and any error rows discarded.

DISTRIBUTED BY (column, [...])
DISTRIBUTED RANDOMLY

Used to declare the Greenplum Database distribution policy for a writable external
table. By default, writable external tables are distributed randomly. If the source
table you are exporting data from has a hash distribution policy, defining the same
distribution key column(s) for the writable external table will improve unload
performance by eliminating the need to move rows over the interconnect. When you
issue an unload command such as INSERT INTO wex_table SELECT * FROM
source_table, the rows that are unloaded can be sent directly from the segments
to the output location if the two tables have the same hash distribution policy.

Examples

Start the gpfdist file server program in the background on port 8081 serving files
from directory /var/data/staging:

gpfdist -p 8081 -d /var/data/staging -l /home/gpadmin/log &

Create a readable external table named ext_customer using the gpfdist protocol and
any text formatted files (*.txt) found in the gpfdist directory. The files are
formatted with a pipe (|) as the column delimiter and an empty space as null. Also
access the external table in single row error isolation mode:

CREATE EXTERNAL TABLE ext_customer
 (id int, name text, sponsor text)
 LOCATION ('gpfdist://filehost:8081/*.txt')
 FORMAT 'TEXT' (DELIMITER '|' NULL ' ')
 LOG ERRORS INTO err_customer SEGMENT REJECT LIMIT 5;

Create the same readable external table definition as above, but with CSV formatted
files:

CREATE EXTERNAL TABLE ext_customer
 (id int, name text, sponsor text)
 LOCATION ('gpfdist://filehost:8081/*.csv')
 FORMAT 'CSV' (DELIMITER ',');

Create a readable external table named ext_expenses using the file protocol and
several CSV formatted files that have a header row:

CREATE EXTERNAL TABLE ext_expenses (name text, date date,
amount float4, category text, description text)
LOCATION (
'file://seghost1/dbfast/external/expenses1.csv',
'file://seghost1/dbfast/external/expenses2.csv',
'file://seghost2/dbfast/external/expenses3.csv',
'file://seghost2/dbfast/external/expenses4.csv',
'file://seghost3/dbfast/external/expenses5.csv',
CREATE EXTERNAL TABLE 381

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
'file://seghost3/dbfast/external/expenses6.csv',
)
FORMAT 'CSV' (HEADER);

Create a readable web external table that executes a script once per segment host:

CREATE EXTERNAL WEB TABLE log_output (linenum int, message
text) EXECUTE '/var/load_scripts/get_log_data.sh' ON HOST
 FORMAT 'TEXT' (DELIMITER '|');

Create a writable external table named sales_out that uses gpfdist to write output
data to a file named sales.out. The files are formatted with a pipe (|) as the column
delimiter and an empty space as null.

CREATE WRITABLE EXTERNAL TABLE sales_out (LIKE sales)

 LOCATION ('gpfdist://etl1:8081/sales.out')

 FORMAT 'TEXT' (DELIMITER '|' NULL ' ')

 DISTRIBUTED BY (txn_id);

Create a writable external web table that pipes output data received by the segments to
an executable script named to_adreport_etl.sh:

CREATE WRITABLE EXTERNAL WEB TABLE campaign_out
(LIKE campaign)
 EXECUTE '/var/unload_scripts/to_adreport_etl.sh'
 FORMAT 'TEXT' (DELIMITER '|');

Use the writable external table defined above to unload selected data:

INSERT INTO campaign_out SELECT * FROM campaign WHERE
customer_id=123;

Compatibility

CREATE EXTERNAL TABLE is a Greenplum Database extension. The SQL standard
makes no provisions for external tables.

See Also

CREATE TABLE AS, CREATE TABLE, COPY, SELECT INTO, INSERT
CREATE EXTERNAL TABLE 382

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
CREATE FUNCTION
Defines a new function.

Synopsis
CREATE [OR REPLACE] FUNCTION name
 ([[argmode] [argname] argtype [, ...]])
 [RETURNS [SETOF] rettype]
 { LANGUAGE langname
 | IMMUTABLE | STABLE | VOLATILE
 | CALLED ON NULL INPUT | RETURNS NULL ON NULL INPUT | STRICT
 | [EXTERNAL] SECURITY INVOKER | [EXTERNAL] SECURITY DEFINER
 | AS 'definition'
 | AS 'obj_file', 'link_symbol' } ...

Description

CREATE FUNCTION defines a new function. CREATE OR REPLACE FUNCTION will
either create a new function, or replace an existing definition.

The name of the new function must not match any existing function with the same
argument types in the same schema. However, functions of different argument types
may share a name (overloading).

To update the definition of an existing function, use CREATE OR REPLACE FUNCTION.
It is not possible to change the name or argument types of a function this way (this
would actually create a new, distinct function). Also, CREATE OR REPLACE
FUNCTION will not let you change the return type of an existing function. To do that,
you must drop and recreate the function. If you drop and then recreate a function, you
will have to drop existing objects (rules, views, triggers, and so on) that refer to the old
function. Use CREATE OR REPLACE FUNCTION to change a function definition
without breaking objects that refer to the function.

For more information about creating functions, see the User Defined Functions
section of the PostgreSQL documentation.

Limited Use of VOLATILE and STABLE Functions

To prevent data from becoming out-of-sync across the segments in Greenplum
Database, any function classified as STABLE or VOLATILE cannot be executed at the
segment level if it contains SQL or modifies the database in any way. For example,
functions such as random() or timeofday() are not allowed to execute on
distributed data in Greenplum Database because they could potentially cause
inconsistent data between the segment instances.

To ensure data consistency, VOLATILE and STABLE functions can safely be used in
statements that are evaluated on and execute from the master. For example, the
following statements are always executed on the master (statements without a FROM
clause):

SELECT setval('myseq', 201);

SELECT foo();
CREATE FUNCTION 383

http://www.postgresql.org/docs/8.2/static/xfunc.html

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
In cases where a statement has a FROM clause containing a distributed table and the
function used in the FROM clause simply returns a set of rows, execution may be
allowed on the segments:

SELECT * FROM foo();

One exception to this rule are functions that return a table reference (rangeFuncs) or
functions that use the refCursor data type. These types of functions cannot be used
at all in Greenplum Database. However, they are not very commonly used anyways.

Parameters

name

The name (optionally schema-qualified) of the function to create.

argmode

The mode of an argument: either IN, OUT, or INOUT. If omitted, the default is IN.

argname

The name of an argument. Some languages (currently only PL/pgSQL) let you use
the name in the function body. For other languages the name of an input argument is
just extra documentation. But the name of an output argument is significant, since it
defines the column name in the result row type. (If you omit the name for an output
argument, the system will choose a default column name.)

argtype

The data type(s) of the function's arguments (optionally schema-qualified), if any.
The argument types may be base, composite, or domain types, or may reference the
type of a table column.

Depending on the implementation language it may also be allowed to specify
pseudotypes such as cstring. Pseudotypes indicate that the actual argument type is
either incompletely specified, or outside the set of ordinary SQL data types.

The type of a column is referenced by writing tablename.columnname%TYPE.
Using this feature can sometimes help make a function independent of changes to
the definition of a table.

rettype

The return data type (optionally schema-qualified). The return type may be a base,
composite, or domain type, or may reference the type of a table column. Depending
on the implementation language it may also be allowed to specify pseudotypes such
as cstring. If the function is not supposed to return a value, specify void as the
return type.

When there are OUT or INOUT parameters, the RETURNS clause may be omitted. If
present, it must agree with the result type implied by the output parameters: RECORD
if there are multiple output parameters, or the same type as the single output
parameter.
CREATE FUNCTION 384

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
The SETOF modifier indicates that the function will return a set of items, rather than
a single item.

The type of a column is referenced by writing tablename.columnname%TYPE.

langname

The name of the language that the function is implemented in. May be SQL, C,
internal, or the name of a user-defined procedural language. See CREATE
LANGUAGE for the procedural languages supported in Greenplum Database. For
backward compatibility, the name may be enclosed by single quotes.

IMMUTABLE
STABLE
VOLATILE

These attributes inform the query optimizer about the behavior of the function. At
most one choice may be specified. If none of these appear, VOLATILE is the default
assumption. Since Greenplum Database currently has limited use of VOLATILE
functions, if a function is truly IMMUTABLE, you must declare it as so to be able to
use it without restrictions.

IMMUTABLE indicates that the function cannot modify the database and always
returns the same result when given the same argument values. It does not do
database lookups or otherwise use information not directly present in its argument
list. If this option is given, any call of the function with all-constant arguments can
be immediately replaced with the function value.

STABLE indicates that the function cannot modify the database, and that within a
single table scan it will consistently return the same result for the same argument
values, but that its result could change across SQL statements. This is the
appropriate selection for functions whose results depend on database lookups,
parameter values (such as the current time zone), and so on. Also note that the
current_timestamp family of functions qualify as stable, since their values do not
change within a transaction.

VOLATILE indicates that the function value can change even within a single table
scan, so no optimizations can be made. Relatively few database functions are
volatile in this sense; some examples are random(), currval(), timeofday().
But note that any function that has side-effects must be classified volatile, even if its
result is quite predictable, to prevent calls from being optimized away; an example
is setval().

CALLED ON NULL INPUT
RETURNS NULL ON NULL INPUT
STRICT

CALLED ON NULL INPUT (the default) indicates that the function will be called
normally when some of its arguments are null. It is then the function author’s
responsibility to check for null values if necessary and respond appropriately.
RETURNS NULL ON NULL INPUT or STRICT indicates that the function always
returns null whenever any of its arguments are null. If this parameter is specified, the
function is not executed when there are null arguments; instead a null result is
assumed automatically.
CREATE FUNCTION 385

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
[EXTERNAL] SECURITY INVOKER
[EXTERNAL] SECURITY DEFINER

SECURITY INVOKER (the default) indicates that the function is to be executed with
the privileges of the user that calls it. SECURITY DEFINER specifies that the function
is to be executed with the privileges of the user that created it. The key word
EXTERNAL is allowed for SQL conformance, but it is optional since, unlike in SQL,
this feature applies to all functions not just external ones.

definition

A string constant defining the function; the meaning depends on the language. It
may be an internal function name, the path to an object file, an SQL command, or
text in a procedural language.

obj_file, link_symbol

This form of the AS clause is used for dynamically loadable C language functions
when the function name in the C language source code is not the same as the name
of the SQL function. The string obj_file is the name of the file containing the
dynamically loadable object, and link_symbol is the name of the function in the C
language source code. If the link symbol is omitted, it is assumed to be the same as
the name of the SQL function being defined. It is recommended to locate shared
libraries either relative to $libdir (which is located at $GPHOME/lib) or through
the dynamic library path (set by the dynamic_library_path server configuration
parameter). This simplifies version upgrades if the new installation is at a different
location.

Notes

Any compiled code (shared library files) for custom functions must be placed in the
same location on every host in your Greenplum Database array (master and all
segments). This location must also be in the LD_LIBRARY_PATH so that the server can
locate the files. It is recommended to locate shared libraries either relative to $libdir
(which is located at $GPHOME/lib) or through the dynamic library path (set by the
dynamic_library_path server configuration parameter) on all master segment
instances in the Greenplum array.

The full SQL type syntax is allowed for input arguments and return value. However,
some details of the type specification (such as the precision field for type numeric) are
the responsibility of the underlying function implementation and are not recognized or
enforced by the CREATE FUNCTION command.

Greenplum Database allows function overloading. The same name can be used for
several different functions so long as they have distinct argument types. However, the
C names of all functions must be different, so you must give overloaded C functions
different C names (for example, use the argument types as part of the C names).

Two functions are considered the same if they have the same names and input
argument types, ignoring any OUT parameters. Thus for example these declarations
conflict:

CREATE FUNCTION foo(int) ...

CREATE FUNCTION foo(int, out text) ...
CREATE FUNCTION 386

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
When repeated CREATE FUNCTION calls refer to the same object file, the file is only
loaded once. To unload and reload the file, use the LOAD command.

To be able to define a function, the user must have the USAGE privilege on the
language.

It is often helpful to use dollar quoting to write the function definition string, rather
than the normal single quote syntax. Without dollar quoting, any single quotes or
backslashes in the function definition must be escaped by doubling them. A
dollar-quoted string constant consists of a dollar sign ($), an optional tag of zero or
more characters, another dollar sign, an arbitrary sequence of characters that makes up
the string content, a dollar sign, the same tag that began this dollar quote, and a dollar
sign. Inside the dollar-quoted string, single quotes, backslashes, or any character can
be used without escaping. The string content is always written literally. For example,
here are two different ways to specify the string “Dianne’s horse” using dollar
quoting:

$$Dianne's horse$$

$SomeTag$Dianne's horse$SomeTag$

Examples

A very simple addition function:

CREATE FUNCTION add(integer, integer) RETURNS integer

 AS 'select $1 + $2;'

 LANGUAGE SQL

 IMMUTABLE

 RETURNS NULL ON NULL INPUT;

Increment an integer, making use of an argument name, in PL/pgSQL:

CREATE OR REPLACE FUNCTION increment(i integer) RETURNS
integer AS $$

 BEGIN

 RETURN i + 1;

 END;

$$ LANGUAGE plpgsql;

Return a record containing multiple output parameters:

CREATE FUNCTION dup(in int, out f1 int, out f2 text)

 AS $$ SELECT $1, CAST($1 AS text) || ' is text' $$

 LANGUAGE SQL;

SELECT * FROM dup(42);

You can do the same thing more verbosely with an explicitly named composite type:

CREATE TYPE dup_result AS (f1 int, f2 text);

CREATE FUNCTION dup(int) RETURNS dup_result

 AS $$ SELECT $1, CAST($1 AS text) || ' is text' $$

 LANGUAGE SQL;
CREATE FUNCTION 387

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
SELECT * FROM dup(42);

Compatibility

CREATE FUNCTION is defined in SQL:1999 and later. The Greenplum Database
version is similar but not fully compatible. The attributes are not portable, neither are
the different available languages.

For compatibility with some other database systems, argmode can be written either
before or after argname. But only the first way is standard-compliant.

See Also

ALTER FUNCTION, DROP FUNCTION, LOAD
CREATE FUNCTION 388

CREATE GROUP 389

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference

CREATE GROUP
Defines a new database role.

Synopsis
CREATE GROUP name [[WITH] option [...]]

where option can be:
 SUPERUSER | NOSUPERUSER
 | CREATEDB | NOCREATEDB
 | CREATEROLE | NOCREATEROLE
 | CREATEUSER | NOCREATEUSER
 | INHERIT | NOINHERIT
 | LOGIN | NOLOGIN
 | [ENCRYPTED | UNENCRYPTED] PASSWORD 'password'
 | VALID UNTIL 'timestamp'
 | IN ROLE rolename [, ...]
 | IN GROUP rolename [, ...]
 | ROLE rolename [, ...]
 | ADMIN rolename [, ...]
 | USER rolename [, ...]
 | SYSID uid

Description

As of Greenplum Database release 2.2, CREATE GROUP has been replaced by CREATE
ROLE, although it is still accepted for backwards compatibility.

Compatibility

There is no CREATE GROUP statement in the SQL standard.

See Also

CREATE ROLE

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
CREATE INDEX
Defines a new index.

Synopsis
CREATE [UNIQUE] INDEX name ON table
 [USING btree|bitmap|gist]
 ({column | (expression)} [opclass] [, ...])
 [WITH (FILLFACTOR = value)]
 [TABLESPACE tablespace]
 [WHERE predicate]

Description

CREATE INDEX constructs an index on the specified table. Indexes are primarily used
to enhance database performance (though inappropriate use can result in slower
performance).

The key field(s) for the index are specified as column names, or alternatively as
expressions written in parentheses. Multiple fields can be specified if the index
method supports multicolumn indexes.

An index field can be an expression computed from the values of one or more
columns of the table row. This feature can be used to obtain fast access to data based
on some transformation of the basic data. For example, an index computed on
upper(col) would allow the clause WHERE upper(col) = 'JIM' to use an index.

Greenplum Database provides the index methods B-tree, bitmap, and GiST. Users can
also define their own index methods, but that is fairly complicated.

When the WHERE clause is present, a partial index is created. A partial index is an
index that contains entries for only a portion of a table, usually a portion that is more
useful for indexing than the rest of the table. For example, if you have a table that
contains both billed and unbilled orders where the unbilled orders take up a small
fraction of the total table and yet is most often selected, you can improve performance
by creating an index on just that portion.

The expression used in the WHERE clause may refer only to columns of the underlying
table, but it can use all columns, not just the ones being indexed. Subqueries and
aggregate expressions are also forbidden in WHERE. The same restrictions apply to
index fields that are expressions.

All functions and operators used in an index definition must be immutable. Their
results must depend only on their arguments and never on any outside influence (such
as the contents of another table or a parameter value). This restriction ensures that the
behavior of the index is well-defined. To use a user-defined function in an index
expression or WHERE clause, remember to mark the function IMMUTABLE when you
create it.
CREATE INDEX 390

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
Parameters

UNIQUE

Checks for duplicate values in the table when the index is created and each time data
is added. Duplicate entries will generate an error. Unique indexes only apply to
B-tree indexes. In Greenplum Database, unique indexes are allowed only if the
columns of the index key are the same as (or a superset of) the Greenplum
distribution key. On partitioned tables, a unique index is only supported within an
individual partition - not across all partitions.

name

The name of the index to be created. The index is always created in the same schema
as its parent table.

table

The name (optionally schema-qualified) of the table to be indexed.

btree | bitmap | gist

The name of the index method to be used. Choices are btree, bitmap, and gist.
The default method is btree.

column

The name of a column of the table on which to create the index. Only the B-tree,
bitmap, and GiST index methods support multicolumn indexes.

expression

An expression based on one or more columns of the table. The expression usually
must be written with surrounding parentheses, as shown in the syntax. However, the
parentheses may be omitted if the expression has the form of a function call.

opclass

The name of an operator class. The operator class identifies the operators to be used
by the index for that column. For example, a B-tree index on four-byte integers
would use the int4_ops class (this operator class includes comparison functions for
four-byte integers). In practice the default operator class for the column’s data type
is usually sufficient. The main point of having operator classes is that for some data
types, there could be more than one meaningful ordering. For example, a
complex-number data type could be sorted by either absolute value or by real part.
We could do this by defining two operator classes for the data type and then
selecting the proper class when making an index.

FILLFACTOR

The fillfactor for an index is a percentage that determines how full the index method
will try to pack index pages. For B-trees, leaf pages are filled to this percentage
during initial index build, and also when extending the index at the right (largest key
values). If pages subsequently become completely full, they will be split, leading to
gradual degradation in the index’s efficiency.
CREATE INDEX 391

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
B-trees use a default fillfactor of 90, but any value from 10 to 100 can be selected. If
the table is static then fillfactor 100 is best to minimize the index's physical size, but
for heavily updated tables a smaller fillfactor is better to minimize the need for page
splits. The other index methods use fillfactor in different but roughly analogous
ways; the default fillfactor varies between methods.

tablespace

The tablespace in which to create the index. If not specified, the default tablespace is
used.

predicate

The constraint expression for a partial index.

Notes

UNIQUE indexes are allowed only if the index columns are the same as (or a superset
of) the Greenplum distribution key columns. On partitioned tables, a unique index is
only supported within an individual partition - not across all partitions.

UNIQUE indexes are not allowed on append-only tables.

Indexes are not used for IS NULL clauses by default. The best way to use indexes in
such cases is to create a partial index using an IS NULL predicate.

Prior releases of Greenplum Database also had an R-tree index method. This method
has been removed because it had no significant advantages over the GiST method. If
USING rtree is specified, CREATE INDEX will interpret it as USING gist.

For more information on the GiST index type, refer to the PostgreSQL documentation.

The use of hash and GIN indexes has been disabled in Greenplum Database.

Examples

To create a B-tree index on the column title in the table films:

CREATE UNIQUE INDEX title_idx ON films (title);

To create a bitmap index on the column gender in the table employee:

CREATE INDEX gender_bmp_idx ON employee USING bitmap
(gender);

To create an index on the expression lower(title), allowing efficient case-insensitive
searches:

CREATE INDEX lower_title_idx ON films ((lower(title)));

To create an index with non-default fill factor:

CREATE UNIQUE INDEX title_idx ON films (title) WITH
(fillfactor = 70);

To create an index on the column code in the table films and have the index reside in
the tablespace indexspace:

CREATE INDEX code_idx ON films(code) TABLESPACE indexspace;
CREATE INDEX 392

http://www.postgresql.org/docs/8.2/static/indexes-types.html

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
Compatibility

CREATE INDEX is a Greenplum Database language extension. There are no provisions
for indexes in the SQL standard.

Greenplum Database does not support the concurrent creation of indexes
(CONCURRENTLY keyword not supported).

See Also

ALTER INDEX, DROP INDEX, CREATE TABLE, CREATE OPERATOR CLASS
CREATE INDEX 393

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
CREATE LANGUAGE
Defines a new procedural language.

Synopsis
CREATE [PROCEDURAL] LANGUAGE name

CREATE [TRUSTED] [PROCEDURAL] LANGUAGE name
 HANDLER call_handler [VALIDATOR valfunction]

Description

CREATE LANGUAGE registers a new procedural language with a Greenplum database.
Subsequently, functions and trigger procedures can be defined in this new language.
You must be a superuser to register a new language. The PL/pgSQL language is
already registered in all databases by default.

CREATE LANGUAGE effectively associates the language name with a call handler that is
responsible for executing functions written in that language. For a function written in
a procedural language (a language other than C or SQL), the database server has no
built-in knowledge about how to interpret the function’s source code. The task is
passed to a special handler that knows the details of the language. The handler could
either do all the work of parsing, syntax analysis, execution, and so on or it could
serve as a bridge between Greenplum Database and an existing implementation of a
programming language. The handler itself is a C language function compiled into a
shared object and loaded on demand, just like any other C function. There are
currently four procedural language packages included in the standard Greenplum
Database distribution: PL/pgSQL, PL/Perl, PL/Python, and PL/Java. A language
handler has also been added for PL/R, but the PL/R language package is not
pre-installed with Greenplum Database. See the section on Procedural Languages in
the PostgreSQL documentation for more information on developing functions using
these procedural languages.

Users who wish to use the PL/Perl procedural language must make sure that the
systems that run Greenplum Database (master and all segments) have a shared version
of Perl installed. For 64-bit systems, you will need a 64-bit shared version of Perl.
Solaris does not have a 64-bit shared version of Perl by default. Most Linux
distributions typically have a shared Perl and Python preinstalled in /usr/lib64 (or
/usr/lib on 32-bit systems). Greenplum provides a 64-bit shared version of Perl for
both Solaris and Linux platforms. If you need a 64-bit shared Perl install package,
download it from the EMC Download Center.

Users who wish to use the PL/Java procedural language must make sure that the
systems that run Greenplum Database (master and all segments) have a JDK version
1.6 or higher installed. Any Java archive (jar) files you are using must be added to
$GPHOME/lib/postgresql/java and also listed in the pljava_classpath server
configuration parameter. See the PLJAVA_README file (located in
$GPHOME/share/postgresql/pljava) for more information on using PL/Java in
Greenplum Database.
CREATE LANGUAGE 394

http://www.postgresql.org/docs/8.2/static/xplang.html
https://emc.subscribenet.com

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
Users who wish to use the PL/R procedural language must make sure that the systems
that run Greenplum Database (master and all segments) have the R language installed
and the PL/R package library (plr.so) added to their Greenplum installation on all
hosts. Greenplum provides compiled packages for R and PL/R that you can install.
Contact Greenplum Customer Support if you need the install packages for R or PL/R.

There are two forms of the CREATE LANGUAGE command. In the first form, the user
supplies just the name of the desired language, and the Greenplum Database server
consults the pg_pltemplate system catalog to determine the correct parameters. In the
second form, the user supplies the language parameters along with the language name.
The second form can be used to create a language that is not defined in pg_pltemplate.

When the server finds an entry in the pg_pltemplate catalog for the given language
name, it will use the catalog data even if the command includes language parameters.
This behavior simplifies loading of old dump files, which are likely to contain
out-of-date information about language support functions.

Parameters

TRUSTED

Ignored if the server has an entry for the specified language name in pg_pltemplate.
Specifies that the call handler for the language is safe and does not offer an
unprivileged user any functionality to bypass access restrictions. If this key word is
omitted when registering the language, only users with the superuser privilege can
use this language to create new functions.

PROCEDURAL

This is a noise word.

name

The name of the new procedural language. The language name is case insensitive.
The name must be unique among the languages in the database. Built-in support is
included for plpgsql, plperl, plpython, plpythonu, and plr. plpgsql is
already installed by default in Greenplum Database.

HANDLER call_handler

Ignored if the server has an entry for the specified language name in pg_pltemplate.
The name of a previously registered function that will be called to execute the
procedural language functions. The call handler for a procedural language must be
written in a compiled language such as C with version 1 call convention and
registered with Greenplum Database as a function taking no arguments and
returning the language_handler type, a placeholder type that is simply used to
identify the function as a call handler.

VALIDATOR valfunction

Ignored if the server has an entry for the specified language name in pg_pltemplate.
valfunction is the name of a previously registered function that will be called
when a new function in the language is created, to validate the new function. If no
CREATE LANGUAGE 395

mailto://support@greenplum.com
mailto://support@greenplum.com

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
validator function is specified, then a new function will not be checked when it is
created. The validator function must take one argument of type oid, which will be
the OID of the to-be-created function, and will typically return void.

A validator function would typically inspect the function body for syntactical
correctness, but it can also look at other properties of the function, for example if the
language cannot handle certain argument types. To signal an error, the validator
function should use the ereport() function. The return value of the function is
ignored.

Notes

The PL/pgSQL language is installed by default in Greenplum Database.

The system catalog pg_language records information about the currently installed
languages.

To create functions in a procedural language, a user must have the USAGE privilege for
the language. By default, USAGE is granted to PUBLIC (everyone) for trusted
languages. This may be revoked if desired.

Procedural languages are local to individual databases. However, a language can be
installed into the template1 database, which will cause it to be available automatically
in all subsequently-created databases.

The call handler function and the validator function (if any) must already exist if the
server does not have an entry for the language in pg_pltemplate. But when there is an
entry, the functions need not already exist; they will be automatically defined if not
present in the database.

Any shared library that implements a language must be located in the same
LD_LIBRARY_PATH location on all segment hosts in your Greenplum Database array.

Examples

The preferred way of creating any of the standard procedural languages:

CREATE LANGUAGE plpgsql;

CREATE LANGUAGE plr;

For a language not known in the pg_pltemplate catalog:

CREATE FUNCTION plsample_call_handler() RETURNS
language_handler

 AS '$libdir/plsample'

 LANGUAGE C;

CREATE LANGUAGE plsample

 HANDLER plsample_call_handler;

Compatibility

CREATE LANGUAGE is a Greenplum Database extension.
CREATE LANGUAGE 396

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
See Also

ALTER LANGUAGE, CREATE FUNCTION, DROP LANGUAGE
CREATE LANGUAGE 397

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
CREATE OPERATOR
Defines a new operator.

Synopsis
CREATE OPERATOR name (
 PROCEDURE = funcname
 [, LEFTARG = lefttype] [, RIGHTARG = righttype]
 [, COMMUTATOR = com_op] [, NEGATOR = neg_op]
 [, RESTRICT = res_proc] [, JOIN = join_proc]
 [, HASHES] [, MERGES]
 [, SORT1 = left_sort_op] [, SORT2 = right_sort_op]
 [, LTCMP = less_than_op] [, GTCMP = greater_than_op])

Description

CREATE OPERATOR defines a new operator. The user who defines an operator becomes
its owner.

The operator name is a sequence of up to NAMEDATALEN-1 (63 by default) characters
from the following list: + - * / < > = ~ ! @ # % ^ & | ` ?

There are a few restrictions on your choice of name:

• -- and /* cannot appear anywhere in an operator name, since they will be taken
as the start of a comment.

• A multicharacter operator name cannot end in + or -, unless the name also
contains at least one of these characters: ~ ! @ # % ^ & | ` ?

For example, @- is an allowed operator name, but *- is not. This restriction allows
Greenplum Database to parse SQL-compliant commands without requiring spaces
between tokens.

The operator != is mapped to <> on input, so these two names are always equivalent.

At least one of LEFTARG and RIGHTARG must be defined. For binary operators, both
must be defined. For right unary operators, only LEFTARG should be defined, while for
left unary operators only RIGHTARG should be defined.

The funcname procedure must have been previously defined using CREATE
FUNCTION, must be IMMUTABLE, and must be defined to accept the correct number of
arguments (either one or two) of the indicated types.

The other clauses specify optional operator optimization clauses. These clauses should
be provided whenever appropriate to speed up queries that use the operator. But if you
provide them, you must be sure that they are correct. Incorrect use of an optimization
clause can result in server process crashes, subtly wrong output, or other unexpected
results. You can always leave out an optimization clause if you are not sure about it.
CREATE OPERATOR 398

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
Parameters

name

The (optionally schema-qualified) name of the operator to be defined. Two
operators in the same schema can have the same name if they operate on different
data types.

funcname

The function used to implement this operator (must be an IMMUTABLE function).

lefttype

The data type of the operator’s left operand, if any. This option would be omitted for
a left-unary operator.

righttype

The data type of the operator’s right operand, if any. This option would be omitted
for a right-unary operator.

com_op

The optional COMMUTATOR clause names an operator that is the commutator of the
operator being defined. We say that operator A is the commutator of operator B if (x
A y) equals (y B x) for all possible input values x, y. Notice that B is also the
commutator of A. For example, operators < and > for a particular data type are
usually each others commutators, and operator + is usually commutative with itself.
But operator - is usually not commutative with anything. The left operand type of a
commutable operator is the same as the right operand type of its commutator, and
vice versa. So the name of the commutator operator is all that needs to be provided
in the COMMUTATOR clause.

neg_op

The optional NEGATOR clause names an operator that is the negator of the operator
being defined. We say that operator A is the negator of operator B if both return
Boolean results and (x A y) equals NOT (x B y) for all possible inputs x, y. Notice
that B is also the negator of A. For example, < and >= are a negator pair for most
data types. An operator’s negator must have the same left and/or right operand types
as the operator to be defined, so only the operator name need be given in the
NEGATOR clause.

res_proc

The optional RESTRICT names a restriction selectivity estimation function for the
operator. Note that this is a function name, not an operator name. RESTRICT clauses
only make sense for binary operators that return boolean. The idea behind a
restriction selectivity estimator is to guess what fraction of the rows in a table will
satisfy a WHERE-clause condition of the form:

column OP constant
CREATE OPERATOR 399

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
for the current operator and a particular constant value. This assists the optimizer by
giving it some idea of how many rows will be eliminated by WHERE clauses that have
this form.

You can usually just use one of the following system standard estimator functions
for many of your own operators:

eqsel for =

neqsel for <>

scalarltsel for < or <=

scalargtsel for > or >=

join_proc

The optional JOIN clause names a join selectivity estimation function for the
operator. Note that this is a function name, not an operator name. JOIN clauses only
make sense for binary operators that return boolean. The idea behind a join
selectivity estimator is to guess what fraction of the rows in a pair of tables will
satisfy a WHERE-clause condition of the form

table1.column1 OP table2.column2

for the current operator. This helps the optimizer by letting it figure out which of
several possible join sequences is likely to take the least work.

You can usually just use one of the following system standard join selectivity
estimator functions for many of your own operators:

eqjoinsel for =

neqjoinsel for <>

scalarltjoinsel for < or <=

scalargtjoinsel for > or >=

areajoinsel for 2D area-based comparisons

positionjoinsel for 2D position-based comparisons

contjoinsel for 2D containment-based comparisons

HASHES

The optional HASHES clause tells the system that it is permissible to use the hash join
method for a join based on this operator. HASHES only makes sense for a binary
operator that returns boolean. The hash join operator can only return true for pairs
of left and right values that hash to the same hash code. If two values get put in
different hash buckets, the join will never compare them at all, implicitly assuming
that the result of the join operator must be false. So it never makes sense to specify
HASHES for operators that do not represent equality.

To be marked HASHES, the join operator must appear in a hash index operator class.
Attempts to use the operator in hash joins will fail at run time if no such operator
class exists. The system needs the operator class to find the data-type-specific hash
function for the operator’s input data type. You must also supply a suitable hash
CREATE OPERATOR 400

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
function before you can create the operator class. Care should be exercised when
preparing a hash function, because there are machine-dependent ways in which it
might fail to do the right thing.

MERGES

The MERGES clause, if present, tells the system that it is permissible to use the
merge-join method for a join based on this operator. MERGES only makes sense for a
binary operator that returns boolean, and in practice the operator must represent
equality for some data type or pair of data types.

Merge join is based on the idea of sorting the left- and right-hand tables into order
and then scanning them in parallel. So, both data types must be capable of being
fully ordered, and the join operator must be one that can only succeed for pairs of
values that fall at the same place in the sort order. In practice this means that the join
operator must behave like equality. It is possible to merge-join two distinct data
types so long as they are logically compatible. For example, the
smallint-versus-integer equality operator is merge-joinable. We only need sorting
operators that will bring both data types into a logically compatible sequence.

Execution of a merge join requires that the system be able to identify four operators
related to the merge-join equality operator: less-than comparison for the left operand
data type, less-than comparison for the right operand data type, less-than
comparison between the two data types, and greater-than comparison between the
two data types. It is possible to specify these operators individually by name, as the
SORT1, SORT2, LTCMP, and GTCMP options respectively. The system will fill in the
default names if any of these are omitted when MERGES is specified.

left_sort_op

If this operator can support a merge join, the less-than operator that sorts the
left-hand data type of this operator. < is the default if not specified.

right_sort_op

If this operator can support a merge join, the less-than operator that sorts the
right-hand data type of this operator. < is the default if not specified.

less_than_op

If this operator can support a merge join, the less-than operator that compares the
input data types of this operator. < is the default if not specified.

greater_than_op

If this operator can support a merge join, the greater-than operator that compares the
input data types of this operator. > is the default if not specified.

To give a schema-qualified operator name in optional arguments, use the OPERATOR()
syntax, for example:

COMMUTATOR = OPERATOR(myschema.===) ,

Notes

Any functions used to implement the operator must be defined as IMMUTABLE.
CREATE OPERATOR 401

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
Examples

Here is an example of creating an operator for adding two complex numbers,
assuming we have already created the definition of type complex. First define the
function that does the work, then define the operator:

CREATE FUNCTION complex_add(complex, complex)

 RETURNS complex

 AS 'filename', 'complex_add'

 LANGUAGE C IMMUTABLE STRICT;

CREATE OPERATOR + (

 leftarg = complex,

 rightarg = complex,

 procedure = complex_add,

 commutator = +

);

To use this operator in a query:

SELECT (a + b) AS c FROM test_complex;

Compatibility

CREATE OPERATOR is a Greenplum Database language extension. The SQL standard
does not provide for user-defined operators.

See Also

CREATE FUNCTION, CREATE TYPE, ALTER OPERATOR, DROP OPERATOR
CREATE OPERATOR 402

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
CREATE OPERATOR CLASS
Defines a new operator class.

Synopsis
CREATE OPERATOR CLASS name [DEFAULT] FOR TYPE data_type
 USING index_method AS
 {
 OPERATOR strategy_number op_name [(op_type, op_type)] [RECHECK]
 | FUNCTION support_number funcname (argument_type [, ...])
 | STORAGE storage_type
 } [, ...]

Description

CREATE OPERATOR CLASS creates a new operator class. An operator class defines
how a particular data type can be used with an index. The operator class specifies that
certain operators will fill particular roles or strategies for this data type and this index
method. The operator class also specifies the support procedures to be used by the
index method when the operator class is selected for an index column. All the
operators and functions used by an operator class must be defined before the operator
class is created. Any functions used to implement the operator class must be defined
as IMMUTABLE.

CREATE OPERATOR CLASS does not presently check whether the operator class
definition includes all the operators and functions required by the index method, nor
whether the operators and functions form a self-consistent set. It is the user’s
responsibility to define a valid operator class.

You must be a superuser to create an operator class.

Parameters

name

The (optionally schema-qualified) name of the operator class to be defined. Two
operator classes in the same schema can have the same name only if they are for
different index methods.

DEFAULT

Makes the operator class the default operator class for its data type. At most one
operator class can be the default for a specific data type and index method.

data_type

The column data type that this operator class is for.

index_method

The name of the index method this operator class is for. Choices are btree, bitmap,
and gist.
CREATE OPERATOR CLASS 403

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
strategy_number

The operators associated with an operator class are identified by strategy numbers,
which serve to identify the semantics of each operator within the context of its
operator class. For example, B-trees impose a strict ordering on keys, lesser to
greater, and so operators like less than and greater than or equal to are interesting
with respect to a B-tree. These strategies can be thought of as generalized operators.
Each operator class specifies which actual operator corresponds to each strategy for
a particular data type and interpretation of the index semantics. The corresponding
strategy numbers for each index method are as follows:

Table A.1 B-tree and Bitmap Strategies

Operation Strategy Number

less than 1

less than or equal 2

equal 3

greater than or equal 4

greater than 5

Table A.2 GiST Two-Dimensional Strategies (R-Tree)

Operation Strategy Number

strictly left of 1

does not extend to right of 2

overlaps 3

does not extend to left of 4

strictly right of 5

same 6

contains 7

contained by 8

does not extend above 9

strictly below 10

strictly above 11

does not extend below 12

operator_name

The name (optionally schema-qualified) of an operator associated with the operator
class.

op_type

The operand data type(s) of an operator, or NONE to signify a left-unary or
right-unary operator. The operand data types may be omitted in the normal case
where they are the same as the operator class data type.
CREATE OPERATOR CLASS 404

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
RECHECK

If present, the index is “lossy” for this operator, and so the rows retrieved using the
index must be rechecked to verify that they actually satisfy the qualification clause
involving this operator.

support_number

Index methods require additional support routines in order to work. These
operations are administrative routines used internally by the index methods. As with
strategies, the operator class identifies which specific functions should play each of
these roles for a given data type and semantic interpretation. The index method
defines the set of functions it needs, and the operator class identifies the correct
functions to use by assigning them to the support function numbers as follows:

Table A.3 B-tree and Bitmap Support Functions

Function Support Number

Compare two keys and return an integer less than zero, zero, or greater
than zero, indicating whether the first key is less than, equal to, or
greater than the second.

1

Table A.4 GiST Support Functions

Function Support Number

consistent - determine whether key satisfies the query qualifier. 1

union - compute union of a set of keys. 2

compress - compute a compressed representation of a key or value to
be indexed.

3

decompress - compute a decompressed representation of a
compressed key.

4

penalty - compute penalty for inserting new key into subtree with given
subtree’s key.

5

picksplit - determine which entries of a page are to be moved to the new
page and compute the union keys for resulting pages.

6

equal - compare two keys and return true if they are equal. 7

funcname

The name (optionally schema-qualified) of a function that is an index method
support procedure for the operator class.

argument_types

The parameter data type(s) of the function.

storage_type

The data type actually stored in the index. Normally this is the same as the column
data type, but the GiST index method allows it to be different. The STORAGE clause
must be omitted unless the index method allows a different type to be used.
CREATE OPERATOR CLASS 405

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
Notes

Because the index machinery does not check access permissions on functions before
using them, including a function or operator in an operator class is the same as
granting public execute permission on it. This is usually not an issue for the sorts of
functions that are useful in an operator class.

The operators should not be defined by SQL functions. A SQL function is likely to be
inlined into the calling query, which will prevent the optimizer from recognizing that
the query matches an index.

Any functions used to implement the operator class must be defined as IMMUTABLE.

Examples

The following example command defines a GiST index operator class for the data
type _int4 (array of int4):

CREATE OPERATOR CLASS gist__int_ops

 DEFAULT FOR TYPE _int4 USING gist AS

 OPERATOR 3 &&,

 OPERATOR 6 = RECHECK,

 OPERATOR 7 @>,

 OPERATOR 8 <@,

 OPERATOR 20 @@ (_int4, query_int),

 FUNCTION 1 g_int_consistent (internal, _int4, int4),

 FUNCTION 2 g_int_union (bytea, internal),

 FUNCTION 3 g_int_compress (internal),

 FUNCTION 4 g_int_decompress (internal),

 FUNCTION 5 g_int_penalty (internal, internal, internal),

 FUNCTION 6 g_int_picksplit (internal, internal),

 FUNCTION 7 g_int_same (_int4, _int4, internal);

Compatibility

CREATE OPERATOR CLASS is a Greenplum Database extension. There is no CREATE
OPERATOR CLASS statement in the SQL standard.

See Also

ALTER OPERATOR CLASS, DROP OPERATOR CLASS, CREATE FUNCTION
CREATE OPERATOR CLASS 406

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
CREATE OPERATOR CLASS 407

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
CREATE RESOURCE QUEUE
Defines a new resource queue.

Synopsis
CREATE RESOURCE QUEUE name WITH (queue_attribute=value [, ...])

where queue_attribute is:
 ACTIVE_STATEMENTS=integer
 [MAX_COST=float [COST_OVERCOMMIT={TRUE|FALSE}]]
 [MIN_COST=float]
 [PRIORITY={MIN|LOW|MEDIUM|HIGH|MAX}]
 [MEMORY_LIMIT='memory_units']

| MAX_COST=float [COST_OVERCOMMIT={TRUE|FALSE}]
 [ACTIVE_STATEMENTS=integer]
 [MIN_COST=float]
 [PRIORITY={MIN|LOW|MEDIUM|HIGH|MAX}]
 [MEMORY_LIMIT='memory_units']

Description

Creates a new resource queue for Greenplum Database workload management. A
resource queue must have either an ACTIVE_STATEMENTS or a MAX_COST value (or it
can have both). Only a superuser can create a resource queue.

Resource queues with an ACTIVE_STATEMENTS threshold set a maximum limit on the
number of queries that can be executed by roles assigned to that queue. It controls the
number of active queries that are allowed to run at the same time. The value for
ACTIVE_STATEMENTS should be an integer greater than 0.

Resource queues with a MAX_COST threshold set a maximum limit on the total cost of
queries that can be executed by roles assigned to that queue. Cost is measured in the
estimated total cost for the query as determined by the Greenplum Database query
planner (as shown in the EXPLAIN output for a query). Therefore, an administrator
must be familiar with the queries typically executed on the system in order to set an
appropriate cost threshold for a queue. Cost is measured in units of disk page fetches;
1.0 equals one sequential disk page read. The value for MAX_COST is specified as a
floating point number (for example 100.0) or can also be specified as an exponent (for
example 1e+2). If a resource queue is limited based on a cost threshold, then the
administrator can allow COST_OVERCOMMIT=TRUE (the default). This means that a
query that exceeds the allowed cost threshold will be allowed to run but only when the
system is idle. If COST_OVERCOMMIT=FALSE is specified, queries that exceed the cost
limit will always be rejected and never allowed to run. Specifying a value for
MIN_COST allows the administrator to define a cost for small queries that will be
exempt from resource queueing.

If a value is not defined for ACTIVE_STATEMENTS or MAX_COST, it is set to -1 by
default (meaning no limit). After defining a resource queue, you must assign roles to
the queue using the ALTER ROLE or CREATE ROLE command.
CREATE RESOURCE QUEUE 408

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
You can optionally assign a PRIORITY to a resource queue to control the relative share
of available CPU resources used by queries associated with the queue in relation to
other resource queues. If a value is not defined for PRIORITY, queries associated with
the queue have a default priority of MEDIUM.

Resource queues with an optional MEMORY_LIMIT threshold set a maximum limit on
the amount of memory that all queries submitted through a resource queue can
consume on a segment host. This determines the total amount of memory that all
worker processes of a query can consume on a segment host during query execution.

Greenplum recommends that MEMORY_LIMIT be used in conjunction with
ACTIVE_STATEMENTS rather than with MAX_COST. The default amount of memory
allotted per query on statement-based queues is: MEMORY_LIMIT /
ACTIVE_STATEMENTS. The default amount of memory allotted per query on
cost-based queues is: MEMORY_LIMIT * (query_cost / MAX_COST).

The default memory allotment can be overridden on a per-query basis using the
statement_mem server configuration parameter, provided that MEMORY_LIMIT or
max_statement_mem is not exceeded. For example, to allocate more memory to a
particular query:

=> SET statement_mem='2GB';

=> SELECT * FROM my_big_table WHERE column='value' ORDER BY id;

=> RESET statement_mem;

As a general guideline, MEMORY_LIMIT for all of your resource queues should not
exceed the amount of physical memory of a segment host. If workloads are staggered
over multiple queues, it may be OK to oversubscribe memory allocations, keeping in
mind that queries may be cancelled during execution if the segment host memory limit
(gp_vmem_protect_limit) is exceeded.

Parameters

name

The name of the resource queue.

ACTIVE_STATEMENTS integer

Resource queues with an ACTIVE_STATEMENTS threshold limit the number of
queries that can be executed by roles assigned to that queue. It controls the number
of active queries that are allowed to run at the same time. The value for
ACTIVE_STATEMENTS should be an integer greater than 0.

MEMORY_LIMIT 'memory_units'

Sets the total memory quota for all statements submitted from users in this resource
queue. Memory units can be specified in kB, MB or GB. The minimum memory
quota for a resource queue is 10MB. There is no maximum, however the upper
boundary at query execution time is limited by the physical memory of a segment
host. The default is no limit (-1).
CREATE RESOURCE QUEUE 409

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
MAX_COST float

Resource queues with a MAX_COST threshold set a maximum limit on the total cost
of queries that can be executed by roles assigned to that queue. Cost is measured in
the estimated total cost for the query as determined by the Greenplum Database
query planner (as shown in the EXPLAIN output for a query). Therefore, an
administrator must be familiar with the queries typically executed on the system in
order to set an appropriate cost threshold for a queue. Cost is measured in units of
disk page fetches; 1.0 equals one sequential disk page read. The value for MAX_COST
is specified as a floating point number (for example 100.0) or can also be specified
as an exponent (for example 1e+2).

COST_OVERCOMMIT boolean

If a resource queue is limited based on MAX_COST, then the administrator can allow
COST_OVERCOMMIT (the default). This means that a query that exceeds the allowed
cost threshold will be allowed to run but only when the system is idle. If
COST_OVERCOMMIT=FALSE is specified, queries that exceed the cost limit will
always be rejected and never allowed to run.

MIN_COST float

The minimum query cost limit of what is considered a small query. Queries with a
cost under this limit will not be queued and run immediately. Cost is measured in the
estimated total cost for the query as determined by the Greenplum Database query
planner (as shown in the EXPLAIN output for a query). Therefore, an administrator
must be familiar with the queries typically executed on the system in order to set an
appropriate cost for what is considered a small query. Cost is measured in units of
disk page fetches; 1.0 equals one sequential disk page read. The value for MIN_COST
is specified as a floating point number (for example 100.0) or can also be specified
as an exponent (for example 1e+2).

PRIORITY={MIN|LOW|MEDIUM|HIGH|MAX}

Sets the priority of queries associated with a resource queue. Queries or statements
in queues with higher priority levels will receive a larger share of available CPU
resources in case of contention. Queries in low-priority queues may be delayed
while higher priority queries are executed. If no priority is specified, queries
associated with the queue have a priority of MEDIUM.

Notes

Use the pg_resqueue_status system view to see the limit settings and current status of
a resource queue:

SELECT * from pg_resqueue_status WHERE rsqname='queue_name';

There is also another system view named pg_stat_resqueues which shows statistical
metrics for a resource queue over time. To use this view, however, you must enable the
stats_queue_level server configuration parameter. See “Managing Workload and
Resources” on page 50 for more information about using resource queues.

CREATE RESOURCE QUEUE cannot be run within a transaction.
CREATE RESOURCE QUEUE 410

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
Examples

Create a resource queue with an active query limit of 20:

CREATE RESOURCE QUEUE myqueue WITH (ACTIVE_STATEMENTS=20);

Create a resource queue with an active query limit of 10 and a total memory limit of
2000MB (each query will be allocated 200MB of segment host memory at execution
time):

CREATE RESOURCE QUEUE myqueue WITH (ACTIVE_STATEMENTS=20,
MEMORY_LIMIT='2000MB');

Create a resource queue with a query cost limit of 3000.0:

CREATE RESOURCE QUEUE myqueue WITH (MAX_COST=3000.0);

Create a resource queue with a query cost limit of 310 (or 30000000000.0) and do not
allow overcommit. Allow small queries with a cost under 500 to run immediately:

CREATE RESOURCE QUEUE myqueue WITH (MAX_COST=3e+10,
COST_OVERCOMMIT=FALSE, MIN_COST=500.0);

Create a resource queue with both an active query limit and a query cost limit:

CREATE RESOURCE QUEUE myqueue WITH (ACTIVE_STATEMENTS=30,
MAX_COST=5000.00);

Create a resource queue with an active query limit of 5 and a maximum priority
setting:

CREATE RESOURCE QUEUE myqueue WITH (ACTIVE_STATEMENTS=5,
PRIORITY=MAX);

Compatibility

CREATE RESOURCE QUEUE is a Greenplum Database extension. There is no provision
for resource queues or workload management in the SQL standard.

See Also

ALTER ROLE, CREATE ROLE, ALTER RESOURCE QUEUE, DROP RESOURCE QUEUE
CREATE RESOURCE QUEUE 411

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
CREATE ROLE
Defines a new database role (user or group).

Synopsis
CREATE ROLE name [[WITH] option [...]]

where option can be:
 SUPERUSER | NOSUPERUSER
 | CREATEDB | NOCREATEDB
 | CREATEROLE | NOCREATEROLE
 | CREATEEXTTABLE | NOCREATEEXTTABLE
 [(attribute='value'[, ...])]
 where attributes and values are:
 type='readable'|'writable'
 protocol='gpfdist'|'http'|'gphdfs'
 | INHERIT | NOINHERIT
 | LOGIN | NOLOGIN
 | CONNECTION LIMIT connlimit
 | [ENCRYPTED | UNENCRYPTED] PASSWORD 'password'
 | VALID UNTIL 'timestamp'
 | IN ROLE rolename [, ...]
 | ROLE rolename [, ...]
 | ADMIN rolename [, ...]
 | RESOURCE QUEUE queue_name

Description

CREATE ROLE adds a new role to a Greenplum Database system. A role is an entity
that can own database objects and have database privileges. A role can be considered a
user, a group, or both depending on how it is used. You must have CREATEROLE
privilege or be a database superuser to use this command.

Note that roles are defined at the system-level and are valid for all databases in your
Greenplum Database system.

Parameters

name

The name of the new role.

SUPERUSER
NOSUPERUSER

If SUPERUSER is specified, the role being defined will be a superuser, who can
override all access restrictions within the database. Superuser status is dangerous
and should be used only when really needed. You must yourself be a superuser to
create a new superuser. NOSUPERUSER is the default.
CREATE ROLE 412

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
CREATEDB
NOCREATEDB

If CREATEDB is specified, the role being defined will be allowed to create new
databases. NOCREATEDB (the default) will deny a role the ability to create databases.

CREATEROLE
NOCREATEROLE

If CREATEDB is specified, the role being defined will be allowed to create new roles,
alter other roles, and drop other roles. NOCREATEROLE (the default) will deny a role
the ability to create roles or modify roles other than their own.

CREATEEXTTABLE
NOCREATEEXTTABLE

If CREATEEXTTABLE is specified, the role being defined is allowed to create external
tables. The default type is readable and the default protocol is gpfdist if not
specified. NOCREATEEXTTABLE (the default) denies the role the ability to create
external tables. Note that external tables that use the file or execute protocols can
only be created by superusers.

INHERIT
NOINHERIT

If specified, INHERIT (the default) allows the role to use whatever database
privileges have been granted to all roles it is directly or indirectly a member of. With
NOINHERIT, membership in another role only grants the ability to SET ROLE to that
other role.

LOGIN
NOLOGIN

If specified, LOGIN allows a role to log in to a database. A role having the LOGIN
attribute can be thought of as a user. Roles with NOLOGIN (the default) are useful for
managing database privileges, and can be thought of as groups.

CONNECTION LIMIT connlimit

The number maximum of concurrent connections this role can make. The default of -1
means there is no limitation.

PASSWORD password

Sets the user password for roles with the LOGIN attribute. If you do not plan to use
password authentication you can omit this option. If no password is specified, the
password will be set to null and password authentication will always fail for that
user. A null password can optionally be written explicitly as PASSWORD NULL.

ENCRYPTED
UNENCRYPTED

These key words control whether the password is stored encrypted in the system
catalogs. (If neither is specified, the default behavior is determined by the
configuration parameter password_encryption.) If the presented password string is
already in MD5-encrypted format, then it is stored encrypted as-is, regardless of
CREATE ROLE 413

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
whether ENCRYPTED or UNENCRYPTED is specified (since the system cannot decrypt
the specified encrypted password string). This allows reloading of encrypted
passwords during dump/restore.

Note that older clients may lack support for the MD5 authentication mechanism that
is needed to work with passwords that are stored encrypted.

VALID UNTIL 'timestamp'

The VALID UNTIL clause sets a date and time after which the role’s password is no
longer valid. If this clause is omitted the password will never expire.

IN ROLE rolename

Adds the new role as a member of the named roles. Note that there is no option to
add the new role as an administrator; use a separate GRANT command to do that.

ROLE rolename

Adds the named roles as members of this role, making this new role a group.

ADMIN rolename

The ADMIN clause is like ROLE, but the named roles are added to the new role WITH
ADMIN OPTION, giving them the right to grant membership in this role to others.

RESOURCE QUEUE queue_name

The name of the resource queue to which the new user-level role is to be assigned.
Only roles with LOGIN privilege can be assigned to a resource queue. The special
keyword NONE means that the role is assigned to the default resource queue. A role
can only belong to one resource queue.

Notes

The preferred way to add and remove role members (manage groups) is to use GRANT
and REVOKE.

The VALID UNTIL clause defines an expiration time for a password only, not for the
role. The expiration time is not enforced when logging in using a non-password-based
authentication method.

The INHERIT attribute governs inheritance of grantable privileges (access privileges
for database objects and role memberships). It does not apply to the special role
attributes set by CREATE ROLE and ALTER ROLE. For example, being a member of a
role with CREATEDB privilege does not immediately grant the ability to create
databases, even if INHERIT is set.

The INHERIT attribute is the default for reasons of backwards compatibility. In prior
releases of Greenplum Database, users always had access to all privileges of groups
they were members of. However, NOINHERIT provides a closer match to the semantics
specified in the SQL standard.

Be careful with the CREATEROLE privilege. There is no concept of inheritance for the
privileges of a CREATEROLE-role. That means that even if a role does not have a
certain privilege but is allowed to create other roles, it can easily create another role
CREATE ROLE 414

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
with different privileges than its own (except for creating roles with superuser
privileges). For example, if a role has the CREATEROLE privilege but not the CREATEDB
privilege, it can create a new role with the CREATEDB privilege. Therefore, regard roles
that have the CREATEROLE privilege as almost-superuser-roles.

The CONNECTION LIMIT option is never enforced for superusers.

Caution must be exercised when specifying an unencrypted password with this
command. The password will be transmitted to the server in clear-text, and it might
also be logged in the client’s command history or the server log. The client program
createuser, however, transmits the password encrypted. Also, psql contains a
command \password that can be used to safely change the password later.

Examples

Create a role that can log in, but don't give it a password:

CREATE ROLE jonathan LOGIN;

Create a role that belongs to a resource queue:

CREATE ROLE jonathan LOGIN RESOURCE QUEUE poweruser;

Create a role with a password that is valid until the end of 2009 (CREATE USER is the
same as CREATE ROLE except that it implies LOGIN):

CREATE USER joelle WITH PASSWORD 'jw8s0F4' VALID UNTIL
'2010-01-01';

Create a role that can create databases and manage other roles:

CREATE ROLE admin WITH CREATEDB CREATEROLE;

Compatibility

The SQL standard defines the concepts of users and roles, but it regards them as
distinct concepts and leaves all commands defining users to be specified by the
database implementation. In Greenplum Database users and roles are unified into a
single type of object. Roles therefore have many more optional attributes than they do
in the standard.

CREATE ROLE is in the SQL standard, but the standard only requires the syntax:

CREATE ROLE name [WITH ADMIN rolename]

Allowing multiple initial administrators, and all the other options of CREATE ROLE,
are Greenplum Database extensions.

The behavior specified by the SQL standard is most closely approximated by giving
users the NOINHERIT attribute, while roles are given the INHERIT attribute.

See Also

SET ROLE, ALTER ROLE, DROP ROLE, GRANT, REVOKE, CREATE RESOURCE QUEUE
CREATE ROLE 415

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
CREATE ROLE 416

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
CREATE RULE
Defines a new rewrite rule.

Synopsis
CREATE [OR REPLACE] RULE name AS ON event
 TO table [WHERE condition]
 DO [ALSO | INSTEAD] { NOTHING | command | (command; command
...) }

Description

CREATE RULE defines a new rule applying to a specified table or view. CREATE OR
REPLACE RULE will either create a new rule, or replace an existing rule of the same
name for the same table.

The Greenplum Database rule system allows one to define an alternate action to be
performed on insertions, updates, or deletions in database tables. A rule causes
additional or alternate commands to be executed when a given command on a given
table is executed. Rules can be used on views as well. It is important to realize that a
rule is really a command transformation mechanism, or command macro. The
transformation happens before the execution of the commands starts. It does not
operate independently for each physical row as does a trigger.

ON SELECT rules must be unconditional INSTEAD rules and must have actions that
consist of a single SELECT command. Thus, an ON SELECT rule effectively turns the
table into a view, whose visible contents are the rows returned by the rule’s SELECT
command rather than whatever had been stored in the table (if anything). It is
considered better style to write a CREATE VIEW command than to create a real table
and define an ON SELECT rule for it.

You can create the illusion of an updatable view by defining ON INSERT, ON UPDATE,
and ON DELETE rules to replace update actions on the view with appropriate updates
on other tables. If you want to support INSERT RETURNING and so on, then be sure to
put a suitable RETURNING clause into each of these rules.

Rules are also helpful for managing partitioned tables. You can define ON INSERT
rules on the parent table to route inserted rows to the correct partitioned child table.
Note that rules do not work for COPY commands.

There is a catch if you try to use conditional rules for view updates: there must be an
unconditional INSTEAD rule for each action you wish to allow on the view. If the rule
is conditional, or is not INSTEAD, then the system will still reject attempts to perform
the update action, because it thinks it might end up trying to perform the action on the
dummy table of the view in some cases. If you want to handle all the useful cases in
conditional rules, add an unconditional DO INSTEAD NOTHING rule to ensure that the
system understands it will never be called on to update the dummy table. Then make
the conditional rules non-INSTEAD; in the cases where they are applied, they add to the
default INSTEAD NOTHING action. (This method does not currently work to support
RETURNING queries, however.)
CREATE RULE 417

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
Parameters

name

The name of a rule to create. This must be distinct from the name of any other rule
for the same table. Multiple rules on the same table and same event type are applied
in alphabetical name order.

event

The event is one of SELECT, INSERT, UPDATE, or DELETE.

table

The name (optionally schema-qualified) of the table or view the rule applies to.

condition

Any SQL conditional expression (returning boolean). The condition expression may
not refer to any tables except NEW and OLD, and may not contain aggregate functions.
NEW and OLD refer to values in the referenced table. NEW is valid in ON INSERT and
ON UPDATE rules to refer to the new row being inserted or updated. OLD is valid in
ON UPDATE and ON DELETE rules to refer to the existing row being updated or
deleted.

INSTEAD

INSTEAD indicates that the commands should be executed instead of the original
command.

ALSO

ALSO indicates that the commands should be executed in addition to the original
command. If neither ALSO nor INSTEAD is specified, ALSO is the default.

command

The command or commands that make up the rule action. Valid commands are
SELECT, INSERT, UPDATE, or DELETE. The special table names NEW and OLD may be
used to refer to values in the referenced table. NEW is valid in ON INSERT and ON
UPDATE rules to refer to the new row being inserted or updated. OLD is valid in ON
UPDATE and ON DELETE rules to refer to the existing row being updated or deleted.

Notes

You must be the owner of a table to create or change rules for it.

In a rule for INSERT, UPDATE, or DELETE on a view, you can add a RETURNING clause
that emits the view’s columns. This clause will be used to compute the outputs if the
rule is triggered by an INSERT RETURNING, UPDATE RETURNING, or DELETE
RETURNING command respectively. When the rule is triggered by a command without
RETURNING, the rule’s RETURNING clause will be ignored. The current implementation
allows only unconditional INSTEAD rules to contain RETURNING; furthermore there
can be at most one RETURNING clause among all the rules for the same event. (This
CREATE RULE 418

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
ensures that there is only one candidate RETURNING clause to be used to compute the
results.) RETURNING queries on the view will be rejected if there is no RETURNING
clause in any available rule.

It is very important to take care to avoid circular rules. Recursive rules are not
validated at rule create time, but will report an error at execution time.

Examples

Create a rule that inserts rows into the child table b2001 when a user tries to insert into
the partitioned parent table rank:

CREATE RULE b2001 AS ON INSERT TO rank WHERE gender='M' and
year='2001' DO INSTEAD INSERT INTO b2001 VALUES (NEW.id,
NEW.rank, NEW.year, NEW.gender, NEW.count);

Compatibility

CREATE RULE is a Greenplum Database language extension, as is the entire query
rewrite system.

See Also

DROP RULE, CREATE TABLE, CREATE VIEW
CREATE RULE 419

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
CREATE SCHEMA
Defines a new schema.

Synopsis
CREATE SCHEMA schema_name [AUTHORIZATION username]
[schema_element [...]]

CREATE SCHEMA AUTHORIZATION rolename [schema_element [...]]

Description

CREATE SCHEMA enters a new schema into the current database. The schema name
must be distinct from the name of any existing schema in the current database.

A schema is essentially a namespace: it contains named objects (tables, data types,
functions, and operators) whose names may duplicate those of other objects existing
in other schemas. Named objects are accessed either by qualifying their names with
the schema name as a prefix, or by setting a search path that includes the desired
schema(s). A CREATE command specifying an unqualified object name creates the
object in the current schema (the one at the front of the search path, which can be
determined with the function current_schema).

Optionally, CREATE SCHEMA can include subcommands to create objects within the
new schema. The subcommands are treated essentially the same as separate
commands issued after creating the schema, except that if the AUTHORIZATION clause
is used, all the created objects will be owned by that role.

Parameters

schema_name

The name of a schema to be created. If this is omitted, the user name is used as the
schema name. The name cannot begin with pg_, as such names are reserved for
system catalog schemas.

rolename

The name of the role who will own the schema. If omitted, defaults to the role
executing the command. Only superusers may create schemas owned by roles other
than themselves.

schema_element

An SQL statement defining an object to be created within the schema. Currently,
only CREATE TABLE, CREATE VIEW, CREATE INDEX, CREATE SEQUENCE, CREATE
TRIGGER and GRANT are accepted as clauses within CREATE SCHEMA. Other kinds of
objects may be created in separate commands after the schema is created.
CREATE SCHEMA 420

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
Notes

To create a schema, the invoking user must have the CREATE privilege for the current
database or be a superuser.

Examples

Create a schema:

CREATE SCHEMA myschema;

Create a schema for role joe (the schema will also be named joe):

CREATE SCHEMA AUTHORIZATION joe;

Compatibility

The SQL standard allows a DEFAULT CHARACTER SET clause in CREATE SCHEMA, as
well as more subcommand types than are presently accepted by Greenplum Database.

The SQL standard specifies that the subcommands in CREATE SCHEMA may appear in
any order. The present Greenplum Database implementation does not handle all cases
of forward references in subcommands; it may sometimes be necessary to reorder the
subcommands in order to avoid forward references.

According to the SQL standard, the owner of a schema always owns all objects within
it. Greenplum Database allows schemas to contain objects owned by users other than
the schema owner. This can happen only if the schema owner grants the CREATE
privilege on the schema to someone else.

See Also

ALTER SCHEMA, DROP SCHEMA
CREATE SCHEMA 421

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
CREATE SEQUENCE
Defines a new sequence generator.

Synopsis
CREATE [TEMPORARY | TEMP] SEQUENCE name
 [INCREMENT [BY] value]
 [MINVALUE minvalue | NO MINVALUE]
 [MAXVALUE maxvalue | NO MAXVALUE]
 [START [WITH] start]
 [CACHE cache]
 [[NO] CYCLE]
 [OWNED BY { table.column | NONE }]

Description

CREATE SEQUENCE creates a new sequence number generator. This involves creating
and initializing a new special single-row table. The generator will be owned by the
user issuing the command.

If a schema name is given, then the sequence is created in the specified schema.
Otherwise it is created in the current schema. Temporary sequences exist in a special
schema, so a schema name may not be given when creating a temporary sequence.
The sequence name must be distinct from the name of any other sequence, table,
index, or view in the same schema.

After a sequence is created, you use the nextval function to operate on the sequence.
For example, to insert a row into a table that gets the next value of a sequence:

INSERT INTO distributors VALUES (nextval('myserial'),
'acme');

You can also use the function setval to operate on a sequence, but only for queries
that do not operate on distributed data. For example, the following query is allowed
because it resets the sequence counter value for the sequence generator process on the
master:

SELECT setval('myserial', 201);

But the following query will be rejected in Greenplum Database because it operates on
distributed data:

INSERT INTO product VALUES (setval('myserial', 201),
'gizmo');

In a regular (non-distributed) database, functions that operate on the sequence go to
the local sequence table to get values as they are needed. In Greenplum Database,
however, keep in mind that each segment is its own distinct database process.
Therefore the segments need a single point of truth to go for sequence values so that
all segments get incremented correctly and the sequence moves forward in the right
order. A sequence server process runs on the master and is the point-of-truth for a
sequence in a Greenplum distributed database. Segments get sequence values at
runtime from the master.
CREATE SEQUENCE 422

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
Because of this distributed sequence design, there are some limitations on the
functions that operate on a sequence in Greenplum Database:

• lastval and currval functions are not supported.

• setval can only be used to set the value of the sequence generator on the master,
it cannot be used in subqueries to update records on distributed table data.

• nextval sometimes grabs a block of values from the master for a segment to use,
depending on the query. So values may sometimes be skipped in the sequence if
all of the block turns out not to be needed at the segment level. Note that a regular
PostgreSQL database does this too, so this is not something unique to Greenplum
Database.

Although you cannot update a sequence directly, you can use a query like:

SELECT * FROM sequence_name;

to examine the parameters and current state of a sequence. In particular, the last_value
field of the sequence shows the last value allocated by any session.

Parameters

TEMPORARY | TEMP

If specified, the sequence object is created only for this session, and is automatically
dropped on session exit. Existing permanent sequences with the same name are not
visible (in this session) while the temporary sequence exists, unless they are
referenced with schema-qualified names.

name

The name (optionally schema-qualified) of the sequence to be created.

increment

Specifies which value is added to the current sequence value to create a new value.
A positive value will make an ascending sequence, a negative one a descending
sequence. The default value is 1.

minvalue
NO MINVALUE

Determines the minimum value a sequence can generate. If this clause is not
supplied or NO MINVALUE is specified, then defaults will be used. The defaults are 1
and -263-1 for ascending and descending sequences, respectively.

maxvalue
NO MAXVALUE

Determines the maximum value for the sequence. If this clause is not supplied or NO
MAXVALUE is specified, then default values will be used. The defaults are 263-1 and
-1 for ascending and descending sequences, respectively.

start

Allows the sequence to begin anywhere. The default starting value is minvalue for
ascending sequences and maxvalue for descending ones.
CREATE SEQUENCE 423

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
cache

Specifies how many sequence numbers are to be preallocated and stored in memory
for faster access. The minimum (and default) value is 1 (no cache).

CYCLE
NO CYCLE

Allows the sequence to wrap around when the maxvalue (for ascending) or
minvalue (for descending) has been reached. If the limit is reached, the next
number generated will be the minvalue (for ascending) or maxvalue (for
descending). If NO CYCLE is specified, any calls to nextval after the sequence has
reached its maximum value will return an error. If not specified, NO CYCLE is the
default.

OWNED BY table.column
OWNED BY NONE

Causes the sequence to be associated with a specific table column, such that if that
column (or its whole table) is dropped, the sequence will be automatically dropped
as well. The specified table must have the same owner and be in the same schema as
the sequence. OWNED BY NONE, the default, specifies that there is no such
association.

Notes

Sequences are based on bigint arithmetic, so the range cannot exceed the range of an
eight-byte integer (-9223372036854775808 to 9223372036854775807).

Although multiple sessions are guaranteed to allocate distinct sequence values, the
values may be generated out of sequence when all the sessions are considered. For
example, session A might reserve values 1..10 and return nextval=1, then session B
might reserve values 11..20 and return nextval=11 before session A has generated
nextval=2. Thus, you should only assume that the nextval values are all distinct, not
that they are generated purely sequentially. Also, last_value will reflect the latest
value reserved by any session, whether or not it has yet been returned by nextval.

Examples

Create a sequence named myseq:

CREATE SEQUENCE myseq START 101;

Insert a row into a table that gets the next value:

INSERT INTO distributors VALUES (nextval('myseq'), 'acme');

Reset the sequence counter value on the master:

SELECT setval('myseq', 201);

Illegal use of setval in Greenplum Database (setting sequence values on distributed
data):

INSERT INTO product VALUES (setval('myseq', 201), 'gizmo');
CREATE SEQUENCE 424

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
Compatibility

CREATE SEQUENCE conforms to the SQL standard, with the following exceptions:

• The AS data_type expression specified in the SQL standard is not supported.

• Obtaining the next value is done using the nextval() function instead of the
NEXT VALUE FOR expression specified in the SQL standard.

• The OWNED BY clause is a Greenplum Database extension.

See Also

ALTER SEQUENCE, DROP SEQUENCE
CREATE SEQUENCE 425

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
CREATE TABLE
Defines a new table.

Synopsis
CREATE [[GLOBAL | LOCAL] {TEMPORARY | TEMP}] TABLE table_name (
 [{ column_name data_type [DEFAULT default_expr]
 [column_constraint [...]]
 | table_constraint
 | LIKE other_table [{INCLUDING | EXCLUDING}
 {DEFAULTS | CONSTRAINTS}] ...}
 [, ...]])
 [INHERITS (parent_table [, ...])]
 [WITH (storage_parameter=value [, ...])
 [ON COMMIT {PRESERVE ROWS | DELETE ROWS | DROP}]
 [TABLESPACE tablespace]
 [DISTRIBUTED BY (column, [...]) | DISTRIBUTED RANDOMLY]
 [PARTITION BY partition_type (column)
 [SUBPARTITION BY partition_type (column)]
 [SUBPARTITION TEMPLATE (template_spec)]
 [...]
 (partition_spec)
 | [SUBPARTITION BY partition_type (column)]
 [...]
 (partition_spec
 [(subpartition_spec
 [(...)]
)]
)

where storage_parameter is:
 APPENDONLY={TRUE|FALSE}
 BLOCKSIZE={8192-2097152}
 ORIENTATION={COLUMN|ROW}
 COMPRESSTYPE={ZLIB|QUICKLZ}
 COMPRESSLEVEL={0-9 | 1}
 FILLFACTOR={10-100}
 OIDS[=TRUE|FALSE]

where column_constraint is:
 [CONSTRAINT constraint_name]
 NOT NULL | NULL
 | UNIQUE [USING INDEX TABLESPACE tablespace]
 [WITH (FILLFACTOR = value)]
 | PRIMARY KEY [USING INDEX TABLESPACE tablespace]
 [WITH (FILLFACTOR = value)]
 | CHECK (expression)

and table_constraint is:
CREATE TABLE 426

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
 [CONSTRAINT constraint_name]
 UNIQUE (column_name [, ...])
 [USING INDEX TABLESPACE tablespace]
 [WITH (FILLFACTOR=value)]
 | PRIMARY KEY (column_name [, ...])
 [USING INDEX TABLESPACE tablespace]
 [WITH (FILLFACTOR=value)]
 | CHECK (expression)

where partition_type is:
 LIST
 | RANGE

where partition_specification is:
partition_element [, ...]

and partition_element is:
 DEFAULT PARTITION name

 | [PARTITION name] VALUES (list_value [,...])

 | [PARTITION name]
 START ([datatype] 'start_value') [INCLUSIVE | EXCLUSIVE]
 [END ([datatype] 'end_value') [INCLUSIVE | EXCLUSIVE]]
 [EVERY ([datatype] [number | INTERVAL] 'interval_value')]

 | [PARTITION name]
 END ([datatype] 'end_value') [INCLUSIVE | EXCLUSIVE]
 [EVERY ([datatype] [number | INTERVAL] 'interval_value')]

[WITH (partition_storage_parameter=value [, ...])]
[TABLESPACE tablespace]

where subpartition_spec or template_spec is:
subpartition_element [, ...]

and subpartition_element is:
 DEFAULT SUBPARTITION name

 | [SUBPARTITION name] VALUES (list_value [,...])

 | [SUBPARTITION name]
 START ([datatype] 'start_value') [INCLUSIVE | EXCLUSIVE]
 [END ([datatype] 'end_value') [INCLUSIVE | EXCLUSIVE]]
 [EVERY ([datatype] [number | INTERVAL] 'interval_value')]

 | [SUBPARTITION name]
 END ([datatype] 'end_value') [INCLUSIVE | EXCLUSIVE]
 [EVERY ([datatype] [number | INTERVAL] 'interval_value')]

[WITH (partition_storage_parameter=value [, ...])]
[TABLESPACE tablespace]
CREATE TABLE 427

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
Description

CREATE TABLE will create a new, initially empty table in the current database. The
table will be owned by the user issuing the command.

If a schema name is given then the table is created in the specified schema. Otherwise
it is created in the current schema. Temporary tables exist in a special schema, so a
schema name may not be given when creating a temporary table. The name of the
table must be distinct from the name of any other table, external table, sequence,
index, or view in the same schema.

The optional constraint clauses specify conditions that new or updated rows must
satisfy for an insert or update operation to succeed. A constraint is an SQL object that
helps define the set of valid values in the table in various ways.

There are two ways to define constraints: table constraints and column constraints. A
column constraint is defined as part of a column definition. A table constraint
definition is not tied to a particular column, and it can encompass more than one
column. Every column constraint can also be written as a table constraint; a column
constraint is only a notational convenience for use when the constraint only affects
one column.

When creating a table, there is an additional clause to declare the Greenplum Database
distribution policy. If a DISTRIBUTED BY or DISTRIBUTED RANDOMLY clause is not
supplied, then Greenplum assigns a hash distribution policy to the table using either
the PRIMARY KEY (if the table has one) or the first column of the table as the
distribution key. Columns of geometric or user-defined data types are not eligible as
Greenplum distribution key columns. If a table does not have a column of an eligible
data type, the rows are distributed based on a round-robin or random distribution. To
ensure an even distribution of data in your Greenplum Database system, you want to
choose a distribution key that is unique for each record, or if that is not possible, then
choose DISTRIBUTED RANDOMLY.

The PARTITION BY clause allows you to divide the table into multiple sub-tables (or
child tables) that inherit from the parent table. Table partitioning creates a persistent
relationship between the child table partitions and the parent table, so that all of the
schema information from the parent table propagates to the child table partitions. Each
child table partition is created with a distinct CHECK constraint, which limits the data
the table can contain based on some defining criteria. The CHECK constraints are also
used by the query planner to determine which table partitions to scan in order to
satisfy a given query predicate.

Parameters

GLOBAL | LOCAL

These keywords are present for SQL standard compatibility, but have no effect in
Greenplum Database.
CREATE TABLE 428

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
TEMPORARY | TEMP

If specified, the table is created as a temporary table. Temporary tables are
automatically dropped at the end of a session, or optionally at the end of the current
transaction (see ON COMMIT). Existing permanent tables with the same name are not
visible to the current session while the temporary table exists, unless they are
referenced with schema-qualified names. Any indexes created on a temporary table
are automatically temporary as well.

table_name

The name (optionally schema-qualified) of the table to be created.

column_name

The name of a column to be created in the new table.

data_type

The data type of the column. This may include array specifiers.

DEFAULT default_expr

The DEFAULT clause assigns a default data value for the column whose column
definition it appears within. The value is any variable-free expression (subqueries
and cross-references to other columns in the current table are not allowed). The data
type of the default expression must match the data type of the column. The default
expression will be used in any insert operation that does not specify a value for the
column. If there is no default for a column, then the default is null.

INHERITS

The optional INHERITS clause specifies a list of tables from which the new table
automatically inherits all columns. Use of INHERITS creates a persistent
relationship between the new child table and its parent table(s). Schema
modifications to the parent(s) normally propagate to children as well, and by default
the data of the child table is included in scans of the parent(s).

In Greenplum Database, the INHERITS clause is not used when creating partitioned
tables. Although the concept of inheritance is used in partition hierarchies, the
inheritance structure of a partitioned table is created using the PARTITION BY clause.

If the same column name exists in more than one parent table, an error is reported
unless the data types of the columns match in each of the parent tables. If there is no
conflict, then the duplicate columns are merged to form a single column in the new
table. If the column name list of the new table contains a column name that is also
inherited, the data type must likewise match the inherited column(s), and the column
definitions are merged into one. However, inherited and new column declarations of
the same name need not specify identical constraints: all constraints provided from
any declaration are merged together and all are applied to the new table. If the new
table explicitly specifies a default value for the column, this default overrides any
defaults from inherited declarations of the column. Otherwise, any parents that
specify default values for the column must all specify the same default, or an error
will be reported.
CREATE TABLE 429

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
LIKE other_table [{INCLUDING | EXCLUDING} {DEFAULTS |
CONSTRAINTS}]

The LIKE clause specifies a table from which the new table automatically copies all
column names, data types, not-null constraints, and distribution policy. Storage
properties like append-only or partition structure are not copied. Unlike INHERITS,
the new table and original table are completely decoupled after creation is complete.

Default expressions for the copied column definitions will only be copied if
INCLUDING DEFAULTS is specified. The default behavior is to exclude default
expressions, resulting in the copied columns in the new table having null defaults.

Not-null constraints are always copied to the new table. CHECK constraints will only
be copied if INCLUDING CONSTRAINTS is specified; other types of constraints will
never be copied. Also, no distinction is made between column constraints and table
constraints — when constraints are requested, all check constraints are copied.

Note also that unlike INHERITS, copied columns and constraints are not merged
with similarly named columns and constraints. If the same name is specified
explicitly or in another LIKE clause an error is signalled.

CONSTRAINT constraint_name

An optional name for a column or table constraint. If the constraint is violated, the
constraint name is present in error messages, so constraint names like column must
be positive can be used to communicate helpful constraint information to client
applications. (Double-quotes are needed to specify constraint names that contain
spaces.) If a constraint name is not specified, the system generates a name.

NULL | NOT NULL

Specifies if the column is or is not allowed to contain null values. NULL is the
default.

UNIQUE (column constraint)
UNIQUE (column_name [, ...]) (table constraint)

The UNIQUE constraint specifies that a group of one or more columns of a table may
contain only unique values. The behavior of the unique table constraint is the same
as that for column constraints, with the additional capability to span multiple
columns. For the purpose of a unique constraint, null values are not considered
equal. The column(s) that are unique must also contain all of the Greenplum
distribution key column(s).

PRIMARY KEY (column constraint)
PRIMARY KEY (column_name [, ...]) (table constraint)

The primary key constraint specifies that a column or columns of a table may
contain only unique (non-duplicate), non-null values. Technically, PRIMARY KEY is
merely a combination of UNIQUE and NOT NULL, but identifying a set of columns as
primary key also provides metadata about the design of the schema, as a primary
key implies that other tables may rely on this set of columns as a unique identifier
for rows. For a table to have a primary key, it must be hash distributed (not
randomly distributed), and the primary key must contain all (or a superset) of the
Greenplum distribution key column(s).
CREATE TABLE 430

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
CHECK (expression)

The CHECK clause specifies an expression producing a Boolean result which new or
updated rows must satisfy for an insert or update operation to succeed. Expressions
evaluating to TRUE or UNKNOWN succeed. Should any row of an insert or update
operation produce a FALSE result an error exception is raised and the insert or update
does not alter the database. A check constraint specified as a column constraint
should reference that column’s value only, while an expression appearing in a table
constraint may reference multiple columns. CHECK expressions cannot contain
subqueries nor refer to variables other than columns of the current row.

WITH (storage_option=value)

The WITH clause can be used to set storage options for the table or its indexes. Note
that you can also set storage parameters on a particular partition or subpartition by
declaring the WITH clause in the partition specification. The following storage
options are available:

APPENDONLY - Set to TRUE to create the table as an append-only table. If FALSE
or not declared, the table will be created as a regular heap-storage table.

BLOCKSIZE - Set to the size, in bytes for each block in a table. The BLOCKSIZE
must be between 8KB and 2MB, and be a muliple of 8KB.

ORIENTATION - Set to column for column-oriented storage, or row (the default)
for row-oriented storage. This option is only valid if APPENDONLY=TRUE.
Heap-storage tables can only be row-oriented.

COMPRESSTYPE - Set to ZLIB (the default) or QUICKLZ to specify the type of
compression used. QuickLZ uses less CPU power and compresses data faster at a
lower compression ratio than zlib. Conversely, zlib provides more compact
compression ratios at lower speeds. This option is only valid if
APPENDONLY=TRUE.

COMPRESSLEVEL - For zlib compression of append-only tables, set to a value
between 1 (fastest compression) to 9 (highest compression ratio). QuickLZ
compression level can only be set to 1. If not declared, the default is 0 (no
compression). This option is only valid if APPENDONLY=TRUE.

FILLFACTOR - See CREATE INDEX for more information about this index storage
parameter.

OIDS - Set to OIDS=FALSE (the default) so that rows do not have object
identifiers assigned to them. Greenplum strongly recommends that you do not
enable OIDS when creating a table. On large tables, such as those in a typical
Greenplum Database system, using OIDs for table rows can cause wrap-around of
the 32-bit OID counter. Once the counter wraps around, OIDs can no longer be
assumed to be unique, which not only makes them useless to user applications, but
can also cause problems in the Greenplum Database system catalog tables. In
addition, excluding OIDs from a table reduces the space required to store the table
on disk by 4 bytes per row, slightly improving performance. OIDS are not allowed
on partitioned tables or append-only column-oriented tables.
CREATE TABLE 431

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
ON COMMIT

The behavior of temporary tables at the end of a transaction block can be controlled
using ON COMMIT. The three options are:

PRESERVE ROWS

No special action is taken at the ends of transactions for temporary tables. This is the
default behavior.

DELETE ROWS

All rows in the temporary table will be deleted at the end of each transaction block.
Essentially, an automatic TRUNCATE is done at each commit.

DROP

The temporary table will be dropped at the end of the current transaction block.

TABLESPACE tablespace

The name of the tablespace in which the new table is to be created. If not specified,
the database’s default tablespace is used.

USING INDEX TABLESPACE tablespace

This clause allows selection of the tablespace in which the index associated with a
UNIQUE or PRIMARY KEY constraint will be created. If not specified, the database’s
default tablespace is used.

DISTRIBUTED BY (column, [...])
DISTRIBUTED RANDOMLY

Used to declare the Greenplum Database distribution policy for the table.
DISTIBUTED BY uses hash distribution with one or more columns declared as the
distribution key. For the most even data distribution, the distribution key should be
the primary key of the table or a unique column (or set of columns). If that is not
possible, then you may choose DISTRIBUTED RANDOMLY, which will send the data
round-robin to the segment instances. If not supplied, then hash distribution is
chosen using the PRIMARY KEY (if the table has one) or the first eligible column of
the table as the distribution key.

PARTITION BY

Declares one or more columns by which to partition the table.

partition_type

Declares partition type: LIST (list of values) or RANGE (a numeric or date range).

partition_specification

Declares the individual partitions to create. Each partition can be defined
individually or, for range partitions, you can use the EVERY clause (with a START
and optional END clause) to define an increment pattern to use to create the
individual partitions.
CREATE TABLE 432

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
DEFAULT PARTITION name - Declares a default partition. When data does
not match to an existing partition, it is inserted into the default partition. Partition
designs that do not have a default partition will reject incoming rows that do not
match to an existing partition.

PARTITION name - Declares a name to use for the partition. Partitions are
created using the following naming convention:
parentname_level#_prt_givenname.

VALUES - For list partitions, defines the value(s) that the partition will contain.

START - For range partitions, defines the starting range value for the partition. By
default, start values are INCLUSIVE. For example, if you declared a start date of
‘2008-01-01’, then the partition would contain all dates greater than or equal to
‘2008-01-01’. Typically the data type of the START expression is the same type
as the partition key column. If that is not the case, then you must explicitly cast to
the intended data type.

END - For range partitions, defines the ending range value for the partition. By
default, end values are EXCLUSIVE. For example, if you declared an end date of
‘2008-02-01’, then the partition would contain all dates less than but not equal to
‘2008-02-01’. Typically the data type of the END expression is the same type as
the partition key column. If that is not the case, then you must explicitly cast to the
intended data type.

EVERY - For range partitions, defines how to increment the values from START to
END to create individual partitions. Typically the data type of the EVERY
expression is the same type as the partition key column. If that is not the case, then
you must explicitly cast to the intended data type.

WITH - Sets the table storage options for a partition. For example, you may want
older partitions to be append-only tables and newer partitions to be regular heap
tables.

TABLESPACE - The name of the tablespace in which the partition is to be created.

SUBPARTITION BY

Declares one or more columns by which to subpartition the first-level partitions of
the table. The format of the subpartition specification is similar to that of a partition
specification described above.

SUBPARTITION TEMPLATE

Instead of declaring each subpartition definition individually for each partition, you
can optionally declare a subpartition template to be used to create the subpartitions.
This subpartition specification would then apply to all parent partitions.

Notes

Using OIDs in new applications is not recommended: where possible, using a SERIAL
or other sequence generator as the table’s primary key is preferred. However, if your
application does make use of OIDs to identify specific rows of a table, it is
recommended to create a unique constraint on the OID column of that table, to ensure
that OIDs in the table will indeed uniquely identify rows even after counter
CREATE TABLE 433

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
wrap-around. Avoid assuming that OIDs are unique across tables; if you need a
database-wide unique identifier, use the combination of table OID and row OID for
the purpose.

Greenplum Database has some special conditions for primary key and unique
constraints with regards to columns that are the distribution key in a Greenplum table.
For a unique constraint to be enforced in Greenplum Database, the table must be
hash-distributed (not DISTRIBUTED RANDOMLY), and the constraint columns must be
the same as (or a superset of) the table’s distribution key columns.

A primary key constraint is simply a combination of a unique constraint and a not-null
constraint.

Greenplum Database automatically creates an index for each unique constraint or
primary key constraint to enforce uniqueness. Thus, it is not necessary to create an
index explicitly for primary key columns.

Foreign key constraints are not supported in Greenplum Database.

For inherited tables, unique constraints, primary key constraints, indexes and table
privileges are not inherited in the current implementation.

Examples

Create a table named rank in the schema named baby and distribute the data using the
columns rank, gender, and year:

CREATE TABLE baby.rank (id int, rank int, year smallint,
gender char(1), count int) DISTRIBUTED BY (rank, gender,
year);

Create table films and table distributors (the primary key will be used as the
Greenplum distribution key by default):

CREATE TABLE films (
code char(5) CONSTRAINT firstkey PRIMARY KEY,
title varchar(40) NOT NULL,
did integer NOT NULL,
date_prod date,
kind varchar(10),
len interval hour to minute
);

CREATE TABLE distributors (
did integer PRIMARY KEY DEFAULT nextval('serial'),
name varchar(40) NOT NULL CHECK (name <> '')
);

Create a gzip-compressed, append-only table:

CREATE TABLE sales (txn_id int, qty int, date date)
WITH (appendonly=true, compresslevel=5)
DISTRIBUTED BY (txn_id);

Create a three level partitioned table using subpartition templates and default
partitions at each level:
CREATE TABLE 434

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
CREATE TABLE sales (id int, year int, month int, day int,
region text)
DISTRIBUTED BY (id)
PARTITION BY RANGE (year)

 SUBPARTITION BY RANGE (month)
 SUBPARTITION TEMPLATE (
 START (1) END (13) EVERY (1),
 DEFAULT SUBPARTITION other_months)

 SUBPARTITION BY LIST (region)
 SUBPARTITION TEMPLATE (
 SUBPARTITION usa VALUES ('usa'),
 SUBPARTITION europe VALUES ('europe'),
 SUBPARTITION asia VALUES ('asia'),
 DEFAULT SUBPARTITION other_regions)

(START (2002) END (2010) EVERY (1),
 DEFAULT PARTITION outlying_years);

Compatibility

CREATE TABLE command conforms to the SQL standard, with the following
exceptions:

• Temporary Tables — In the SQL standard, temporary tables are defined just
once and automatically exist (starting with empty contents) in every session that
needs them. Greenplum Database instead requires each session to issue its own
CREATE TEMPORARY TABLE command for each temporary table to be used. This
allows different sessions to use the same temporary table name for different
purposes, whereas the standard’s approach constrains all instances of a given
temporary table name to have the same table structure.
The standard’s distinction between global and local temporary tables is not in
Greenplum Database. Greenplum Database will accept the GLOBAL and LOCAL
keywords in a temporary table declaration, but they have no effect.

If the ON COMMIT clause is omitted, the SQL standard specifies that the default
behavior as ON COMMIT DELETE ROWS. However, the default behavior in
Greenplum Database is ON COMMIT PRESERVE ROWS. The ON COMMIT DROP
option does not exist in the SQL standard.

• Column Check Constraints — The SQL standard says that CHECK column
constraints may only refer to the column they apply to; only CHECK table
constraints may refer to multiple columns. Greenplum Database does not enforce
this restriction; it treats column and table check constraints alike.

• NULL Constraint — The NULL constraint is a Greenplum Database extension to
the SQL standard that is included for compatibility with some other database
systems (and for symmetry with the NOT NULL constraint). Since it is the default
for any column, its presence is not required.

• Inheritance — Multiple inheritance via the INHERITS clause is a Greenplum
Database language extension. SQL:1999 and later define single inheritance using
a different syntax and different semantics. SQL:1999-style inheritance is not yet
supported by Greenplum Database.
CREATE TABLE 435

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
• Partitioning — Table partitioning via the PARTITION BY clause is a Greenplum
Database language extension.

• Zero-column tables — Greenplum Database allows a table of no columns to be
created (for example, CREATE TABLE foo();). This is an extension from the
SQL standard, which does not allow zero-column tables. Zero-column tables are
not in themselves very useful, but disallowing them creates odd special cases for
ALTER TABLE DROP COLUMN, so Greenplum decided to ignore this spec
restriction.

• WITH clause — The WITH clause is a Greenplum Database extension; neither
storage parameters nor OIDs are in the standard.

• Tablespaces — The Greenplum Database concept of tablespaces is not part of the
SQL standard. The clauses TABLESPACE and USING INDEX TABLESPACE are
extensions.

• Data Distribution — The Greenplum Database concept of a parallel or
distributed database is not part of the SQL standard. The DISTRIBUTED clauses
are extensions.

See Also

ALTER TABLE, DROP TABLE, CREATE EXTERNAL TABLE, CREATE TABLE AS
CREATE TABLE 436

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
CREATE TABLE AS
Defines a new table from the results of a query.

Synopsis
CREATE [[GLOBAL | LOCAL] {TEMPORARY | TEMP}] TABLE table_name
 [(column_name [, ...])]
 [WITH (storage_parameter=value [, ...])]
 [ON COMMIT {PRESERVE ROWS | DELETE ROWS | DROP}]
 [TABLESPACE tablespace]
 AS query
 [DISTRIBUTED BY (column, [...]) | DISTRIBUTED RANDOMLY]

where storage_parameter is:
 APPENDONLY={TRUE|FALSE}
 BLOCKSIZE={8192-2097152}
 ORIENTATION={COLUMN|ROW}
 COMPRESSTYPE={ZLIB|QUICKLZ}
 COMPRESSLEVEL={0-9 | 1}
 FILLFACTOR={10-100}
 OIDS[=TRUE|FALSE]

Description

CREATE TABLE AS creates a table and fills it with data computed by a SELECT
command. The table columns have the names and data types associated with the
output columns of the SELECT, however you can override the column names by giving
an explicit list of new column names.

CREATE TABLE AS creates a new table and evaluates the query just once to fill the
new table initially. The new table will not track subsequent changes to the source
tables of the query.

Parameters

GLOBAL | LOCAL

These keywords are present for SQL standard compatibility, but have no effect in
Greenplum Database.

TEMPORARY | TEMP

If specified, the new table is created as a temporary table. Temporary tables are
automatically dropped at the end of a session, or optionally at the end of the current
transaction (see ON COMMIT). Existing permanent tables with the same name are not
visible to the current session while the temporary table exists, unless they are
referenced with schema-qualified names. Any indexes created on a temporary table
are automatically temporary as well.
CREATE TABLE AS 437

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
table_name

The name (optionally schema-qualified) of the new table to be created.

column_name

The name of a column in the new table. If column names are not provided, they are
taken from the output column names of the query. If the table is created from an
EXECUTE command, a column name list cannot be specified.

WITH (storage_parameter=value)

The WITH clause can be used to set storage options for the table or its indexes. Note
that you can also set different storage parameters on a particular partition or
subpartition by declaring the WITH clause in the partition specification. The
following storage options are available:

APPENDONLY - Set to TRUE to create the table as an append-only table. If FALSE
or not declared, the table will be created as a regular heap-storage table.

BLOCKSIZE - Set to the size, in bytes for each block in a table. The BLOCKSIZE
must be between 8KB and 2MB, and be a muliple of 8KB.

ORIENTATION - Set to column for column-oriented storage, or row (the default)
for row-oriented storage. This option is only valid if APPENDONLY=TRUE.
Heap-storage tables can only be row-oriented.

COMPRESSTYPE - Set to ZLIB (the default) or QUICKLZ to specify the type of
compression used. QuickLZ uses less CPU power and compresses data faster at a
lower compression ratio than zlib. Conversely, zlib provides more compact
compression ratios at lower speeds. This option is only valid if
APPENDONLY=TRUE.

COMPRESSLEVEL - For zlib compression of append-only tables, set to a value
between 1 (fastest compression) to 9 (highest compression ratio). QuickLZ
compression level can only be set to 1. If not declared, the default is 0 (no
compression). This option is only valid if APPENDONLY=TRUE.

FILLFACTOR - See CREATE INDEX for more information about this index storage
parameter.

OIDS - Set to OIDS=FALSE (the default) so that rows do not have object
identifiers assigned to them. Greenplum strongly recommends that you do not
enable OIDS when creating a table. On large tables, such as those in a typical
Greenplum Database system, using OIDs for table rows can cause wrap-around of
the 32-bit OID counter. Once the counter wraps around, OIDs can no longer be
assumed to be unique, which not only makes them useless to user applications, but
can also cause problems in the Greenplum Database system catalog tables. In
addition, excluding OIDs from a table reduces the space required to store the table
on disk by 4 bytes per row, slightly improving performance. OIDS are not allowed
on column-oriented tables.

ON COMMIT

The behavior of temporary tables at the end of a transaction block can be controlled
using ON COMMIT. The three options are:
CREATE TABLE AS 438

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
PRESERVE ROWS

No special action is taken at the ends of transactions for temporary tables. This is the
default behavior.

DELETE ROWS

All rows in the temporary table will be deleted at the end of each transaction block.
Essentially, an automatic TRUNCATE is done at each commit.

DROP

The temporary table will be dropped at the end of the current transaction block.

TABLESPACE tablespace

The tablespace is the name of the tablespace in which the new table is to be created.
If not specified, the database’s default tablespace is used.

AS query

A SELECT or VALUES command, or an EXECUTE command that runs a prepared
SELECT or VALUES query.

DISTRIBUTED BY (column, [...])
DISTRIBUTED RANDOMLY

Used to declare the Greenplum Database distribution policy for the table. One or
more columns can be used as the distribution key, meaning those columns are used
by the hashing algorithm to divide the data evenly across all of the segments. The
distribution key should be the primary key of the table or a unique column (or set of
columns). If that is not possible, then you may choose to distribute randomly, which
will send the data round-robin to the segment instances. If not supplied, then either
the PRIMARY KEY (if the table has one) or the first eligible column of the table will
be used.

Notes

This command is functionally similar to SELECT INTO, but it is preferred since it is
less likely to be confused with other uses of the SELECT INTO syntax. Furthermore,
CREATE TABLE AS offers a superset of the functionality offered by SELECT INTO.

CREATE TABLE AS can be used for fast data loading from external table data sources.
See CREATE EXTERNAL TABLE.

Examples

Create a new table films_recent consisting of only recent entries from the table films:

CREATE TABLE films_recent AS SELECT * FROM films WHERE
date_prod >= '2007-01-01';

Create a new temporary table films_recent, consisting of only recent entries from the
table films, using a prepared statement. The new table has OIDs and will be dropped
at commit:

PREPARE recentfilms(date) AS SELECT * FROM films WHERE
CREATE TABLE AS 439

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
date_prod > $1;

CREATE TEMP TABLE films_recent WITH (OIDS) ON COMMIT DROP AS
EXECUTE recentfilms('2007-01-01');

Compatibility

CREATE TABLE AS conforms to the SQL standard, with the following exceptions:

• The standard requires parentheses around the subquery clause; in Greenplum
Database, these parentheses are optional.

• The standard defines a WITH [NO] DATA clause; this is not currently implemented
by Greenplum Database. The behavior provided by Greenplum Database is
equivalent to the standard’s WITH DATA case. WITH NO DATA can be simulated by
appending LIMIT 0 to the query.

• Greenplum Database handles temporary tables differently from the standard; see
CREATE TABLE for details.

• The WITH clause is a Greenplum Database extension; neither storage parameters
nor OIDs are in the standard.

• The Greenplum Database concept of tablespaces is not part of the standard. The
TABLESPACE clause is an extension.

See Also

CREATE EXTERNAL TABLE, CREATE EXTERNAL TABLE, EXECUTE, SELECT, SELECT INTO,
VALUES
CREATE TABLE AS 440

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
CREATE TABLESPACE
Defines a new tablespace.

Synopsis
CREATE TABLESPACE tablespace_name [OWNER username]
 FILESPACE filespace_name

Description

CREATE TABLESPACE registers a new tablespace for your Greenplum Database
system. The tablespace name must be distinct from the name of any existing
tablespace in the system.

A tablespace allows superusers to define an alternative location on the file system
where the data files containing database objects (such as tables and indexes) may
reside.

A user with appropriate privileges can pass a tablespace name to CREATE DATABASE,
CREATE TABLE, or CREATE INDEX to have the data files for these objects stored within
the specified tablespace.

In Greenplum Database, there must be a file system location defined for the master,
each primary segment, and each mirror segment in order for the tablespace to have a
location to store its objects across an entire Greenplum system. This collection of file
system locations is defined in a filespace object. A filespace must be defined before
you can create a tablespace. See gpfilespace for more information.

Parameters

tablespacename

The name of a tablespace to be created. The name cannot begin with pg_ or gp_, as
such names are reserved for system tablespaces.

OWNER username

The name of the user who will own the tablespace. If omitted, defaults to the user
executing the command. Only superusers may create tablespaces, but they can
assign ownership of tablespaces to non-superusers.

FILESPACE

The name of a Greenplum Database filespace that was defined using the CREATE
FILESPACE command or the gpfilespace management utility.

Notes

You must first create a filespace to be used by the tablespace. See gpfilespace.

Tablespaces are only supported on systems that support symbolic links.

CREATE TABLESPACE cannot be executed inside a transaction block.
CREATE TABLESPACE 441

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
Examples

Create a new tablespace by specifying the corresponding filespace to use:

CREATE TABLESPACE mytblspace FILESPACE myfilespace;

Compatibility

CREATE TABLESPACE is a Greenplum Database extension.

See Also

gpfilespace, CREATE DATABASE, CREATE TABLE, CREATE INDEX, DROP TABLESPACE,
ALTER TABLESPACE
CREATE TABLESPACE 442

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
CREATE TRIGGER
Defines a new trigger. User-defined triggers are not supported in Greenplum
Database.

Synopsis
CREATE TRIGGER name {BEFORE | AFTER} {event [OR ...]}
 ON table [FOR [EACH] {ROW | STATEMENT}]
 EXECUTE PROCEDURE funcname (arguments)

Description

CREATE TRIGGER creates a new trigger. The trigger will be associated with the
specified table and will execute the specified function when certain events occur.

Due to the distributed nature of a Greenplum Database system, the use of triggers is
very limited in Greenplum Database. The function used in the trigger must be
IMMUTABLE, meaning it cannot use information not directly present in its argument
list. The function specified in the trigger also cannot execute any SQL or modify
distributed database objects in any way. Given that triggers are most often used to alter
tables (for example, update these other rows when this row is updated), these
limitations offer very little practical use of triggers in Greenplum Database. For that
reason, Greenplum does not support the use of user-defined triggers in Greenplum
Database. Triggers cannot be used on append-only tables.

If multiple triggers of the same kind are defined for the same event, they will be fired
in alphabetical order by name.

SELECT does not modify any rows so you can not create SELECT triggers. Rules and
views are more appropriate in such cases.

Parameters

name

The name to give the new trigger. This must be distinct from the name of any other
trigger for the same table.

BEFORE
AFTER

Determines whether the function is called before or after the event. If the trigger
fires before the event, the trigger may skip the operation for the current row, or
change the row being inserted (for INSERT and UPDATE operations only). If the
trigger fires after the event, all changes, including the last insertion, update, or
deletion, are visible to the trigger.

event

Specifies the event that will fire the trigger (INSERT, UPDATE, or DELETE).
Multiple events can be specified using OR.
CREATE TRIGGER 443

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
table

The name (optionally schema-qualified) of the table the trigger is for.

FOR EACH ROW
FOR EACH STATEMENT

This specifies whether the trigger procedure should be fired once for every row
affected by the trigger event, or just once per SQL statement. If neither is specified,
FOR EACH STATEMENT is the default. A trigger that is marked FOR EACH ROW is
called once for every row that the operation modifies. In contrast, a trigger that is
marked FOR EACH STATEMENT only executes once for any given operation,
regardless of how many rows it modifies.

funcname

A user-supplied function that is declared as IMMUTABLE, taking no arguments, and
returning type trigger, which is executed when the trigger fires. This function
must not execute SQL or modify the database in any way.

arguments

An optional comma-separated list of arguments to be provided to the function when
the trigger is executed. The arguments are literal string constants. Simple names and
numeric constants may be written here, too, but they will all be converted to strings.
Please check the description of the implementation language of the trigger function
about how the trigger arguments are accessible within the function; it may be
different from normal function arguments.

Notes

To create a trigger on a table, the user must have the TRIGGER privilege on the table.

Examples

Declare the trigger function and then a trigger:

CREATE FUNCTION sendmail() RETURNS trigger AS
'$GPHOME/lib/emailtrig.so' LANGUAGE C IMMUTABLE;

CREATE TRIGGER t_sendmail AFTER INSERT OR UPDATE OR DELETE
ON mytable FOR EACH STATEMENT EXECUTE PROCEDURE sendmail();

Compatibility

The CREATE TRIGGER statement in Greenplum Database implements a subset of the
SQL standard. The following functionality is currently missing:

• Greenplum Database has strict limitations on the function that is called by a
trigger, which makes the use of triggers very limited in Greenplum Database. For
this reason, triggers are not officially supported in Greenplum Database.

• SQL allows triggers to fire on updates to specific columns (e.g., AFTER UPDATE
OF col1, col2).
CREATE TRIGGER 444

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
• SQL allows you to define aliases for the ‘old’ and ‘new’ rows or tables for use in
the definition of the triggered action (e.g., CREATE TRIGGER ... ON tablename
REFERENCING OLD ROW AS somename NEW ROW AS othername ...). Since
Greenplum Database allows trigger procedures to be written in any number of
user-defined languages, access to the data is handled in a language-specific way.

• Greenplum Database only allows the execution of a user-defined function for the
triggered action. The standard allows the execution of a number of other SQL
commands, such as CREATE TABLE as the triggered action. This limitation is not
hard to work around by creating a user-defined function that executes the desired
commands.

• SQL specifies that multiple triggers should be fired in time-of-creation order.
Greenplum Database uses name order, which was judged to be more convenient.

• SQL specifies that BEFORE DELETE triggers on cascaded deletes fire after the
cascaded DELETE completes. The Greenplum Database behavior is for BEFORE
DELETE to always fire before the delete action, even a cascading one. This is
considered more consistent. There is also unpredictable behavior when BEFORE
triggers modify rows that are later to be modified by referential actions. This can
lead to constraint violations or stored data that does not honor the referential
constraint.

• The ability to specify multiple actions for a single trigger using OR is a Greenplum
Database extension of the SQL standard.

See Also

CREATE FUNCTION, ALTER TRIGGER, DROP TRIGGER, CREATE RULE
CREATE TRIGGER 445

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
CREATE TYPE
Defines a new data type.

Synopsis
CREATE TYPE name AS (attribute_name data_type [, ...])

CREATE TYPE name (
 INPUT = input_function,
 OUTPUT = output_function
 [, RECEIVE = receive_function]
 [, SEND = send_function]
 [, ANALYZE = analyze_function]
 [, INTERNALLENGTH = {internallength | VARIABLE}]
 [, PASSEDBYVALUE]
 [, ALIGNMENT = alignment]
 [, STORAGE = storage]
 [, DEFAULT = default]
 [, ELEMENT = element]
 [, DELIMITER = delimiter]
)

CREATE TYPE name

Description

CREATE TYPE registers a new data type for use in the current database. The user who
defines a type becomes its owner.

If a schema name is given then the type is created in the specified schema. Otherwise
it is created in the current schema. The type name must be distinct from the name of
any existing type or domain in the same schema. The type name must also be distinct
from the name of any existing table in the same schema.

Composite Types

The first form of CREATE TYPE creates a composite type. The composite type is
specified by a list of attribute names and data types. This is essentially the same as the
row type of a table, but using CREATE TYPE avoids the need to create an actual table
when all that is wanted is to define a type. A stand-alone composite type is useful as
the argument or return type of a function.

Base Types

The second form of CREATE TYPE creates a new base type (scalar type). The
parameters may appear in any order, not only that shown in the syntax, and most are
optional. You must register two or more functions (using CREATE FUNCTION) before
defining the type. The support functions input_function and output_function
are required, while the functions receive_function, send_function and
analyze_function are optional. Generally these functions have to be coded in C or
another low-level language. In Greenplum Database, any function used to implement
a data type must be defined as IMMUTABLE.
CREATE TYPE 446

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
The input_function converts the type’s external textual representation to the
internal representation used by the operators and functions defined for the type.
output_function performs the reverse transformation. The input function may be
declared as taking one argument of type cstring, or as taking three arguments of
types cstring, oid, integer. The first argument is the input text as a C string, the
second argument is the type’s own OID (except for array types, which instead receive
their element type’s OID), and the third is the typmod of the destination column, if
known (-1 will be passed if not). The input function must return a value of the data
type itself. Usually, an input function should be declared STRICT; if it is not, it will be
called with a NULL first parameter when reading a NULL input value. The function
must still return NULL in this case, unless it raises an error. (This case is mainly meant
to support domain input functions, which may need to reject NULL inputs.) The output
function must be declared as taking one argument of the new data type. The output
function must return type cstring. Output functions are not invoked for NULL values.

The optional receive_function converts the type’s external binary representation
to the internal representation. If this function is not supplied, the type cannot
participate in binary input. The binary representation should be chosen to be cheap to
convert to internal form, while being reasonably portable. (For example, the standard
integer data types use network byte order as the external binary representation, while
the internal representation is in the machine’s native byte order.) The receive function
should perform adequate checking to ensure that the value is valid. The receive
function may be declared as taking one argument of type internal, or as taking three
arguments of types internal, oid, integer. The first argument is a pointer to a
StringInfo buffer holding the received byte string; the optional arguments are the
same as for the text input function. The receive function must return a value of the
data type itself. Usually, a receive function should be declared STRICT; if it is not, it
will be called with a NULL first parameter when reading a NULL input value. The
function must still return NULL in this case, unless it raises an error. (This case is
mainly meant to support domain receive functions, which may need to reject NULL
inputs.) Similarly, the optional send_function converts from the internal
representation to the external binary representation. If this function is not supplied, the
type cannot participate in binary output. The send function must be declared as taking
one argument of the new data type. The send function must return type bytea. Send
functions are not invoked for NULL values.

You should at this point be wondering how the input and output functions can be
declared to have results or arguments of the new type, when they have to be created
before the new type can be created. The answer is that the type should first be defined
as a shell type, which is a placeholder type that has no properties except a name and an
owner. This is done by issuing the command CREATE TYPE name, with no additional
parameters. Then the I/O functions can be defined referencing the shell type. Finally,
CREATE TYPE with a full definition replaces the shell entry with a complete, valid type
definition, after which the new type can be used normally.

The optional analyze_function performs type-specific statistics collection for
columns of the data type. By default, ANALYZE will attempt to gather statistics using
the type’s ‘equals’ and ‘less-than’ operators, if there is a default b-tree operator class
for the type. For non-scalar types this behavior is likely to be unsuitable, so it can be
overridden by specifying a custom analysis function. The analysis function must be
CREATE TYPE 447

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
declared to take a single argument of type internal, and return a boolean result.
The detailed API for analysis functions appears in
$GPHOME/include/commands/vacuum.h.

While the details of the new type’s internal representation are only known to the I/O
functions and other functions you create to work with the type, there are several
properties of the internal representation that must be declared to Greenplum Database.
Foremost of these is internallength. Base data types can be fixed-length, in which
case internallength is a positive integer, or variable length, indicated by setting
internallength to VARIABLE. (Internally, this is represented by setting typlen to
-1.) The internal representation of all variable-length types must start with a 4-byte
integer giving the total length of this value of the type.

The optional flag PASSEDBYVALUE indicates that values of this data type are passed by
value, rather than by reference. You may not pass by value types whose internal
representation is larger than the size of the Datum type (4 bytes on most machines, 8
bytes on a few).

The alignment parameter specifies the storage alignment required for the data type.
The allowed values equate to alignment on 1, 2, 4, or 8 byte boundaries. Note that
variable-length types must have an alignment of at least 4, since they necessarily
contain an int4 as their first component.

The storage parameter allows selection of storage strategies for variable-length data
types. (Only plain is allowed for fixed-length types.) plain specifies that data of the
type will always be stored in-line and not compressed. extended specifies that the
system will first try to compress a long data value, and will move the value out of the
main table row if it’s still too long. external allows the value to be moved out of the
main table, but the system will not try to compress it. main allows compression, but
discourages moving the value out of the main table. (Data items with this storage
strategy may still be moved out of the main table if there is no other way to make a
row fit, but they will be kept in the main table preferentially over extended and
external items.)

A default value may be specified, in case a user wants columns of the data type to
default to something other than the null value. Specify the default with the DEFAULT
key word. (Such a default may be overridden by an explicit DEFAULT clause attached
to a particular column.)

To indicate that a type is an array, specify the type of the array elements using the
ELEMENT key word. For example, to define an array of 4-byte integers (int4), specify
ELEMENT = int4. More details about array types appear below.

To indicate the delimiter to be used between values in the external representation of
arrays of this type, delimiter can be set to a specific character. The default delimiter
is the comma (,). Note that the delimiter is associated with the array element type, not
the array type itself.

Array Types

Whenever a user-defined base data type is created, Greenplum Database automatically
creates an associated array type, whose name consists of the base type’s name
prepended with an underscore. The parser understands this naming convention, and
CREATE TYPE 448

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
translates requests for columns of type foo[] into requests for type _foo. The
implicitly-created array type is variable length and uses the built-in input and output
functions array_in and array_out.

You might reasonably ask why there is an ELEMENT option, if the system makes the
correct array type automatically. The only case where it’s useful to use ELEMENT is
when you are making a fixed-length type that happens to be internally an array of a
number of identical things, and you want to allow these things to be accessed directly
by subscripting, in addition to whatever operations you plan to provide for the type as
a whole. For example, type name allows its constituent char elements to be accessed
this way. A 2-D point type could allow its two component numbers to be accessed like
point[0] and point[1]. Note that this facility only works for fixed-length types whose
internal form is exactly a sequence of identical fixed-length fields. A subscriptable
variable-length type must have the generalized internal representation used by
array_in and array_out. For historical reasons, subscripting of fixed-length array
types starts from zero, rather than from one as for variable-length arrays.

Parameters

name

The name (optionally schema-qualified) of a type to be created.

attribute_name

The name of an attribute (column) for the composite type.

data_type

The name of an existing data type to become a column of the composite type.

input_function

The name of a function that converts data from the type’s external textual form to its
internal form.

output_function

The name of a function that converts data from the type’s internal form to its
external textual form.

receive_function

The name of a function that converts data from the type’s external binary form to its
internal form.

send_function

The name of a function that converts data from the type’s internal form to its
external binary form.

analyze_function

The name of a function that performs statistical analysis for the data type.
CREATE TYPE 449

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
internallength

A numeric constant that specifies the length in bytes of the new type’s internal
representation. The default assumption is that it is variable-length.

alignment

The storage alignment requirement of the data type. Must be one of char, int2,
int4, or double. The default is int4.

storage

The storage strategy for the data type. Must be one of plain, external, extended,
or main. The default is plain.

default

The default value for the data type. If this is omitted, the default is null.

element

The type being created is an array; this specifies the type of the array elements.

delimiter

The delimiter character to be used between values in arrays made of this type.

Notes

User-defined type names cannot begin with the underscore character (_) and can only
be 62 characters long (or in general NAMEDATALEN - 2, rather than the NAMEDATALEN
- 1 characters allowed for other names). Type names beginning with underscore are
reserved for internally-created array type names.

Because there are no restrictions on use of a data type once it’s been created, creating
a base type is tantamount to granting public execute permission on the functions
mentioned in the type definition. (The creator of the type is therefore required to own
these functions.) This is usually not an issue for the sorts of functions that are useful in
a type definition. But you might want to think twice before designing a type in a way
that would require ‘secret’ information to be used while converting it to or from
external form.

Before Greenplum Database version 2.4, the syntax CREATE TYPE name did not exist.
The way to create a new base type was to create its input function first. In this
approach, Greenplum Database will first see the name of the new data type as the
return type of the input function. The shell type is implicitly created in this situation,
and then it can be referenced in the definitions of the remaining I/O functions. This
approach still works, but is deprecated and may be disallowed in some future release.
Also, to avoid accidentally cluttering the catalogs with shell types as a result of simple
typos in function definitions, a shell type will only be made this way when the input
function is written in C.

Examples

This example creates a composite type and uses it in a function definition:
CREATE TYPE 450

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
CREATE TYPE compfoo AS (f1 int, f2 text);

CREATE FUNCTION getfoo() RETURNS SETOF compfoo AS $$

 SELECT fooid, fooname FROM foo

$$ LANGUAGE SQL;

This example creates the base data type box and then uses the type in a table
definition:

CREATE TYPE box;

CREATE FUNCTION my_box_in_function(cstring) RETURNS box AS
... ;

CREATE FUNCTION my_box_out_function(box) RETURNS cstring AS
... ;

CREATE TYPE box (

 INTERNALLENGTH = 16,

 INPUT = my_box_in_function,

 OUTPUT = my_box_out_function

);

CREATE TABLE myboxes (

 id integer,

 description box

);

If the internal structure of box were an array of four float4 elements, we might
instead use:

CREATE TYPE box (

 INTERNALLENGTH = 16,

 INPUT = my_box_in_function,

 OUTPUT = my_box_out_function,

 ELEMENT = float4

);

which would allow a box value’s component numbers to be accessed by subscripting.
Otherwise the type behaves the same as before.

This example creates a large object type and uses it in a table definition:

CREATE TYPE bigobj (

 INPUT = lo_filein, OUTPUT = lo_fileout,

 INTERNALLENGTH = VARIABLE

);

CREATE TABLE big_objs (
CREATE TYPE 451

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
 id integer,

 obj bigobj

);

Compatibility

This CREATE TYPE command is a Greenplum Database extension. There is a CREATE
TYPE statement in the SQL standard that is rather different in detail.

See Also

CREATE FUNCTION, ALTER TYPE, DROP TYPE, CREATE DOMAIN
CREATE TYPE 452

CREATE USER 453

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference

CREATE USER
Defines a new database role with the LOGIN privilege by default.

Synopsis
CREATE USER name [[WITH] option [...]]

where option can be:
 SUPERUSER | NOSUPERUSER
 | CREATEDB | NOCREATEDB
 | CREATEROLE | NOCREATEROLE
 | CREATEUSER | NOCREATEUSER
 | INHERIT | NOINHERIT
 | LOGIN | NOLOGIN
 | [ENCRYPTED | UNENCRYPTED] PASSWORD 'password'
 | VALID UNTIL 'timestamp'
 | IN ROLE rolename [, ...]
 | IN GROUP rolename [, ...]
 | ROLE rolename [, ...]
 | ADMIN rolename [, ...]
 | USER rolename [, ...]
 | SYSID uid
 | RESOURCE QUEUE queue_name

Description

As of Greenplum Database release 2.2, CREATE USER has been replaced by CREATE
ROLE, although it is still accepted for backwards compatibility.

The only difference between CREATE ROLE and CREATE USER is that LOGIN is
assumed by default with CREATE USER, whereas NOLOGIN is assumed by default with
CREATE ROLE.

Compatibility

There is no CREATE USER statement in the SQL standard.

See Also

CREATE ROLE

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
CREATE VIEW
Defines a new view.

Synopsis
CREATE [OR REPLACE] [TEMP | TEMPORARY] VIEW name
 [(column_name [, ...])]
 AS query

Description

CREATE VIEW defines a view of a query. The view is not physically materialized.
Instead, the query is run every time the view is referenced in a query.

CREATE OR REPLACE VIEW is similar, but if a view of the same name already exists,
it is replaced. You can only replace a view with a new query that generates the
identical set of columns (same column names and data types).

If a schema name is given then the view is created in the specified schema. Otherwise
it is created in the current schema. Temporary views exist in a special schema, so a
schema name may not be given when creating a temporary view. The name of the
view must be distinct from the name of any other view, table, sequence, or index in the
same schema.

Parameters

TEMPORARY | TEMP

If specified, the view is created as a temporary view. Temporary views are
automatically dropped at the end of the current session. Existing permanent relations
with the same name are not visible to the current session while the temporary view
exists, unless they are referenced with schema-qualified names. If any of the tables
referenced by the view are temporary, the view is created as a temporary view
(whether TEMPORARY is specified or not).

name

The name (optionally schema-qualified) of a view to be created.

column_name

An optional list of names to be used for columns of the view. If not given, the
column names are deduced from the query.

query

A SELECT or VALUES command which will provide the columns and rows of the
view.
CREATE VIEW 454

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
Notes

Views in Greenplum Database are read only. The system will not allow an insert,
update, or delete on a view. You can get the effect of an updatable view by creating
rewrite rules on the view into appropriate actions on other tables. For more
information see CREATE RULE.

Be careful that the names and data types of the view’s columns will be assigned the
way you want. For example:

CREATE VIEW vista AS SELECT 'Hello World';

is bad form in two ways: the column name defaults to ?column?, and the column data
type defaults to unknown. If you want a string literal in a view’s result, use something
like:

CREATE VIEW vista AS SELECT text 'Hello World' AS hello;

Access to tables referenced in the view is determined by permissions of the view
owner not the current user (even if the current user is a superuser). This can be
confusing in the case of superusers, since superusers typically have access to all
objects. In the case of a view, even superusers must be explicitly granted access to
tables referenced in the view if they are not the owner of the view.

However, functions called in the view are treated the same as if they had been called
directly from the query using the view. Therefore the user of a view must have
permissions to call any functions used by the view.

If you create a view with an ORDER BY clause, the ORDER BY clause is ignored when
you do a SELECT from the view.

Examples

Create a view consisting of all comedy films:

CREATE VIEW comedies AS SELECT * FROM films WHERE kind =
'comedy';

Create a view that gets the top ten ranked baby names:

CREATE VIEW topten AS SELECT name, rank, gender, year FROM
names, rank WHERE rank < '11' AND names.id=rank.id;

Compatibility

The SQL standard specifies some additional capabilities for the CREATE VIEW
statement that are not in Greenplum Database. The optional clauses for the full SQL
command in the standard are:

• CHECK OPTION — This option has to do with updatable views. All INSERT and
UPDATE commands on the view will be checked to ensure data satisfy the
view-defining condition (that is, the new data would be visible through the view).
If they do not, the update will be rejected.

• LOCAL — Check for integrity on this view.
CREATE VIEW 455

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
• CASCADED — Check for integrity on this view and on any dependent view.
CASCADED is assumed if neither CASCADED nor LOCAL is specified.

CREATE OR REPLACE VIEW is a Greenplum Database language extension. So is the
concept of a temporary view.

See Also

SELECT, DROP VIEW
CREATE VIEW 456

DEALLOCATE 457

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference

DEALLOCATE
Deallocates a prepared statement.

Synopsis
DEALLOCATE [PREPARE] name

Description

DEALLOCATE is used to deallocate a previously prepared SQL statement. If you do not
explicitly deallocate a prepared statement, it is deallocated when the session ends.

For more information on prepared statements, see PREPARE.

Parameters

PREPARE

Optional key word which is ignored.

name

The name of the prepared statement to deallocate.

Examples

Deallocated the previously prepared statement named insert_names:

DEALLOCATE insert_names;

Compatibility

The SQL standard includes a DEALLOCATE statement, but it is only for use in
embedded SQL.

See Also

EXECUTE, PREPARE

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
DECLARE
Defines a cursor.

Synopsis
DECLARE name [BINARY] [INSENSITIVE] [NO SCROLL] CURSOR
 [{WITH | WITHOUT} HOLD]
 FOR query [FOR READ ONLY]

Description

DECLARE allows a user to create cursors, which can be used to retrieve a small number
of rows at a time out of a larger query. Cursors can return data either in text or in
binary format using FETCH.

Normal cursors return data in text format, the same as a SELECT would produce. Since
data is stored natively in binary format, the system must do a conversion to produce
the text format. Once the information comes back in text form, the client application
may need to convert it to a binary format to manipulate it. In addition, data in the text
format is often larger in size than in the binary format. Binary cursors return the data
in a binary representation that may be more easily manipulated. Nevertheless, if you
intend to display the data as text anyway, retrieving it in text form will save you some
effort on the client side.

As an example, if a query returns a value of one from an integer column, you would
get a string of 1 with a default cursor whereas with a binary cursor you would get a
4-byte field containing the internal representation of the value (in big-endian byte
order).

Binary cursors should be used carefully. Many applications, including psql, are not
prepared to handle binary cursors and expect data to come back in the text format.

Note: When the client application uses the ‘extended query’ protocol to issue a FETCH
command, the Bind protocol message specifies whether data is to be retrieved in text or
binary format. This choice overrides the way that the cursor is defined. The concept of
a binary cursor as such is thus obsolete when using extended query protocol — any
cursor can be treated as either text or binary.

Parameters

name

The name of the cursor to be created.

BINARY

Causes the cursor to return data in binary rather than in text format.
DECLARE 458

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
INSENSITIVE

Indicates that data retrieved from the cursor should be unaffected by updates to the
tables underlying the cursor while the cursor exists. In Greenplum Database, all
cursors are insensitive. This key word currently has no effect and is present for
compatibility with the SQL standard.

NO SCROLL

A cursor cannot be used to retrieve rows in a nonsequential fashion. This is the
default behavior in Greenplum Database, since scrollable cursors (SCROLL) are not
supported.

WITH HOLD
WITHOUT HOLD

WITH HOLD specifies that the cursor may continue to be used after the transaction
that created it successfully commits. WITHOUT HOLD specifies that the cursor cannot
be used outside of the transaction that created it. WITHOUT HOLD is the default.

query

A SELECT or VALUES command which will provide the rows to be returned by the
cursor.

FOR READ ONLY

Cursors can only be used in a read-only mode in Greenplum Database. Greenplum
Database does not support updatable cursors (FOR UPDATE), so this is the default
behavior.

Notes

Unless WITH HOLD is specified, the cursor created by this command can only be used
within the current transaction. Thus, DECLARE without WITH HOLD is useless outside a
transaction block: the cursor would survive only to the completion of the statement.
Therefore Greenplum Database reports an error if this command is used outside a
transaction block. Use BEGIN, COMMIT and ROLLBACK to define a transaction block.

If WITH HOLD is specified and the transaction that created the cursor successfully
commits, the cursor can continue to be accessed by subsequent transactions in the
same session. (But if the creating transaction is aborted, the cursor is removed.) A
cursor created with WITH HOLD is closed when an explicit CLOSE command is issued
on it, or the session ends. In the current implementation, the rows represented by a
held cursor are copied into a temporary file or memory area so that they remain
available for subsequent transactions.

Scrollable cursors are not currently supported in Greenplum Database. You can only
use FETCH to move the cursor position forward, not backwards.

You can see all available cursors by querying the pg_cursors system view.

Examples

Declare a cursor:
DECLARE 459

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
DECLARE mycursor CURSOR FOR SELECT * FROM mytable;

Compatibility

SQL standard allows cursors only in embedded SQL and in modules. Greenplum
Database permits cursors to be used interactively.

Greenplum Database does not implement an OPEN statement for cursors. A cursor is
considered to be open when it is declared.

The SQL standard allows cursors to update table data. All Greenplum Database
cursors are read only.

The SQL standard allows cursors to move both forward and backward. All Greenplum
Database cursors are forward moving only (not scrollable).

Binary cursors are a Greenplum Database extension.

See Also

CLOSE, FETCH, MOVE, SELECT
DECLARE 460

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
DELETE
Deletes rows from a table.

Synopsis
DELETE FROM [ONLY] table [[AS] alias]
 [USING usinglist]
 [WHERE condition]

Description

DELETE deletes rows that satisfy the WHERE clause from the specified table. If the
WHERE clause is absent, the effect is to delete all rows in the table. The result is a valid,
but empty table.

By default, DELETE will delete rows in the specified table and all its child tables. If
you wish to delete only from the specific table mentioned, you must use the ONLY
clause.

There are two ways to delete rows in a table using information contained in other
tables in the database: using sub-selects, or specifying additional tables in the USING
clause. Which technique is more appropriate depends on the specific circumstances.

You must have the DELETE privilege on the table to delete from it.

Outputs

On successful completion, a DELETE command returns a command tag of the form

DELETE count

The count is the number of rows deleted. If count is 0, no rows matched the condition
(this is not considered an error).

Parameters

ONLY

If specified, delete rows from the named table only. When not specified, any tables
inheriting from the named table are also processed.

table

The name (optionally schema-qualified) of an existing table.

alias

A substitute name for the target table. When an alias is provided, it completely hides
the actual name of the table. For example, given DELETE FROM foo AS f, the
remainder of the DELETE statement must refer to this table as f not foo.
DELETE 461

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
usinglist

A list of table expressions, allowing columns from other tables to appear in the
WHERE condition. This is similar to the list of tables that can be specified in the FROM
Clause of a SELECT statement; for example, an alias for the table name can be
specified. Do not repeat the target table in the usinglist, unless you wish to set up
a self-join.

condition

An expression returning a value of type boolean, which determines the rows that
are to be deleted.

Notes

You cannot use STABLE or VOLATILE functions in a DELETE statement if mirrors are
enabled. This can potentially cause the primary segment and its mirror to become
out-of-sync because the command is run first on the primary and then a second time
on the mirror in the current Greenplum Database implementation.

Greenplum Database lets you reference columns of other tables in the WHERE
condition by specifying the other tables in the USING clause. For example, to the name
Hannah from the rank table, one might do:

DELETE FROM rank USING names WHERE names.id = rank.id AND
name = 'Hannah';

What is essentially happening here is a join between rank and names, with all
successfully joined rows being marked for deletion. This syntax is not standard.
However, this join style is usually easier to write and faster to execute than a more
standard sub-select style, such as:

DELETE FROM rank WHERE id IN (SELECT id FROM names WHERE name
= 'Hannah');

When using DELETE to remove all the rows of a table (for example: DELETE * FROM
table;), Greenplum Database adds an implicit TRUNCATE command (when user
permissions allow). The added TRUNCATE command frees the disk space occupied by
the deleted rows without requiring a VACUUM of the table. This improves scan
performance of subsequent queries, and benefits ELT workloads that frequently insert
and delete from temporary tables.

Examples

Delete all films but musicals:

DELETE FROM films WHERE kind <> 'Musical';

Clear the table films:

DELETE FROM films;

Delete using a join:

DELETE FROM rank USING names WHERE names.id = rank.id AND
name = 'Hannah';
DELETE 462

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
Compatibility

This command conforms to the SQL standard, except that the USING clause is a
Greenplum Database extension.

See Also

TRUNCATE
DELETE 463

DROP AGGREGATE 464

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference

DROP AGGREGATE
Removes an aggregate function.

Synopsis
DROP AGGREGATE [IF EXISTS] name (type [, ...]) [CASCADE |
RESTRICT]

Description

DROP AGGREGATE will delete an existing aggregate function. To execute this
command the current user must be the owner of the aggregate function.

Parameters

IF EXISTS

Do not throw an error if the aggregate does not exist. A notice is issued in this case.

name

The name (optionally schema-qualified) of an existing aggregate function.

type

An input data type on which the aggregate function operates. To reference a
zero-argument aggregate function, write * in place of the list of input data types.

CASCADE

Automatically drop objects that depend on the aggregate function.

RESTRICT

Refuse to drop the aggregate function if any objects depend on it. This is the default.

Examples

To remove the aggregate function myavg for type integer:

DROP AGGREGATE myavg(integer);

Compatibility

There is no DROP AGGREGATE statement in the SQL standard.

See Also

ALTER AGGREGATE, CREATE AGGREGATE

DROP CAST 465

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference

DROP CAST
Removes a cast.

Synopsis
DROP CAST [IF EXISTS] (sourcetype AS targettype) [CASCADE |
RESTRICT]

Description

DROP CAST will delete a previously defined cast. To be able to drop a cast, you must
own the source or the target data type. These are the same privileges that are required
to create a cast.

Parameters

IF EXISTS

Do not throw an error if the cast does not exist. A notice is issued in this case.

sourcetype

The name of the source data type of the cast.

targettype

The name of the target data type of the cast.

CASCADE
RESTRICT

These keywords have no effect since there are no dependencies on casts.

Examples

To drop the cast from type text to type int:

DROP CAST (text AS int);

Compatibility

There DROP CAST command conforms to the SQL standard.

See Also

CREATE CAST

DROP CONVERSION 466

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference

DROP CONVERSION
Removes a conversion.

Synopsis
DROP CONVERSION [IF EXISTS] name [CASCADE | RESTRICT]

Description

DROP CONVERSION removes a previously defined conversion. To be able to drop a
conversion, you must own the conversion.

Parameters

IF EXISTS

Do not throw an error if the conversion does not exist. A notice is issued in this case.

name

The name of the conversion. The conversion name may be schema-qualified.

CASCADE
RESTRICT

These keywords have no effect since there are no dependencies on conversions.

Examples

Drop the conversion named myname:

DROP CONVERSION myname;

Compatibility

There is no DROP CONVERSION statement in the SQL standard.

See Also

ALTER CONVERSION, CREATE CONVERSION

DROP DATABASE 467

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference

DROP DATABASE
Removes a database.

Synopsis
DROP DATABASE [IF EXISTS] name

Description

DROP DATABASE drops a database. It removes the catalog entries for the database and
deletes the directory containing the data. It can only be executed by the database
owner. Also, it cannot be executed while you or anyone else are connected to the
target database. (Connect to template1 or any other database to issue this command.)

DROP DATABASE cannot be undone. Use it with care!

Parameters

IF EXISTS

Do not throw an error if the database does not exist. A notice is issued in this case.

name

The name of the database to remove.

Notes

DROP DATABASE cannot be executed inside a transaction block.

This command cannot be executed while connected to the target database. Thus, it
might be more convenient to use the program dropdb instead, which is a wrapper
around this command.

Examples

Drop the database named testdb:

DROP DATABASE testdb;

Compatibility

There is no DROP DATABASE statement in the SQL standard.

See Also

ALTER DATABASE, CREATE DATABASE

DROP DOMAIN 468

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference

DROP DOMAIN
Removes a domain.

Synopsis
DROP DOMAIN [IF EXISTS] name [, ...] [CASCADE | RESTRICT]

Description

DROP DOMAIN removes a previously defined domain. You must be the owner of a
domain to drop it.

Parameters

IF EXISTS

Do not throw an error if the domain does not exist. A notice is issued in this case.

name

The name (optionally schema-qualified) of an existing domain.

CASCADE

Automatically drop objects that depend on the domain (such as table columns).

RESTRICT

Refuse to drop the domain if any objects depend on it. This is the default.

Examples

Drop the domain named zipcode:

DROP DOMAIN zipcode;

Compatibility

This command conforms to the SQL standard, except for the IF EXISTS option,
which is a Greenplum Database extension.

See Also

ALTER DOMAIN, CREATE DOMAIN

DROP EXTERNAL TABLE 469

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference

DROP EXTERNAL TABLE
Removes an external table definition.

Synopsis
DROP EXTERNAL [WEB] TABLE [IF EXISTS] name [CASCADE | RESTRICT]

Description

DROP EXTERNAL TABLE drops an existing external table definition from the database
system. The external data sources or files are not deleted. To execute this command
you must be the owner of the external table.

Parameters

WEB

Optional keyword for dropping external web tables.

IF EXISTS

Do not throw an error if the external table does not exist. A notice is issued in this
case.

name

The name (optionally schema-qualified) of an existing external table.

CASCADE

Automatically drop objects that depend on the external table (such as views).

RESTRICT

Refuse to drop the external table if any objects depend on it. This is the default.

Examples

Remove the external table named staging if it exists:

DROP EXTERNAL TABLE IF EXISTS staging;

Compatibility

There is no DROP EXTERNAL TABLE statement in the SQL standard.

See Also

CREATE EXTERNAL TABLE

DROP FILESPACE 470

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference

DROP FILESPACE
Removes a filespace.

Synopsis
DROP FILESPACE [IF EXISTS] filespacename

Description

DROP FILESPACE removes a filespace definition and its system-generated data
directories from the system.

A filespace can only be dropped by its owner or a superuser. The filespace must be
empty of all tablespace objects before it can be dropped. It is possible that tablespaces
in other databases may still be using a filespace even if no tablespaces in the current
database are using the filespace.

Parameters

IF EXISTS

Do not throw an error if the filespace does not exist. A notice is issued in this case.

tablespacename

The name of the filespace to remove.

Examples

Remove the tablespace myfs:

DROP FILESPACE myfs;

Compatibility

There is no DROP FILESPACE statement in the SQL standard or in PostgreSQL.

See Also

ALTER FILESPACE, gpfilespace, DROP TABLESPACE

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
DROP FUNCTION
Removes a function.

Synopsis
DROP FUNCTION [IF EXISTS] name ([[argmode] [argname] argtype
[, ...]]) [CASCADE | RESTRICT]

Description

DROP FUNCTION removes the definition of an existing function. To execute this
command the user must be the owner of the function. The argument types to the
function must be specified, since several different functions may exist with the same
name and different argument lists.

Parameters

IF EXISTS

Do not throw an error if the function does not exist. A notice is issued in this case.

name

The name (optionally schema-qualified) of an existing function.

argmode

The mode of an argument: either IN, OUT, or INOUT. If omitted, the default is IN.
Note that DROP FUNCTION does not actually pay any attention to OUT arguments,
since only the input arguments are needed to determine the function’s identity. So it
is sufficient to list the IN and INOUT arguments.

argname

The name of an argument. Note that DROP FUNCTION does not actually pay any
attention to argument names, since only the argument data types are needed to
determine the function’s identity.

argtype

The data type(s) of the function’s arguments (optionally schema-qualified), if any.

CASCADE

Automatically drop objects that depend on the function (such as operators or
triggers).

RESTRICT

Refuse to drop the function if any objects depend on it. This is the default.
DROP FUNCTION 471

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
Examples

Drop the square root function:

DROP FUNCTION sqrt(integer);

Compatibility

A DROP FUNCTION statement is defined in the SQL standard, but it is not compatible
with this command.

See Also

CREATE FUNCTION, ALTER FUNCTION
DROP FUNCTION 472

DROP GROUP 473

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference

DROP GROUP
Removes a database role.

Synopsis
DROP GROUP [IF EXISTS] name [, ...]

Description

DROP GROUP is an obsolete command, though still accepted for backwards
compatibility. Groups (and users) have been superseded by the more general concept
of roles. See DROP ROLE for more information.

Parameters

IF EXISTS

Do not throw an error if the role does not exist. A notice is issued in this case.

name

The name of an existing role.

Compatibility

There is no DROP GROUP statement in the SQL standard.

See Also

DROP ROLE

DROP INDEX 474

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference

DROP INDEX
Removes an index.

Synopsis
DROP INDEX [IF EXISTS] name [, ...] [CASCADE | RESTRICT]

Description

DROP INDEX drops an existing index from the database system. To execute this
command you must be the owner of the index.

Parameters

IF EXISTS

Do not throw an error if the index does not exist. A notice is issued in this case.

name

The name (optionally schema-qualified) of an existing index.

CASCADE

Automatically drop objects that depend on the index.

RESTRICT

Refuse to drop the index if any objects depend on it. This is the default.

Examples

Remove the index title_idx:

DROP INDEX title_idx;

Compatibility

DROP INDEX is a Greenplum Database language extension. There are no provisions
for indexes in the SQL standard.

See Also

ALTER INDEX, CREATE INDEX, REINDEX

DROP LANGUAGE 475

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference

DROP LANGUAGE
Removes a procedural language.

Synopsis
DROP [PROCEDURAL] LANGUAGE [IF EXISTS] name [CASCADE | RESTRICT]

Description

DROP LANGUAGE will remove the definition of the previously registered procedural
language. You must be a superuser to drop a language.

Parameters

PROCEDURAL

Optional keyword - has no effect.

IF EXISTS

Do not throw an error if the language does not exist. A notice is issued in this case.

name

The name of an existing procedural language. For backward compatibility, the name
may be enclosed by single quotes.

CASCADE

Automatically drop objects that depend on the language (such as functions written
in that language).

RESTRICT

Refuse to drop the language if any objects depend on it. This is the default.

Examples

Remove the procedural language plsample:

DROP LANGUAGE plsample;

Compatibility

There is no DROP LANGUAGE statement in the SQL standard.

See Also

ALTER LANGUAGE, CREATE LANGUAGE

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
DROP OPERATOR
Removes an operator.

Synopsis
DROP OPERATOR [IF EXISTS] name ({lefttype | NONE} , {righttype
| NONE}) [CASCADE | RESTRICT]

Description

DROP OPERATOR drops an existing operator from the database system. To execute this
command you must be the owner of the operator.

Parameters

IF EXISTS

Do not throw an error if the operator does not exist. A notice is issued in this case.

name

The name (optionally schema-qualified) of an existing operator.

lefttype

The data type of the operator’s left operand; write NONE if the operator has no left
operand.

righttype

The data type of the operator’s right operand; write NONE if the operator has no right
operand.

CASCADE

Automatically drop objects that depend on the operator.

RESTRICT

Refuse to drop the operator if any objects depend on it. This is the default.

Examples

Remove the power operator a^b for type integer:

DROP OPERATOR ^ (integer, integer);

Remove the left unary bitwise complement operator ~b for type bit:

DROP OPERATOR ~ (none, bit);

Remove the right unary factorial operator x! for type bigint:

DROP OPERATOR ! (bigint, none);
DROP OPERATOR 476

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
Compatibility

There is no DROP OPERATOR statement in the SQL standard.

See Also

ALTER OPERATOR, CREATE OPERATOR
DROP OPERATOR 477

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
DROP OPERATOR CLASS
Removes an operator class.

Synopsis
DROP OPERATOR CLASS [IF EXISTS] name USING index_method [CASCADE
| RESTRICT]

Description

DROP OPERATOR drops an existing operator class. To execute this command you must
be the owner of the operator class.

Parameters

IF EXISTS

Do not throw an error if the operator class does not exist. A notice is issued in this
case.

name

The name (optionally schema-qualified) of an existing operator class.

index_method

The name of the index access method the operator class is for.

CASCADE

Automatically drop objects that depend on the operator class.

RESTRICT

Refuse to drop the operator class if any objects depend on it. This is the default.

Examples

Remove the B-tree operator class widget_ops:

DROP OPERATOR CLASS widget_ops USING btree;

This command will not succeed if there are any existing indexes that use the operator
class. Add CASCADE to drop such indexes along with the operator class.

Compatibility

There is no DROP OPERATOR CLASS statement in the SQL standard.

See Also

ALTER OPERATOR CLASS, CREATE OPERATOR CLASS
DROP OPERATOR CLASS 478

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
DROP OPERATOR CLASS 479

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
DROP OWNED
Removes database objects owned by a database role.

Synopsis
DROP OWNED BY name [, ...] [CASCADE | RESTRICT]

Description

DROP OWNED drops all the objects in the current database that are owned by one of the
specified roles. Any privileges granted to the given roles on objects in the current
database will also be revoked.

Parameters

name

The name of a role whose objects will be dropped, and whose privileges will be
revoked.

CASCADE

Automatically drop objects that depend on the affected objects.

RESTRICT

Refuse to drop the objects owned by a role if any other database objects depend on
one of the affected objects. This is the default.

Notes

DROP OWNED is often used to prepare for the removal of one or more roles. Because
DROP OWNED only affects the objects in the current database, it is usually necessary to
execute this command in each database that contains objects owned by a role that is to
be removed.

Using the CASCADE option may make the command recurse to objects owned by other
users.

The REASSIGN OWNED command is an alternative that reassigns the ownership of all
the database objects owned by one or more roles.

Examples

Remove any database objects owned by the role named sally:

DROP OWNED BY sally;

Compatibility

The DROP OWNED statement is a Greenplum Database extension.
DROP OWNED 480

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
See Also

REASSIGN OWNED, DROP ROLE
DROP OWNED 481

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
DROP RESOURCE QUEUE
Removes a resource queue.

Synopsis
DROP RESOURCE QUEUE queue_name

Description

This command removes a workload management resource queue from Greenplum
Database. To drop a resource queue, the queue cannot have any roles assigned to it,
nor can it have any statements waiting in the queue. Only a superuser can drop a
resource queue.

Parameters

queue_name

The name of a resource queue to remove.

Notes

Use ALTER ROLE to remove a user from a resource queue.

To see all the currently active queries for all resource queues, perform the following
query of the pg_locks table joined with the pg_roles and pg_resqueue tables:

SELECT rolname, rsqname, locktype, objid, transaction, pid,
mode, granted FROM pg_roles, pg_resqueue, pg_locks WHERE
pg_roles.rolresqueue=pg_locks.objid AND
pg_locks.objid=pg_resqueue.oid;

To see the roles assigned to a resource queue, perform the following query of the
pg_roles and pg_resqueue system catalog tables:

SELECT rolname, rsqname FROM pg_roles, pg_resqueue WHERE
pg_roles.rolresqueue=pg_resqueue.oid;

Examples

Remove a role from a resource queue (and move the role to the default resource
queue, pg_default):

ALTER ROLE bob RESOURCE QUEUE NONE;

Remove the resource queue named adhoc:

DROP RESOURCE QUEUE adhoc;

Compatibility

The DROP RESOURCE QUEUE statement is a Greenplum Database extension.
DROP RESOURCE QUEUE 482

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
See Also

ALTER RESOURCE QUEUE, CREATE RESOURCE QUEUE, ALTER ROLE
DROP RESOURCE QUEUE 483

DROP ROLE 484

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference

DROP ROLE
Removes a database role.

Synopsis
DROP ROLE [IF EXISTS] name [, ...]

Description

DROP ROLE removes the specified role(s). To drop a superuser role, you must be a
superuser yourself. To drop non-superuser roles, you must have CREATEROLE
privilege.

A role cannot be removed if it is still referenced in any database; an error will be
raised if so. Before dropping the role, you must drop all the objects it owns (or
reassign their ownership) and revoke any privileges the role has been granted. The
REASSIGN OWNED and DROP OWNED commands can be useful for this purpose.

However, it is not necessary to remove role memberships involving the role; DROP
ROLE automatically revokes any memberships of the target role in other roles, and of
other roles in the target role. The other roles are not dropped nor otherwise affected.

Parameters

IF EXISTS

Do not throw an error if the role does not exist. A notice is issued in this case.

name

The name of the role to remove.

Examples

Remove the roles named sally and bob:

DROP ROLE sally, bob;

Compatibility

The SQL standard defines DROP ROLE, but it allows only one role to be dropped at a
time, and it specifies different privilege requirements than Greenplum Database uses.

See Also

REASSIGN OWNED, DROP OWNED, CREATE ROLE, ALTER ROLE, SET ROLE

DROP RULE 485

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference

DROP RULE
Removes a rewrite rule.

Synopsis
DROP RULE [IF EXISTS] name ON relation [CASCADE | RESTRICT]

Description

DROP RULE drops a rewrite rule from a table or view.

Parameters

IF EXISTS

Do not throw an error if the rule does not exist. A notice is issued in this case.

name

The name of the rule to remove.

relation

The name (optionally schema-qualified) of the table or view that the rule applies to.

CASCADE

Automatically drop objects that depend on the rule.

RESTRICT

Refuse to drop the rule if any objects depend on it. This is the default.

Examples

Remove the rewrite rule sales_2006 on the table sales:

DROP RULE sales_2006 ON sales;

Compatibility

There is no DROP RULE statement in the SQL standard.

See Also

CREATE RULE

DROP SCHEMA 486

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference

DROP SCHEMA
Removes a schema.

Synopsis
DROP SCHEMA [IF EXISTS] name [, ...] [CASCADE | RESTRICT]

Description

DROP SCHEMA removes schemas from the database. A schema can only be dropped by
its owner or a superuser. Note that the owner can drop the schema (and thereby all
contained objects) even if he does not own some of the objects within the schema.

Parameters

IF EXISTS

Do not throw an error if the schema does not exist. A notice is issued in this case.

name

The name of the schema to remove.

CASCADE

Automatically drops any objects contained in the schema (tables, functions, etc.).

RESTRICT

Refuse to drop the schema if it contains any objects. This is the default.

Examples

Remove the schema mystuff from the database, along with everything it contains:

DROP SCHEMA mystuff CASCADE;

Compatibility

DROP SCHEMA is fully conforming with the SQL standard, except that the standard
only allows one schema to be dropped per command. Also, the IF EXISTS option is a
Greenplum Database extension.

See Also

CREATE SCHEMA, ALTER SCHEMA

DROP SEQUENCE 487

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference

DROP SEQUENCE
Removes a sequence.

Synopsis
DROP SEQUENCE [IF EXISTS] name [, ...] [CASCADE | RESTRICT]

Description

DROP SEQUENCE removes a sequence generator table. You must own the sequence to
drop it (or be a superuser).

Parameters

IF EXISTS

Do not throw an error if the sequence does not exist. A notice is issued in this case.

name

The name (optionally schema-qualified) of the sequence to remove.

CASCADE

Automatically drop objects that depend on the sequence.

RESTRICT

Refuse to drop the sequence if any objects depend on it. This is the default.

Examples

Remove the sequence myserial:

DROP SEQUENCE myserial;

Compatibility

DROP SEQUENCE is fully conforming with the SQL standard, except that the standard
only allows one sequence to be dropped per command. Also, the IF EXISTS option is
a Greenplum Database extension.

See Also

ALTER SEQUENCE, CREATE SEQUENCE

DROP TABLE 488

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference

DROP TABLE
Removes a table.

Synopsis
DROP TABLE [IF EXISTS] name [, ...] [CASCADE | RESTRICT]

Description

DROP TABLE removes tables from the database. Only its owner may drop a table. To
empty a table of rows without removing the table definition, use DELETE or
TRUNCATE.

DROP TABLE always removes any indexes, rules, triggers, and constraints that exist for
the target table. However, to drop a table that is referenced by a view, CASCADE must
be specified. CASCADE will remove a dependent view entirely.

Parameters

IF EXISTS

Do not throw an error if the table does not exist. A notice is issued in this case.

name

The name (optionally schema-qualified) of the table to remove.

CASCADE

Automatically drop objects that depend on the table (such as views).

RESTRICT

Refuse to drop the table if any objects depend on it. This is the default.

Examples

Remove the table mytable:

DROP TABLE mytable;

Compatibility

DROP TABLE is fully conforming with the SQL standard, except that the standard only
allows one table to be dropped per command. Also, the IF EXISTS option is a
Greenplum Database extension.

See Also

CREATE TABLE, ALTER TABLE, TRUNCATE

DROP TABLESPACE 489

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference

DROP TABLESPACE
Removes a tablespace.

Synopsis
DROP TABLESPACE [IF EXISTS] tablespacename

Description

DROP TABLESPACE removes a tablespace from the system.

A tablespace can only be dropped by its owner or a superuser. The tablespace must be
empty of all database objects before it can be dropped. It is possible that objects in
other databases may still reside in the tablespace even if no objects in the current
database are using the tablespace.

Parameters

IF EXISTS

Do not throw an error if the tablespace does not exist. A notice is issued in this case.

tablespacename

The name of the tablespace to remove.

Examples

Remove the tablespace mystuff:

DROP TABLESPACE mystuff;

Compatibility

DROP TABLESPACE is a Greenplum Database extension.

See Also

CREATE TABLESPACE, ALTER TABLESPACE

DROP TRIGGER 490

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference

DROP TRIGGER
Removes a trigger.

Synopsis
DROP TRIGGER [IF EXISTS] name ON table [CASCADE | RESTRICT]

Description

DROP TRIGGER will remove an existing trigger definition. To execute this command,
the current user must be the owner of the table for which the trigger is defined.

Parameters

IF EXISTS

Do not throw an error if the trigger does not exist. A notice is issued in this case.

name

The name of the trigger to remove.

table

The name (optionally schema-qualified) of the table for which the trigger is defined.

CASCADE

Automatically drop objects that depend on the trigger.

RESTRICT

Refuse to drop the trigger if any objects depend on it. This is the default.

Examples

Remove the trigger sendmail on table expenses;

DROP TRIGGER sendmail ON expenses;

Compatibility

The DROP TRIGGER statement in Greenplum Database is not compatible with the SQL
standard. In the SQL standard, trigger names are not local to tables, so the command is
simply DROP TRIGGER name.

See Also

ALTER TRIGGER, CREATE TRIGGER

DROP TYPE 491

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference

DROP TYPE
Removes a data type.

Synopsis
DROP TYPE [IF EXISTS] name [, ...] [CASCADE | RESTRICT]

Description

DROP TYPE will remove a user-defined data type. Only the owner of a type can
remove it.

Parameters

IF EXISTS

Do not throw an error if the type does not exist. A notice is issued in this case.

name

The name (optionally schema-qualified) of the data type to remove.

CASCADE

Automatically drop objects that depend on the type (such as table columns,
functions, operators).

RESTRICT

Refuse to drop the type if any objects depend on it. This is the default.

Examples

Remove the data type box;

DROP TYPE box;

Compatibility

This command is similar to the corresponding command in the SQL standard, apart
from the IF EXISTS option, which is a Greenplum Database extension. But note that
the CREATE TYPE command and the data type extension mechanisms in Greenplum
Database differ from the SQL standard.

See Also

ALTER TYPE, CREATE TYPE

DROP USER 492

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference

DROP USER
Removes a database role.

Synopsis
DROP USER [IF EXISTS] name [, ...]

Description

DROP USER is an obsolete command, though still accepted for backwards
compatibility. Groups (and users) have been superseded by the more general concept
of roles. See DROP ROLE for more information.

Parameters

IF EXISTS

Do not throw an error if the role does not exist. A notice is issued in this case.

name

The name of an existing role.

Compatibility

There is no DROP USER statement in the SQL standard. The SQL standard leaves the
definition of users to the implementation.

See Also

DROP ROLE

DROP VIEW 493

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference

DROP VIEW
Removes a view.

Synopsis
DROP VIEW [IF EXISTS] name [, ...] [CASCADE | RESTRICT]

Description

DROP VIEW will remove an existing view. Only the owner of a view can remove it.

Parameters

IF EXISTS

Do not throw an error if the view does not exist. A notice is issued in this case.

name

The name (optionally schema-qualified) of the view to remove.

CASCADE

Automatically drop objects that depend on the view (such as other views).

RESTRICT

Refuse to drop the view if any objects depend on it. This is the default.

Examples

Remove the view topten;

DROP VIEW topten;

Compatibility

DROP VIEW is fully conforming with the SQL standard, except that the standard only
allows one view to be dropped per command. Also, the IF EXISTS option is a
Greenplum Database extension.

See Also

CREATE VIEW

END 494

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference

END
Commits the current transaction.

Synopsis
END [WORK | TRANSACTION]

Description

END commits the current transaction. All changes made by the transaction become
visible to others and are guaranteed to be durable if a crash occurs. This command is a
Greenplum Database extension that is equivalent to COMMIT.

Parameters

WORK
TRANSACTION

Optional keywords. They have no effect.

Examples

Commit the current transaction:

END;

Compatibility

END is a Greenplum Database extension that provides functionality equivalent to
COMMIT, which is specified in the SQL standard.

See Also

BEGIN, ROLLBACK, COMMIT

EXECUTE 495

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference

EXECUTE
Executes a prepared SQL statement.

Synopsis
EXECUTE name [(parameter [, ...])]

Description

EXECUTE is used to execute a previously prepared statement. Since prepared
statements only exist for the duration of a session, the prepared statement must have
been created by a PREPARE statement executed earlier in the current session.

If the PREPARE statement that created the statement specified some parameters, a
compatible set of parameters must be passed to the EXECUTE statement, or else an
error is raised. Note that (unlike functions) prepared statements are not overloaded
based on the type or number of their parameters; the name of a prepared statement
must be unique within a database session.

For more information on the creation and usage of prepared statements, see PREPARE.

Parameters

name

The name of the prepared statement to execute.

parameter

The actual value of a parameter to the prepared statement. This must be an
expression yielding a value that is compatible with the data type of this parameter, as
was determined when the prepared statement was created.

Examples

Create a prepared statement for an INSERT statement, and then execute it:

PREPARE fooplan (int, text, bool, numeric) AS INSERT INTO
foo VALUES($1, $2, $3, $4);

EXECUTE fooplan(1, 'Hunter Valley', 't', 200.00);

Compatibility

The SQL standard includes an EXECUTE statement, but it is only for use in embedded
SQL. This version of the EXECUTE statement also uses a somewhat different syntax.

See Also

DEALLOCATE, PREPARE

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
EXPLAIN
Shows the query plan of a statement.

Synopsis
EXPLAIN [ANALYZE] [VERBOSE] statement

Description

EXPLAIN displays the query plan that the Greenplum planner generates for the
supplied statement. Query plans are a tree plan of nodes. Each node in the plan
represents a single operation, such as table scan, join, aggregation or a sort.

Plans should be read from the bottom up as each node feeds rows into the node
directly above it. The bottom nodes of a plan are usually table scan operations
(sequential, index or bitmap index scans). If the query requires joins, aggregations, or
sorts (or other operations on the raw rows) then there will be additional nodes above
the scan nodes to perform these operations. The topmost plan nodes are usually the
Greenplum Database motion nodes (redistribute, explicit redistribute, broadcast, or
gather motions). These are the operations responsible for moving rows between the
segment instances during query processing.

The output of EXPLAIN has one line for each node in the plan tree, showing the basic
node type plus the following cost estimates that the planner made for the execution of
that plan node:

• cost - measured in units of disk page fetches; that is, 1.0 equals one sequential
disk page read. The first estimate is the start-up cost (cost of getting to the first
row) and the second is the total cost (cost of getting all rows). Note that the total
cost assumes that all rows will be retrieved, which may not always be the case (if
using LIMIT for example).

• rows - the total number of rows output by this plan node. This is usually less than
the actual number of rows processed or scanned by the plan node, reflecting the
estimated selectivity of any WHERE clause conditions. Ideally the top-level nodes
estimate will approximate the number of rows actually returned, updated, or
deleted by the query.

• width - total bytes of all the rows output by this plan node.

It is important to note that the cost of an upper-level node includes the cost of all its
child nodes. The topmost node of the plan has the estimated total execution cost for
the plan. This is this number that the planner seeks to minimize. It is also important to
realize that the cost only reflects things that the query planner cares about. In
particular, the cost does not consider the time spent transmitting result rows to the
client.

EXPLAIN ANALYZE causes the statement to be actually executed, not only planned.
The EXPLAIN ANALYZE plan shows the actual results along with the planner’s
estimates. This is useful for seeing whether the planner’s estimates are close to reality.
In addition to the information shown in the EXPLAIN plan, EXPLAIN ANALYZE will
show the following additional information:
EXPLAIN 496

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
• The total elapsed time (in milliseconds) that it took to run the query.

• The number of workers (segments) involved in a plan node operation. Only
segments that return rows are counted.

• The maximum number of rows returned by the segment that produced the most
rows for an operation. If multiple segments produce an equal number of rows, the
one with the longest time to end is the one chosen.

• The segment id number of the segment that produced the most rows for an
operation.

• For relevant operations, the work_mem used by the operation. If work_mem was
not sufficient to perform the operation in memory, the plan will show how much
data was spilled to disk and how many passes over the data were required for the
lowest performing segment. For example:
Work_mem used: 64K bytes avg, 64K bytes max (seg0).

Work_mem wanted: 90K bytes avg, 90K bytes max (seg0) to abate workfile
I/O affecting 2 workers.

[seg0] pass 0: 488 groups made from 488 rows; 263 rows written to
workfile

[seg0] pass 1: 263 groups made from 263 rows

• The time (in milliseconds) it took to retrieve the first row from the segment that
produced the most rows, and the total time taken to retrieve all rows from that
segment. The <time> to first row may be omitted if it is the same as the <time> to
end.

Important: Keep in mind that the statement is actually executed when EXPLAIN
ANALYZE is used. Although EXPLAIN ANALYZE will discard any output that a
SELECT would return, other side effects of the statement will happen as usual. If
you wish to use EXPLAIN ANALYZE on a DML statement without letting the
command affect your data, use this approach:

BEGIN;

EXPLAIN ANALYZE ...;

ROLLBACK;

Parameters

name

The name of the prepared statement to execute.

parameter

The actual value of a parameter to the prepared statement. This must be an
expression yielding a value that is compatible with the data type of this parameter, as
was determined when the prepared statement was created.

Notes

In order to allow the query planner to make reasonably informed decisions when
optimizing queries, the ANALYZE statement should be run to record statistics about the
distribution of data within the table. If you have not done this (or if the statistical
EXPLAIN 497

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
distribution of the data in the table has changed significantly since the last time
ANALYZE was run), the estimated costs are unlikely to conform to the real properties of
the query, and consequently an inferior query plan may be chosen.

See also, “Query Profiling” on page 130.

Examples

To illustrate how to read an EXPLAIN query plan, consider the following example for a
very simple query:

EXPLAIN SELECT * FROM names WHERE name = 'Joelle';

 QUERY PLAN
--

Gather Motion 2:1 (slice1) (cost=0.00..20.88 rows=1 width=13)
 -> Seq Scan on 'names' (cost=0.00..20.88 rows=1 width=13)

 Filter: name::text ~~ 'Joelle'::text

If we read the plan from the bottom up, the query planner starts by doing a sequential
scan of the names table. Notice that the WHERE clause is being applied as a filter
condition. This means that the scan operation checks the condition for each row it
scans, and outputs only the ones that pass the condition.

The results of the scan operation are passed up to a gather motion operation. In
Greenplum Database, a gather motion is when segments send rows up to the master. In
this case we have 2 segment instances sending to 1 master instance (2:1). This
operation is working on slice1 of the parallel query execution plan. In Greenplum
Database a query plan is divided into slices so that portions of the query plan can be
worked on in parallel by the segments.

The estimated startup cost for this plan is 00.00 (no cost) and a total cost of 20.88
disk page fetches. The planner is estimating that this query will return one row.

Compatibility

There is no EXPLAIN statement defined in the SQL standard.

See Also

ANALYZE
EXPLAIN 498

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
FETCH
Retrieves rows from a query using a cursor.

Synopsis
FETCH [forward_direction { FROM | IN }] cursorname

where forward_direction can be empty or one of:
 NEXT
 FIRST
 LAST
 ABSOLUTE count
 RELATIVE count
 count
 ALL
 FORWARD
 FORWARD count
 FORWARD ALL

Description

FETCH retrieves rows using a previously-created cursor.

A cursor has an associated position, which is used by FETCH. The cursor position can
be before the first row of the query result, on any particular row of the result, or after
the last row of the result. When created, a cursor is positioned before the first row.
After fetching some rows, the cursor is positioned on the row most recently retrieved.
If FETCH runs off the end of the available rows then the cursor is left positioned after
the last row. FETCH ALL will always leave the cursor positioned after the last row.

The forms NEXT, FIRST, LAST, ABSOLUTE, RELATIVE fetch a single row after moving
the cursor appropriately. If there is no such row, an empty result is returned, and the
cursor is left positioned before the first row or after the last row as appropriate.

The forms using FORWARD retrieve the indicated number of rows moving in the
forward direction, leaving the cursor positioned on the last-returned row (or after all
rows, if the count exceeds the number of rows available). Note that it is not possible to
move a cursor position backwards in Greenplum Database, since scrollable cursors are
not supported. You can only move a cursor forward in position using FETCH.

RELATIVE 0 and FORWARD 0 request fetching the current row without moving the
cursor, that is, re-fetching the most recently fetched row. This will succeed unless the
cursor is positioned before the first row or after the last row, in which case no row is
returned.

Outputs

On successful completion, a FETCH command returns a command tag of the form

FETCH count
FETCH 499

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
The count is the number of rows fetched (possibly zero). Note that in psql, the
command tag will not actually be displayed, since psql displays the fetched rows
instead.

Parameters

forward_direction

Defines the fetch direction and number of rows to fetch. Only forward fetches are
allowed in Greenplum Database. It can be one of the following:

NEXT

Fetch the next row. This is the default if direction is omitted.

FIRST

Fetch the first row of the query (same as ABSOLUTE 1). Only allowed if it is the first
FETCH operation using this cursor.

LAST

Fetch the last row of the query (same as ABSOLUTE -1).

ABSOLUTE count

Fetch the specified row of the query. Position after last row if count is out of range.
Only allowed if the row specified by count moves the cursor position forward.

RELATIVE count

Fetch the specified row of the query count rows ahead of the current cursor
position. RELATIVE 0 re-fetches the current row, if any. Only allowed if count
moves the cursor position forward.

count

Fetch the next count number of rows (same as FORWARD count).

ALL

Fetch all remaining rows (same as FORWARD ALL).

FORWARD

Fetch the next row (same as NEXT).

FORWARD count

Fetch the next count number of rows. FORWARD 0 re-fetches the current row.

FORWARD ALL

Fetch all remaining rows.

cursorname

The name of an open cursor.
FETCH 500

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
Notes

Greenplum Database does not support scrollable cursors, so you can only use FETCH
to move the cursor position forward.

ABSOLUTE fetches are not any faster than navigating to the desired row with a relative
move: the underlying implementation must traverse all the intermediate rows anyway.

Updating data via a cursor is currently not supported by Greenplum Database.

DECLARE is used to define a cursor. Use MOVE to change cursor position without
retrieving data.

Examples

-- Start the transaction:

BEGIN;

-- Set up a cursor:

DECLARE mycursor CURSOR FOR SELECT * FROM films;

-- Fetch the first 5 rows in the cursor mycursor:

FETCH FORWARD 5 FROM mycursor;
 code | title | did | date_prod | kind | len

-------+-------------------------+-----+------------+----------+------
-

 BL101 | The Third Man | 101 | 1949-12-23 | Drama | 01:44

 BL102 | The African Queen | 101 | 1951-08-11 | Romantic | 01:43

 JL201 | Une Femme est une Femme | 102 | 1961-03-12 | Romantic | 01:25

 P_301 | Vertigo | 103 | 1958-11-14 | Action | 02:08

 P_302 | Becket | 103 | 1964-02-03 | Drama | 02:28

-- Close the cursor and end the transaction:

CLOSE mycursor;

COMMIT;

Compatibility

SQL standard allows cursors only in embedded SQL and in modules. Greenplum
Database permits cursors to be used interactively.

The variant of FETCH described here returns the data as if it were a SELECT result
rather than placing it in host variables. Other than this point, FETCH is fully
upward-compatible with the SQL standard.

The FETCH forms involving FORWARD, as well as the forms FETCH count and FETCH
ALL, in which FORWARD is implicit, are Greenplum Database extensions. BACKWARD is
not supported.

The SQL standard allows only FROM preceding the cursor name; the option to use IN is
an extension.
FETCH 501

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
See Also

DECLARE, CLOSE, MOVE
FETCH 502

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
GRANT
Defines access privileges.

Synopsis
GRANT { {SELECT | INSERT | UPDATE | DELETE | REFERENCES |
TRIGGER} [,...] | ALL [PRIVILEGES] }
 ON [TABLE] tablename [, ...]
 TO {rolename | PUBLIC} [, ...] [WITH GRANT OPTION]

GRANT { {USAGE | SELECT | UPDATE} [,...] | ALL [PRIVILEGES] }
 ON SEQUENCE sequencename [, ...]
 TO { rolename | PUBLIC } [, ...] [WITH GRANT OPTION]

GRANT { {CREATE | CONNECT | TEMPORARY | TEMP} [,...] | ALL
[PRIVILEGES] }
 ON DATABASE dbname [, ...]
 TO {rolename | PUBLIC} [, ...] [WITH GRANT OPTION]

GRANT { EXECUTE | ALL [PRIVILEGES] }
 ON FUNCTION funcname ([[argmode] [argname] argtype [, ...]
]) [, ...]
 TO {rolename | PUBLIC} [, ...] [WITH GRANT OPTION]

GRANT { USAGE | ALL [PRIVILEGES] }
 ON LANGUAGE langname [, ...]
 TO {rolename | PUBLIC} [, ...] [WITH GRANT OPTION]

GRANT { {CREATE | USAGE} [,...] | ALL [PRIVILEGES] }
 ON SCHEMA schemaname [, ...]
 TO {rolename | PUBLIC} [, ...] [WITH GRANT OPTION]

GRANT { CREATE | ALL [PRIVILEGES] }
 ON TABLESPACE tablespacename [, ...]
 TO {rolename | PUBLIC} [, ...] [WITH GRANT OPTION]

GRANT parent_role [, ...]
 TO member_role [, ...] [WITH ADMIN OPTION]

Description

The GRANT command has two basic variants: one that grants privileges on a database
object (table, view, sequence, database, function, procedural language, schema, or
tablespace), and one that grants membership in a role.

GRANT on Database Objects

This variant of the GRANT command gives specific privileges on a database object to
one or more roles. These privileges are added to those already granted, if any.
GRANT 503

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
The key word PUBLIC indicates that the privileges are to be granted to all roles,
including those that may be created later. PUBLIC may be thought of as an implicitly
defined group-level role that always includes all roles. Any particular role will have
the sum of privileges granted directly to it, privileges granted to any role it is presently
a member of, and privileges granted to PUBLIC.

If WITH GRANT OPTION is specified, the recipient of the privilege may in turn grant it
to others. Without a grant option, the recipient cannot do that. Grant options cannot be
granted to PUBLIC.

There is no need to grant privileges to the owner of an object (usually the role that
created it), as the owner has all privileges by default. The right to drop an object, or to
alter its definition in any way is not described by a grantable privilege; it is inherent in
the owner, and cannot be granted or revoked. The owner implicitly has all grant
options for the object, too.

Depending on the type of object, the initial default privileges may include granting
some privileges to PUBLIC. The default is no public access for tables, schemas, and
tablespaces; CONNECT privilege and TEMP table creation privilege for databases;
EXECUTE privilege for functions; and USAGE privilege for languages. The object owner
may of course revoke these privileges.

Grant on Roles

This variant of the GRANT command grants membership in a role to one or more other
roles. Membership in a role is significant because it conveys the privileges granted to
a role to each of its members.

If WITH ADMIN OPTION is specified, the member may in turn grant membership in the
role to others, and revoke membership in the role as well. Database superusers can
grant or revoke membership in any role to anyone. Roles having CREATEROLE
privilege can grant or revoke membership in any role that is not a superuser.

Unlike the case with privileges, membership in a role cannot be granted to PUBLIC.

Parameters

SELECT

Allows SELECT from any column of the specified table, view, or sequence. Also
allows the use of COPY TO. For sequences, this privilege also allows the use of the
currval function.

INSERT

Allows INSERT of a new row into the specified table. Also allows COPY FROM.

UPDATE

Allows UPDATE of any column of the specified table. SELECT ... FOR UPDATE and
SELECT ... FOR SHARE also require this privilege (as well as the SELECT
privilege). For sequences, this privilege allows the use of the nextval and setval
functions.
GRANT 504

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
DELETE

Allows DELETE of a row from the specified table.

REFERENCES

This keyword is accepted, although foreign key constraints are currently not
supported in Greenplum Database. To create a foreign key constraint, it is necessary
to have this privilege on both the referencing and referenced tables.

TRIGGER

Allows the creation of a trigger on the specified table.

CREATE

For databases, allows new schemas to be created within the database.

For schemas, allows new objects to be created within the schema. To rename an
existing object, you must own the object and have this privilege for the containing
schema.

For tablespaces, allows tables and indexes to be created within the tablespace, and
allows databases to be created that have the tablespace as their default tablespace.
(Note that revoking this privilege will not alter the placement of existing objects.)

CONNECT

Allows the user to connect to the specified database. This privilege is checked at
connection startup (in addition to checking any restrictions imposed by
pg_hba.conf).

TEMPORARY
TEMP

Allows temporary tables to be created while using the database.

EXECUTE

Allows the use of the specified function and the use of any operators that are
implemented on top of the function. This is the only type of privilege that is
applicable to functions. (This syntax works for aggregate functions, as well.)

USAGE

For procedural languages, allows the use of the specified language for the creation
of functions in that language. This is the only type of privilege that is applicable to
procedural languages.

For schemas, allows access to objects contained in the specified schema (assuming
that the objects’ own privilege requirements are also met). Essentially this allows
the grantee to look up objects within the schema.

For sequences, this privilege allows the use of the currval and nextval functions.

ALL PRIVILEGES

Grant all of the available privileges at once. The PRIVILEGES key word is optional
in Greenplum Database, though it is required by strict SQL.
GRANT 505

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
PUBLIC

A special group-level role that denotes that the privileges are to be granted to all
roles, including those that may be created later.

WITH GRANT OPTION

The recipient of the privilege may in turn grant it to others.

WITH ADMIN OPTION

The member of a role may in turn grant membership in the role to others.

Notes

Database superusers can access all objects regardless of object privilege settings. One
exception to this rule is view objects. Access to tables referenced in the view is
determined by permissions of the view owner not the current user (even if the current
user is a superuser).

If a superuser chooses to issue a GRANT or REVOKE command, the command is
performed as though it were issued by the owner of the affected object. In particular,
privileges granted via such a command will appear to have been granted by the object
owner. For role membership, the membership appears to have been granted by the
containing role itself.

GRANT and REVOKE can also be done by a role that is not the owner of the affected
object, but is a member of the role that owns the object, or is a member of a role that
holds privileges WITH GRANT OPTION on the object. In this case the privileges will be
recorded as having been granted by the role that actually owns the object or holds the
privileges WITH GRANT OPTION.

Granting permission on a table does not automatically extend permissions to any
sequences used by the table, including sequences tied to SERIAL columns.
Permissions on a sequence must be set separately.

Greenplum Database does not support granting or revoking privileges for individual
columns of a table. One possible workaround is to create a view having just the
desired columns and then grant privileges to that view.

Use psql’s \z meta-command to obtain information about existing privileges for an
object.

Examples

Grant insert privilege to all roles on table mytable:

GRANT INSERT ON mytable TO PUBLIC;

Grant all available privileges to role sally on the view topten. Note that while the
above will indeed grant all privileges if executed by a superuser or the owner of
topten, when executed by someone else it will only grant those permissions for which
the granting role has grant options.

GRANT ALL PRIVILEGES ON topten TO sally;

Grant membership in role admins to user joe:
GRANT 506

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
GRANT admins TO joe;

Compatibility

The PRIVILEGES key word in is required in the SQL standard, but optional in
Greenplum Database. The SQL standard does not support setting the privileges on
more than one object per command.

Greenplum Database allows an object owner to revoke his own ordinary privileges:
for example, a table owner can make the table read-only to himself by revoking his
own INSERT, UPDATE, and DELETE privileges. This is not possible according to the
SQL standard. Greenplum Database treats the owner’s privileges as having been
granted by the owner to himself; therefore he can revoke them too. In the SQL
standard, the owner’s privileges are granted by an assumed system entity.

The SQL standard allows setting privileges for individual columns within a table.

The SQL standard provides for a USAGE privilege on other kinds of objects: character
sets, collations, translations, domains.

Privileges on databases, tablespaces, schemas, and languages are Greenplum Database
extensions.

See Also

REVOKE
GRANT 507

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
INSERT
Creates new rows in a table.

Synopsis
INSERT INTO table [(column [, ...])]
 {DEFAULT VALUES | VALUES ({expression | DEFAULT} [, ...])
[, ...] | query}

Description

INSERT inserts new rows into a table. One can insert one or more rows specified by
value expressions, or zero or more rows resulting from a query.

The target column names may be listed in any order. If no list of column names is
given at all, the default is the columns of the table in their declared order. The values
supplied by the VALUES clause or query are associated with the explicit or implicit
column list left-to-right.

Each column not present in the explicit or implicit column list will be filled with a
default value, either its declared default value or null if there is no default.

If the expression for any column is not of the correct data type, automatic type
conversion will be attempted.

You must have INSERT privilege on a table in order to insert into it.

Outputs

On successful completion, an INSERT command returns a command tag of the form:

INSERT oid count

The count is the number of rows inserted. If count is exactly one, and the target table
has OIDs, then oid is the OID assigned to the inserted row. Otherwise oid is zero.

Parameters

table

The name (optionally schema-qualified) of an existing table.

column

The name of a column in table. The column name can be qualified with a subfield
name or array subscript, if needed. (Inserting into only some fields of a composite
column leaves the other fields null.)

DEFAULT VALUES

All columns will be filled with their default values.

expression

An expression or value to assign to the corresponding column.
INSERT 508

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
DEFAULT

The corresponding column will be filled with its default value.

query

A query (SELECT statement) that supplies the rows to be inserted. Refer to the
SELECT statement for a description of the syntax.

Examples

Insert a single row into table films:

INSERT INTO films VALUES ('UA502', 'Bananas', 105,
'1971-07-13', 'Comedy', '82 minutes');

In this example, the length column is omitted and therefore it will have the default
value:

INSERT INTO films (code, title, did, date_prod, kind) VALUES
('T_601', 'Yojimbo', 106, '1961-06-16', 'Drama');

This example uses the DEFAULT clause for the date_prod column rather than
specifying a value:

INSERT INTO films VALUES ('UA502', 'Bananas', 105, DEFAULT,
'Comedy', '82 minutes');

To insert a row consisting entirely of default values:

INSERT INTO films DEFAULT VALUES;

To insert multiple rows using the multirow VALUES syntax:

INSERT INTO films (code, title, did, date_prod, kind) VALUES

 ('B6717', 'Tampopo', 110, '1985-02-10', 'Comedy'),

 ('HG120', 'The Dinner Game', 140, DEFAULT, 'Comedy');

This example inserts some rows into table films from a table tmp_films with the same
column layout as films:

INSERT INTO films SELECT * FROM tmp_films WHERE date_prod <
'2004-05-07';

Compatibility

INSERT conforms to the SQL standard. The case in which a column name list is
omitted, but not all the columns are filled from the VALUES clause or query, is
disallowed by the standard.

Possible limitations of the query clause are documented under SELECT.

See Also

COPY, SELECT, CREATE EXTERNAL TABLE
INSERT 509

LOAD 510

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference

LOAD
Loads or reloads a shared library file.

Synopsis
LOAD 'filename'

Description

This command loads a shared library file into the Greenplum Database server address
space. If the file had been loaded previously, it is first unloaded. This command is
primarily useful to unload and reload a shared library file that has been changed since
the server first loaded it. To make use of the shared library, function(s) in it need to be
declared using the CREATE FUNCTION command.

The file name is specified in the same way as for shared library names in CREATE
FUNCTION; in particular, one may rely on a search path and automatic addition of the
system’s standard shared library file name extension.

Note that in Greenplum Database the shared library file (.so file) must reside in the
same path location on every host in the Greenplum Database array (masters, segments,
and mirrors).

Only database superusers can load shared library files.

Parameters

filename

The path and file name of a shared library file. This file must exist in the same
location on all hosts in your Greenplum Database array.

Examples

Load a shared library file:

LOAD '/usr/local/greenplum-db/lib/myfuncs.so';

Compatibility

LOAD is a Greenplum Database extension.

See Also

CREATE FUNCTION

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
LOCK
Locks a table.

Synopsis
LOCK [TABLE] name [, ...] [IN lockmode MODE] [NOWAIT]

where lockmode is one of:
ACCESS SHARE | ROW SHARE | ROW EXCLUSIVE | SHARE UPDATE
EXCLUSIVE | SHARE | SHARE ROW EXCLUSIVE | EXCLUSIVE | ACCESS
EXCLUSIVE

Description

LOCK TABLE obtains a table-level lock, waiting if necessary for any conflicting locks
to be released. If NOWAIT is specified, LOCK TABLE does not wait to acquire the
desired lock: if it cannot be acquired immediately, the command is aborted and an
error is emitted. Once obtained, the lock is held for the remainder of the current
transaction. There is no UNLOCK TABLE command; locks are always released at
transaction end.

When acquiring locks automatically for commands that reference tables, Greenplum
Database always uses the least restrictive lock mode possible. LOCK TABLE provides
for cases when you might need more restrictive locking. For example, suppose an
application runs a transaction at the Read Committed isolation level and needs to
ensure that data in a table remains stable for the duration of the transaction. To achieve
this you could obtain SHARE lock mode over the table before querying. This will
prevent concurrent data changes and ensure subsequent reads of the table see a stable
view of committed data, because SHARE lock mode conflicts with the ROW EXCLUSIVE
lock acquired by writers, and your LOCK TABLE name IN SHARE MODE statement
will wait until any concurrent holders of ROW EXCLUSIVE mode locks commit or roll
back. Thus, once you obtain the lock, there are no uncommitted writes outstanding;
furthermore none can begin until you release the lock.

To achieve a similar effect when running a transaction at the Serializable isolation
level, you have to execute the LOCK TABLE statement before executing any SELECT or
data modification statement. A serializable transaction’s view of data will be frozen
when its first SELECT or data modification statement begins. A LOCK TABLE later in
the transaction will still prevent concurrent writes — but it won’t ensure that what the
transaction reads corresponds to the latest committed values.

If a transaction of this sort is going to change the data in the table, then it should use
SHARE ROW EXCLUSIVE lock mode instead of SHARE mode. This ensures that only one
transaction of this type runs at a time. Without this, a deadlock is possible: two
transactions might both acquire SHARE mode, and then be unable to also acquire ROW
EXCLUSIVE mode to actually perform their updates. Note that a transaction’s own
locks never conflict, so a transaction can acquire ROW EXCLUSIVE mode when it holds
SHARE mode — but not if anyone else holds SHARE mode. To avoid deadlocks, make
LOCK 511

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
sure all transactions acquire locks on the same objects in the same order, and if
multiple lock modes are involved for a single object, then transactions should always
acquire the most restrictive mode first.

Parameters

name

The name (optionally schema-qualified) of an existing table to lock.

If multiple tables are given, tables are locked one-by-one in the order specified in
the LOCK TABLE command.

lockmode

The lock mode specifies which locks this lock conflicts with. If no lock mode is
specified, then ACCESS EXCLUSIVE, the most restrictive mode, is used. Lock modes
are as follows:

• ACCESS SHARE — Conflicts with the ACCESS EXCLUSIVE lock mode only.
The commands SELECT and ANALYZE automatically acquire a lock of this
mode on referenced tables. In general, any query that only reads a table and
does not modify it will acquire this lock mode.

• ROW SHARE — Conflicts with the EXCLUSIVE and ACCESS EXCLUSIVE lock
modes. The SELECT FOR UPDATE and SELECT FOR SHARE commands
automatically acquire a lock of this mode on the target table(s) (in addition to
ACCESS SHARE locks on any other tables that are referenced but not selected
FOR UPDATE/FOR SHARE).

• ROW EXCLUSIVE — Conflicts with the SHARE, SHARE ROW EXCLUSIVE,
EXCLUSIVE, and ACCESS EXCLUSIVE lock modes. The commands INSERT
and COPY automatically acquire this lock mode on the target table (in addition
to ACCESS SHARE locks on any other referenced tables).

• SHARE UPDATE EXCLUSIVE — Conflicts with the SHARE UPDATE
EXCLUSIVE, SHARE, SHARE ROW EXCLUSIVE, EXCLUSIVE, and ACCESS
EXCLUSIVE lock modes. This mode protects a table against concurrent
schema changes and VACUUM runs. Acquired automatically by VACUUM
(without FULL).

• SHARE — Conflicts with the ROW EXCLUSIVE, SHARE UPDATE EXCLUSIVE,
SHARE ROW EXCLUSIVE, EXCLUSIVE, and ACCESS EXCLUSIVE lock modes.
This mode protects a table against concurrent data changes. Acquired
automatically by CREATE INDEX.

• SHARE ROW EXCLUSIVE — Conflicts with the ROW EXCLUSIVE, SHARE
UPDATE EXCLUSIVE, SHARE, SHARE ROW EXCLUSIVE, EXCLUSIVE, and
ACCESS EXCLUSIVE lock modes. This lock mode is not automatically
acquired by any Greenplum Database command.
LOCK 512

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
• EXCLUSIVE — Conflicts with the ROW SHARE, ROW EXCLUSIVE, SHARE
UPDATE EXCLUSIVE, SHARE, SHARE ROW EXCLUSIVE, EXCLUSIVE, and
ACCESS EXCLUSIVE lock modes. This mode allows only concurrent ACCESS
SHARE locks, i.e., only reads from the table can proceed in parallel with a
transaction holding this lock mode. This lock mode is automatically acquired
for UPDATE and DELETE in Greenplum Database (which is more restrictive
locking than in regular PostgreSQL).

• ACCESS EXCLUSIVE — Conflicts with locks of all modes (ACCESS SHARE,
ROW SHARE, ROW EXCLUSIVE, SHARE UPDATE EXCLUSIVE, SHARE, SHARE
ROW EXCLUSIVE, EXCLUSIVE, and ACCESS EXCLUSIVE). This mode
guarantees that the holder is the only transaction accessing the table in any
way. Acquired automatically by the ALTER TABLE, DROP TABLE, REINDEX,
CLUSTER, and VACUUM FULL commands. This is also the default lock mode
for LOCK TABLE statements that do not specify a mode explicitly.

NOWAIT

Specifies that LOCK TABLE should not wait for any conflicting locks to be released:
if the specified lock(s) cannot be acquired immediately without waiting, the
transaction is aborted.

Notes

LOCK TABLE ... IN ACCESS SHARE MODE requires SELECT privileges on the target
table. All other forms of LOCK require UPDATE and/or DELETE privileges.

LOCK TABLE is useful only inside a transaction block (BEGIN/COMMIT pair), since the
lock is dropped as soon as the transaction ends. A LOCK TABLE command appearing
outside any transaction block forms a self-contained transaction, so the lock will be
dropped as soon as it is obtained.

LOCK TABLE only deals with table-level locks, and so the mode names involving ROW
are all misnomers. These mode names should generally be read as indicating the
intention of the user to acquire row-level locks within the locked table. Also, ROW
EXCLUSIVE mode is a sharable table lock. Keep in mind that all the lock modes have
identical semantics so far as LOCK TABLE is concerned, differing only in the rules
about which modes conflict with which. For information on how to acquire an actual
row-level lock, see the FOR UPDATE/FOR SHARE clause in the SELECT reference
documentation.

Examples

Obtain a SHARE lock on the films table when going to perform inserts into the
films_user_comments table:

BEGIN WORK;

LOCK TABLE films IN SHARE MODE;

SELECT id FROM films

 WHERE name = 'Star Wars: Episode I - The Phantom Menace';

-- Do ROLLBACK if record was not returned

INSERT INTO films_user_comments VALUES
LOCK 513

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
 (_id_, 'GREAT! I was waiting for it for so long!');

COMMIT WORK;

Take a SHARE ROW EXCLUSIVE lock on a table when performing a delete operation:

BEGIN WORK;

LOCK TABLE films IN SHARE ROW EXCLUSIVE MODE;

DELETE FROM films_user_comments WHERE id IN

 (SELECT id FROM films WHERE rating < 5);

DELETE FROM films WHERE rating < 5;

COMMIT WORK;

Compatibility

There is no LOCK TABLE in the SQL standard, which instead uses SET TRANSACTION
to specify concurrency levels on transactions. Greenplum Database supports that too.

Except for ACCESS SHARE, ACCESS EXCLUSIVE, and SHARE UPDATE EXCLUSIVE
lock modes, the Greenplum Database lock modes and the LOCK TABLE syntax are
compatible with those present in Oracle.

See Also

BEGIN, SET TRANSACTION, SELECT
LOCK 514

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
MOVE
Positions a cursor.

Synopsis
MOVE [forward_direction {FROM | IN}] cursorname

where direction can be empty or one of:
 NEXT
 FIRST
 LAST
 ABSOLUTE count
 RELATIVE count
 count
 ALL
 FORWARD
 FORWARD count
 FORWARD ALL

Description

MOVE repositions a cursor without retrieving any data. MOVE works exactly like the
FETCH command, except it only positions the cursor and does not return rows.

Note that it is not possible to move a cursor position backwards in Greenplum
Database, since scrollable cursors are not supported. You can only move a cursor
forward in position using MOVE.

Outputs

On successful completion, a MOVE command returns a command tag of the form

MOVE count

The count is the number of rows that a FETCH command with the same parameters
would have returned (possibly zero).

Parameters

forward_direction

See FETCH for more information.

cursorname

The name of an open cursor.

Examples

-- Start the transaction:

BEGIN;
MOVE 515

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
-- Set up a cursor:

DECLARE mycursor CURSOR FOR SELECT * FROM films;

-- Move forward 5 rows in the cursor mycursor:

MOVE FORWARD 5 IN mycursor;

MOVE 5

--Fetch the next row after that (row 6):

FETCH 1 FROM mycursor;

 code | title | did | date_prod | kind | len

-------+--------+-----+------------+--------+-------

 P_303 | 48 Hrs | 103 | 1982-10-22 | Action | 01:37

(1 row)

-- Close the cursor and end the transaction:

CLOSE mycursor;

COMMIT;

Compatibility

There is no MOVE statement in the SQL standard.

See Also

DECLARE, FETCH, CLOSE
MOVE 516

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
PREPARE
Prepare a statement for execution.

Synopsis
PREPARE name [(datatype [, ...])] AS statement

Description

PREPARE creates a prepared statement. A prepared statement is a server-side object
that can be used to optimize performance. When the PREPARE statement is executed,
the specified statement is parsed, rewritten, and planned. When an EXECUTE command
is subsequently issued, the prepared statement need only be executed. Thus, the
parsing, rewriting, and planning stages are only performed once, instead of every time
the statement is executed.

Prepared statements can take parameters: values that are substituted into the statement
when it is executed. When creating the prepared statement, refer to parameters by
position, using $1, $2, etc. A corresponding list of parameter data types can optionally
be specified. When a parameter’s data type is not specified or is declared as unknown,
the type is inferred from the context in which the parameter is used (if possible). When
executing the statement, specify the actual values for these parameters in the EXECUTE
statement.

Prepared statements only last for the duration of the current database session. When
the session ends, the prepared statement is forgotten, so it must be recreated before
being used again. This also means that a single prepared statement cannot be used by
multiple simultaneous database clients; however, each client can create their own
prepared statement to use. The prepared statement can be manually cleaned up using
the DEALLOCATE command.

Prepared statements have the largest performance advantage when a single session is
being used to execute a large number of similar statements. The performance
difference will be particularly significant if the statements are complex to plan or
rewrite, for example, if the query involves a join of many tables or requires the
application of several rules. If the statement is relatively simple to plan and rewrite but
relatively expensive to execute, the performance advantage of prepared statements
will be less noticeable.

Parameters

name

An arbitrary name given to this particular prepared statement. It must be unique
within a single session and is subsequently used to execute or deallocate a
previously prepared statement.
PREPARE 517

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
datatype

The data type of a parameter to the prepared statement. If the data type of a
particular parameter is unspecified or is specified as unknown, it will be inferred
from the context in which the parameter is used. To refer to the parameters in the
prepared statement itself, use $1, $2, etc.

statement

Any SELECT, INSERT, UPDATE, DELETE, or VALUES statement.

Notes

In some situations, the query plan produced for a prepared statement will be inferior to
the query plan that would have been chosen if the statement had been submitted and
executed normally. This is because when the statement is planned and the planner
attempts to determine the optimal query plan, the actual values of any parameters
specified in the statement are unavailable. Greenplum Database collects statistics on
the distribution of data in the table, and can use constant values in a statement to make
guesses about the likely result of executing the statement. Since this data is
unavailable when planning prepared statements with parameters, the chosen plan may
be suboptimal. To examine the query plan Greenplum Database has chosen for a
prepared statement, use EXPLAIN.

For more information on query planning and the statistics collected by Greenplum
Database for that purpose, see the ANALYZE documentation.

You can see all available prepared statements of a session by querying the
pg_prepared_statements system view.

Examples

Create a prepared statement for an INSERT statement, and then execute it:

PREPARE fooplan (int, text, bool, numeric) AS INSERT INTO
foo VALUES($1, $2, $3, $4);

EXECUTE fooplan(1, 'Hunter Valley', 't', 200.00);

Create a prepared statement for a SELECT statement, and then execute it. Note that the
data type of the second parameter is not specified, so it is inferred from the context in
which $2 is used:

PREPARE usrrptplan (int) AS SELECT * FROM users u, logs l
WHERE u.usrid=$1 AND u.usrid=l.usrid AND l.date = $2;

EXECUTE usrrptplan(1, current_date);

Compatibility

The SQL standard includes a PREPARE statement, but it is only for use in embedded
SQL. This version of the PREPARE statement also uses a somewhat different syntax.
PREPARE 518

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
See Also

EXECUTE, DEALLOCATE
PREPARE 519

REASSIGN OWNED 520

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference

REASSIGN OWNED
Changes the ownership of database objects owned by a database role.

Synopsis
REASSIGN OWNED BY old_role [, ...] TO new_role

Description

REASSIGN OWNED reassigns all the objects in the current database that are owned by
old_row to new_role. Note that it does not change the ownership of the database
itself.

Parameters

old_role

The name of a role. The ownership of all the objects in the current database owned
by this role will be reassigned to new_role.

new_role

The name of the role that will be made the new owner of the affected objects.

Notes

REASSIGN OWNED is often used to prepare for the removal of one or more roles.
Because REASSIGN OWNED only affects the objects in the current database, it is usually
necessary to execute this command in each database that contains objects owned by a
role that is to be removed.

The DROP OWNED command is an alternative that drops all the database objects owned
by one or more roles.

The REASSIGN OWNED command does not affect the privileges granted to the old roles
in objects that are not owned by them. Use DROP OWNED to revoke those privileges.

Examples

Reassign any database objects owned by the role named sally and bob to admin;

REASSIGN OWNED BY sally, bob TO admin;

Compatibility

The REASSIGN OWNED statement is a Greenplum Database extension.

See Also

DROP OWNED, DROP ROLE

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
REINDEX
Rebuilds indexes.

Synopsis
REINDEX {INDEX | TABLE | DATABASE | SYSTEM} name

Description

REINDEX rebuilds an index using the data stored in the index’s table, replacing the old
copy of the index. There are several scenarios in which to use REINDEX:

• An index has become corrupted, and no longer contains valid data. Although in
theory this should never happen, in practice indexes may become corrupted due to
software bugs or hardware failures. REINDEX provides a recovery method.

• An index has become bloated, that it is contains many empty or nearly-empty
pages. This can occur with B-tree indexes in Greenplum Database under certain
uncommon access patterns. REINDEX provides a way to reduce the space
consumption of the index by writing a new version of the index without the dead
pages.

• You have altered the fillfactor storage parameter for an index, and wish to ensure
that the change has taken full effect.

Parameters

INDEX

Recreate the specified index.

TABLE

Recreate all indexes of the specified table. If the table has a secondary TOAST table,
that is reindexed as well.

DATABASE

Recreate all indexes within the current database. Indexes on shared system catalogs
are skipped. This form of REINDEX cannot be executed inside a transaction block.

SYSTEM

Recreate all indexes on system catalogs within the current database. Indexes on user
tables are not processed. Also, indexes on shared (global) system catalogs are
skipped. This form of REINDEX cannot be executed inside a transaction block.

name

The name of the specific index, table, or database to be reindexed. Index and table
names may be schema-qualified. Presently, REINDEX DATABASE and REINDEX
SYSTEM can only reindex the current database, so their parameter must match the
current database’s name.
REINDEX 521

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
Notes

REINDEX is similar to a drop and recreate of the index in that the index contents are
rebuilt from scratch. However, the locking considerations are rather different.
REINDEX locks out writes but not reads of the index’s parent table. It also takes an
exclusive lock on the specific index being processed, which will block reads that
attempt to use that index. In contrast, DROP INDEX momentarily takes exclusive lock
on the parent table, blocking both writes and reads. The subsequent CREATE INDEX
locks out writes but not reads; since the index is not there, no read will attempt to use
it, meaning that there will be no blocking but reads may be forced into expensive
sequential scans. Another important point is that the drop/create approach invalidates
any cached query plans that use the index, while REINDEX does not.

Reindexing a single index or table requires being the owner of that index or table.
Reindexing a database requires being the owner of the database (note that the owner
can therefore rebuild indexes of tables owned by other users). Of course, superusers
can always reindex anything.

If you suspect that shared global system catalog indexes are corrupted, they can only
be reindexed in Greenplum utility mode. The typical symptom of a corrupt shared
index is “index is not a btree” errors, or else the server crashes immediately at startup
due to reliance on the corrupted indexes. Contact Greenplum Customer Support for
assistance in this situation.

Examples

Rebuild a single index:

REINDEX INDEX my_index;

Rebuild all the indexes on the table my_table:

REINDEX TABLE my_table;

Compatibility

There is no REINDEX command in the SQL standard.

See Also

CREATE INDEX, DROP INDEX, VACUUM
REINDEX 522

RELEASE SAVEPOINT 523

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference

RELEASE SAVEPOINT
Destroys a previously defined savepoint.

Synopsis
RELEASE [SAVEPOINT] savepoint_name

Description

RELEASE SAVEPOINT destroys a savepoint previously defined in the current
transaction.

Destroying a savepoint makes it unavailable as a rollback point, but it has no other
user visible behavior. It does not undo the effects of commands executed after the
savepoint was established. (To do that, see ROLLBACK TO SAVEPOINT.) Destroying a
savepoint when it is no longer needed may allow the system to reclaim some resources
earlier than transaction end.

RELEASE SAVEPOINT also destroys all savepoints that were established after the
named savepoint was established.

Parameters

savepoint_name

The name of the savepoint to destroy.

Examples

To establish and later destroy a savepoint:

BEGIN;

 INSERT INTO table1 VALUES (3);

 SAVEPOINT my_savepoint;

 INSERT INTO table1 VALUES (4);

 RELEASE SAVEPOINT my_savepoint;

COMMIT;

The above transaction will insert both 3 and 4.

Compatibility

This command conforms to the SQL standard. The standard specifies that the key
word SAVEPOINT is mandatory, but Greenplum Database allows it to be omitted.

See Also

BEGIN, SAVEPOINT, ROLLBACK TO SAVEPOINT, COMMIT

RESET 524

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference

RESET
Restores the value of a system configuration parameter to the default value.

Synopsis
RESET configuration_parameter

RESET ALL

Description

RESET restores system configuration parameters to their default values. RESET is an
alternative spelling for SET configuration_parameter TO DEFAULT.

The default value is defined as the value that the parameter would have had, had no
SET ever been issued for it in the current session. The actual source of this value might
be a compiled-in default, the master postgresql.conf configuration file,
command-line options, or per-database or per-user default settings. See “Server
Configuration Parameters” on page 792.

Parameters

configuration_parameter

The name of a system configuration parameter. See “Server Configuration
Parameters” on page 792 for details.

ALL

Resets all settable configuration parameters to their default values.

Examples

Set the work_mem configuration parameter to its default value:

RESET work_mem;

Compatibility

RESET is a Greenplum Database extension.

See Also

SET

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
REVOKE
Removes access privileges.

Synopsis
REVOKE [GRANT OPTION FOR] { {SELECT | INSERT | UPDATE | DELETE
 | REFERENCES | TRIGGER} [,...] | ALL [PRIVILEGES] }
 ON [TABLE] tablename [, ...]
 FROM {rolename | PUBLIC} [, ...]
 [CASCADE | RESTRICT]

REVOKE [GRANT OPTION FOR] { {USAGE | SELECT | UPDATE} [,...]
 | ALL [PRIVILEGES] }
 ON SEQUENCE sequencename [, ...]
 FROM { rolename | PUBLIC } [, ...]
 [CASCADE | RESTRICT]

REVOKE [GRANT OPTION FOR] { {CREATE | CONNECT
 | TEMPORARY | TEMP} [,...] | ALL [PRIVILEGES] }
 ON DATABASE dbname [, ...]
 FROM {rolename | PUBLIC} [, ...]
 [CASCADE | RESTRICT]

REVOKE [GRANT OPTION FOR] {EXECUTE | ALL [PRIVILEGES]}
 ON FUNCTION funcname ([[argmode] [argname] argtype
 [, ...]]) [, ...]
 FROM {rolename | PUBLIC} [, ...]
 [CASCADE | RESTRICT]

REVOKE [GRANT OPTION FOR] {USAGE | ALL [PRIVILEGES]}
 ON LANGUAGE langname [, ...]
 FROM {rolename | PUBLIC} [, ...]
 [CASCADE | RESTRICT]

REVOKE [GRANT OPTION FOR] { {CREATE | USAGE} [,...]
 | ALL [PRIVILEGES] }
 ON SCHEMA schemaname [, ...]
 FROM {rolename | PUBLIC} [, ...]
 [CASCADE | RESTRICT]

REVOKE [GRANT OPTION FOR] { CREATE | ALL [PRIVILEGES] }
 ON TABLESPACE tablespacename [, ...]
 FROM { rolename | PUBLIC } [, ...]
 [CASCADE | RESTRICT]

REVOKE [ADMIN OPTION FOR] parent_role [, ...]
 FROM member_role [, ...]
 [CASCADE | RESTRICT]
REVOKE 525

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
Description

REVOKE command revokes previously granted privileges from one or more roles. The
key word PUBLIC refers to the implicitly defined group of all roles.

See the description of the GRANT command for the meaning of the privilege types.

Note that any particular role will have the sum of privileges granted directly to it,
privileges granted to any role it is presently a member of, and privileges granted to
PUBLIC. Thus, for example, revoking SELECT privilege from PUBLIC does not
necessarily mean that all roles have lost SELECT privilege on the object: those who
have it granted directly or via another role will still have it.

If GRANT OPTION FOR is specified, only the grant option for the privilege is revoked,
not the privilege itself. Otherwise, both the privilege and the grant option are revoked.

If a role holds a privilege with grant option and has granted it to other roles then the
privileges held by those other roles are called dependent privileges. If the privilege or
the grant option held by the first role is being revoked and dependent privileges exist,
those dependent privileges are also revoked if CASCADE is specified, else the revoke
action will fail. This recursive revocation only affects privileges that were granted
through a chain of roles that is traceable to the role that is the subject of this REVOKE
command. Thus, the affected roles may effectively keep the privilege if it was also
granted through other roles.

When revoking membership in a role, GRANT OPTION is instead called ADMIN
OPTION, but the behavior is similar.

Parameters

See GRANT.

Examples

Revoke insert privilege for the public on table films:

REVOKE INSERT ON films FROM PUBLIC;

Revoke all privileges from role sally on view topten. Note that this actually means
revoke all privileges that the current role granted (if not a superuser).

REVOKE ALL PRIVILEGES ON topten FROM sally;

Revoke membership in role admins from user joe:

REVOKE admins FROM joe;

Compatibility

The compatibility notes of the GRANT command also apply to REVOKE.

One of RESTRICT or CASCADE is required according to the standard, but Greenplum
Database assumes RESTRICT by default.
REVOKE 526

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
See Also

GRANT
REVOKE 527

ROLLBACK 528

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference

ROLLBACK
Aborts the current transaction.

Synopsis
ROLLBACK [WORK | TRANSACTION]

Description

ROLLBACK rolls back the current transaction and causes all the updates made by the
transaction to be discarded.

Parameters

WORK
TRANSACTION

Optional key words. They have no effect.

Notes

Use COMMIT to successfully end the current transaction.

Issuing ROLLBACK when not inside a transaction does no harm, but it will provoke a
warning message.

Examples

To discard all changes made in the current transaction:

ROLLBACK;

Compatibility

The SQL standard only specifies the two forms ROLLBACK and ROLLBACK WORK.
Otherwise, this command is fully conforming.

See Also

BEGIN, COMMIT, SAVEPOINT, ROLLBACK TO SAVEPOINT

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
ROLLBACK TO SAVEPOINT
Rolls back the current transaction to a savepoint.

Synopsis
ROLLBACK [WORK | TRANSACTION] TO [SAVEPOINT] savepoint_name

Description

This command will roll back all commands that were executed after the savepoint was
established. The savepoint remains valid and can be rolled back to again later, if
needed.

ROLLBACK TO SAVEPOINT implicitly destroys all savepoints that were established
after the named savepoint.

Parameters

WORK
TRANSACTION

Optional key words. They have no effect.

savepoint_name

The name of a savepoint to roll back to.

Notes

Use RELEASE SAVEPOINT to destroy a savepoint without discarding the effects of
commands executed after it was established.

Specifying a savepoint name that has not been established is an error.

Cursors have somewhat non-transactional behavior with respect to savepoints. Any
cursor that is opened inside a savepoint will be closed when the savepoint is rolled
back. If a previously opened cursor is affected by a FETCH command inside a
savepoint that is later rolled back, the cursor position remains at the position that
FETCH left it pointing to (that is, FETCH is not rolled back). Closing a cursor is not
undone by rolling back, either. A cursor whose execution causes a transaction to abort
is put in a can’t-execute state, so while the transaction can be restored using ROLLBACK
TO SAVEPOINT, the cursor can no longer be used.

Examples

To undo the effects of the commands executed after my_savepoint was established:

ROLLBACK TO SAVEPOINT my_savepoint;

Cursor positions are not affected by a savepoint rollback:

BEGIN;

DECLARE foo CURSOR FOR SELECT 1 UNION SELECT 2;
ROLLBACK TO SAVEPOINT 529

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
SAVEPOINT foo;

FETCH 1 FROM foo;

column

 1

ROLLBACK TO SAVEPOINT foo;

FETCH 1 FROM foo;

column

 2

COMMIT;

Compatibility

The SQL standard specifies that the key word SAVEPOINT is mandatory, but
Greenplum Database (and Oracle) allow it to be omitted. SQL allows only WORK, not
TRANSACTION, as a noise word after ROLLBACK. Also, SQL has an optional clause AND
[NO] CHAIN which is not currently supported by Greenplum Database. Otherwise,
this command conforms to the SQL standard.

See Also

BEGIN, COMMIT, SAVEPOINT, RELEASE SAVEPOINT, ROLLBACK
ROLLBACK TO SAVEPOINT 530

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
SAVEPOINT
Defines a new savepoint within the current transaction.

Synopsis
SAVEPOINT savepoint_name

Description

SAVEPOINT establishes a new savepoint within the current transaction.

A savepoint is a special mark inside a transaction that allows all commands that are
executed after it was established to be rolled back, restoring the transaction state to
what it was at the time of the savepoint.

Parameters

savepoint_name

The name of the new savepoint.

Notes

Use ROLLBACK TO SAVEPOINT to rollback to a savepoint. Use RELEASE SAVEPOINT to
destroy a savepoint, keeping the effects of commands executed after it was
established.

Savepoints can only be established when inside a transaction block. There can be
multiple savepoints defined within a transaction.

Examples

To establish a savepoint and later undo the effects of all commands executed after it
was established:

BEGIN;

 INSERT INTO table1 VALUES (1);

 SAVEPOINT my_savepoint;

 INSERT INTO table1 VALUES (2);

 ROLLBACK TO SAVEPOINT my_savepoint;

 INSERT INTO table1 VALUES (3);

COMMIT;

The above transaction will insert the values 1 and 3, but not 2.

To establish and later destroy a savepoint:

BEGIN;

 INSERT INTO table1 VALUES (3);
SAVEPOINT 531

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
 SAVEPOINT my_savepoint;

 INSERT INTO table1 VALUES (4);

 RELEASE SAVEPOINT my_savepoint;

COMMIT;

The above transaction will insert both 3 and 4.

Compatibility

SQL requires a savepoint to be destroyed automatically when another savepoint with
the same name is established. In Greenplum Database, the old savepoint is kept,
though only the more recent one will be used when rolling back or releasing.
(Releasing the newer savepoint will cause the older one to again become accessible to
ROLLBACK TO SAVEPOINT and RELEASE SAVEPOINT.) Otherwise, SAVEPOINT is fully
SQL conforming.

See Also

BEGIN, COMMIT, ROLLBACK, RELEASE SAVEPOINT, ROLLBACK TO SAVEPOINT
SAVEPOINT 532

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
SELECT
Retrieves rows from a table or view.

Synopsis
SELECT [ALL | DISTINCT [ON (expression [, ...])]]
 * | expression [[AS] output_name] [, ...]
 [FROM from_item [, ...]]
 [WHERE condition]
 [GROUP BY grouping_element [, ...]]
 [HAVING condition [, ...]]
 [WINDOW window_name AS (window_specification)]
 [{UNION | INTERSECT | EXCEPT} [ALL] select]
 [ORDER BY expression [ASC | DESC | USING operator] [, ...]]
 [LIMIT {count | ALL}]
 [OFFSET start]
 [FOR {UPDATE | SHARE} [OF table_name [, ...]] [NOWAIT] [...]]

where grouping_element can be one of:
 ()
 expression
 ROLLUP (expression [,...])
 CUBE (expression [,...])
 GROUPING SETS ((grouping_element [, ...]))

where window_specification can be:
 [window_name]
 [PARTITION BY expression [, ...]]
 [ORDER BY expression [ASC | DESC | USING operator] [, ...]
 [{RANGE | ROWS}
 { UNBOUNDED PRECEDING
 | expression PRECEDING
 | CURRENT ROW
 | BETWEEN window_frame_bound AND window_frame_bound }]]

 where window_frame_bound can be one of:
 UNBOUNDED PRECEDING
 expression PRECEDING
 CURRENT ROW
 expression FOLLOWING
 UNBOUNDED FOLLOWING

where from_item can be one of:
[ONLY] table_name [[AS] alias [(column_alias [, ...])]]
(select) [AS] alias [(column_alias [, ...])]
function_name ([argument [, ...]]) [AS] alias
 [(column_alias [, ...]
 | column_definition [, ...])]
function_name ([argument [, ...]]) AS
 (column_definition [, ...])
SELECT 533

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
from_item [NATURAL] join_type from_item
 [ON join_condition | USING (join_column [, ...])]

Description

SELECT retrieves rows from zero or more tables. The general processing of SELECT is
as follows:

1. All elements in the FROM list are computed. (Each element in the FROM list is a real
or virtual table.) If more than one element is specified in the FROM list, they are
cross-joined together.

2. If the WHERE clause is specified, all rows that do not satisfy the condition are
eliminated from the output.

3. If the GROUP BY clause is specified, the output is divided into groups of rows that
match on one or more of the defined grouping elements. If the HAVING clause is
present, it eliminates groups that do not satisfy the given condition.

4. If a window expression is specified (and optional WINDOW clause), the output is
organized according to the positional (row) or value-based (range) window frame.

5. DISTINCT eliminates duplicate rows from the result. DISTINCT ON eliminates
rows that match on all the specified expressions. ALL (the default) will return all
candidate rows, including duplicates.

6. The actual output rows are computed using the SELECT output expressions for
each selected row.

7. Using the operators UNION, INTERSECT, and EXCEPT, the output of more than one
SELECT statement can be combined to form a single result set. The UNION operator
returns all rows that are in one or both of the result sets. The INTERSECT operator
returns all rows that are strictly in both result sets. The EXCEPT operator returns
the rows that are in the first result set but not in the second. In all three cases,
duplicate rows are eliminated unless ALL is specified.

8. If the ORDER BY clause is specified, the returned rows are sorted in the specified
order. If ORDER BY is not given, the rows are returned in whatever order the
system finds fastest to produce.

9. If the LIMIT or OFFSET clause is specified, the SELECT statement only returns a
subset of the result rows.

10. If FOR UPDATE or FOR SHARE is specified, the SELECT statement locks the entire
table against concurrent updates.

You must have SELECT privilege on a table to read its values. The use of FOR UPDATE
or FOR SHARE requires UPDATE privilege as well.
SELECT 534

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
Parameters

The SELECT List

The SELECT list (between the key words SELECT and FROM) specifies expressions that
form the output rows of the SELECT statement. The expressions can (and usually do)
refer to columns computed in the FROM clause.

Using the clause [AS] output_name, another name can be specified for an output
column. This name is primarily used to label the column for display. It can also be
used to refer to the column’s value in ORDER BY and GROUP BY clauses, but not in the
WHERE or HAVING clauses; there you must write out the expression instead. The AS
keyword is optional in most cases (such as when declaring an alias for column names,
constants, function calls, and simple unary operator expressions). In cases where the
declared alias is a reserved SQL keyword, the output_name must be enclosed in
double quotes to avoid ambiguity.

An expression in the SELECT list can be a constant value, a column reference, an
operator invocation, a function call, an aggregate expression, a window expression, a
scalar subquery, and so on. See “SQL Value Expressions” on page 105 for more
information. there are a number of constructs that can be classified as an expression
but do not follow any general syntax rules. These generally have the semantics of a
function or operator and are explained in “Function Calls” on page 108.

Instead of an expression, * can be written in the output list as a shorthand for all the
columns of the selected rows. Also, one can write table_name.* as a shorthand for
the columns coming from just that table.

The FROM Clause

The FROM clause specifies one or more source tables for the SELECT. If multiple
sources are specified, the result is the Cartesian product (cross join) of all the sources.
But usually qualification conditions are added to restrict the returned rows to a small
subset of the Cartesian product. The FROM clause can contain the following elements:

table_name

The name (optionally schema-qualified) of an existing table or view. If ONLY is
specified, only that table is scanned. If ONLY is not specified, the table and all its
descendant tables (if any) are scanned.

alias

A substitute name for the FROM item containing the alias. An alias is used for brevity
or to eliminate ambiguity for self-joins (where the same table is scanned multiple
times). When an alias is provided, it completely hides the actual name of the table or
function; for example given FROM foo AS f, the remainder of the SELECT must
refer to this FROM item as f not foo. If an alias is written, a column alias list can also
be written to provide substitute names for one or more columns of the table.

select

A sub-SELECT can appear in the FROM clause. This acts as though its output were
created as a temporary table for the duration of this single SELECT command. Note
that the sub-SELECT must be surrounded by parentheses, and an alias must be
SELECT 535

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
provided for it. A VALUES command can also be used here. See “Limited Correlated
Subquery Syntax” on page 547 for limitations of using correlated sub-selects in
Greenplum Database.

function_name

Function calls can appear in the FROM clause. (This is especially useful for functions
that return result sets, but any function can be used.) This acts as though its output
were created as a temporary table for the duration of this single SELECT command.
An alias may also be used. If an alias is written, a column alias list can also be
written to provide substitute names for one or more attributes of the function’s
composite return type. If the function has been defined as returning the record data
type, then an alias or the key word AS must be present, followed by a column
definition list in the form (column_name data_type [, ...]). The column
definition list must match the actual number and types of columns returned by the
function.

join_type

One of:

• [INNER] JOIN
• LEFT [OUTER] JOIN
• RIGHT [OUTER] JOIN
• FULL [OUTER] JOIN
• CROSS JOIN

For the INNER and OUTER join types, a join condition must be specified, namely
exactly one of NATURAL, ON join_condition, or USING (join_column [,
...]). See below for the meaning. For CROSS JOIN, none of these clauses may
appear.

A JOIN clause combines two FROM items. Use parentheses if necessary to determine
the order of nesting. In the absence of parentheses, JOINs nest left-to-right. In any
case JOIN binds more tightly than the commas separating FROM items.

CROSS JOIN and INNER JOIN produce a simple Cartesian product, the same result
as you get from listing the two items at the top level of FROM, but restricted by the
join condition (if any). CROSS JOIN is equivalent to INNER JOIN ON (TRUE), that
is, no rows are removed by qualification. These join types are just a notational
convenience, since they do nothing you could not do with plain FROM and WHERE.

LEFT OUTER JOIN returns all rows in the qualified Cartesian product (i.e., all
combined rows that pass its join condition), plus one copy of each row in the
left-hand table for which there was no right-hand row that passed the join condition.
This left-hand row is extended to the full width of the joined table by inserting null
values for the right-hand columns. Note that only the JOIN clause’s own condition is
considered while deciding which rows have matches. Outer conditions are applied
afterwards.

Conversely, RIGHT OUTER JOIN returns all the joined rows, plus one row for each
unmatched right-hand row (extended with nulls on the left). This is just a notational
convenience, since you could convert it to a LEFT OUTER JOIN by switching the left
and right inputs.
SELECT 536

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
FULL OUTER JOIN returns all the joined rows, plus one row for each unmatched
left-hand row (extended with nulls on the right), plus one row for each unmatched
right-hand row (extended with nulls on the left).

ON join_condition

join_condition is an expression resulting in a value of type boolean (similar to a
WHERE clause) that specifies which rows in a join are considered to match.

USING (join_column [, ...])

A clause of the form USING (a, b, ...) is shorthand for ON left_table.a =
right_table.a AND left_table.b = right_table.b Also, USING
implies that only one of each pair of equivalent columns will be included in the join
output, not both.

NATURAL

NATURAL is shorthand for a USING list that mentions all columns in the two tables
that have the same names.

The WHERE Clause

The optional WHERE clause has the general form:

WHERE condition

Where condition is any expression that evaluates to a result of type boolean. Any
row that does not satisfy this condition will be eliminated from the output. A row
satisfies the condition if it returns true when the actual row values are substituted for
any variable references.

The GROUP BY Clause

The optional GROUP BY clause has the general form:

GROUP BY grouping_element [, ...]

where grouping_element can be one of:

()

expression

ROLLUP (expression [,...])

CUBE (expression [,...])

GROUPING SETS ((grouping_element [, ...]))

GROUP BY will condense into a single row all selected rows that share the same values
for the grouped expressions. expression can be an input column name, or the name
or ordinal number of an output column (SELECT list item), or an arbitrary expression
formed from input-column values. In case of ambiguity, a GROUP BY name will be
interpreted as an input-column name rather than an output column name.

Aggregate functions, if any are used, are computed across all rows making up each
group, producing a separate value for each group (whereas without GROUP BY, an
aggregate produces a single value computed across all the selected rows). When
SELECT 537

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
GROUP BY is present, it is not valid for the SELECT list expressions to refer to
ungrouped columns except within aggregate functions, since there would be more
than one possible value to return for an ungrouped column.

Greenplum Database has the following additional OLAP grouping extensions (often
referred to as supergroups):

ROLLUP

A ROLLUP grouping is an extension to the GROUP BY clause that creates aggregate
subtotals that roll up from the most detailed level to a grand total, following a list of
grouping columns (or expressions). ROLLUP takes an ordered list of grouping
columns, calculates the standard aggregate values specified in the GROUP BY clause,
then creates progressively higher-level subtotals, moving from right to left through
the list. Finally, it creates a grand total. A ROLLUP grouping can be thought of as a
series of grouping sets. For example:

GROUP BY ROLLUP (a,b,c)

is equivalent to:

GROUP BY GROUPING SETS((a,b,c), (a,b), (a), ())

Notice that the n elements of a ROLLUP translate to n+1 grouping sets. Also, the
order in which the grouping expressions are specified is significant in a ROLLUP.

CUBE

A CUBE grouping is an extension to the GROUP BY clause that creates subtotals for all
of the possible combinations of the given list of grouping columns (or expressions).
In terms of multidimensional analysis, CUBE generates all the subtotals that could be
calculated for a data cube with the specified dimensions. For example:

GROUP BY CUBE (a,b,c)

is equivalent to:

GROUP BY GROUPING SETS((a,b,c), (a,b), (a,c), (b,c), (a),
(b), (c), ())

Notice that n elements of a CUBE translate to 2n grouping sets. Consider using CUBE
in any situation requiring cross-tabular reports. CUBE is typically most suitable in
queries that use columns from multiple dimensions rather than columns representing
different levels of a single dimension. For instance, a commonly requested
cross-tabulation might need subtotals for all the combinations of month, state, and
product.

GROUPING SETS

You can selectively specify the set of groups that you want to create using a
GROUPING SETS expression within a GROUP BY clause. This allows precise
specification across multiple dimensions without computing a whole ROLLUP or
CUBE. For example:

GROUP BY GROUPING SETS((a,c), (a,b))
SELECT 538

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
If using the grouping extension clauses ROLLUP, CUBE, or GROUPING SETS, two
challenges arise. First, how do you determine which result rows are subtotals, and
then the exact level of aggregation for a given subtotal. Or, how do you differentiate
between result rows that contain both stored NULL values and “NULL” values
created by the ROLLUP or CUBE. Secondly, when duplicate grouping sets are
specified in the GROUP BY clause, how do you determine which result rows are
duplicates? There are two additional grouping functions you can use in the SELECT
list to help with this:

• grouping(column [, ...]) The grouping function can be applied to one
or more grouping attributes to distinguish super-aggregated rows from regular
grouped rows. This can be helpful in distinguishing a “NULL” representing
the set of all values in a super-aggregated row from a NULL value in a regular
row. Each argument in this function produces a bit — either 1 or 0, where 1
means the result row is super-aggregated, and 0 means the result row is from a
regular grouping. The grouping function returns an integer by treating these
bits as a binary number and then converting it to a base-10 integer.

• group_id() For grouping extension queries that contain duplicate grouping
sets, the group_id function is used to identify duplicate rows in the output.
All unique grouping set output rows will have a group_id value of 0. For each
duplicate grouping set detected, the group_id function assigns a group_id
number greater than 0. All output rows in a particular duplicate grouping set
are identified by the same group_id number.

The WINDOW Clause

The WINDOW clause is used to define a window that can be used in the OVER()
expression of a window function such as rank or avg. For example:

SELECT vendor, rank() OVER (mywindow) FROM sale

WINDOW mywindow AS (ORDER BY sum(prc*qty));

A WINDOW clause is has this general form:

WINDOW window_name AS (window_specification)

where window_specification can be:

[window_name]

[PARTITION BY expression [, ...]]

[ORDER BY expression [ASC | DESC | USING operator] [, ...]

 [{RANGE | ROWS}

 { UNBOUNDED PRECEDING

 | expression PRECEDING

 | CURRENT ROW

 | BETWEEN window_frame_bound AND window_frame_bound }]]

 where window_frame_bound can be one of:
 UNBOUNDED PRECEDING

 expression PRECEDING

 CURRENT ROW

 expression FOLLOWING

 UNBOUNDED FOLLOWING
SELECT 539

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
window_name

Gives a name to the window specification.

PARTITION BY

The PARTITION BY clause organizes the result set into logical groups based on the
unique values of the specified expression. When used with window functions, the
functions are applied to each partition independently. For example, if you follow
PARTITION BY with a column name, the result set is partitioned by the distinct
values of that column. If omitted, the entire result set is considered one partition.

ORDER BY

The ORDER BY clause defines how to sort the rows in each partition of the result set.
If omitted, rows are returned in whatever order is most efficient and may vary.
Note: Columns of data types that lack a coherent ordering, such as time, are not
good candidates for use in the ORDER BY clause of a window specification. Time,
with or without time zone, lacks a coherent ordering because addition and
subtraction do not have the expected effects. For example, the following is not
generally true: x::time < x::time + '2 hour'::interval

ROWS | RANGE

Use either a ROWS or RANGE clause to express the bounds of the window. The
window bound can be one, many, or all rows of a partition. You can express the
bound of the window either in terms of a range of data values offset from the value
in the current row (RANGE), or in terms of the number of rows offset from the current
row (ROWS). When using the RANGE clause, you must also use an ORDER BY clause.
This is because the calculation performed to produce the window requires that the
values be sorted. Additionally, the ORDER BY clause cannot contain more than one
expression, and the expression must result in either a date or a numeric value. When
using the ROWS or RANGE clauses, if you specify only a starting row, the current row
is used as the last row in the window.

PRECEDING

The PRECEDING clause defines the first row of the window using the current row
as a reference point. The starting row is expressed in terms of the number of rows
preceding the current row. For example, in the case of ROWS framing, 5
PRECEDING sets the window to start with the fifth row preceding the current row.
In the case of RANGE framing, it sets the window to start with the first row whose
ordering column value precedes that of the current row by 5 in the given order. If
the specified order is ascending by date, this will be the first row within 5 days
before the current row. UNBOUNDED PRECEDING sets the first row in the window to
be the first row in the partition.

BETWEEN

The BETWEEN clause defines the first and last row of the window, using the current
row as a reference point. First and last rows are expressed in terms of the number
of rows preceding and following the current row, respectively. For example,
BETWEEN 3 PRECEDING AND 5 FOLLOWING sets the window to start with the
third row preceding the current row, and end with the fifth row following the
current row. Use BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED
SELECT 540

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
FOLLOWING to set the first and last rows in the window to be the first and last row
in the partition, respectively. This is equivalent to the default behavior if no ROW or
RANGE clause is specified.

FOLLOWING

The FOLLOWING clause defines the last row of the window using the current row
as a reference point. The last row is expressed in terms of the number of rows
following the current row. For example, in the case of ROWS framing, 5
FOLLOWING sets the window to end with the fifth row following the current row. In
the case of RANGE framing, it sets the window to end with the last row whose
ordering column value follows that of the current row by 5 in the given order. If
the specified order is ascending by date, this will be the last row within 5 days
after the current row. Use UNBOUNDED FOLLOWING to set the last row in the
window to be the last row in the partition.

If you do not specify a ROW or a RANGE clause, the window bound starts with the first
row in the partition (UNBOUNDED PRECEDING) and ends with the current row
(CURRENT ROW) if ORDER BY is used. If an ORDER BY is not specified, the window
starts with the first row in the partition (UNBOUNDED PRECEDING) and ends with last
row in the partition (UNBOUNDED FOLLOWING).

The HAVING Clause

The optional HAVING clause has the general form:

HAVING condition

Where condition is the same as specified for the WHERE clause. HAVING eliminates
group rows that do not satisfy the condition. HAVING is different from WHERE: WHERE
filters individual rows before the application of GROUP BY, while HAVING filters group
rows created by GROUP BY. Each column referenced in condition must
unambiguously reference a grouping column, unless the reference appears within an
aggregate function.

The presence of HAVING turns a query into a grouped query even if there is no GROUP
BY clause. This is the same as what happens when the query contains aggregate
functions but no GROUP BY clause. All the selected rows are considered to form a
single group, and the SELECT list and HAVING clause can only reference table columns
from within aggregate functions. Such a query will emit a single row if the HAVING
condition is true, zero rows if it is not true.

The UNION Clause

The UNION clause has this general form:

select_statement UNION [ALL] select_statement

Where select_statement is any SELECT statement without an ORDER BY, LIMIT,
FOR UPDATE, or FOR SHARE clause. (ORDER BY and LIMIT can be attached to a
subquery expression if it is enclosed in parentheses. Without parentheses, these
clauses will be taken to apply to the result of the UNION, not to its right-hand input
expression.)
SELECT 541

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
The UNION operator computes the set union of the rows returned by the involved
SELECT statements. A row is in the set union of two result sets if it appears in at least
one of the result sets. The two SELECT statements that represent the direct operands of
the UNION must produce the same number of columns, and corresponding columns
must be of compatible data types.

The result of UNION does not contain any duplicate rows unless the ALL option is
specified. ALL prevents elimination of duplicates. (Therefore, UNION ALL is usually
significantly quicker than UNION; use ALL when you can.)

Multiple UNION operators in the same SELECT statement are evaluated left to right,
unless otherwise indicated by parentheses.

Currently, FOR UPDATE and FOR SHARE may not be specified either for a UNION result
or for any input of a UNION.

The INTERSECT Clause

The INTERSECT clause has this general form:

select_statement INTERSECT [ALL] select_statement

Where select_statement is any SELECT statement without an ORDER BY, LIMIT,
FOR UPDATE, or FOR SHARE clause.

The INTERSECT operator computes the set intersection of the rows returned by the
involved SELECT statements. A row is in the intersection of two result sets if it appears
in both result sets.

The result of INTERSECT does not contain any duplicate rows unless the ALL option is
specified. With ALL, a row that has m duplicates in the left table and n duplicates in the
right table will appear min(m,n) times in the result set.

Multiple INTERSECT operators in the same SELECT statement are evaluated left to
right, unless parentheses dictate otherwise. INTERSECT binds more tightly than UNION.
That is, A UNION B INTERSECT C will be read as A UNION (B INTERSECT C).

Currently, FOR UPDATE and FOR SHARE may not be specified either for an INTERSECT
result or for any input of an INTERSECT.

The EXCEPT Clause

The EXCEPT clause has this general form:

select_statement EXCEPT [ALL] select_statement

Where select_statement is any SELECT statement without an ORDER BY, LIMIT,
FOR UPDATE, or FOR SHARE clause.

The EXCEPT operator computes the set of rows that are in the result of the left SELECT
statement but not in the result of the right one.

The result of EXCEPT does not contain any duplicate rows unless the ALL option is
specified. With ALL, a row that has m duplicates in the left table and n duplicates in the
right table will appear max(m-n,0) times in the result set.

Multiple EXCEPT operators in the same SELECT statement are evaluated left to right,
unless parentheses dictate otherwise. EXCEPT binds at the same level as UNION.
SELECT 542

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
Currently, FOR UPDATE and FOR SHARE may not be specified either for an EXCEPT
result or for any input of an EXCEPT.

The ORDER BY Clause

The optional ORDER BY clause has this general form:

ORDER BY expression [ASC | DESC | USING operator] [, ...]

Where expression can be the name or ordinal number of an output column (SELECT
list item), or it can be an arbitrary expression formed from input-column values.

The ORDER BY clause causes the result rows to be sorted according to the specified
expressions. If two rows are equal according to the left-most expression, they are
compared according to the next expression and so on. If they are equal according to all
specified expressions, they are returned in an implementation-dependent order.

The ordinal number refers to the ordinal (left-to-right) position of the result column.
This feature makes it possible to define an ordering on the basis of a column that does
not have a unique name. This is never absolutely necessary because it is always
possible to assign a name to a result column using the AS clause.

It is also possible to use arbitrary expressions in the ORDER BY clause, including
columns that do not appear in the SELECT result list. Thus the following statement is
valid:

SELECT name FROM distributors ORDER BY code;

A limitation of this feature is that an ORDER BY clause applying to the result of a
UNION, INTERSECT, or EXCEPT clause may only specify an output column name or
number, not an expression.

If an ORDER BY expression is a simple name that matches both a result column name
and an input column name, ORDER BY will interpret it as the result column name. This
is the opposite of the choice that GROUP BY will make in the same situation. This
inconsistency is made to be compatible with the SQL standard.

Optionally one may add the key word ASC (ascending) or DESC (descending) after any
expression in the ORDER BY clause. If not specified, ASC is assumed by default.
Alternatively, a specific ordering operator name may be specified in the USING clause.
ASC is usually equivalent to USING < and DESC is usually equivalent to USING >. (But
the creator of a user-defined data type can define exactly what the default sort ordering
is, and it might correspond to operators with other names.)

The null value sorts higher than any other value. In other words, with ascending sort
order, null values sort at the end, and with descending sort order, null values sort at the
beginning.

Character-string data is sorted according to the locale-specific collation order that was
established when the Greenplum Database system was initialized.

The DISTINCT Clause

If DISTINCT is specified, all duplicate rows are removed from the result set (one row
is kept from each group of duplicates). ALL specifies the opposite: all rows are kept.
ALL is the default.
SELECT 543

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
DISTINCT ON (expression [, ...]) keeps only the first row of each set of
rows where the given expressions evaluate to equal. The DISTINCT ON expressions
are interpreted using the same rules as for ORDER BY. Note that the ‘first row’ of each
set is unpredictable unless ORDER BY is used to ensure that the desired row appears
first. For example:

SELECT DISTINCT ON (location) location, time, report FROM
weather_reports ORDER BY location, time DESC;

retrieves the most recent weather report for each location. But if we had not used
ORDER BY to force descending order of time values for each location, we would have
gotten a report from an unpredictable time for each location.

The DISTINCT ON expression(s) must match the left-most ORDER BY expression(s).
The ORDER BY clause will normally contain additional expression(s) that determine
the desired precedence of rows within each DISTINCT ON group.

The LIMIT Clause

The LIMIT clause consists of two independent sub-clauses:

LIMIT {count | ALL}

OFFSET start

Where count specifies the maximum number of rows to return, while start specifies
the number of rows to skip before starting to return rows. When both are specified,
start rows are skipped before starting to count the count rows to be returned.

When using LIMIT, it is a good idea to use an ORDER BY clause that constrains the
result rows into a unique order. Otherwise you will get an unpredictable subset of the
query’s rows — you may be asking for the tenth through twentieth rows, but tenth
through twentieth in what ordering? You don’t know what ordering unless you specify
ORDER BY.

The query planner takes LIMIT into account when generating a query plan, so you are
very likely to get different plans (yielding different row orders) depending on what
you use for LIMIT and OFFSET. Thus, using different LIMIT/OFFSET values to select
different subsets of a query result will give inconsistent results unless you enforce a
predictable result ordering with ORDER BY. This is not a defect; it is an inherent
consequence of the fact that SQL does not promise to deliver the results of a query in
any particular order unless ORDER BY is used to constrain the order.

FOR UPDATE/FOR SHARE Clause

The FOR UPDATE clause has this form:

FOR UPDATE [OF table_name [, ...]] [NOWAIT]

The closely related FOR SHARE clause has this form:

FOR SHARE [OF table_name [, ...]] [NOWAIT]

FOR UPDATE causes the tables accessed by the SELECT statement to be locked as
though for update. This prevents the table from being modified or deleted by other
transactions until the current transaction ends. That is, other transactions that attempt
UPDATE, DELETE, or SELECT FOR UPDATE of this table will be blocked until the
current transaction ends. Also, if an UPDATE, DELETE, or SELECT FOR UPDATE from
SELECT 544

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
another transaction has already locked a selected table, SELECT FOR UPDATE will
wait for the other transaction to complete, and will then lock and return the updated
table.

To prevent the operation from waiting for other transactions to commit, use the
NOWAIT option. SELECT FOR UPDATE NOWAIT reports an error, rather than waiting, if
a selected row cannot be locked immediately. Note that NOWAIT applies only to the
row-level lock(s) — the required ROW SHARE table-level lock is still taken in the
ordinary way. You can use the NOWAIT option of LOCK if you need to acquire the
table-level lock without waiting (see LOCK).

FOR SHARE behaves similarly, except that it acquires a shared rather than exclusive
lock on the table. A shared lock blocks other transactions from performing UPDATE,
DELETE, or SELECT FOR UPDATE on the table, but it does not prevent them from
performing SELECT FOR SHARE.

If specific tables are named in FOR UPDATE or FOR SHARE, then only those tables are
locked; any other tables used in the SELECT are simply read as usual. A FOR UPDATE
or FOR SHARE clause without a table list affects all tables used in the command. If FOR
UPDATE or FOR SHARE is applied to a view or subquery, it affects all tables used in the
view or subquery.

Multiple FOR UPDATE and FOR SHARE clauses can be written if it is necessary to
specify different locking behavior for different tables. If the same table is mentioned
(or implicitly affected) by both FOR UPDATE and FOR SHARE clauses, then it is
processed as FOR UPDATE. Similarly, a table is processed as NOWAIT if that is specified
in any of the clauses affecting it.

Examples

To join the table films with the table distributors:

SELECT f.title, f.did, d.name, f.date_prod, f.kind FROM
distributors d, films f WHERE f.did = d.did

To sum the column length of all films and group the results by kind:

SELECT kind, sum(length) AS total FROM films GROUP BY kind;

To sum the column length of all films, group the results by kind and show those group
totals that are less than 5 hours:

SELECT kind, sum(length) AS total FROM films GROUP BY kind
HAVING sum(length) < interval '5 hours';

Calculate the subtotals and grand totals of all sales for movie kind and distributor.

SELECT kind, distributor, sum(prc*qty) FROM sales

GROUP BY ROLLUP(kind, distributor)

ORDER BY 1,2,3;

Calculate the rank of movie distributors based on total sales:

SELECT distributor, sum(prc*qty),

 rank() OVER (ORDER BY sum(prc*qty) DESC)

FROM sale
SELECT 545

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
GROUP BY distributor ORDER BY 2 DESC;

The following two examples are identical ways of sorting the individual results
according to the contents of the second column (name):

SELECT * FROM distributors ORDER BY name;

SELECT * FROM distributors ORDER BY 2;

The next example shows how to obtain the union of the tables distributors and actors,
restricting the results to those that begin with the letter W in each table. Only distinct
rows are wanted, so the key word ALL is omitted:

SELECT distributors.name FROM distributors WHERE
distributors.name LIKE 'W%' UNION SELECT actors.name FROM
actors WHERE actors.name LIKE 'W%';

This example shows how to use a function in the FROM clause, both with and without a
column definition list:

CREATE FUNCTION distributors(int) RETURNS SETOF distributors
AS $$ SELECT * FROM distributors WHERE did = $1; $$ LANGUAGE
SQL;

SELECT * FROM distributors(111);

CREATE FUNCTION distributors_2(int) RETURNS SETOF record AS
$$ SELECT * FROM distributors WHERE did = $1; $$ LANGUAGE
SQL;

SELECT * FROM distributors_2(111) AS (dist_id int, dist_name
text);

Compatibility

The SELECT statement is compatible with the SQL standard, but there are some
extensions and some missing features.

Omitted FROM Clauses

Greenplum Database allows one to omit the FROM clause. It has a straightforward use
to compute the results of simple expressions. For example:

SELECT 2+2;

Some other SQL databases cannot do this except by introducing a dummy one-row
table from which to do the SELECT.

Note that if a FROM clause is not specified, the query cannot reference any database
tables. For compatibility with applications that rely on this behavior the
add_missing_from configuration variable can be enabled.

The AS Key Word

In the SQL standard, the optional key word AS is just noise and can be omitted without
affecting the meaning. The Greenplum Database parser requires this key word when
renaming output columns because the type extensibility features lead to parsing
ambiguities without it. AS is optional in FROM items, however.
SELECT 546

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
Namespace Available to GROUP BY and ORDER BY

In the SQL-92 standard, an ORDER BY clause may only use result column names or
numbers, while a GROUP BY clause may only use expressions based on input column
names. Greenplum Database extends each of these clauses to allow the other choice as
well (but it uses the standard’s interpretation if there is ambiguity). Greenplum
Database also allows both clauses to specify arbitrary expressions. Note that names
appearing in an expression will always be taken as input-column names, not as
result-column names.

SQL:1999 and later use a slightly different definition which is not entirely upward
compatible with SQL-92. In most cases, however, Greenplum Database will interpret
an ORDER BY or GROUP BY expression the same way SQL:1999 does.

Nonstandard Clauses

The clauses DISTINCT ON, LIMIT, and OFFSET are not defined in the SQL standard.

Limited Correlated Subquery Syntax

A correlated subquery is a nested SELECT statement that refers to a column from an
outer SELECT statement. For example:

SELECT * FROM product WHERE exists (SELECT * FROM sale WHERE
qty>0 AND pn = product.pn);

Subqueries that do not need any input from the parent query and produce just a single
value or row are not subject to the limitations described in this section.

Greenplum Database (as does PostgreSQL) supports correlated subqueries by
flattening (transforming the subquery into a join with the table(s) of the outer query).
If a correlated subquery has none of the characteristics mentioned below that prevent
flattening, then it will be transformed to a join and be executed as expected. Correlated
subqueries with the following syntax cannot be flattened and will be rejected:

• expression operator ANY/ALL (subquery) where expression contains a
volatile function

• EXISTS with aggregate in HAVING

• (subquery) returning a single value or row

• ARRAY (subquery) returning an array of values or rows

• Correlated subquery used in WHERE clause

• Correlated subquery used in HAVING clause

• Correlated subquery used in OR expression

• Correlated subquery used in select-list

• Set-returning function in select-list of subquery

• Aggregate function in subquery (other than EXISTS)

• DISTINCT in value, row or ARRAY subquery

• GROUP BY or DISTINCT in subquery (other than EXISTS)

• LIMIT in subquery (other than EXISTS)

• OFFSET in subquery
SELECT 547

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
• Subquery without a FROM clause

Limited Use of STABLE and VOLATILE Functions

To prevent data from becoming out-of-sync across the segments in Greenplum
Database, any function classified as STABLE or VOLATILE cannot be executed at the
segment database level if it contains SQL or modifies the database in any way. See
CREATE FUNCTION for more information.

See Also

EXPLAIN
SELECT 548

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
SELECT INTO
Defines a new table from the results of a query.

Synopsis
SELECT [ALL | DISTINCT [ON (expression [, ...])]]
 * | expression [AS output_name] [, ...]
 INTO [TEMPORARY | TEMP] [TABLE] new_table
 [FROM from_item [, ...]]
 [WHERE condition]
 [GROUP BY expression [, ...]]
 [HAVING condition [, ...]]
 [{UNION | INTERSECT | EXCEPT} [ALL] select]
 [ORDER BY expression [ASC | DESC | USING operator] [, ...]]
 [LIMIT {count | ALL}]
 [OFFSET start]
 [FOR {UPDATE | SHARE} [OF table_name [, ...]] [NOWAIT]
[...]]

Description

SELECT INTO creates a new table and fills it with data computed by a query. The data
is not returned to the client, as it is with a normal SELECT. The new table’s columns
have the names and data types associated with the output columns of the SELECT.

Parameters

The majority of parameters for SELECT INTO are the same as SELECT.

TEMPORARY
TEMP

If specified, the table is created as a temporary table.

new_table

The name (optionally schema-qualified) of the table to be created.

Examples

Create a new table films_recent consisting of only recent entries from the table films:

SELECT * INTO films_recent FROM films WHERE date_prod >=
'2006-01-01';
SELECT INTO 549

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
Compatibility

The SQL standard uses SELECT INTO to represent selecting values into scalar
variables of a host program, rather than creating a new table. The Greenplum Database
usage of SELECT INTO to represent table creation is historical. It is best to use CREATE
TABLE AS for this purpose in new applications.

See Also

SELECT, CREATE TABLE AS
SELECT INTO 550

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
SET
Changes the value of a Greenplum Database configuration parameter.

Synopsis
SET [SESSION | LOCAL] configuration_parameter {TO | =} value |
'value' | DEFAULT}

SET [SESSION | LOCAL] TIME ZONE {timezone | LOCAL | DEFAULT}

Description

The SET command changes server configuration parameters. Any configuration
parameter classified as a session parameter can be changed on-the-fly with SET (see
“Server Configuration Parameters” on page 792 for details). SET only affects the value
used by the current session.

If SET or SET SESSION is issued within a transaction that is later aborted, the effects
of the SET command disappear when the transaction is rolled back. Once the
surrounding transaction is committed, the effects will persist until the end of the
session, unless overridden by another SET.

The effects of SET LOCAL last only till the end of the current transaction, whether
committed or not. A special case is SET followed by SET LOCAL within a single
transaction: the SET LOCAL value will be seen until the end of the transaction, but
afterwards (if the transaction is committed) the SET value will take effect.

Parameters

SESSION

Specifies that the command takes effect for the current session. This is the default.

LOCAL

Specifies that the command takes effect for only the current transaction. After
COMMIT or ROLLBACK, the session-level setting takes effect again. Note that SET
LOCAL will appear to have no effect if it is executed outside of a transaction.

configuration_parameter

The name of a Greenplum Database configuration parameter. Only parameters
classified as session can be changed with SET. See “Server Configuration
Parameters” on page 792 for details.

value

New value of parameter. Values can be specified as string constants, identifiers,
numbers, or comma-separated lists of these. DEFAULT can be used to specify
resetting the parameter to its default value. If specifying memory sizing or time
units, enclose the value in single quotes.
SET 551

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
TIME ZONE

SET TIME ZONE value is an alias for SET timezone TO value. The syntax SET
TIME ZONE allows special syntax for the time zone specification. Here are examples
of valid values:

'PST8PDT'

'Europe/Rome'

-7 (time zone 7 hours west from UTC)

INTERVAL '-08:00' HOUR TO MINUTE (time zone 8 hours west from UTC).

LOCAL
DEFAULT

Set the time zone to your local time zone (the one that the server’s operating system
defaults to). See the Time zone section of the PostgreSQL documentation for more
information about time zones in Greenplum Database.

Examples

Set the schema search path:

SET search_path TO my_schema, public;

Increase work memory to 200 MB:

SET work_mem TO '200MB';

Set the style of date to traditional POSTGRES with “day before month” input
convention:

SET datestyle TO postgres, dmy;

Set the time zone for San Mateo, California:

SET TIME ZONE 'PST8PDT';

Set the time zone for Italy:

SET TIME ZONE 'Europe/Rome';

Compatibility

SET TIME ZONE extends syntax defined in the SQL standard. The standard allows
only numeric time zone offsets while Greenplum Database allows more flexible
time-zone specifications. All other SET features are Greenplum Database extensions.

See Also

RESET, SHOW
SET 552

http://www.postgresql.org/docs/8.2/static/datatype-datetime.html#DATATYPE-TIMEZONES

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
SET ROLE
Sets the current role identifier of the current session.

Synopsis
SET [SESSION | LOCAL] ROLE rolename

SET [SESSION | LOCAL] ROLE NONE

RESET ROLE

Description

This command sets the current role identifier of the current SQL-session context to be
rolename. The role name may be written as either an identifier or a string literal. After
SET ROLE, permissions checking for SQL commands is carried out as though the
named role were the one that had logged in originally.

The specified rolename must be a role that the current session user is a member of. If
the session user is a superuser, any role can be selected.

The NONE and RESET forms reset the current role identifier to be the current session
role identifier. These forms may be executed by any user.

Parameters

SESSION

Specifies that the command takes effect for the current session. This is the default.

LOCAL

Specifies that the command takes effect for only the current transaction. After
COMMIT or ROLLBACK, the session-level setting takes effect again. Note that SET
LOCAL will appear to have no effect if it is executed outside of a transaction.

rolename

The name of a role to use for permissions checking in this session.

NONE
RESET

Reset the current role identifier to be the current session role identifier (that of the
role used to log in).

Notes

Using this command, it is possible to either add privileges or restrict privileges. If the
session user role has the INHERITS attribute, then it automatically has all the
privileges of every role that it could SET ROLE to; in this case SET ROLE effectively
drops all the privileges assigned directly to the session user and to the other roles it is
a member of, leaving only the privileges available to the named role. On the other
SET ROLE 553

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
hand, if the session user role has the NOINHERITS attribute, SET ROLE drops the
privileges assigned directly to the session user and instead acquires the privileges
available to the named role.

In particular, when a superuser chooses to SET ROLE to a non-superuser role, she loses
her superuser privileges.

SET ROLE has effects comparable to SET SESSION AUTHORIZATION, but the
privilege checks involved are quite different. Also, SET SESSION AUTHORIZATION
determines which roles are allowable for later SET ROLE commands, whereas
changing roles with SET ROLE does not change the set of roles allowed to a later SET
ROLE.

Examples
SELECT SESSION_USER, CURRENT_USER;

 session_user | current_user

--------------+--------------

 peter | peter

SET ROLE 'paul';

SELECT SESSION_USER, CURRENT_USER;

 session_user | current_user

--------------+--------------

 peter | paul

Compatibility

Greenplum Database allows identifier syntax (rolename), while the SQL standard
requires the role name to be written as a string literal. SQL does not allow this
command during a transaction; Greenplum Database does not make this restriction.
The SESSION and LOCAL modifiers are a Greenplum Database extension, as is the
RESET syntax.

See Also

SET SESSION AUTHORIZATION
SET ROLE 554

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
SET SESSION AUTHORIZATION
Sets the session role identifier and the current role identifier of the current session.

Synopsis
SET [SESSION | LOCAL] SESSION AUTHORIZATION rolename

SET [SESSION | LOCAL] SESSION AUTHORIZATION DEFAULT

RESET SESSION AUTHORIZATION

Description

This command sets the session role identifier and the current role identifier of the
current SQL-session context to be rolename. The role name may be written as either
an identifier or a string literal. Using this command, it is possible, for example, to
temporarily become an unprivileged user and later switch back to being a superuser.

The session role identifier is initially set to be the (possibly authenticated) role name
provided by the client. The current role identifier is normally equal to the session user
identifier, but may change temporarily in the context of setuid functions and similar
mechanisms; it can also be changed by SET ROLE. The current user identifier is
relevant for permission checking.

The session user identifier may be changed only if the initial session user (the
authenticated user) had the superuser privilege. Otherwise, the command is accepted
only if it specifies the authenticated user name.

The DEFAULT and RESET forms reset the session and current user identifiers to be the
originally authenticated user name. These forms may be executed by any user.

Parameters

SESSION

Specifies that the command takes effect for the current session. This is the default.

LOCAL

Specifies that the command takes effect for only the current transaction. After
COMMIT or ROLLBACK, the session-level setting takes effect again. Note that SET
LOCAL will appear to have no effect if it is executed outside of a transaction.

rolename

The name of the role to assume.

NONE
RESET

Reset the session and current role identifiers to be that of the role used to log in.
SET SESSION AUTHORIZATION 555

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
Examples
SELECT SESSION_USER, CURRENT_USER;

 session_user | current_user

--------------+--------------

 peter | peter

SET SESSION AUTHORIZATION 'paul';

SELECT SESSION_USER, CURRENT_USER;

 session_user | current_user

--------------+--------------

 paul | paul

Compatibility

The SQL standard allows some other expressions to appear in place of the literal
rolename, but these options are not important in practice. Greenplum Database
allows identifier syntax (“rolename”), which SQL does not. SQL does not allow this
command during a transaction; Greenplum Database does not make this restriction.
The SESSION and LOCAL modifiers are a Greenplum Database extension, as is the
RESET syntax.

See Also

SET ROLE
SET SESSION AUTHORIZATION 556

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
SET TRANSACTION
Sets the characteristics of the current transaction.

Synopsis
SET TRANSACTION transaction_mode [, ...]

SET SESSION CHARACTERISTICS AS TRANSACTION transaction_mode [,
...]

where transaction_mode is one of:
ISOLATION LEVEL {SERIALIZABLE | REPEATABLE READ | READ
COMMITTED | READ UNCOMMITTED}
READ WRITE | READ ONLY

Description

The SET TRANSACTION command sets the characteristics of the current transaction. It
has no effect on any subsequent transactions.

The available transaction characteristics are the transaction isolation level and the
transaction access mode (read/write or read-only).

The isolation level of a transaction determines what data the transaction can see when
other transactions are running concurrently.

• READ COMMITTED — A statement can only see rows committed before it began.
This is the default.

• SERIALIZABLE — All statements of the current transaction can only see rows
committed before the first query or data-modification statement was executed in
this transaction.

The SQL standard defines two additional levels, READ UNCOMMITTED and
REPEATABLE READ. In Greenplum Database READ UNCOMMITTED is treated as READ
COMMITTED, while REPEATABLE READ is treated as SERIALIZABLE.

The transaction isolation level cannot be changed after the first query or
data-modification statement (SELECT, INSERT, DELETE, UPDATE, FETCH, or COPY) of a
transaction has been executed.

The transaction access mode determines whether the transaction is read/write or
read-only. Read/write is the default. When a transaction is read-only, the following
SQL commands are disallowed: INSERT, UPDATE, DELETE, and COPY FROM if the table
they would write to is not a temporary table; all CREATE, ALTER, and DROP commands;
GRANT, REVOKE, TRUNCATE; and EXPLAIN ANALYZE and EXECUTE if the command
they would execute is among those listed. This is a high-level notion of read-only that
does not prevent all writes to disk.

Parameters

SESSION CHARACTERISTICS

Sets the default transaction characteristics for subsequent transactions of a session.
SET TRANSACTION 557

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
SERIALIZABLE
REPEATABLE READ
READ COMMITTED
READ UNCOMMITTED

The SQL standard defines four transaction isolation levels: READ COMMITTED, READ
UNCOMMITTED, SERIALIZABLE, and REPEATABLE READ. The default behavior is that
a statement can only see rows committed before it began (READ COMMITTED). In
Greenplum Database READ UNCOMMITTED is treated the same as READ COMMITTED.
SERIALIZABLE is supported the same as REPEATABLE READ wherein all statements
of the current transaction can only see rows committed before the first statement
was executed in the transaction. SERIALIZABLE is the strictest transaction isolation.
This level emulates serial transaction execution, as if transactions had been executed
one after another, serially, rather than concurrently. Applications using this level
must be prepared to retry transactions due to serialization failures.

READ WRITE
READ ONLY

Determines whether the transaction is read/write or read-only. Read/write is the
default. When a transaction is read-only, the following SQL commands are
disallowed: INSERT, UPDATE, DELETE, and COPY FROM if the table they would write
to is not a temporary table; all CREATE, ALTER, and DROP commands; GRANT,
REVOKE, TRUNCATE; and EXPLAIN ANALYZE and EXECUTE if the command they
would execute is among those listed.

Notes

If SET TRANSACTION is executed without a prior START TRANSACTION or BEGIN, it
will appear to have no effect.

It is possible to dispense with SET TRANSACTION by instead specifying the desired
transaction_modes in BEGIN or START TRANSACTION.

The session default transaction modes can also be set by setting the configuration
parameters default_transaction_isolation and default_transaction_read_only.

Examples

Set the transaction isolation level for the current transaction:

BEGIN;

SET TRANSACTION SERIALIZABLE;

Compatibility

Both commands are defined in the SQL standard. SERIALIZABLE is the default
transaction isolation level in the standard. In Greenplum Database the default is READ
COMMITTED. Because of lack of predicate locking, the SERIALIZABLE level is not truly
serializable. Essentially, a predicate-locking system prevents phantom reads by
restricting what is written, whereas a multi-version concurrency control model
(MVCC) as used in Greenplum Database prevents them by restricting what is read.
SET TRANSACTION 558

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
In the SQL standard, there is one other transaction characteristic that can be set with
these commands: the size of the diagnostics area. This concept is specific to embedded
SQL, and therefore is not implemented in the Greenplum Database server.

The SQL standard requires commas between successive transaction_modes, but
for historical reasons Greenplum Database allows the commas to be omitted.

See Also

BEGIN, LOCK
SET TRANSACTION 559

SHOW 560

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference

SHOW
Shows the value of a system configuration parameter.

Synopsis
SHOW configuration_parameter

SHOW ALL

Description

SHOW will display the current settings of Greenplum Database system configuration
parameters. These parameters can be set using the SET statement, or by editing the
postgresql.conf configuration file of the Greenplum Database master. Note that
some parameters viewable by SHOW are read-only — their values can be viewed but
not set. See “Server Configuration Parameters” on page 792 for details.

Parameters

configuration_parameter

The name of a system configuration parameter. See “Server Configuration
Parameters” on page 792.

ALL

Shows the current value of all configuration parameters.

Examples

Show the current setting of the parameter search_path:

SHOW search_path;

Show the current setting of all parameters:

SHOW ALL;

Compatibility

SHOW is a Greenplum Database extension.

See Also

SET, RESET

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
START TRANSACTION
Starts a transaction block.

Synopsis
START TRANSACTION [SERIALIZABLE | REPEATABLE READ | READ
COMMITTED | READ UNCOMMITTED] [READ WRITE | READ ONLY]

Description

START TRANSACTION begins a new transaction block. If the isolation level or
read/write mode is specified, the new transaction has those characteristics, as if SET
TRANSACTION was executed. This is the same as the BEGIN command.

Parameters

SERIALIZABLE
REPEATABLE READ
READ COMMITTED
READ UNCOMMITTED

The SQL standard defines four transaction isolation levels: READ COMMITTED, READ
UNCOMMITTED, SERIALIZABLE, and REPEATABLE READ. The default behavior is that
a statement can only see rows committed before it began (READ COMMITTED). In
Greenplum Database READ UNCOMMITTED is treated the same as READ COMMITTED.
SERIALIZABLE is supported the same as REPEATABLE READ wherein all statements
of the current transaction can only see rows committed before the first statement
was executed in the transaction. SERIALIZABLE is the strictest transaction isolation.
This level emulates serial transaction execution, as if transactions had been executed
one after another, serially, rather than concurrently. Applications using this level
must be prepared to retry transactions due to serialization failures.

READ WRITE
READ ONLY

Determines whether the transaction is read/write or read-only. Read/write is the
default. When a transaction is read-only, the following SQL commands are
disallowed: INSERT, UPDATE, DELETE, and COPY FROM if the table they would write
to is not a temporary table; all CREATE, ALTER, and DROP commands; GRANT,
REVOKE, TRUNCATE; and EXPLAIN ANALYZE and EXECUTE if the command they
would execute is among those listed.

Examples

To begin a transaction block:

START TRANSACTION;
START TRANSACTION 561

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
Compatibility

In the standard, it is not necessary to issue START TRANSACTION to start a transaction
block: any SQL command implicitly begins a block. Greenplum Database behavior
can be seen as implicitly issuing a COMMIT after each command that does not follow
START TRANSACTION (or BEGIN), and it is therefore often called ‘autocommit’. Other
relational database systems may offer an autocommit feature as a convenience.

The SQL standard requires commas between successive transaction_modes, but
for historical reasons Greenplum Database allows the commas to be omitted.

See also the compatibility section of SET TRANSACTION.

See Also

BEGIN, SET TRANSACTION
START TRANSACTION 562

TRUNCATE 563

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference

TRUNCATE
Empties a table of all rows.

Synopsis
TRUNCATE [TABLE] name [, ...] [CASCADE | RESTRICT]

Description

TRUNCATE quickly removes all rows from a table or set of tables. It has the same effect
as an unqualified DELETE on each table, but since it does not actually scan the tables it
is faster. This is most useful on large tables.

Parameters

name

The name (optionally schema-qualified) of a table to be truncated.

CASCADE

Since this key word applies to foreign key references (which are not supported in
Greenplum Database) it has no effect.

RESTRICT

Since this key word applies to foreign key references (which are not supported in
Greenplum Database) it has no effect.

Notes

Only the owner of a table may TRUNCATE it.

TRUNCATE will not run any user-defined ON DELETE triggers that might exist for the
tables.

TRUNCATE will not truncate any tables that inherit from the named table. Only the
named table is truncated, not its child tables.

Examples

Empty the table films:

TRUNCATE films;

Compatibility

There is no TRUNCATE command in the SQL standard.

See Also

DELETE, DROP TABLE

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
UPDATE
Updates rows of a table.

Synopsis
UPDATE [ONLY] table [[AS] alias]
 SET {column = {expression | DEFAULT} |
 (column [, ...]) = ({expression | DEFAULT} [, ...])} [, ...]
 [FROM fromlist]
 [WHERE condition]

Description

UPDATE changes the values of the specified columns in all rows that satisfy the
condition. Only the columns to be modified need be mentioned in the SET clause;
columns not explicitly modified retain their previous values.

By default, UPDATE will update rows in the specified table and all its subtables. If you
wish to only update the specific table mentioned, you must use the ONLY clause.

There are two ways to modify a table using information contained in other tables in
the database: using sub-selects, or specifying additional tables in the FROM clause.
Which technique is more appropriate depends on the specific circumstances.

You must have the UPDATE privilege on the table to update it, as well as the SELECT
privilege to any table whose values are read in the expressions or condition.

Outputs

On successful completion, an UPDATE command returns a command tag of the form:

UPDATE count

Where count is the number of rows updated. If count is 0, no rows matched the
condition (this is not considered an error).

Parameters

ONLY

If specified, update rows from the named table only. When not specified, any tables
inheriting from the named table are also processed.

table

The name (optionally schema-qualified) of an existing table.

alias

A substitute name for the target table. When an alias is provided, it completely hides
the actual name of the table. For example, given UPDATE foo AS f, the remainder
of the UPDATE statement must refer to this table as f not foo.
UPDATE 564

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
column

The name of a column in table. The column name can be qualified with a subfield
name or array subscript, if needed. Do not include the table’s name in the
specification of a target column.

expression

An expression to assign to the column. The expression may use the old values of this
and other columns in the table.

DEFAULT

Set the column to its default value (which will be NULL if no specific default
expression has been assigned to it).

fromlist

A list of table expressions, allowing columns from other tables to appear in the
WHERE condition and the update expressions. This is similar to the list of tables that
can be specified in the FROM clause of a SELECT statement. Note that the target table
must not appear in the fromlist, unless you intend a self-join (in which case it
must appear with an alias in the fromlist).

condition

An expression that returns a value of type boolean. Only rows for which this
expression returns true will be updated.

output_expression

An expression to be computed and returned by the UPDATE command after each row
is updated. The expression may use any column names of the table or table(s) listed
in FROM. Write * to return all columns.

output_name

A name to use for a returned column.

Notes

SET is not allowed on the Greenplum distribution key columns of a table.

You cannot use STABLE or VOLATILE functions in an UPDATE statement if mirrors are
enabled. This can potentially cause the primary segment and its mirror to become
out-of-sync because the command is run first on the primary and then a second time
on the mirror in the current Greenplum Database implementation.

When a FROM clause is present, what essentially happens is that the target table is
joined to the tables mentioned in the from list, and each output row of the join
represents an update operation for the target table. When using FROM you should
ensure that the join produces at most one output row for each row to be modified. In
other words, a target row should not join to more than one row from the other table(s).
If it does, then only one of the join rows will be used to update the target row, but
which one will be used is not readily predictable.
UPDATE 565

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
Because of this indeterminacy, referencing other tables only within sub-selects is
safer, though often harder to read and slower than using a join.

Examples

Change the word Drama to Dramatic in the column kind of the table films:

UPDATE films SET kind = 'Dramatic' WHERE kind = 'Drama';

Adjust temperature entries and reset precipitation to its default value in one row of the
table weather:

UPDATE weather SET temp_lo = temp_lo+1, temp_hi =
temp_lo+15, prcp = DEFAULT

WHERE city = 'San Francisco' AND date = '2006-07-03';

Use the alternative column-list syntax to do the same update:

UPDATE weather SET (temp_lo, temp_hi, prcp) = (temp_lo+1,
temp_lo+15, DEFAULT)

WHERE city = 'San Francisco' AND date = '2006-07-03';

Increment the sales count of the salesperson who manages the account for Acme
Corporation, using the FROM clause syntax (assuming both tables being joined are
distributed in Greenplum Database on the id column):

UPDATE employees SET sales_count = sales_count + 1 FROM
accounts

WHERE accounts.name = 'Acme Corporation'

AND employees.id = accounts.id;

Perform the same operation, using a sub-select in the WHERE clause:

UPDATE employees SET sales_count = sales_count + 1 WHERE id =

 (SELECT id FROM accounts WHERE name = 'Acme Corporation');

Attempt to insert a new stock item along with the quantity of stock. If the item already
exists, instead update the stock count of the existing item. To do this without failing
the entire transaction, use savepoints.

BEGIN;

-- other operations

SAVEPOINT sp1;

INSERT INTO wines VALUES('Chateau Lafite 2003', '24');

-- Assume the above fails because of a unique key violation,

-- so now we issue these commands:

ROLLBACK TO sp1;

UPDATE wines SET stock = stock + 24 WHERE winename = 'Chateau
Lafite 2003';

-- continue with other operations, and eventually

COMMIT;
UPDATE 566

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
Compatibility

This command conforms to the SQL standard, except that the FROM clause is a
Greenplum Database extension.

According to the standard, the column-list syntax should allow a list of columns to be
assigned from a single row-valued expression, such as a sub-select:

UPDATE accounts SET (contact_last_name, contact_first_name) =

 (SELECT last_name, first_name FROM salesmen

 WHERE salesmen.id = accounts.sales_id);

This is not currently implemented — the source must be a list of independent
expressions.

Some other database systems offer a FROM option in which the target table is supposed
to be listed again within FROM. That is not how Greenplum Database interprets FROM.
Be careful when porting applications that use this extension.

See Also

DELETE, SELECT, INSERT
UPDATE 567

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
VACUUM
Garbage-collects and optionally analyzes a database.

Synopsis
VACUUM [FULL] [FREEZE] [VERBOSE] [table]

VACUUM [FULL] [FREEZE] [VERBOSE] ANALYZE
 [table [(column [, ...])]]

Description

VACUUM reclaims storage occupied by deleted tuples. In normal Greenplum Database
operation, tuples that are deleted or obsoleted by an update are not physically removed
from their table; they remain present on disk until a VACUUM is done. Therefore it is
necessary to do VACUUM periodically, especially on frequently-updated tables.

With no parameter, VACUUM processes every table in the current database. With a
parameter, VACUUM processes only that table.

VACUUM ANALYZE performs a VACUUM and then an ANALYZE for each selected table.
This is a handy combination form for routine maintenance scripts. See ANALYZE for
more details about its processing.

Plain VACUUM (without FULL) simply reclaims space and makes it available for re-use.
This form of the command can operate in parallel with normal reading and writing of
the table, as an exclusive lock is not obtained. VACUUM FULL does more extensive
processing, including moving of tuples across blocks to try to compact the table to the
minimum number of disk blocks. This form is much slower and requires an exclusive
lock on each table while it is being processed.

Outputs

When VERBOSE is specified, VACUUM emits progress messages to indicate which table
is currently being processed. Various statistics about the tables are printed as well.

Parameters

FULL

Selects a full vacuum, which may reclaim more space, but takes much longer and
exclusively locks the table.
Warning: A VACUUM FULL is not recommended in Greenplum Database. See the
“Notes” section.

FREEZE

Specifying FREEZE is equivalent to performing VACUUM with the
vacuum_freeze_min_age server configuration parameter set to zero. The FREEZE
option is deprecated and will be removed in a future release. Set the parameter in the
master postgresql.conf file instead.
VACUUM 568

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
VERBOSE

Prints a detailed vacuum activity report for each table.

ANALYZE

Updates statistics used by the planner to determine the most efficient way to execute
a query.

table

The name (optionally schema-qualified) of a specific table to vacuum. Defaults to
all tables in the current database.

column

The name of a specific column to analyze. Defaults to all columns.

Notes

VACUUM cannot be executed inside a transaction block.

Greenplum recommends that active production databases be vacuumed frequently (at
least nightly), in order to remove expired rows. After adding or deleting a large
number of rows, it may be a good idea to issue a VACUUM ANALYZE command for the
affected table. This will update the system catalogs with the results of all recent
changes, and allow the Greenplum query planner to make better choices in planning
queries.

VACUUM causes a substantial increase in I/O traffic, which can cause poor performance
for other active sessions. Therefore, it is advisable to vacuum the database at low
usage times.

Regular PostgreSQL has a separate optional server process called the autovacuum
daemon, whose purpose is to automate the execution of VACUUM and ANALYZE
commands. This feature is currently disabled in Greenplum Database.

Expired rows are held in what is called the free space map. The free space map must
be sized large enough to cover the dead rows of all tables in your database. If not sized
large enough, space occupied by dead rows that overflow the free space map cannot
be reclaimed by a regular VACUUM command.

A VACUUM FULL will reclaim all expired row space, but is a very expensive operation
and may take an unacceptably long time to finish on large, distributed Greenplum
Database tables. If you do get into a situation where the free space map has
overflowed, it may be more timely to recreate the table with a CREATE TABLE AS
statement and drop the old table. A VACUUM FULL is not recommended in Greenplum
Database.

It is best to size the free space map appropriately. The free space map is configured
with the following server configuration parameters:

max_fsm_pages

max_fsm_relations

See “About Concurrency Control in Greenplum Database” on page 99 for more
information.
VACUUM 569

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
Examples

Vacuum all tables in the current database:

VACUUM;

Vacuum a specific table only:

VACUUM mytable;

Vacuum all tables in the current database and collect statistics for the query planner:

VACUUM ANALYZE;

Compatibility

There is no VACUUM statement in the SQL standard.

See Also

ANALYZE
VACUUM 570

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
VALUES
Computes a set of rows.

Synopsis
VALUES (expression [, ...]) [, ...]
[ORDER BY sort_expression [ASC | DESC | USING operator] [, ...]]
[LIMIT {count | ALL}] [OFFSET start]

Description

VALUES computes a row value or set of row values specified by value expressions. It is
most commonly used to generate a ‘constant table’ within a larger command, but it
can be used on its own.

When more than one row is specified, all the rows must have the same number of
elements. The data types of the resulting table’s columns are determined by combining
the explicit or inferred types of the expressions appearing in that column, using the
same rules as for UNION.

Within larger commands, VALUES is syntactically allowed anywhere that SELECT is.
Because it is treated like a SELECT by the grammar, it is possible to use the ORDER BY,
LIMIT, and OFFSET clauses with a VALUES command.

Parameters

expression

A constant or expression to compute and insert at the indicated place in the resulting
table (set of rows). In a VALUES list appearing at the top level of an INSERT, an
expression can be replaced by DEFAULT to indicate that the destination column’s
default value should be inserted. DEFAULT cannot be used when VALUES appears in
other contexts.

sort_expression

An expression or integer constant indicating how to sort the result rows. This
expression may refer to the columns of the VALUES result as column1, column2, etc.
For more details see “The ORDER BY Clause” on page 543.

operator

A sorting operator. For details see “The ORDER BY Clause” on page 543.

LIMIT count
OFFSET start

The maximum number of rows to return. For details see “The LIMIT Clause” on
page 544.
VALUES 571

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
Notes

VALUES lists with very large numbers of rows should be avoided, as you may
encounter out-of-memory failures or poor performance. VALUES appearing within
INSERT is a special case (because the desired column types are known from the
INSERT’s target table, and need not be inferred by scanning the VALUES list), so it can
handle larger lists than are practical in other contexts.

Examples

A bare VALUES command:

VALUES (1, 'one'), (2, 'two'), (3, 'three');

This will return a table of two columns and three rows. It is effectively equivalent to:

SELECT 1 AS column1, 'one' AS column2

UNION ALL

SELECT 2, 'two'

UNION ALL

SELECT 3, 'three';

More usually, VALUES is used within a larger SQL command. The most common use is
in INSERT:

INSERT INTO films (code, title, did, date_prod, kind)

 VALUES ('T_601', 'Yojimbo', 106, '1961-06-16', 'Drama');

In the context of INSERT, entries of a VALUES list can be DEFAULT to indicate that the
column default should be used here instead of specifying a value:

INSERT INTO films VALUES

 ('UA502', 'Bananas', 105, DEFAULT, 'Comedy', '82
minutes'),

 ('T_601', 'Yojimbo', 106, DEFAULT, 'Drama', DEFAULT);

VALUES can also be used where a sub-SELECT might be written, for example in a FROM
clause:

SELECT f.* FROM films f, (VALUES('MGM', 'Horror'), ('UA',
'Sci-Fi')) AS t (studio, kind) WHERE f.studio = t.studio AND
f.kind = t.kind;

UPDATE employees SET salary = salary * v.increase FROM
(VALUES(1, 200000, 1.2), (2, 400000, 1.4)) AS v (depno,
target, increase) WHERE employees.depno = v.depno AND
employees.sales >= v.target;

Note that an AS clause is required when VALUES is used in a FROM clause, just as is true
for SELECT. It is not required that the AS clause specify names for all the columns, but
it is good practice to do so. The default column names for VALUES are column1,
column2, etc. in Greenplum Database, but these names might be different in other
database systems.
VALUES 572

Greenplum Database Administrator Guide 4.1– Appendix A: SQL Command Reference
When VALUES is used in INSERT, the values are all automatically coerced to the data
type of the corresponding destination column. When it is used in other contexts, it
may be necessary to specify the correct data type. If the entries are all quoted literal
constants, coercing the first is sufficient to determine the assumed type for all:

SELECT * FROM machines WHERE ip_address IN
(VALUES('192.168.0.1'::inet), ('192.168.0.10'),
('192.168.1.43'));

Note: For simple IN tests, it is better to rely on the list-of-scalars form of IN than to write a
VALUES query as shown above. The list of scalars method requires less writing and is
often more efficient.

Compatibility

VALUES conforms to the SQL standard, except that LIMIT and OFFSET are Greenplum
Database extensions.

See Also

INSERT, SELECT
VALUES 573

Greenplum Database Administrator Guide 4.1– Appendix B: Management Utility Reference
B. Management Utility Reference

This appendix provides references for the command-line management utilities
provided with Greenplum Database. Greenplum Database utilizes the standard
PostgreSQL client and server programs, and also has additional management utilities
to facilitate the administration of a distributed Greenplum Database DBMS.

The following Greenplum Database management utilities are located in
$GPHOME/bin:

• gp_dump

• gp_restore

• gpactivatestandby

• gpaddmirrors

• gpcheck

• gpchecknet (deprecated)

• gpcheckos (deprecated)

• gpcheckperf

• gpcrondump

• gpconfig

• gpdbrestore

• gpdeletesystem

• gpdetective

• gpexpand

• gpfdist

• gpfilespace

• gpinitstandby

• gpinitsystem

• gpload

• gplogfilter

• gpmapreduce

• gpmigrator

• gpmigrator_mirror

• gprecoverseg

• gprebuildsystem (deprecated)

• gpsizecalc (deprecated)

• gpscp

• gpskew (deprecated)

• gpsnmpd

• gpssh

• gpssh-exkeys

• gpstart

• gpstate

• gpstop
Management Utility Reference 574

Greenplum Database Administrator Guide 4.1– Appendix B: Management Utility Reference
Backend Server Programs
The following server programs are also located in $GPHOME/bin of your Greenplum
Database installation. These are the standard PostgreSQL server programs, which
have been modified to handle the parallelism and distribution of a Greenplum
Database system. Keep in mind that Greenplum Database is essentially several
PostgreSQL database instances working together as a single DBMS, so Greenplum
Database relies on PostgreSQL for its underlying functionality. Users and
administrators do not access these programs directly, but do so through the Greenplum
Database management tools and utilities.

Table B.1 Greenplum Database Backend Server Programs

Program Name Description Use Instead

This program is called by gpinitsystem when
initializing a Greenplum Database array. It is
used internally to create the individual segment
instances and the master instance.

gpinitsystem

Not used in Greenplum Database N/A

This is the Greenplum program that starts the
gpsyncagent process on the standby master
host. Administrators do not call this program
directly, but do so through the management
scripts that initialize and/or activate a standby
master for a Greenplum Database system. This
process is responsible for keeping the standby
master up to date with the primary master via a
transaction log replication process.

gpinitstandby, gpactivatestandby

Not used in Greenplum Database gpstate

This program is called by gpstart and gpstop
when starting or stopping a Greenplum
Database array. It is used internally to stop and
start the individual segment instances and the
master instance in parallel and with the correct
options.

gpstart, gpstop

Not used in Greenplum Database N/A

The postgres executable is the actual
PostgreSQL server process that processes
queries.

The main postgres process
(postmaster) creates other postgres
subprocesses and postgres session
as needed to handle client connections.

postmaster starts the postgres database
server listener process that accepts client
connections. In Greenplum Database, a
postgres database listener process runs on
the Greenplum Master Instance and on each
Segment Instance.

In Greenplum Database, you use

gpstart and gpstop to start all
postmasters (postgres processes) in
the system at once in the correct order
and with the correct options.

initdb

ipcclean

gpsyncmaster

pg_controldata

pg_ctl

pg_resetxlog

postgres

postmaster
Management Utility Reference 575

Greenplum Database Administrator Guide 4.1 – Appendix B: Management Utility Summary
Management Utility Summary

gp_dump

Writes out a database to SQL script files, which can then be used to restore the database using
gp_restore.

gp_dump [-a | -s] [-c] [-d] [-D] [-n schema] [-o] [-O] [-t table_name] [-x] [-h
hostname] [-p port] [-U username] [-W] [-i] [-v] [--gp-c]
[--gp-d=backup_directory] [--gp-r=reportfile] [--gp-s=dbid [, ...]]
database_name

gp_dump -? |--help

gp_dump --version

-a | --data-only
-s | --schema-only
-c | --clean
-d | --inserts
-D | --column-inserts
-n schema | --schema=schema
-o | --oids
-O | --no-owner
-x | --no-privileges | --no-acl
-h hostname | --host=hostname
-p port | --port=port
-U username | --username=user
-W (force password prompt)

-i | --ignore-version
-v | --verbose
--gp-c (use gzip)

--gp-d=directoryname
--gp-r=reportfile
--gp-s=dbid (backup certain segments)

database_name
-? | --help (help)

--version (show utility version)

gp_restore

Restores Greenplum databases that were backed up using gp_dump.

gp_restore --gp-k=timestamp_key -d database_name [-i] [-v] [-a | -s] [-c] [-h
hostname] [-p port] [-U username] [-W] [--gp-c] [--gp-i] [--gp-d=directoryname]
gp_dump 576

Greenplum Database Administrator Guide 4.1 – Appendix B: Management Utility Summary
[--gp-r=reportfile] [--gp-l=dbid [, ...]]

gp_restore -? | -h | --help

gp_restore --version

--gp-k=timestamp_key
-d database_name | --dbname=dbname
-i | --ignore-version
-v | --verbose
-a | --data-only
-c | --clean
-s | --schema-only
-h hostname | --host=hostname
-p port | --port=port
-U username | --username=username
-W (force password prompt)

--gp-c (use gunzip)

--gp-i (ignore errors)

--gp-d=directoryname
--gp-r=reportfile
--gp-l=dbid [, ...] (restore certain segments)

-? | -h | --help (help)

--version (show utility version)

gpaddmirrors

Adds mirror segments to a Greenplum Database system that was initially configured without mirror-
ing.

gpaddmirrors [-p port_offset] [-m datadir_config_file [-a]] [-s] [-d
master_data_directory] [-B parallel_processes] [-l logfile_directory] [-v]

gpaddmirrors -i mirror_config_file [-s] [-a] [-d master_data_directory] [-B
gpaddmirrors 577

Greenplum Database Administrator Guide 4.1 – Appendix B: Management Utility Summary
parallel_processes] [-l logfile_directory] [-v]

gpaddmirrors -o output_sample_mirror_config [-m datadir_config_file]

gpaddmirrors -?

gpaddmirrors --version

-a (do not prompt)

-B parallel_processes
-d master_data_directory
-i mirror_config_file
-l logfile_directory
-m datadir_config_file
-o output_sample_mirror_config
-p port_offset
-s (spread mirrors)

-v (verbose)

--version (show utility version)

-? (help)

gpactivatestandby

Activates a standby master host and makes it the active master for the Greenplum Database system.

gpactivatestandby -d standby_master_datadir [-c new_standby_master] [-f] [-a]
[-q] [-l logfile_directory]

gpactivatestandby -? | -h | --help

gpactivatestandby -v

-a (do not prompt)

-c new_standby_master_hostname
-d standby_master_datadir
-f (force activation)

-l logfile_directory
-q (no screen output)

-v (show utility version)

-? | -h | --help (help)
gpactivatestandby 578

Greenplum Database Administrator Guide 4.1 – Appendix B: Management Utility Summary
gpbitmapreindex

Rebuilds bitmap indexes after a 3.3.x to 4.0.x upgrade.

gpbitmapreindex -m { r | d | {l [-o output_sql_file]} }
[-h master_host] [-p master_port] [-n number_of_processes] [-v]

gpmigrator --version

gpmigrator --help | -?

-m {r|d|l} | --mode {reindex|drop|list}

-n number_of_processes | --parallel number_of_processes
-o output_sql_file | --outfile output_sql_file
-v | --verbose
--version
-? | --help

gpcheck

Verifies and validates Greenplum Database platform settings.

gpcheck -f hostfile_gpcheck [-m master_host] [-s standy_master_host] [--stdout |
--zipout] [--config config_file]

gpcheck --zipin gpcheck_zipfile

gpcheck -?

gpcheck --version

--config config_file
-f hostfile_gpcheck
-m master_host
-s standy_master_host
--stdout
--zipout
--zipin gpcheck_zipfile
-? (help)

--version
gpbitmapreindex 579

Greenplum Database Administrator Guide 4.1 – Appendix B: Management Utility Summary
gpcheckperf

Verifies the baseline hardware performance of the specified hosts.

gpcheckperf -d test_directory [-d test_directory ...]
 {-f hostfile_gpcheckperf | - h hostname [-h hostname ...]}
 [-r ds] [-B block_size] [-S file_size] [-D] [-v|-V]

gpcheckperf -d temp_directory
 {-f hostfile_gpchecknet | - h hostname [-h hostname ...]}
 [-r n|N|M [--duration time] [--netperf]] [-D] [-v|-V]

gpcheckperf -?

gpcheckperf --version

-B block_size
-d test_directory
-d temp_directory
-D (display per-host results)

--duration time
-f hostfile_gpcheckperf
-f hostfile_gpchecknet
-h hostname
--netperf
-r ds{n|N|M}

-S file_size
-v (verbose) | -V (very verbose)

--version
-? (help)
gpcheckperf 580

Greenplum Database Administrator Guide 4.1 – Appendix B: Management Utility Summary
gpconfig

Sets server configuration parameters on all segments within a Greenplum Database system.

gpconfig -c param_name -v value [-m master_value | --masteronly]
 | -r param_name [--masteronly]
 | -l
 [--skipvalidation] [--verbose] [--debug]

gpconfig -s param_name [--verbose] [--debug]

gpconfig --help

-c | --change param_name
-v | --value value
-m | --mastervalue master_value
--masteronly
-r | --remove param_name
-l | --list

-s | --show param_name
--skipvalidation
--verbose
--debug
-? | -h | --help

gpcrondump

A wrapper utility for gp_dump, which can be called directly or from a crontab entry.

gpcrondump -x database_name
[-s schema | -t schema.table | -T schema.table]
[-u backup_directory] [-R post_dump_script] [-c] [-z] [-r]
[-f free_space_percent] [-b] [-h] [-i] [-j | -k] [-g] [-G] [-C] [-d
master_data_directory]
[-B parallel_processes] [-a] [-q]
[-y reportfile] [-l logfile_directory] [-D]
{ [-E encoding] [--inserts | --column-inserts] [--oids] [--no-owner |
--use-set-session-authorization] [--no-privileges]
gpconfig 581

Greenplum Database Administrator Guide 4.1 – Appendix B: Management Utility Summary
[--rsyncable]}

gpcrondump -?

gpcrondump -o

gpcrondump -v

-a (do not prompt)

-b (bypass disk space check)

-B parallel_processes
-c (clear old dump files first)

-C (clean old catalog dumps)

--column-inserts

-d master_data_directory
-D (debug)

-E encoding
-f free_space_percent
-g (copy config files)

-G (dump global objects)

-h (record dump details)

-i (ignore parameter check)

--inserts

-j (vacuum before dump)

-k (vacuum after dump)

-l logfile_directory
--no-owner
--no-privileges
-o (clear old dump files only)

--oids
-p (primary segments only)

-q (no screen output)

-r (rollback on failure)

-R post_dump_script
--rsyncable
-s schema_name
-t schema.table_name
-T schema.table_name
-u backup_directory
--use-set-session-authorization
-v (show utility version)

-x database_name
-y reportfile
-z (no compression)

-? (help)
gpcrondump 582

Greenplum Database Administrator Guide 4.1 – Appendix B: Management Utility Summary
gpdbrestore

A wrapper utility around gp_restore. Restores a database from a set of dump files generated by
gpcrondump.

gpdbrestore { -t timestamp_key [-L] | -b YYYYMMDD | -R hostname:path_to_dumpset
| -s database_name } [-T schema.table [,...]] [-e] [-G] [-B parallel_processes]
[-d master_data_directory] [-a] [-q] [-l logfile_directory] [-D]

gpdbrestore -?

gpdbrestore -v

-a (do not prompt)

-b YYYYMMDD
-B parallel_processes
-d master_data_directory
-D (debug)

-e (drop target database before restore)

-G (restore global objects)

-l logfile_directory
-L (list tablenames in backup set)

-q (no screen output)

-R hostname:path_to_dumpset
-s database_name
-t timestamp_key
-T schema.table_name
-v (show utility version)

-? (help)

gpdeletesystem

Deletes a Greenplum Database system that was initialized using gpinitsystem.

gpdeletesystem -d master_data_directory [-B parallel_processes] [-f] [-l
logfile_directory] [-D]

gpdeletesystem -?

gpdeletesystem -v

-d data_directory
-B parallel_processes
-f (force)

-l logfile_directory
-D (debug)

-? (help)

-v (show utility version)
gpdbrestore 583

Greenplum Database Administrator Guide 4.1 – Appendix B: Management Utility Summary
gpdetective

Collects diagnostic information from a running Greenplum Database system.

gpdetective [-h hostname] [-p port] [-U username] [-P password]
 [--start_date number_of_days | YYYY-MM-DD]
 [--end_date YYYY-MM-DD]
 [--diagnostics a|n|s|o|c]
 [--logs a|n|dbid[,dbid,... | -dbid]]
 [--cores t|f]
 [--pg_dumpall t|f] [--pg_dump_options option[,...]]
 [--tempdir temp_dir]
 [--connect t|f]

gpdetective -?

gpdetective -v

--connect t|f

--cores t|f

--diagnostics a|n|s|o|c

--end_date YYYY-MM-DD

-h hostname
--logs a|n|dbid_list

-P password
--pg_dumpall t|f

--pg_dump_options option[,...]

-p port
--start_date number_of_days | YYYY-MM-DD
--tempdir temp_dir

-U gp_superuser
-v (show utility version)

-? (help)
gpdetective 584

Greenplum Database Administrator Guide 4.1 – Appendix B: Management Utility Summary
gpexpand

Expands an existing Greenplum Database across new hosts in the array.

gpexpand
 [-f hosts_file]
 | -i input_file [-B batch_size] [-V]
 | {-d hh:mm:ss | -e 'YYYY-MM-DD hh:mm:ss'} [-analyze]
 [-n parallel_processes]
 | --rollback
 | --clean
[-D database_name][--verbose] [--silent]

gpexpand -? | -h | --help

gpexpand --version

-a | --analyze
-B batch_size
-c | --clean
-d | --duration hh:mm:ss
-D database_name
-e | --end ‘YYYY-MM-DD hh:mm:ss’
-f | --hosts-file filename
-i | --input input_file
-n parallel_processes
-r | --rollback
-s | --silent
-v | --verbose
--version
-V | --novacuum
-? | -h | --help

gpfdist

Serves data files to or writes data files out from Greenplum Database segments.

gpfdist [-d directory] [-p http_port] [-l log_file] [-t timeout] [-m max_length]
[-v | -V]

gpfdist -?

gpfdist --version

-d directory
-l log_file
-p http_port
-t timeout
-m max_length
-? (help)

-v (verbose)

-V (very verbose)

--version
gpexpand 585

Greenplum Database Administrator Guide 4.1 – Appendix B: Management Utility Summary
gpfilespace

Creates a filespace using a configuration file that defines per-segment file system locations. Filespac-
es describe the physical file system resources to be used by a tablespace.

gpfilespace [connection_option ...] [-l logfile_directory] [-o
[output_file_name]]

gpfilespace [connection_option ...] [-l logfile_directory] -c fs_config_file

gpfilespace -v | -?

-c | --config fs_config_file
-l | --logdir logfile_directory
-o | --output output_file_name
-v | --version (show utility version)

-? | --help (help)

-h host | --host host
-p port | --port port
-U username | --username superuser_name
-W | --password

gpinitstandby

Adds and/or initializes a standby master host for a Greenplum Database system.

gpinitstandby { -s standby_hostname | -r }
[-M smart | -M fast] [-n] [-a] [-q] [-l logfile_directory] [-L] [-D]

gpinitstandby -? | -v

-a (do not prompt)

-D (debug)

-l logfile_directory
-L (leave database stopped)

-M fast (fast shutdown - rollback)

-M smart (smart shutdown - warn)

-n (resynchronize)

-q (no screen output)

-r (remove standby master)

-s standby_hostname
-v (show utility version)

-? (help)

gpinitsystem

Initializes a Greenplum Database system using configuration parameters specified in the
gpfilespace 586

Greenplum Database Administrator Guide 4.1 – Appendix B: Management Utility Summary
gpinitsystem_config file.

gpinitsystem -c gpinitsystem_config
 [-h hostfile_gpinitsystem]
 [-B parallel_processes]
 [-p postgresql_conf_param_file]
 [-s standby_master_host]
 [--max_connections=number] [--shared_buffers=size]
 [--locale=locale] [--lc-collate=locale]
 [--lc-ctype=locale] [--lc-messages=locale]
 [--lc-monetary=locale] [--lc-numeric=locale]
 [--lc-time=locale] [--su_password=password]
 [-S] [-a] [-q] [-l logfile_directory] [-D]

gpinitsystem -?

gpinitsystem -v

-a (do not prompt)

-B parallel_processes
-c gpinitsystem_config
-D (debug)

-h hostfile_gpinitsystem
--locale=locale | -n locale
--lc-collate=locale
--lc-ctype=locale
--lc-messages=locale
--lc-monetary=locale
--lc-numeric=locale
--lc-time=locale
-l logfile_directory
--max_connections=number | -m number
-p postgresql_conf_param_file
-q (no screen output)

--shared_buffers=size | -b size
-s standby_master_host
--su_password=superuser_password | -e superuser_password
-S (spread mirror configuration)

-v (show utility version)

-? (help)

gpload

Runs a load job as defined in a YAML formatted control file.

gpload -f control_file [-l log_file] [-h hostname] [-p port] [-U username] [-d
gpload 587

Greenplum Database Administrator Guide 4.1 – Appendix B: Management Utility Summary
database] [-W] [--gpfdist_timeout seconds] [[-v | -V] [-q]] [-D]

gpload -?

gpload --version

-f control_file
--gpfdist_timeout seconds

-l log_file
-v (verbose mode)

-V (very verbose mode)

-q (no screen output)

-D (debug mode)

-? (show help)

--version
-d database
-h hostname
-p port
-U username
-W (force password prompt)

gplogfilter

Searches through Greenplum Database log files for specified entries.

gplogfilter [timestamp_options] [pattern_options] [output_options]
gplogfilter 588

Greenplum Database Administrator Guide 4.1 – Appendix B: Management Utility Summary
[input_options] [input_file]

gplogfilter --help

gplogfilter --version

-b datetime | --begin=datetime
-e datetime | --end=datetime
-d time | --duration=time
-c i[gnore]|r[espect] | --case=i[gnore]|r[espect]

-C '<string>' | --columns='<string>'

-f 'string' | --find='string'

-F 'string' | --nofind='string'

-m regex | --match=regex
-M regex | --nomatch=regex
-t | --trouble
-n integer | --tail=integer
-s offset [limit] | --slice=offset [limit]

-o output_file | --out=output_file
-z 0-9 | --zip=0-9

-a | --append
input_file
-u | --unzip
--help
--version

gpmapreduce

Runs Greenplum MapReduce jobs as defined in a YAML specification document.

gpmapreduce -f yaml_file [dbname [username]] [-k name=value | --key name=value]
[-h hostname | --host hostname] [-p port| --port port] [-U username | --username
username] [-W] [-v]

gpmapreduce -V | --version

gpmapreduce -h | --help

-f yaml_file
-? | --help
-V | --version
-v | --verbose
-k | --key name=value
-h host | --host host
-p port | --port port
-U username | --username username
-W | --password
gpmapreduce 589

Greenplum Database Administrator Guide 4.1 – Appendix B: Management Utility Summary
gpmigrator

Upgrades an existing Greenplum Database 4.0.x system without mirrors to 4.1.x.

gpmigrator old_GPHOME_path new_GPHOME_path
 [-d master_data_directory]
 [-l logfile_directory] [-q] [--debug] [-R]

gpmigrator --version | -v

gpmigrator --help | -h

old_GPHOME_path
new_GPHOME_path
-d master_data_directory
-l logfile_directory
-q (quiet mode)

-R (revert)

--help | -h
--debug

--version | -v

gpmigrator_mirror

Upgrades an existing Greenplum Database 4.0.x system with mirrors to 4.1.x.

gpmigrator_mirror old_GPHOME_path new_GPHOME_path
 [-d master_data_directory]
 [-l logfile_directory] [-q] [--debug] [-R]

gpmigrator_mirror --version | -v

gpmigrator_mirror --help | -h

old_GPHOME_path
new_GPHOME_path
-d master_data_directory
-l logfile_directory
-q (quiet mode)

-R (revert)

--help | -h
--debug

--version | -v
gpmigrator 590

Greenplum Database Administrator Guide 4.1 – Appendix B: Management Utility Summary
gpperfmon_install

Installs the gpperfmon database and optionally enables the data collection agents.

gpperfmon_install
 [--enable --password gpmon_password --port gpdb_port]
 [--pgpass path_to_file]
 [--verbose]

gpperfmon_install --help | -h | -?

--enable
--password gpmon_password
--port gpdb_port
--pgpass path_to_file
--verbose
--help | -h | -?

gprecoverseg

Recovers a primary or mirror segment instance that has been marked as down (if mirroring is en-
abled).

gprecoverseg [-p new_recover_host[,...] | -i recover_config_file | -s
filespace_config_file] [-d master_data_directory] [-B parallel_processes] [-F]
[-a] [-q] [-l logfile_directory]

gprecoverseg -r

gprecoverseg -o output_recover_config_file
 | -S output_filespace_config_file [-p new_recover_host]

gprecoverseg -?

gprecoverseg --version

-a (do not prompt)

-B parallel_processes
-d master_data_directory
-F (full recovery)

-i recover_config_file
-l logfile_directory
-o output_recover_config_file
-p new_recover_hostname
-q (no screen output)

-r (rebalance segments)

-s filespace_config_file
-S output_filespace_config_file
-v (verbose)

--version (version)

-? (help)
gpperfmon_install 591

Greenplum Database Administrator Guide 4.1 – Appendix B: Management Utility Summary
gpscp

Copies files between multiple hosts at once.

gpscp { -f hostfile_gpssh | - h hostname [-h hostname ...] }
[-J character] [-v] [[user@]hostname:]file_to_copy [...] [[user@]host-
name:]copy_to_path

gpscp -?

gpscp --version

-f hostfile_gpssh
-h hostname
-J character
-v (verbose mode)

file_to_copy
copy_to_path
-? (help)

--version

gpseginstall

Installs the Greenplum Database software on multiple hosts.

gpseginstall -f hostfile_exkeys [-u gpdb_admin_user] [-p password]
 [-c u|p|c|s|E|e|l|v]

gpseginstall --help

-c | --commands option_list
-f | --file hostfile_exkeys

-p | --password password
-u | --user user
--help (help)

gpsetupsanfailover

Specify failover host/mountpoints for Greenplum Database in a SAN environment.

gpsetupsanfailover <output_san_sql_file>

gpsetupsanfailover [-d master_data_directory]
 <output_san_sql_file> [-p port_offset] [-D]
gpscp 592

Greenplum Database Administrator Guide 4.1 – Appendix B: Management Utility Summary
 [-l logfile_directory]

gpsetupsanfailover --version

gpsetupsanfailover -?

-d master_data_directory
-l logfile_directory
-p port_offset
-D (debug)
--version (show utility version)

-? (help)

gpsnmpd

Reports on the health and state of a Greenplum Database system through SNMP.

gpsnmpd -s -C connect_string [-b] [-g] [-m MIB:...]
 [-M directory:...]

gpsnmpd -c FILE -C connect_string [-x address:port] [-b] [-g]
 [-m MIB:...] [-M directory:...]

gpsnmpd -?

gpsnmpd --version

-s (sub-agent)

-b (background)

-c (configuration file)

-g (use syslog)

-C (libpq connection string)

-x (address:port of a network interface)

-m (MIB:...)

-M (directory:...)

-? (help)

-V

gpssh

Provides ssh access to multiple hosts at once.

gpssh { -f hostfile_gpssh | - h hostname [-h hostname ...] } [-v] [-e]
gpsnmpd 593

Greenplum Database Administrator Guide 4.1 – Appendix B: Management Utility Summary
[bash_command]

gpssh -?

gpssh --version

bash_command
-e (echo)

-f hostfile_gpssh
-h hostname
-v (verbose mode)

--version
-? (help)

gpssh-exkeys

Exchanges SSH public keys between hosts.

gpssh-exkeys -f hostfile_exkeys | - h hostname [-h hostname ...]

gpssh-exkeys -e hostfile_exkeys -x hostfile_gpexpand

gpssh-exkeys -?

gpssh-exkeys --version

-e hostfile_exkeys
-f hostfile_exkeys
-h hostname
--version
-x hostfile_gpexpand
-? (help)

gpstart

Starts a Greenplum Database system.

gpstart [-d master_data_directory] [-B parallel_processes] [-R] [-m] [-y] [-a]
gpssh-exkeys 594

Greenplum Database Administrator Guide 4.1 – Appendix B: Management Utility Summary
[-t timeout_seconds] [-l logfile_directory] [-v | -q]

gpstart -? | -h | --help

gpstart --version

-a (do not prompt)

-B parallel_processes
-d master_data_directory
-l logfile_directory
-m (master only)

-q (no screen output)

-R (restricted mode)

-t timeout_seconds

-v (verbose output)

-y (do not start standby master)

-? | -h | --help (help)

--version (show utility version)

gpstate

Shows the status of a running Greenplum Database system.

gpstate [-d master_data_directory] [-B parallel_processes]
[-s | -b | -Q | -e] [-m | -c] [-p] [-i] [-f] [-v | -q] [-l log_directory]

gpstate -? | -h | --help

-b (brief status)

-B parallel_processes
-c (show primary to mirror mappings)

-d master_data_directory
-e (show segments with mirror status issues)
-f (show standby master details)

-i (show Greenplum Database version)

-l logfile_directory
-m (list mirrors)

-p (show ports)

-q (no screen output)

-Q (quick status)

-s (detailed status)

-v (verbose output)

-? | -h | --help (help)

gpstop

Stops or restarts a Greenplum Database system.

gpstop [-d master_data_directory] [-B parallel_processes]
[-M smart | fast | immediate] [-t timeout_seconds] [-r] [-y] [-a]
gpstate 595

Greenplum Database Administrator Guide 4.1 – Appendix B: Management Utility Summary
[-l logfile_directory] [-v | -q]

gpstop -m [-d master_data_directory] [-y] [-l logfile_directory] [-v | -q]

gpstop -u [-d master_data_directory] [-l logfile_directory] [-v | -q]

gpstop --version

gpstop -? | -h | --help

-a (do not prompt)

-B parallel_processes
-d master_data_directory
-l logfile_directory
-m (master only)

-M fast (fast shutdown - rollback)

-M immediate (immediate shutdown - abort)

-M smart (smart shutdown - warn)

-q (no screen output)

-r (restart)

-t timeout_seconds

-u (reload pg_hba.conf and postgresql.conf files only)

-v (verbose output)

--version (show utility version)

-y (do not stop standby master)

-? | -h | --help (help)

gpsys1

Displays information about your operating system.

gpsys1 [-a | -m | -p]

gpsys1 -? | --version

-a (show all)

-m (show memory only)

-p (show platform only)

-? (help)

--version
\conninfo

\prompt [text] name
gpsys1 596

Greenplum Database Administrator Guide 4.1– Appendix B: Management Utility Reference
gp_dump
Writes out a database to SQL script files, which can then be used to restore the
database using gp_restore.

Synopsis
gp_dump [-a | -s] [-c] [-d] [-D] [-n schema] [-o] [-O] [-t
table_name] [-x] [-h hostname] [-p port] [-U username] [-W] [-i]
[-v] [--gp-c] [--gp-d=backup_directory] [--gp-r=reportfile]
[--gp-s=dbid [, ...]] database_name

gp_dump -? |--help

gp_dump --version

Description

The gp_dump utility dumps the contents of a database into SQL script files, which can
then be used to restore the database schema and user data at a later time using
gp_restore. During a dump operation, users will still have full access to the
database.

The functionality of gp_dump is analogous to PostgreSQL’s pg_dump utility, which
writes out (or dumps) the content of a database into a script file. The script file
contains SQL commands that can be used to restore the databases, data, and global
objects such as users, groups, and access permissions.

The functionality of gp_dump is modified to accommodate the distributed nature of a
Greenplum database. Keep in mind that a database in Greenplum Database is actually
comprised of several PostgreSQL instances (the master and all segments), each of
which must be dumped individually. The gp_dump utility takes care of dumping all of
the individual instances across the system.

The gp_dump utility performs the following actions and produces the following dump
files by default:

On the master host

• Dumps the Greenplum Database system configuration tables into a SQL file in the
master data directory. The default naming convention of this file is
gp_catalog_1_<dbid>_<timestamp>.

• Dumps CREATE DATABASE SQL statements into a file in the master data directory.
The default naming convention of this file is
gp_cdatabase_1_<dbid>_<timestamp>. This statement can be run on the
master instance to recreate the user database(s).

• Dumps the user database schema(s) into a SQL file in the master data directory.
The default naming convention of this file is gp_dump_1_<dbid>_<timestamp>.
This file is used by gp_restore to recreate the database schema(s).

• Creates a log file in the master data directory named
gp_dump_status_1_<dbid>_<timestamp>.
gp_dump 597

Greenplum Database Administrator Guide 4.1– Appendix B: Management Utility Reference
• gp_dump launches a gp_dump_agent for each segment instance to be backed up.
gp_dump_agent processes run on the segment hosts and report status back to the
gp_dump process running on the master host.

On the segment hosts

• Dumps the user data for each segment instance into a SQL file in the segment
instance’s data directory. By default, only primary (or active) segment instances
are backed up. The default naming convention of this file is
gp_dump_0_<dbid>_<timestamp>. This file is used by gp_restore to recreate
that particular segment of user data.

• Creates a log file in each segment instance’s data directory named
gp_dump_status_0_<dbid>_<timestamp>.

Note that the 14 digit timestamp is the number that uniquely identifies the backup job,
and is part of the filename for each dump file created by a gp_dump operation. This
timestamp must be passed to the gp_restore utility when restoring a Greenplum
database.

Options

-a | --data-only

Dump only the data, not the schema (data definitions).

-s | --schema-only

Dump only the object definitions (schema), not data.

-c | --clean

Output commands to clean (drop) database objects prior to (the commands for)
creating them.

-d | --inserts

Dump data as INSERT commands (rather than COPY). This will make restoration
very slow; it is mainly useful for making dumps that can be loaded into
non-PostgreSQL based databases. Note that the restore may fail altogether if you
have rearranged column order. The -D option is safer, though even slower.

-D | --column-inserts

Dump data as INSERT commands with explicit column names (INSERT INTO
table (column, ...) VALUES ...). This will make restoration very slow; it is
mainly useful for making dumps that can be loaded into non-PostgreSQL based
databases.

-n schema | --schema=schema

Dumps the contents of the named schema only. If this option is not specified, all
non-system schemas in the target database will be dumped. You cannot backup
system catalog schemas (such as pg_catalog) with gp_dump.
gp_dump 598

Greenplum Database Administrator Guide 4.1– Appendix B: Management Utility Reference
Caution: In this mode, gp_dump makes no attempt to dump any other database
objects that objects in the selected schema may depend upon. Therefore, there is no
guarantee that the results of a single-schema dump can be successfully restored by
themselves into a clean database.

-o | --oids

Dump object identifiers (OIDs) as part of the data for every table. Use of OIDs is not
recommended in Greenplum Database, so this option should not be used if restoring
data to another Greenplum Database installation.

-O | --no-owner

Do not output commands to set ownership of objects to match the original database.
By default, gp_dump issues ALTER OWNER or SET SESSION AUTHORIZATION
statements to set ownership of created database objects. These statements will fail
when the script is run unless it is started by a superuser (or the same user that owns
all of the objects in the script). To make a script that can be restored by any user, but
will give that user ownership of all the objects, specify -O.

-t table | --table=table

Dump only tables (or views or sequences) matching the table pattern. Multiple
tables can be selected by writing multiple -t switches. Also, the table parameter is
interpreted as a pattern according to the same rules used by psql’s \d commands, so
multiple tables can also be selected by writing wildcard characters in the pattern.
When using wildcards, be careful to quote the pattern if needed to prevent the shell
from expanding the wildcards. The -n and -N switches have no effect when -t is
used, because tables selected by -t will be dumped regardless of those switches, and
non-table objects will not be dumped.

Note: When -t is specified, pg_dump makes no attempt to dump any other database
objects that the selected table(s) may depend upon. Therefore, there is no guarantee
that the results of a specific-table dump can be successfully restored by themselves
into a clean database.

Note: -t cannot be used to specify a child table partition. To dump a partitioned
table, you must specify the parent table name.

-T table | --exclude-table=table

Do not dump any tables matching the table pattern. The pattern is interpreted
according to the same rules as for -t. -T can be given more than once to exclude
tables matching any of several patterns. When both -t and -T are given, the
behavior is to dump just the tables that match at least one -t switch but no -T
switches. If -T appears without -t, then tables matching -T are excluded from what
is otherwise a normal dump.

-x | --no-privileges | --no-acl

Prevents the dumping of access privileges (GRANT/REVOKE commands).
gp_dump 599

Greenplum Database Administrator Guide 4.1– Appendix B: Management Utility Reference
-h hostname | --host=hostname

The host name of the Greenplum Database master host. If not provided, the value of
$PGHOST or the local host is used.

-p port | --port=port

The Greenplum Database master port. If not provided, the value of $PGPORT or the
port number provided at compile time is used.

-U username | --username=user

The database superuser account name, for example gpadmin. If not provided, the
value of $PGUSER or the current OS user name is used.

-W (force password prompt)

Forces a password prompt. This will happen automatically if the server requires
password authentication.

-i | --ignore-version

Ignores a version mismatch between gp_dump and the database server.

-v | --verbose

Specifies verbose mode. This will cause gp_dump to output detailed object
comments and start/stop times to the dump file, and progress messages to standard
error.

--gp-c (use gzip)

Use gzip for inline compression.

--gp-d=directoryname

Specifies the relative or absolute path where the backup files will be placed on each
host. If this is a relative path, it is considered to be relative to the data directory. If
the path does not exist, it will be created, if possible. If not specified, defaults to the
data directory of each instance to be backed up. Using this option may be desirable
if each segment host has multiple segment instances — it will create the dump files
in a centralized location.

--gp-r=reportfile

Specifies the full path name where the backup job log file will be placed on the
master host. If not specified, defaults to the master data directory or if running
remotely, the current working directory.

--gp-s=dbid (backup certain segments)

Specifies the set of active segment instances to back up with a comma-separated list
of the segments dbid. The default is to backup all active segment instances.
gp_dump 600

Greenplum Database Administrator Guide 4.1– Appendix B: Management Utility Reference
database_name

Required. The name of the database you want to dump. If not specified, the value of
$PGDATABASE will be used. The database name must be stated last after all other
options have been specified.

-? | --help (help)

Displays the online help.

--version (show utility version)

Displays the version of this utility.

Examples

Back up a database:

gp_dump gpdb

Back up a database, and create dump files in a centralized location on all hosts:

gp_dump --gp-d=/home/gpadmin/backups gpdb

Back up a particular schema only:

gp_dump -n myschema mydatabase

Back up a single segment instance only (by noting the dbid of the segment instance):

gp_dump --gp-s=5 gpdb

See Also

gp_restore, gpdbrestore, gpcrondump, pg_dump
gp_dump 601

Greenplum Database Administrator Guide 4.1– Appendix B: Management Utility Reference
gp_restore
Restores Greenplum databases that were backed up using gp_dump.

Synopsis
gp_restore --gp-k=timestamp_key -d database_name [-i] [-v] [-a |
-s] [-c] [-h hostname] [-p port] [-U username] [-W] [--gp-c]
[--gp-i] [--gp-d=directoryname] [--gp-r=reportfile] [--gp-l=dbid
[, ...]]

gp_restore -? | -h | --help

gp_restore --version

Description

The gp_restore utility recreates the data definitions (schema) and user data in a
Greenplum database using the script files created by an gp_dump operation. The use of
this utility assumes:

1. You have backup files created by an gp_dump operation.

2. Your Greenplum Database system up and running.

3. Your Greenplum Database system has the exact same number of segment
instances (primary and mirror) as the system that was backed up using gp_dump.

4. (optional) The gp_restore utility uses the information in the Greenplum system
catalog tables to determine the hosts, ports, and data directories for the segment
instances it is restoring. If you want to change any of this information (for
example, move the system to a different array of hosts) you must use the
gprebuildsystem and gprebuildseg scripts to reconfigure your array before
restoring.

5. The databases you are restoring have been created in the system.

6. If you used the options -s (schema only) , -a (data only), --gp-c (compressed),
--gp-d (alternate dump file location) when performing the gp_dump operation,
you must specify these options when doing the gp_restore as well.

The functionality of gp_restore is analogous to PostgreSQL’s pg_restore utility,
which restores a database from files created by the database backup process. It issues
the commands necessary to reconstruct the database to the state it was in at the time it
was saved.

The functionality of gp_restore is modified to accommodate the distributed nature
of a Greenplum database, and to use files created by an gp_dump operation. Keep in
mind that a database in Greenplum is actually comprised of several PostgreSQL
database instances (the master and all segments), each of which must be restored
individually. The gp_restore utility takes care of populating each segment in the
system with its own distinct portion of data.

The gp_restore utility performs the following actions:
gp_restore 602

Greenplum Database Administrator Guide 4.1– Appendix B: Management Utility Reference
On the master host

• Creates the user database schema(s) using the
gp_dump_1_<dbid>_<timestamp> SQL file created by gp_dump.

• Creates a log file in the master data directory named
gp_restore_status_1_<dbid>_<timestamp>.

• gp_restore launches a gp_restore_agent for each segment instance to be
restored. gp_restore_agent processes run on the segment hosts and report
status back to the gp_restore process running on the master host.

On the segment hosts

• Restores the user data for each segment instance using the
gp_dump_0_<dbid>_<timestamp> files created by gp_dump. Each segment
instance on a host (primary and mirror instances) are restored.

• Creates a log file for each segment instance named
gp_restore_status_0_<dbid>_<timestamp>.

Note that the 14 digit timestamp is the number that uniquely identifies the backup job
to be restored, and is part of the filename for each dump file created by a gp_dump
operation. This timestamp must be passed to the gp_restore utility when restoring a
Greenplum database.

Options

--gp-k=timestamp_key

Required. The 14 digit timestamp key that uniquely identifies the backup set of data
to restore. This timestamp can be found in the gp_dump log file output, as well as at
the end of the dump files created by a gp_dump operation. It is of the form
YYYYMMDDHHMMSS.

-d database_name | --dbname=dbname

Required. The name of the database to connect to in order to restore the user data.
The database(s) you are restoring must exist, gp_restore does not create the
database.

-i | --ignore-version

Ignores a version mismatch between gp_restore and the database server.

-v | --verbose

Specifies verbose mode.

-a | --data-only

Restore only the data, not the schema (data definitions).

-c | --clean

Clean (drop) database objects before recreating them.
gp_restore 603

Greenplum Database Administrator Guide 4.1– Appendix B: Management Utility Reference
-s | --schema-only

Restores only the schema (data definitions), no user data is restored.

-h hostname | --host=hostname

The host name of the Greenplum master host. If not provided, the value of PGHOST
or the local host is used.

-p port | --port=port

The Greenplum master port. If not provided, the value of PGPORT or the port number
provided at compile time is used.

-U username | --username=username

The database superuser account name, for example gpadmin. If not provided, the
value of PGUSER or the current OS user name is used.

-W (force password prompt)

Forces a password prompt. This will happen automatically if the server requires
password authentication.

--gp-c (use gunzip)

Use gunzip for inline decompression.

--gp-i (ignore errors)

Specifies that processing should ignore any errors that occur. Use this option to
continue restore processing on errors.

--gp-d=directoryname

Specifies the relative or absolute path to backup files on the hosts. If this is a relative
path, it is considered to be relative to the data directory. If not specified, defaults to
the data directory of each instance being restored. Use this option if you created
your backup files in an alternate location when running gp_dump.

--gp-r=reportfile

Specifies the full path name where the restore job report file will be placed on the
master host. If not specified, defaults to the master data directory.

--gp-l=dbid [, ...] (restore certain segments)

Specifies whether to check for backup files on only the specified active segment
instances (followed by a comma-separated list of the segments dbid). The default is
to check for backup files on all active segments, restore the active segments, and
then syncronize the mirrors.

-? | -h | --help (help)

Displays the online help.

--version (show utility version)

Displays the version of this utility.
gp_restore 604

Greenplum Database Administrator Guide 4.1– Appendix B: Management Utility Reference
Examples

Restore an Greenplum database using backup files created by gp_dump:

gp_restore --gp-k=2005103112453 -d gpdb

Restore a single segment instance only (by noting the dbid of the segment instance):

gp_restore --gp-k=2005103112453 -d gpdb --gp-s=5

See Also

gp_dump, pg_restore, gpdbrestore
gp_restore 605

Greenplum Database Administrator Guide 4.1– Appendix B: Management Utility Reference
gpaddmirrors
Adds mirror segments to a Greenplum Database system that was initially configured
without mirroring.

Synopsis
gpaddmirrors [-p port_offset] [-m datadir_config_file [-a]] [-s]
[-d master_data_directory] [-B parallel_processes] [-l
logfile_directory] [-v]

gpaddmirrors -i mirror_config_file [-s] [-a] [-d
master_data_directory] [-B parallel_processes] [-l
logfile_directory] [-v]

gpaddmirrors -o output_sample_mirror_config [-m
datadir_config_file]

gpaddmirrors -?

gpaddmirrors --version

Description

The gpaddmirrors utility configures mirror segment instances for an existing
Greenplum Database system that was initially configured with primary segment
instances only. The utility will create the mirror instances and begin the online
replication process between the primary and mirror segment instances. Once all
mirrors are synchronized with their primaries, your Greenplum Database system is
fully data redundant.

By default, the utility will prompt you for the file system location(s) where it will
create the mirror segment data directories. If you do not want to be prompted, you can
pass in a file containing the file system locations using the -m option.

The mirror locations and ports must be different than your primary segment data
locations and ports. If you have created additional filespaces, you will also be
prompted for mirror locations for each of your filespaces.

The utility will create a unique data directory for each mirror segment instance in the
specified location using the predefined naming convention. There must be the same
number of file system locations declared for mirror segment instances as for primary
segment instances. It is OK to specify the same directory name multiple times if you
want your mirror data directories created in the same location, or you can enter a
different data location for each mirror. Enter the absolute path. For example:

Enter mirror segment data directory location 1 of 2 > /gpdb/mirror

Enter mirror segment data directory location 2 of 2 > /gpdb/mirror

OR

Enter mirror segment data directory location 1 of 2 > /gpdb/m1

Enter mirror segment data directory location 2 of 2 > /gpdb/m2
gpaddmirrors 606

Greenplum Database Administrator Guide 4.1– Appendix B: Management Utility Reference
Alternatively, you can run the gpaddmirrors utility and supply a detailed
configuration file using the -i option. This is useful if you want your mirror segments
on a completely different set of hosts than your primary segments. The format of the
mirror configuration file is:

filespaceOrder=[filespace1_fsname[:filespace2_fsname:...]

mirror[content]=content:address:port:mir_replication_port:pri_
replication_port:fselocation[:fselocation:...]

For example (if you do not have additional filespaces configured besides the default
pg_system filespace):

filespaceOrder=

mirror0=0:sdw1-1:60000:61000:62000:/gpdata/mir1/gp0

mirror1=1:sdw1-1:60001:61001:62001:/gpdata/mir2/gp1

The gp_segment_configuration, pg_filespace, and pg_filespace_entry system catalog
tables can help you determine your current primary segment configuration so that you
can plan your mirror segment configuration. For example, run the following query:

=# SELECT dbid, content, address as host_address, port,

 replication_port, fselocation as datadir

 FROM gp_segment_configuration, pg_filespace_entry

 WHERE dbid=fsedbid

 ORDER BY dbid;

If creating your mirrors on alternate mirror hosts, the new mirror segment hosts must
be pre-installed with the Greenplum Database software and configured exactly the
same as the existing primary segment hosts.

You must make sure that the user who runs gpaddmirrors (the gpadmin user) has
permissions to write to the data directory locations specified. You may want to create
these directories on the segment hosts and chown them to the appropriate user before
running gpaddmirrors.

Options

-a (do not prompt)

Run in quiet mode - do not prompt for information. Must supply a configuration file
with either -m or -i if this option is used.

-B parallel_processes

The number of mirror setup processes to start in parallel. If not specified, the utility
will start up to 10 parallel processes depending on how many mirror segment
instances it needs to set up.

-d master_data_directory

The master data directory. If not specified, the value set for
$MASTER_DATA_DIRECTORY will be used.
gpaddmirrors 607

Greenplum Database Administrator Guide 4.1– Appendix B: Management Utility Reference
-i mirror_config_file

A configuration file containing one line for each mirror segment you want to create.
You must have one mirror segment listed for each primary segment in the system.
The format of this file is as follows (as per attributes in the
gp_segment_configuration, pg_filespace, and pg_filespace_entry catalog tables):

filespaceOrder=[filespace1_fsname[:filespace2_fsname:...]

mirror[content]=content:address:port:mir_replication_port:pri_
replication_port:fselocation[:fselocation:...]

Note that you only need to specify an name for filespaceOrder if your system has
multiple filespaces configured. If your system does not have additional filespaces
configured besides the default pg_system filespace, this file will only have one
location (for the default data directory filespace, pg_system). pg_system does not
need to be listed in the filespaceOrder line. It will always be the first
fselocation listed after replication_port.

-l logfile_directory

The directory to write the log file. Defaults to ~/gpAdminLogs.

-m datadir_config_file

A configuration file containing a list of file system locations where the mirror data
directories will be created. If not supplied, the utility will prompt you for locations.
Each line in the file specifies a mirror data directory location. For example:

/gpdata/m1

/gpdata/m2

/gpdata/m3

/gpdata/m4

If your system has additional filespaces configured in addition to the default
pg_system filespace, you must also list file system locations for each filespace as
follows:

filespace filespace1

/gpfs1/m1

/gpfs1/m2

/gpfs1/m3

/gpfs1/m4

-o output_sample_mirror_config

If you are not sure how to lay out the mirror configuration file used by the -i option,
you can run gpaddmirrors with this option to generate a sample mirror
configuration file based on your primary segment configuration. The utility will
prompt you for your mirror segment data directory locations (unless you provide
these in a file using -m). You can then edit this file to change the host names to
alternate mirror hosts if necessary.
gpaddmirrors 608

Greenplum Database Administrator Guide 4.1– Appendix B: Management Utility Reference
-p port_offset

Optional. This number is used to calculate the database ports and replication ports
used for mirror segments. The default offset is 1000. Mirror port assignments are
calculated as follows:

primary port + offset = mirror database port

primary port + (2 * offset) = mirror replication port

primary port + (3 * offset) = primary replication port

For example, if a primary segment has port 50001, then its mirror will use a
database port of 51001, a mirror replication port of 52001, and a primary replication
port of 53001 by default.

-s (spread mirrors)

Spreads the mirror segments across the available hosts. The default is to group a set
of mirror segments together on an alternate host from their primary segment set.
Mirror spreading will place each mirror on a different host within the Greenplum
Database array. Spreading is only allowed if there is a sufficient number of hosts in
the array (number of hosts is greater than or equal to the number of segment
instances per host).

-v (verbose)

Sets logging output to verbose.

--version (show utility version)

Displays the version of this utility.

-? (help)

Displays the online help.

Examples

Add mirroring to an existing Greenplum Database system using the same set of hosts
as your primary data. Calculate the mirror database and replication ports by adding
100 to the current primary segment port numbers:

$ gpaddmirrors -p 100

Add mirroring to an existing Greenplum Database system using a different set of hosts
from your primary data:

$ gpaddmirrors -i mirror_config_file

Where the mirror_config_file looks something like this (if you do not have
additional filespaces configured besides the default pg_system filespace):

filespaceOrder=

mirror0=0:sdw1-1:52001:53001:54001:/gpdata/mir1/gp0

mirror1=1:sdw1-2:52002:53002:54002:/gpdata/mir2/gp1

mirror2=2:sdw2-1:52001:53001:54001:/gpdata/mir1/gp2

mirror3=3:sdw2-2:52002:53002:54002:/gpdata/mir2/gp3
gpaddmirrors 609

Greenplum Database Administrator Guide 4.1– Appendix B: Management Utility Reference
Output a sample mirror configuration file to use with gpaddmirrors -i:

$ gpaddmirrors -o /home/gpadmin/sample_mirror_config

See Also

gpinitsystem, gpinitstandby, gpactivatestandby
gpaddmirrors 610

Greenplum Database Administrator Guide 4.1– Appendix B: Management Utility Reference
gpactivatestandby
Activates a standby master host and makes it the active master for the Greenplum
Database system.

Synopsis
gpactivatestandby -d standby_master_datadir
[-c new_standby_master] [-f] [-a] [-q] [-l logfile_directory]

gpactivatestandby -? | -h | --help

gpactivatestandby -v

Description

The gpactivatestandby utility activates a backup master host and brings it into
operation as the active master instance for a Greenplum Database system. The
activated standby master effectively becomes the Greenplum Database master,
accepting client connections on the master port (which must be set to the same port
number on the master host and the backup master host).

You must run this utility from the master host you are activating, not the failed master
host you are disabling. Running this utility assumes you have a backup master host
configured for the system (see gpinitstandby).

The utility will perform the following steps:

• Stop the synchronization process (gpsyncagent) on the backup master

• Update the system catalog tables of the backup master using the logs

• Activate the backup master to be the new active master for the system

• (optional) Make the host specified with the -c option the new standby master host

• Restart the Greenplum Database system with the new master host

A backup Greenplum master host serves as a ‘warm standby’ in the event of the
primary Greenplum master host becoming unoperational. The backup master is kept
up to date by a transaction log replication process (gpsyncagent), which runs on the
backup master host and keeps the data between the primary and backup master hosts
synchronized.

If the primary master fails, the log replication process is shutdown, and the backup
master can be activated in its place by using the gpactivatestandby utility. Upon
activation of the backup master, the replicated logs are used to reconstruct the state of
the Greenplum master host at the time of the last successfully committed transaction.
To specify a new standby master host after making your current standby master active,
use the -c option.

In order to use gpactivatestandby to activate a new primary master host, the
master host that was previously serving as the primary master cannot be running. The
utility checks for a postmaster.pid file in the data directory of the disabled master
host, and if it finds it there, it will assume the old master host is still active. In some
gpactivatestandby 611

Greenplum Database Administrator Guide 4.1– Appendix B: Management Utility Reference
cases, you may need to remove the postmaster.pid file from the disabled master
host data directory before running gpactivatestandby (for example, if the disabled
master host process was terminated unexpectedly).

After activating a standby master, run ANALYZE to update the database query statistics.
For example:

psql dbname -c 'ANALYZE;'

Options

-a (do not prompt)

Do not prompt the user for confirmation.

-c new_standby_master_hostname

Optional. After you activate your standby master you may want to specify another
host to be the new standby, otherwise your Greenplum Database system will no
longer have a standby master configured. Use this option to specify the hostname of
the new standby master host. You can also use gpinitstandby at a later time to
configure a new standby master host.

-d standby_master_datadir

Required. The absolute path of the data directory for the master host you are
activating.

-f (force activation)

Use this option to force activation of the backup master host when the
synchronization process (gpsyncagent) is not running. Only use this option if you
are sure that the backup and primary master hosts are consistent, and you know the
gpsyncagent process is not running on the backup master host. This option may be
useful if you have just initialized a new backup master using gpinitstandby, and
want to activate it immediately.

-l logfile_directory

The directory to write the log file. Defaults to ~/gpAdminLogs.

-q (no screen output)

Run in quiet mode. Command output is not displayed on the screen, but is still
written to the log file.

-v (show utility version)

Displays the version, status, last updated date, and check sum of this utility.

-? | -h | --help (help)

Displays the online help.
gpactivatestandby 612

Greenplum Database Administrator Guide 4.1– Appendix B: Management Utility Reference
Examples

Activate the backup master host and make it the active master instance for a
Greenplum Database system (run from backup master host you are activating):

gpactivatestandby -d /gpdata

Activate the backup master host and at the same time configure another host to be
your new standby master:

gpactivatestandby -d /gpdata -c new_standby_hostname

See Also

gpinitsystem, gpinitstandby
gpactivatestandby 613

Greenplum Database Administrator Guide 4.1– Appendix B: Management Utility Reference
gpbitmapreindex
Rebuilds bitmap indexes after a 3.3.x to 4.0.x upgrade.

Synopsis
gpbitmapreindex -m { r | d | {l [-o output_sql_file]} }
[-h master_host] [-p master_port] [-n number_of_processes] [-v]

gpmigrator --version

gpmigrator --help | -?

Description

The on-disk format of bitmap indexes has changed from release 3.3.x to 4.0.x. Users
who upgrade must rebuild all bitmap indexes after upgrading to 4.0. The
gpbitmapreindex utility facilitates the upgrade of bitmap indexes by either running
the REINDEX command to reindex them, or running the DROP INDEX command to
simply remove them. If you decide to drop your bitmap indexes rather than reindex,
run gpbitmapreindex in list --outfile mode first to output a SQL file that you
can use to recreate the indexes later. You must be the Greenplum Database superuser
(gpadmin) in order to run gpbitmapreindex.

Options

-h host | --host host

Specifies the host name of the machine on which the Greenplum master database
server is running. If not specified, reads from the environment variable PGHOST or
defaults to localhost.

-m {r|d|l} | --mode {reindex|drop|list}

Required. The bitmap index upgrade mode: either reindex, drop, or list all
bitmap indexes in the system.

-n number_of_processes | --parallel number_of_processes

The number of bitmap indexes to reindex or drop in parallel. Valid values are 1-16.
The default is 1.

-o output_sql_file | --outfile output_sql_file

When used with list mode, outputs a SQL file that can be used to recreate the
bitmap indexes.

-p port | --port port

Specifies the TCP port on which the Greenplum master database server is listening
for connections. If not specified, reads from the environment variable PGPORT or
defaults to 5432.
gpbitmapreindex 614

Greenplum Database Administrator Guide 4.1– Appendix B: Management Utility Reference
-v | --verbose

Show verbose output.

--version

Displays the version of this utility.

-? | --help

Displays the online help.

Examples

Reindex all bitmap indexes:

gpbitmapreindex -m r

Output a file of SQL commands that can be used to recreate all bitmap indexes:

gpbitmapreindex -m list --outfile /home/gpadmin/bmp_ix.sql

Drop all bitmap indexes and run in verbose mode:

gpbitmapreindex -m d -v

See Also

REINDEX, DROP INDEX, CREATE INDEX
gpbitmapreindex 615

Greenplum Database Administrator Guide 4.1– Appendix C: Management Utility Reference
gpcheck
Verifies and validates Greenplum Database platform settings.

Synopsis
gpcheck -f hostfile_gpcheck [-m master_host] [-s
standy_master_host] [--stdout | --zipout] [--config config_file]

gpcheck --zipin gpcheck_zipfile

gpcheck -?

gpcheck --version

Description

The gpcheck utility determines the platform on which you are running Greenplum
Database and validates various platform-specific configuration settings. gpcheck can
use a host file or a file previously created with the --zipout option to validate
platform settings. At the end of a successful validation process, GPCHECK_NORMAL
message displays. If GPCHECK_ERROR displays, one or more validation checks failed.
You can use also gpcheck to gather and view platform settings on hosts without
running validation checks.

Greenplum recommends that you run gpcheck as root. If you do not run gpcheck as
root, the utility displays a warning message and will not be able to validate all
configuration settings; Only some of these settings will be validated.

Options

--config config_file

The name of a configuration file to use instead of the default file
$GPHOME/etc/gpcheck.cnf (or ~/gpconfigs/gpcheck_dca_config on the
EMC Greenplum Data Computing Appliance). This file specifies the OS-specific
checks to run.

-f hostfile_gpcheck

The name of a file that contains a list of hosts that gpcheck uses to validate
platform-specific settings. This file should contain a single host name for all hosts in
your Greenplum Database system (master, standby master, and segments).

-m master_host

Perform special master host-specific validation tasks on this host.

-s standy_master_host

Perform special standby master host-specific validation tasks on this host.
gpcheck 616

Greenplum Database Administrator Guide 4.1– Appendix C: Management Utility Reference
--stdout

Display collected host information from gpcheck. No checks or validations are
performed.

--zipout

Save all collected data to a .zip file in the current working directory. gpcheck
automatically creates the .zip file and names it gpcheck_timestamp.tar.gz.
No checks or validations are performed.

--zipin gpcheck_zipfile

Use this option to decompress and check a .zip file created with the --zipout
option. gpcheck performs validation tasks against the file you specify in this option.

-? (help)

Displays the online help.

--version

Displays the version of this utility.

Examples

Verify and validate the Greenplum Database platform settings by entering a host file
and specifying the master host and the standby master host:

gpcheck -f hostfile_gpcheck -m mdw -s smdw

Save Greenplum Database platform settings to a zip file:

gpcheck -f hostfile_gpcheck -m mdw -s smdw --zipout

Verify and validate the Greenplum Database platform settings using a zip file created
with the --zipout option:

gpcheck --zipin gpcheck_timestamp.tar.gz

View collected Greenplum Database platform settings:

gpcheck -f hostfile_gpcheck -m mdw -s smdw --stdout

See Also
gpcheckperf
gpcheck 617

Greenplum Database Administrator Guide 4.1– Appendix B: Management Utility Reference
gpcheckperf
Verifies the baseline hardware performance of the specified hosts.

Synopsis
gpcheckperf -d test_directory [-d test_directory ...]
 {-f hostfile_gpcheckperf | - h hostname [-h hostname ...]}
 [-r ds] [-B block_size] [-S file_size] [-D] [-v|-V]

gpcheckperf -d temp_directory
 {-f hostfile_gpchecknet | - h hostname [-h hostname ...]}
 [-r n|N|M [--duration time] [--netperf]] [-D] [-v|-V]

gpcheckperf -?

gpcheckperf --version

Description

The gpcheckperf utility starts a session on the specified hosts and runs the following
performance tests:

• Disk I/O Test (dd test) — To test the sequential throughput performance of a
logical disk or file system, the utility uses the dd command, which is a standard
UNIX utility. It times how long it takes to write and read a large file to and from
disk and calculates your disk I/O performance in megabytes (MB) per second. By
default, the file size that is used for the test is calculated at two times the total
random access memory (RAM) on the host. This ensures that the test is truly
testing disk I/O and not using the memory cache.

• Memory Bandwidth Test (stream) — To test memory bandwidth, the utility
uses the STREAM benchmark program to measure sustainable memory
bandwidth (in MB/s). This tests that your system is not limited in performance by
the memory bandwidth of the system in relation to the computational performance
of the CPU. In applications where the data set is large (as in Greenplum
Database), low memory bandwidth is a major performance issue. If memory
bandwidth is significantly lower than the theoretical bandwidth of the CPU, then it
can cause the CPU to spend significant amounts of time waiting for data to arrive
from system memory.

• Network Performance Test (gpnetbench*) — To test network performance
(and thereby the performance of the Greenplum Database interconnect), the utility
runs a network benchmark program that transfers a 5 second stream of data from
the current host to each remote host included in the test. The data is transferred in
parallel to each remote host and the minimum, maximum, average and median
network transfer rates are reported in megabytes (MB) per second. If the summary
transfer rate is slower than expected (less than 100 MB/s), you can run the
network test serially using the -r n option to obtain per-host results. To run a
full-matrix bandwidth test, you can specify -r M which will cause every host to
send and receive data from every other host specified. This test is best used to
validate if the switch fabric can tolerate a full-matrix workload.
gpcheckperf 618

Greenplum Database Administrator Guide 4.1– Appendix B: Management Utility Reference
To specify the hosts to test, use the -f option to specify a file containing a list of host
names, or use the -h option to name single host names on the command-line. If
running the network performance test, all entries in the host file must be for network
interfaces within the same subnet. If your segment hosts have multiple network
interfaces configured on different subnets, run the network test once for each subnet.

You must also specify at least one test directory (with -d). The user who runs
gpcheckperf must have write access to the specified test directories on all remote
hosts. For the disk I/O test, the test directories should correspond to your segment data
directories (primary and/or mirrors). For the memory bandwidth and network tests, a
temporary directory is required for the test program files.

Before using gpcheckperf, you must have a trusted host setup between the hosts
involved in the performance test. You can use the utility gpssh-exkeys to update the
known host files and exchange public keys between hosts if you have not done so
already. Note that gpcheckperf calls to gpssh and gpscp, so these Greenplum
utilities must also be in your $PATH.

Options

-B block_size

Specifies the block size to be used for disk I/O test. The default is 32KB, which is
the same as the Greenplum Database page size. You can specify sizing in KB, MB,
or GB.

-d test_directory

For the disk I/O test, specifies the file system directory locations to test. You must
have write access to the test directory on all hosts involved in the performance test.
You can use the -d option multiple times to specify multiple test directories (for
example, to test disk I/O of your primary and mirror data directories).

-d temp_directory

For the network and stream tests, specifies a single directory where the test program
files will be copied for the duration of the test. You must have write access to this
directory on all hosts involved in the test.

-D (display per-host results)

Reports performance results for each host for the disk I/O tests. The default is to
report results for just the hosts with the minimum and maximum performance, as
well as the total and average performance of all hosts.

--duration time

Specifies the duration of the network test in seconds (s), minutes (m), hours (h), or
days (d). The default is 15 seconds.
gpcheckperf 619

Greenplum Database Administrator Guide 4.1– Appendix B: Management Utility Reference
-f hostfile_gpcheckperf

For the disk I/O and stream tests, specifies the name of a file that contains one host
name per host that will participate in the performance test. The host name is
required, and you can optionally specify an alternate user name and/or SSH port
number per host. The syntax of the host file is one host per line as follows:

[username@]hostname[:ssh_port]

-f hostfile_gpchecknet

For the network performance test, all entries in the host file must be for host
adresses within the same subnet. If your segment hosts have multiple network
interfaces configured on different subnets, run the network test once for each subnet.
For example (a host file containing segment host address names for interconnect
subnet 1):

sdw1-1

sdw2-1

sdw3-1

-h hostname

Specifies a single host name (or host address) that will participate in the
performance test. You can use the -h option multiple times to specify multiple host
names.

--netperf

Specifies that the netperf binary should be used to perform the network test
instead of the Greenplum network test. To use this option, you must download
netperf from www.netperf.org and install it into $GPHOME/bin/lib on all
Greenplum hosts (master and segments).

-r ds{n|N|M}

Specifies which performance tests to run. The default is dsn:

• Disk I/O test (d)

• Stream test (s)

• Network performance test in sequential (n), parallel (N), or full-matrix (M)
mode. The optional --duration option specifies how long (in seconds) to
run the network test. To use the parallel (N) mode, you must run the test on an
even number of hosts.
If you would rather use netperf (www.netperf.org) instead of the Greenplum
network test, you can download it and install it into $GPHOME/bin/lib on all
Greenplum hosts (master and segments). You would then specify the optional
--netperf option to use the netperf binary instead of the default
gpnetbench* utilities.
gpcheckperf 620

www.netperf.org
www.netperf.org

Greenplum Database Administrator Guide 4.1– Appendix B: Management Utility Reference
-S file_size

Specifies the total file size to be used for the disk I/O test for all directories specified
with -d. file_size should equal two times total RAM on the host. If not specified, the
default is calculated at two times the total RAM on the host where gpcheckperf is
executed. This ensures that the test is truly testing disk I/O and not using the
memory cache. You can specify sizing in KB, MB, or GB.

-v (verbose) | -V (very verbose)

Verbose mode shows progress and status messages of the performance tests as they
are run. Very verbose mode shows all output messages generated by this utility.

--version

Displays the version of this utility.

-? (help)

Displays the online help.

Examples

Run the disk I/O and memory bandwidth tests on all the hosts in the file host_file
using the test directory of /data1 and /data2:

$ gpcheckperf -f hostfile_gpcheckperf -d /data1 -d /data2 -r
ds

Run only the disk I/O test on the hosts named sdw1 and sdw2 using the test directory
of /data1. Show individual host results and run in verbose mode:

$ gpcheckperf -h sdw1 -h sdw2 -d /data1 -r d -D -v

Run the parallel network test using the test directory of /tmp, where
hostfile_gpcheck_ic* specifies all network interface host address names within the
same interconnect subnet:

$ gpcheckperf -f hostfile_gpchecknet_ic1 -r N -d /tmp

$ gpcheckperf -f hostfile_gpchecknet_ic2 -r N -d /tmp

Run the same test as above, but use netperf instead of the Greenplum network test
(note that netperf must be installed in $GPHOME/bin/lib on all Greenplum hosts):

$ gpcheckperf -f hostfile_gpchecknet_ic1 -r N --netperf -d
/tmp

$ gpcheckperf -f hostfile_gpchecknet_ic2 -r N --netperf -d
/tmp

See Also

gpssh, gpscp, gpcheck
gpcheckperf 621

Greenplum Database Administrator Guide 4.1– Appendix B: Management Utility Reference
gpconfig
Sets server configuration parameters on all segments within a Greenplum Database
system.

Synopsis
gpconfig -c param_name -v value [-m master_value | --masteronly]
 | -r param_name [--masteronly]
 | -l
 [--skipvalidation] [--verbose] [--debug]

gpconfig -s param_name [--verbose] [--debug]

gpconfig --help

Description

The gpconfig utility allows you to set, unset, or view configuration parameters from
the postgresql.conf files of all instances (master, segments, and mirrors) in your
Greenplum Database system. When setting a parameter, you can also specify a
different value for the master if necessary. For example, parameters such as
max_connections require a different setting on the master than what is used for the
segments. If you want to set or unset a global or master only parameter, use the
--masteronly option.

gpconfig can only be used to manage certain parameters. For example, you cannot
use it to set parameters such as port, which is required to be distinct for every
segment instance. Use the -l (list) option to see a complete list of configuration
parameters supported by gpconfig.

When gpconfig sets a configuration parameter in a segment postgresql.conf file,
the new parameter setting always displays at the bottom of the file. When you use
gpconfig to remove a configuration parameter setting, gpconfig comments out the
parameter in all segment postgresql.conf files, thereby restoring the system
default setting. For example, if you use gpconfig to remove (comment out) a
parameter and later add it back (set a new value), there will be two instances of the
parameter; one that is commented out, and one that is enabled and inserted at the
bottom of the postgresql.conf file.

After setting a parameter, you must restart your Greenplum Database system or reload
the postgresql.conf files in order for the change to take effect. Whether you
require a restart or a reload depends on the parameter. See the Server Configuration
Parameters reference for more information about the server configuration parameters.

To show the currently set values for a parameter across the system, use the -s option.

gpconfig uses the following environment variables to connect to the Greenplum
Database master instance and obtain system configuration information:

• PGHOST

• PGPORT

• PGUSER
gpconfig 622

Greenplum Database Administrator Guide 4.1– Appendix B: Management Utility Reference
• PGPASSWORD

• PGDATABASE

Options

-c | --change param_name

Changes a configuration parameter setting by adding the new setting to the bottom
of the postgresql.conf files.

-v | --value value

The value to use for the configuration parameter you specified with the -c option.
By default, this value is applied to all segments, their mirrors, the master, and the
standby master.

-m | --mastervalue master_value

The master value to use for the configuration parameter you specified with the -c
option. If specified, this value only applies to the master and standby master. This
option can only be used with -v.

--masteronly

When specified, gpconfig will only edit the master postgresql.conf file.

-r | --remove param_name

Removes a configuration parameter setting by commenting out the entry in the
postgresql.conf files.

-l | --list

Lists all configuration parameters supported by the gpconfig utility.

-s | --show param_name

Shows the value for a configuration parameter used on all instances (master and
segments) in the Greenplum Database system. If there is a discrepancy in a
parameter value between segment instances, the gpconfig utility displays an error
message. Note that the gpconfig utility reads parameter values directly from the
database, and not the postgresql.conf file. If you are using gpconfig to set
configuration parameters across all segments, then running gpconfig -s to verify
the changes, you might still see the previous (old) values. You must reload the
configuration files (gpstop -u) or restart the system (gpstop -r) for changes to
take effect.

--skipvalidation

Overrides the system validation checks of gpconfig and allows you to operate on
any server configuration parameter, including hidden parameters and restricted
parameters that cannot be changed by gpconfig. When used with the -l option
(list), it shows the list of restricted parameters. This option should only be used to
set parameters when directed by Greenplum Customer Support.
gpconfig 623

Greenplum Database Administrator Guide 4.1– Appendix B: Management Utility Reference
--verbose

Displays additional log information during gpconfig command execution.

--debug

Sets logging output to debug level.

-? | -h | --help

Displays the online help.

Examples

Set the work_mem parameter to 120MB in the master host file only:

gpconfig -c work_mem -v 120MB --masteronly

Set the max_connections setting to 100 on all segments and 10 on the master:

gpconfig -c max_connections -v 100 -m 10

Comment out all instances of the default_statistics_target configuration
parameter, and restore the system default:

gpconfig -r default_statistics_target

List all configuration parameters supported by gpconfig:

gpconfig -l

Show the values of a particular configuration parameter across the system:

gpconfig -s max_connections

See Also
gpstop
gpconfig 624

Greenplum Database Administrator Guide 4.1– Appendix B: Management Utility Reference
gpconfig 625

Greenplum Database Administrator Guide 4.1– Appendix B: Management Utility Reference
gpcrondump
A wrapper utility for gp_dump, which can be called directly or from a crontab entry.

Synopsis
gpcrondump -x database_name
[-s schema | -t schema.table | -T schema.table]
[-u backup_directory] [-R post_dump_script] [-c] [-z] [-r]
[-f free_space_percent] [-b] [-h] [-i] [-j | -k] [-g] [-G] [-C]
[-d master_data_directory]
[-B parallel_processes] [-a] [-q]
[-y reportfile] [-l logfile_directory] [-D]
{ [-E encoding] [--inserts | --column-inserts] [--oids]
[--no-owner | --use-set-session-authorization]
[--no-privileges]
[--rsyncable]}

gpcrondump -?

gpcrondump -o

gpcrondump -v

Description

gpcrondump is a wrapper utility for gp_dump. By default, dump files are created in
their respective master and segment data directories in a directory named
db_dumps/YYYYMMDD. The data dump files are compressed by default using gzip.

gpcrondump allows you to schedule routine backups of a Greenplum database using
cron (a scheduling utility for UNIX operating systems). Cron jobs that call
gpcrondump should be scheduled on the master host.

Email Notifications

To have gpcrondump send out status email notifications, you must place a file named
mail_contacts in the home directory of the Greenplum superuser (gpadmin) or in
the same directory as the gpcrondump utility ($GPHOME/bin). This file should contain
one email address per line. gpcrondump will issue a warning if it cannot locate a
mail_contacts file in either location. If both locations have a mail_contacts file,
then the one in $HOME takes precedence.

Options

-a (do not prompt)

Do not prompt the user for confirmation.

-b (bypass disk space check)

Bypass disk space check. The default is to check for available disk space.
gpcrondump 626

Greenplum Database Administrator Guide 4.1– Appendix B: Management Utility Reference
-B parallel_processes

The number of segments to check in parallel for pre/post-dump validation. If not
specified, the utility will start up to 60 parallel processes depending on how many
segment instances it needs to dump.

-c (clear old dump files first)

Clear out old dump files before doing the dump. The default is not to clear out old
dump files. This will remove all old dump directories in the db_dumps directory,
except for the dump directory of the current date.

-C (clean old catalog dumps)

Clean out old catalog schema dump files prior to create.

--column-inserts

Dump data as INSERT commands with column names.

-d master_data_directory

The master host data directory. If not specified, the value set for
$MASTER_DATA_DIRECTORY will be used.

-D (debug)

Sets logging level to debug.

-E encoding

Character set encoding of dumped data. Defaults to the encoding of the database
being dumped. See “Character Set Support” on page 974 for the list of supported
character sets.

-f free_space_percent

When doing the check to ensure that there is enough free disk space to create the
dump files, specifies a percentage of free disk space that should remain after the
dump completes. The default is 10 percent.

-g (copy config files)

Secure a copy of the master and segment configuration files postgresql.conf,
pg_ident.conf, and pg_hba.conf. These configuration files are dumped in the
master or segment data directory to
db_dumps/YYYYMMDD/config_files_<timestamp>.tar

-G (dump global objects)

Use pg_dumpall to dump global objects such as roles and tablespaces. Global
objects are dumped in the master data directory to
db_dumps/YYYYMMDD/gp_global_1_1_<timestamp>.
gpcrondump 627

Greenplum Database Administrator Guide 4.1– Appendix B: Management Utility Reference
-h (record dump details)

Record details of database dump in database table public.gpcrondump_history
in database supplied via -x option. Utility will create table if it does not currently
exist.

-i (ignore parameter check)

Ignore the initial parameter check phase.

--inserts

Dump data as INSERT, rather than COPY commands.

-j (vacuum before dump)

Run VACUUM before the dump starts.

-k (vacuum after dump)

Run VACUUM after the dump has completed successfully.

-l logfile_directory

The directory to write the log file. Defaults to ~/gpAdminLogs.

--no-owner

Do not output commands to set object ownership.

--no-privileges

Do not output commands to set object privileges (GRANT/REVOKE commands).

-o (clear old dump files only)

Clear out old dump files only, but do not run a dump. This will remove the oldest
dump directory except the current date’s dump directory. All dump sets within that
directory will be removed.

--oids

Include object identifiers (oid) in dump data.

-p (primary segments only)

Dump all primary segments, which is the default behavior. Note: this option is
deprecated.

-q (no screen output)

Run in quiet mode. Command output is not displayed on the screen, but is still
written to the log file.

-r (rollback on failure)

Rollback the dump files (delete a partial dump) if a failure is detected. The default is
to not rollback.
gpcrondump 628

Greenplum Database Administrator Guide 4.1– Appendix B: Management Utility Reference
-R post_dump_script

The absolute path of a script to run after a successful dump operation. For example,
you might want a script that moves completed dump files to a backup host. This
script must reside in the same location on the master and all segment hosts.

--rsyncable

Passes the --rsyncable flag to the gzip utility to synchronize the output
occasionally, based on the input during compression. This synchronization increases
the file size by less than 1% in most cases. When this flag is passed, the rsync(1)
program can synchronize compressed files much more efficiently. The gunzip
utility cannot differentiate between a compressed file created with this option, and
one created without it.

-s schema_name

Dump only the named schema in the named database.

-t schema.table_name

Dump only the named table in this database. The -t option can be specified multiple
times.

-T schema.table_name

A table name to exclude from the database dump. The -T option can be specified
multiple times.

-u backup_directory

Specifies the absolute path where the backup files will be placed on each host. If the
path does not exist, it will be created, if possible. If not specified, defaults to the data
directory of each instance to be backed up. Using this option may be desirable if
each segment host has multiple segment instances as it will create the dump files in
a centralized location rather than the segment data directories.

--use-set-session-authorization

Use SET SESSION AUTHORIZATION commands instead of ALTER OWNER
commands to set object ownership.

-v (show utility version)

Displays the version, status, last updated date, and check sum of this utility.

-x database_name

Required. The name of the Greenplum database to dump.

-y reportfile

Specifies the full path name where the backup job log file will be placed on the
master host. If not specified, defaults to the master data directory or if running
remotely, the current working directory.
gpcrondump 629

Greenplum Database Administrator Guide 4.1– Appendix B: Management Utility Reference
-z (no compression)

Do not use compression. Default is to compress the dump files using gzip.

-? (help)

Displays the online help.

Examples

Call gpcrondump directly and dump mydatabase (and global objects):

gpcrondump -x mydatabase -c -g -G

A Linux crontab entry that runs a backup of the sales database (and global objects)
nightly at one past midnight:

SHELL=/bin/bash

GPHOME=/usr/local/greenplum-db-4.0.x.x

MASTER_DATA_DIRECTORY=/data/gpdb_p1/gp-1

PATH=$PATH:$GPHOME/bin

01 0 * * * gpadmin gpcrondump -x sales -c -g -G -a -q >>
gp_salesdump.log

A Solaris crontab entry that runs a backup of the sales database (and global objects)
nightly at one past midnight (no line breaks):

01 0 * * * SHELL=/bin/bash ;
GPHOME=/usr/local/greenplum-db-4.0.x.x ;
PATH=$PATH:$GPHOME/bin ; HOME=/export/home/gpadmin ;
MASTER_DATA_DIRECTORY=/data/gpdb_p1/gp-1 ;
/usr/local/greenplum-db/bin/gpcrondump -x sales -c -g -G -a
-q >> gp_salesdump.log

See Also

gp_dump, gpdbrestore
gpcrondump 630

Greenplum Database Administrator Guide 4.1– Appendix B: Management Utility Reference
gpdbrestore
A wrapper utility around gp_restore. Restores a database from a set of dump files
generated by gpcrondump.

Synopsis
gpdbrestore { -t timestamp_key [-L] | -b YYYYMMDD |
-R hostname:path_to_dumpset | -s database_name }
[-T schema.table [,...]] [-e] [-G] [-B parallel_processes]
[-d master_data_directory] [-a] [-q] [-l logfile_directory] [-D]

gpdbrestore -?

gpdbrestore -v

Description

gpdbrestore is a wrapper around gp_restore, which provides some convenience
and flexibility in restoring from a set of backup files created by gpcrondump. This
utility provides the following additional functionality on top of gp_restore:

• Automatically reconfigures for compression.

• Validates the number of dump files are correct (For primary only, mirror only,
primary and mirror, or a subset consisting of some mirror and primary segment
dump files).

• If a failed segment is detected, restores to active segment instances.

• Do not need to know the complete timestamp key (-t) of the backup set to restore.
Additional options are provided to instead give just a date (-b), backup set
directory location (-R), or database name (-s) to restore.

• The -R option allows the ability to restore from a backup set located on a host
outside of the Greenplum Database array (archive host). Ensures that the correct
dump file goes to the correct segment instance.

• Identifies the database name automatically from the backup set.

• Allows you to restore particular tables only (-T option) instead of the entire
database. Note that single tables are not automatically dropped or truncated prior
to restore.

• Can restore global objects such as roles and tablespaces (-G option).

• Detects if the backup set is primary segments only or primary and mirror
segments and passes the appropriate options to gp_restore.

• Allows you to drop the target database before a restore in a single operation.

Options

-a (do not prompt)

Do not prompt the user for confirmation.
gpdbrestore 631

Greenplum Database Administrator Guide 4.1– Appendix B: Management Utility Reference
-b YYYYMMDD

Looks for dump files in the segment data directories on the Greenplum Database
array of hosts in db_dumps/YYYYMMDD

-B parallel_processes

The number of segments to check in parallel for pre/post-restore validation. If not
specified, the utility will start up to 60 parallel processes depending on how many
segment instances it needs to restore.

-d master_data_directory

Optional. The master host data directory. If not specified, the value set for
$MASTER_DATA_DIRECTORY will be used.

-D (debug)

Sets logging level to debug.

-e (drop target database before restore)

Drops the target database before doing the restore and then recreates it.

-G (restore global objects)

Restores global objects such as roles and tablespaces if the global object dump file
db_dumps/<date>/gp_global_1_1_<timestamp> is found in the master data
directory.

-l logfile_directory

The directory to write the log file. Defaults to ~/gpAdminLogs.

-L (list tablenames in backup set)

When used with the -t option, lists the table names that exist in the named backup
set and exits. Does not do a restore.

-q (no screen output)

Run in quiet mode. Command output is not displayed on the screen, but is still
written to the log file.

-R hostname:path_to_dumpset

Allows you to provide a hostname and full path to a set of dump files. The host does
not have to be in the Greenplum Database array of hosts, but must be accessible
from the Greenplum master.

-s database_name

Looks for latest set of dump files for the given database name in the segment data
directories db_dumps directory on the Greenplum Database array of hosts.
gpdbrestore 632

Greenplum Database Administrator Guide 4.1– Appendix B: Management Utility Reference
-t timestamp_key

The 14 digit timestamp key that uniquely identifies a backup set of data to restore. It
is of the form YYYYMMDDHHMMSS. Looks for dump files matching this timestamp key
in the segment data directories db_dumps directory on the Greenplum Database
array of hosts.

-T schema.table_name

A comma-separated list of specific table names to restore. The named table(s) must
exist in the backup set of the database being restored. Existing tables are not
automatically truncated before data is restored from backup. If your intention is to
replace existing data in the table from backup, truncate the table prior to running
gpdbrestore -T.

-v (show utility version)

Displays the version, status, last updated date, and check sum of this utility.

-? (help)

Displays the online help.

Examples

Restore the sales database from the latest backup files generated by gpcrondump
(assumes backup files are in the segment data directories in db_dumps):

gpdbrestore -s sales

Restore a database from backup files that reside on an archive host outside the
Greenplum Database array (command issued on the Greenplum master host):

gpdbrestore –R archivehostname:/data_p1/db_dumps/20080214

Restore global objects only (roles and tablespaces):

gpdbrestore -G

See Also

gpcrondump, gp_restore
gpdbrestore 633

Greenplum Database Administrator Guide 4.1– Appendix B: Management Utility Reference
gpdeletesystem
Deletes a Greenplum Database system that was initialized using gpinitsystem.

Synopsis
gpdeletesystem -d master_data_directory [-B parallel_processes]
[-f] [-l logfile_directory] [-D]

gpdeletesystem -?

gpdeletesystem -v

Description

The gpdeletesystem utility will perform the following actions:

• Stop all postgres processes (the segment instances and master instance).

• Deletes all data directories.

Before running gpdeletesystem:

• Move any backup files out of the master and segment data directories.

• Make sure that Greenplum Database is running.

• If you are currently in a segment data directory, change directory to another
location. The utility fails with an error when run from within a segment data
directory.

This utility will not uninstall the Greenplum Database software.

Options

-d data_directory

Required. The master host data directory.

-B parallel_processes

The number of segments to delete in parallel. If not specified, the utility will start up
to 60 parallel processes depending on how many segment instances it needs to
delete.

-f (force)

Force a delete even if backup files are found in the data directories. The default is to
not delete Greenplum Database instances if backup files are present.

-l logfile_directory

The directory to write the log file. Defaults to ~/gpAdminLogs.

-D (debug)

Sets logging level to debug.
gpdeletesystem 634

Greenplum Database Administrator Guide 4.1– Appendix B: Management Utility Reference
-? (help)

Displays the online help.

-v (show utility version)

Displays the version, status, last updated date, and check sum of this utility.

Examples

Delete a Greenplum Database system:

gpdeletesystem -d /gpdata/gp-1

Delete a Greenplum Database system even if backup files are present:

gpdeletesystem -d /gpdata/gp-1 -f
gpdeletesystem 635

Greenplum Database Administrator Guide 4.1– Appendix B: Management Utility Reference
gpdetective
Collects diagnostic information from a running Greenplum Database system.

Synopsis
gpdetective [-h hostname] [-p port] [-U username] [-P password]
 [--start_date number_of_days | YYYY-MM-DD]
 [--end_date YYYY-MM-DD]
 [--diagnostics a|n|s|o|c]
 [--logs a|n|dbid[,dbid,... | -dbid]]
 [--cores t|f]
 [--pg_dumpall t|f] [--pg_dump_options option[,...]]
 [--tempdir temp_dir]
 [--connect t|f]

gpdetective -?

gpdetective -v

Description

The gpdetective utility collects information from a running Greenplum Database
system and creates a bzip2-compressed tar output file. This output file can then be sent
to Greenplum Customer Support to help with the diagnosis of Greenplum Database
errors or system failures. The gpdetective utility runs the following diagnostic tests:

• gpstate to check the system status

• gpcheck to make sure the recommended OS settings are set on all hosts

• gpcheckcat and gpcheckdb to check the system catalog tables for
inconsistencies

gpdetective captures the following files and Greenplum system information:

• postgresql.conf configuration files (master and segments)

• log files (master and segments)

• Greenplum Database system configuration information

• (optional) Core files

• (optional) Schema DDL dumps for all databases and global objects (using
pg_dumpall)

A bzip2-compressed tar output file containing this information is created in the current
directory with a file name of gpdetective<timestamp>.tar.bz2.
gpdetective 636

Greenplum Database Administrator Guide 4.1– Appendix B: Management Utility Reference
Options

--connect t|f

Specifies if gpdetective should connect to the database to obtain system
information. The default is true (t). If false (f), gpdetective only gathers
information it can obtain without making a connection to the database. This
information includes (from the master host):

• Log files

• The master_data_directory/postgresql.conf file

• The ~/gpAdminLogs directory

• gpcheck output

• Core files

--cores t|f

Determines whether or not the utility retrieves core files. The default is true (t).

--diagnostics a|n|s|o|c

Specifies the diagnostic tests to run: all (a), none (n), operating system (o)
diagnostics, or catalog (c) diagnostics. The default is all (a).

--end_date YYYY-MM-DD

Sets the end date for the diagnostic information collected. The collected information
ends at 00:00:00 of the specified date.

-h hostname

The host name of the machine on which the Greenplum master database server is
running. If not specified, reads from the environment variable PGHOST or defaults to
localhost.

--logs a|n|dbid_list

Specifies which log file(s) to retrieve: all (a), none (n), a comma separated list of
segment dbid numbers, or a range of dbid numbers divided by a dash (-) (for
example, 3-6 retrieves logs from segments 3, 4, 5, and 6). The default is all (a).

-P password

If Greenplum Database is configured to use password authentication, you must also
supply the database superuser password. If not specified, reads from ~/.pgpass if it
exists.

--pg_dumpall t|f

Determines whether or not the utility runs pg_dumpall to collect schema DDL for
all databases and global objects. The default is true (t).
gpdetective 637

Greenplum Database Administrator Guide 4.1– Appendix B: Management Utility Reference
--pg_dump_options option[,...]

If --pg_dumpall is true, specifies a comma separated list of dump options to use
when the pg_dumpall utility is called. See pg_dumpall for a valid list of dump
options.

-p port

The TCP port on which the Greenplum master database server is listening for
connections. If not specified, reads from the environment variable PGPORT or
defaults to 5432.

--start_date number_of_days | YYYY-MM-DD

Sets the start date for the diagnostic information collected. Specify either the
number of days prior, or an explicit past date.

--tempdir temp_dir

Specifies the temporary directory used by gpdetective. The default value is
determined by the $TEMP, $TMP and $TMPDIR environment variables.

-U gp_superuser

The Greenplum database superuser role name to connect as (typically gpadmin). If
not specified, reads from the environment variable PGUSER or defaults to the current
system user name.

-v (show utility version)

Displays the version of this utility.

-? (help)

Displays the utility usage and syntax.

Examples

Collect all diagnostic information for a Greenplum Database system and supply the
required connection information for the master host:

gpdetective -h mdw -p 54320 -U gpadmin -P mypassword

Run diagnostics and collect all logs and system information for the past two days:

gpdetective --start_date 2

Do not run diagnostic tests or schema dumps, just collect the log files of the master
and segment 3:

gpdetective --diagnostics n --logs -1,3 --pg_dumpall f

See Also

gpstate, gpcheck, pg_dumpall
gpdetective 638

Greenplum Database Administrator Guide 4.1– Appendix B: Management Utility Reference
gpexpand
Expands an existing Greenplum Database across new hosts in the array.

Synopsis
gpexpand
 [-f hosts_file]
 | -i input_file [-B batch_size] [-V]
 | {-d hh:mm:ss | -e 'YYYY-MM-DD hh:mm:ss'} [-analyze]
 [-n parallel_processes]
 | --rollback
 | --clean
[-D database_name][--verbose] [--silent]

gpexpand -? | -h | --help

gpexpand --version

Prerequisites

• You are logged in as the Greenplum Database superuser (gpadmin).

• The new segment hosts have been installed and configured as per the existing
segment hosts. This involves:

• Configuring the hardware and OS

• Installing the Greenplum software

• Creating the gpadmin user account

• Exchanging SSH keys.

• Enough disk space on your segment hosts to temporarily hold a copy of your
largest table.

Description

The gpexpand utility performs system expansion in two phases: segment initialization
and then table redistribution.

In the initialization phase, gpexpand runs with an input file that specifies data
directories, dbid values, and other characteristics of the new segments. You can create
the input file manually, or by following the prompts in an interactive interview.

If you choose to create the input file using the interactive interview, you can
optionally specify a file containing a list of expansion hosts. If your platform or
command shell limits the length of the list of hostnames that you can type when
prompted in the interview, specifying the hosts with -f may be mandatory.

In addition to initializing the segments, the initialization phase performs these actions:

• Creates an expansion schema to store the status of the expansion operation,
including detailed status for tables.
gpexpand 639

Greenplum Database Administrator Guide 4.1– Appendix B: Management Utility Reference
• Changes the distribution policy for all tables to DISTRIBUTED RANDOMLY. The
original distribution policies are later restored in the redistribution phase.

To begin the redistribution phase, you must run gpexpand with either the -d
(duration) or -e (end time) options. Until the specified end time or duration is reached,
the utility will redistribute tables in the expansion schema. Each table is reorganized
using ALTER TABLE commands to rebalance the tables across new segments, and to
set tables to their original distribution policy. If gpexpand completes the
reorganization of all tables before the specified duration, it displays a success message
and ends.

Options

-a | --analyze

Run ANALYZE to update the table statistics after expansion. The default is to not run
ANALYZE.

-B batch_size

Batch size of remote commands to send to a given host before making a one-second
pause. Default is 16. Valid values are 1-128.

The gpexpand utility issues a number of setup commands that may exceed the
host’s maximum threshold for authenticated connections as defined by
MaxStartups in the SSH daemon configuration. The one-second pause allows
authentications to be completed before gpexpand issues any more commands.

The default value does not normally need to be changed. However, it may be
necessary to reduce the maximum number of commands if gpexpand fails with
connection errors such as 'ssh_exchange_identification: Connection
closed by remote host.'

-c | --clean

Remove the expansion schema.

-d | --duration hh:mm:ss

Duration of the expansion session from beginning to end.

-D database_name

Specifies the database in which to create the expansion schema and tables. If this
option is not given, the setting for the environment variable PGDATABASE is used.
The database templates template1 and template0 cannot be used.

-e | --end ‘YYYY-MM-DD hh:mm:ss’

Ending date and time for the expansion session.

-f | --hosts-file filename

Specifies the name of a file that contains a list of new hosts for system expansion.
Each line of the file must contain a single host name.
gpexpand 640

Greenplum Database Administrator Guide 4.1– Appendix B: Management Utility Reference
This file can contain hostnames with or without network interfaces specified. The
gpexpand utility handles either case, adding interface numbers to end of the
hostname if the original nodes are configured with multiple network interfaces.

-i | --input input_file

Specifies the name of the expansion configuration file, which contains one line for
each segment to be added in the format of:

hostname:address:port:fselocation:dbid:content:preferred_role:re
plication_port

If your system has filespaces, gpexpand will expect a filespace configuration file
(input_file_name.fs) to exist in the same directory as your expansion
configuration file. The filespace configuration file is in the format of:

filespaceOrder=filespace1_name:filespace2_name: ...

dbid:/path/for/filespace1:/path/for/filespace2: ...

dbid:/path/for/filespace1:/path/for/filespace2: ...

...

-n parallel_processes

The number of tables to redistribute simultaneously. Valid values are 1 - 16.

Each table redistribution process requires two database connections: one to alter the
table, and another to update the table’s status in the expansion schema. Before
increasing -n, check the current value of the server configuration parameter
max_connections and make sure the maximum connection limit is not exceeded.

-r | --rollback

Roll back a failed expansion setup operation. If the rollback command fails, attempt
again using the -D option to specify the database that contains the expansion schema
for the operation that you want to roll back.

-s | --silent

Runs in silent mode. Does not prompt for confirmation to proceed on warnings.

-v | --verbose

Verbose debugging output. With this option, the utility will output all DDL and
DML used to expand the database.

--version

Display the utility’s version number and exit.

-V | --novacuum

Do not vacuum catalog tables before creating schema copy.

-? | -h | --help

Displays the online help.
gpexpand 641

Greenplum Database Administrator Guide 4.1– Appendix B: Management Utility Reference
Examples

Run gpexpand with an input file to initialize new segments and create the expansion
schema in the default database:

$ gpexpand -i input_file

Run gpexpand for sixty hours maximum duration to redistribute tables to new
segments:

$ gpexpand -d 60:00:00

See Also
gpssh-exkeys
gpexpand 642

Greenplum Database Administrator Guide 4.1– Appendix B: Management Utility Reference
gpfdist
Serves data files to or writes data files out from Greenplum Database segments.

Synopsis
gpfdist [-d directory] [-p http_port] [-l log_file] [-t timeout]
[-m max_length] [-v | -V]

gpfdist -?

gpfdist --version

Description

gpfdist is Greenplum’s parallel file distribution program. It is used by readable
external tables and gpload to serve external table files to all Greenplum Database
segments in parallel. It is used by writable external tables to accept output streams
from Greenplum Database segments in parallel and write them out to a file.

In order for gpfdist to be used by an external table, the LOCATION clause of the
external table definition must specify the correct file location using the gpfdist://
protocol (see CREATE EXTERNAL TABLE).

The benefit of using gpfdist is that you are guaranteed maximum parallelism while
reading from or writing to external tables, thereby offering the best performance as
well as easier administration of external tables.

For readable external tables, gpfdist parses and serves data files evenly to all the
segment instances in the Greenplum Database system when users SELECT from the
external table. For writable external tables, gpfdist accepts parallel output streams
from the segments when users INSERT into the external table, and writes to an output
file.

For readable external tables, if load files are compressed using gzip or bzip2 (have a
.gz or .bz2 file extension), gpfdist will uncompress the files automatically before
loading provided that gunzip or bunzip2 is in your path. Writable external tables do
not currently support compression.

Most likely, you will want to run gpfdist on your ETL machines rather than the
hosts where Greenplum Database is installed. To install gpfdist on another host,
simply copy the utility over to that host and add gpfdist to your $PATH.

Options

-d directory

The directory from which gpfdist will serve files for readable external tables or
create output files for writable external tables. If not specified, defaults to the
current directory.
gpfdist 643

Greenplum Database Administrator Guide 4.1– Appendix B: Management Utility Reference
-l log_file

The fully qualified path and log file name where standard output messages are to be
logged.

-p http_port

The HTTP port on which gpfdist will serve files. Defaults to 8080.

-t timeout

Sets the time allowed for Greenplum Database to establish a connection to a
gpfdist process. Default is 5 seconds. Allowed values are 2 to 30 seconds. May
need to be increased on systems with a lot of network traffic.

-m max_length

Sets the maximum allowed data row length in bytes. Default is 32768. Should be
used when user data includes very wide rows (or when line too long error
message occurs). Should not be used otherwise as it increases resource allocation.
Valid range is 32K to 1MB.

-? (help)

Displays the online help.

-v (verbose)

Verbose mode shows progress and status messages.

-V (very verbose)

Verbose mode shows all output messages generated by this utility.

--version

Displays the version of this utility.

Examples

Serve files from a specified directory using port 8081 (and start gpfdist in the
background):

gpfdist -d /var/load_files -p 8081 &

Start gpfdist in the background and redirect output and errors to a log file:

gpfdist -d /var/load_files -p 8081 -l /home/gpadmin/log &

To stop gpfdist when it is running in the background:

--First find its process id:

ps ax | grep gpfdist

OR on Solaris

ps -ef | grep gpfdist

--Then kill the process, for example:

kill 3456
gpfdist 644

Greenplum Database Administrator Guide 4.1– Appendix B: Management Utility Reference
See Also
CREATE EXTERNAL TABLE, gpload
gpfdist 645

Greenplum Database Administrator Guide 4.1– Appendix B: Management Utility Reference
gpfilespace
Creates a filespace using a configuration file that defines per-segment file system
locations. Filespaces describe the physical file system resources to be used by a
tablespace.

Synopsis
gpfilespace [connection_option ...] [-l logfile_directory] [-o
[output_file_name]]

gpfilespace [connection_option ...] [-l logfile_directory] -c
fs_config_file

gpfilespace -v | -?

Description

A tablespace requires a file system location to store its database files. In Greenplum
Database, the master and each segment (primary and mirror) needs its own distinct
storage location. This collection of file system locations for all components in a
Greenplum system is referred to as a filespace. Once a filespace is defined, it can be
used by one or more tablespaces.

When used with the -o option, the gpfilespace utility looks up your system
configuration information in the Greenplum Database catalog tables and prompts you
for the appropriate file system locations needed to create the filespace. It then outputs
a configuration file that can be used to create a filespace. If a file name is not
specified, a gpfilespace_config_# file will be created in the current directory by
default.

Once you have a configuration file, you can run gpfilespace with the -c option to
create the filespace in Greenplum Database.

Options

-c | --config fs_config_file

A configuration file containing:

• An initial line denoting the new filespace name. For example:
filespace:myfs

• One line each for the master, the primary segments, and the mirror segments.
A line describes a file system location that a particular segment database
instance should use as its data directory location to store database files
associated with a tablespace. Each line is in the format of:
hostname:dbid:/filesystem_dir/seg_datadir_name

-l | --logdir logfile_directory

The directory to write the log file. Defaults to ~/gpAdminLogs.
gpfilespace 646

Greenplum Database Administrator Guide 4.1– Appendix B: Management Utility Reference
-o | --output output_file_name

The directory location and file name to output the generated filespace configuration
file. You will be prompted to enter a name for the filespace, a master file system
location, the primary segment file system locations, and the mirror segment file
system locations. For example, if your configuration has 2 primary and 2 mirror
segments per host, you will be prompted for a total of 5 locations (including the
master). The file system locations must exist on all hosts in your system prior to
running the gpfilespace utility. The utility will designate segment-specific data
directories within the location(s) you specify, so it is possible to use the same
location for multiple segments. However, primaries and mirrors cannot use the same
location. After the utility creates the configuration file, you can manually edit the
file to make any required changes to the filespace layout before creating the
filespace in Greenplum Database.

-v | --version (show utility version)

Displays the version of this utility.

-? | --help (help)

Displays the utility usage and syntax.

Connection Options

-h host | --host host

The host name of the machine on which the Greenplum master database server is
running. If not specified, reads from the environment variable PGHOST or defaults to
localhost.

-p port | --port port

The TCP port on which the Greenplum master database server is listening for
connections. If not specified, reads from the environment variable PGPORT or
defaults to 5432.

-U username | --username superuser_name

The database superuser role name to connect as. If not specified, reads from the
environment variable PGUSER or defaults to the current system user name. Only
database superusers are allowed to create filespaces.

-W | --password

Force a password prompt.

Examples

Create a filespace configuration file. You will be prompted to enter a name for the
filespace, a master file system location, the primary segment file system locations, and
the mirror segment file system locations. For example, if your configuration has 2
primary and 2 mirror segments per host, you will be prompted for a total of 5 locations
(including the master). The file system locations must exist on all hosts in your system
prior to running the gpfilespace utility:
gpfilespace 647

Greenplum Database Administrator Guide 4.1– Appendix B: Management Utility Reference
$ gpfilespace -o .

Enter a name for this filespace

> fastdisk

Checking your configuration:

Your system has 2 hosts with 2 primary and 2 mirror segments
per host.

Configuring hosts: [sdw1, sdw2]

Please specify 2 locations for the primary segments, one per
line:

primary location 1> /gp_pri_filespc

primary location 2> /gp_pri_filespc

Please specify 2 locations for the mirror segments, one per
line:

mirror location 1> /gp_mir_filespc

mirror location 2> /gp_mir_filespc

Enter a file system location for the master:

master location> /gp_master_filespc

Example filespace configuration file:

filespace:fastdisk

mdw:1:/gp_master_filespc/gp-1

sdw1:2:/gp_pri_filespc/gp0

sdw1:3:/gp_mir_filespc/gp1

sdw2:4:/gp_mir_filespc/gp0

sdw2:5:/gp_pri_filespc/gp1

Execute the configuration file to create the filespace in Greenplum Database:

$ gpfilespace -c gpfilespace_config_1

See Also
CREATE TABLESPACE
gpfilespace 648

Greenplum Database Administrator Guide 4.1– Appendix B: Management Utility Reference
gpinitstandby
Adds and/or initializes a standby master host for a Greenplum Database system.

Synopsis
gpinitstandby { -s standby_hostname | -r }
[-M smart | -M fast] [-n] [-a] [-q] [-l logfile_directory] [-L]
[-D]

gpinitstandby -? | -v

Description

The gpinitstandby utility adds a backup master host to your Greenplum Database
system. If your system has an existing backup master host configured, use the -r
option to remove it before adding the new standby master host.

Before running this utility, make sure that the Greenplum Database software is
installed on the backup master host and that you have exchanged SSH keys between
hosts. Also make sure that the master port is set to the same port number on the master
host and the backup master host.

See the Greenplum Database Installation Guide for instructions. This utility should be
run on the currently active primary master host.

The utility will perform the following steps:

• Shutdown your Greenplum Database system

• Update the Greenplum Database system catalog to remove the existing backup
master host information (if the -r option is supplied)

• Update the Greenplum Database system catalog to add the new backup master
host information (use the -n option to skip this step)

• Edit the pg_hba.conf files of the segment instances to allow access from the
newly added standby master.

• Setup the backup master instance on the alternate master host

• Start the synchronization process

• Restart your Greenplum Database system

A backup master host serves as a ‘warm standby’ in the event of the primary master
host becoming unoperational. The backup master is kept up to date by a transaction
log replication process (gpsyncagent), which runs on the backup master host and
keeps the data between the primary and backup master hosts synchronized. If the
primary master fails, the log replication process is shut down, and the backup master
can be activated in its place by using the utility. Upon activation of the backup
master, the replicated logs are used to reconstruct the state of the master host at the
time of the last successfully committed transaction.

The activated standby master effectively becomes the Greenplum Database master,
accepting client connections on the master port and performing normal master
operations such as SQL command processing and workload management.
gpinitstandby 649

Greenplum Database Administrator Guide 4.1– Appendix B: Management Utility Reference
Options

-a (do not prompt)

Do not prompt the user for confirmation.

-D (debug)

Sets logging level to debug.

-l logfile_directory

The directory to write the log file. Defaults to ~/gpAdminLogs.

-L (leave database stopped)

Leave Greenplum Database in a stopped state after removing the warm standby
master.

-M fast (fast shutdown - rollback)

Use fast shut down when stopping Greenplum Database at the beginning of the
standby initialization process. Any transactions in progress are interrupted and
rolled back.

-M smart (smart shutdown - warn)

Use smart shut down when stopping Greenplum Database at the beginning of the
standby initialization process. If there are active connections, this command fails
with a warning. This is the default shutdown mode.

-n (resynchronize)

Use this option if you already have a standby master configured, and just want to
resynchronize the data between the primary and backup master host. The
Greenplum system catalog tables will not be updated.

-q (no screen output)

Run in quiet mode. Command output is not displayed on the screen, but is still
written to the log file.

-r (remove standby master)

Removes the currently configured standby master host from your Greenplum
Database system.

-s standby_hostname

Required. The host name of the standby master host.

-v (show utility version)

Displays the version, status, last updated date, and check sum of this utility.

-? (help)

Displays the online help.
gpinitstandby 650

Greenplum Database Administrator Guide 4.1– Appendix B: Management Utility Reference
Examples

Add a backup master host to your Greenplum Database system and start the
synchronization process:

gpinitstandby -s host09

Remove the existing backup master from your Greenplum system configuration:

gpinitstandby -r

Start an existing backup master host and synchronize the data with the primary master
host - do not add a new Greenplum backup master host to the system catalog:

gpinitstandby -s host09 -n
gpinitstandby 651

Greenplum Database Administrator Guide 4.1– Appendix B: Management Utility Reference
gpinitsystem
Initializes a Greenplum Database system using configuration parameters specified in
the gpinitsystem_config file.

Synopsis
gpinitsystem -c gpinitsystem_config
 [-h hostfile_gpinitsystem]
 [-B parallel_processes]
 [-p postgresql_conf_param_file]
 [-s standby_master_host]
 [--max_connections=number] [--shared_buffers=size]
 [--locale=locale] [--lc-collate=locale]
 [--lc-ctype=locale] [--lc-messages=locale]
 [--lc-monetary=locale] [--lc-numeric=locale]
 [--lc-time=locale] [--su_password=password]
 [-S] [-a] [-q] [-l logfile_directory] [-D]

gpinitsystem -?

gpinitsystem -v

Description

The gpinitsystem utility will create a Greenplum Database instance using the values
defined in a configuration file. See “Initialization Configuration File Format” on page
655 for more information about this configuration file. Before running this utility,
make sure that you have installed the Greenplum Database software on all the hosts in
the array.

In a Greenplum Database DBMS, each database instance (the master and all
segments) must be initialized across all of the hosts in the system in such a way that
they can all work together as a unified DBMS. The gpinitsystem utility takes care
of initializing the Greenplum master and each segment instance, and configuring the
system as a whole.

Before running gpinitsystem, you must set the $GPHOME environment variable to
point to the location of your Greenplum Database installation on the master host and
exchange SSH keys between all host addresses in the array using gpssh-exkeys.

This utility performs the following tasks:

• Verifies that the parameters in the configuration file are correct.

• Ensures that a connection can be established to each host address. If a host address
cannot be reached, the utility will exit.

• Verifies the locale settings.

• Displays the configuration that will be used and prompts the user for
confirmation.

• Initializes the master instance.
gpinitsystem 652

Greenplum Database Administrator Guide 4.1– Appendix B: Management Utility Reference
• Initializes the standby master instance (if specified).

• Initializes the primary segment instances.

• Initializes the mirror segment instances (if mirroring is configured).

• Configures the Greenplum Database system and checks for errors.

• Starts the Greenplum Database system.

Options

-a (do not prompt)

Do not prompt the user for confirmation.

-B parallel_processes

The number of segments to create in parallel. If not specified, the utility will start up
to 4 parallel processes at a time.

-c gpinitsystem_config

Required. The full path and filename of the configuration file, which contains all of
the defined parameters to configure and initialize a new Greenplum system. See
“Initialization Configuration File Format” on page 655 for a description of this file.

-D (debug)

Sets log output level to debug.

-h hostfile_gpinitsystem

Optional. The full path and filename of a file that contains the host addresses of your
segment hosts. If not specified on the command line, you can specify the host file
using the MACHINE_LIST_FILE parameter in the gpinitsystem_config file.

--locale=locale | -n locale

Sets the default locale used by Greenplum Database. If not specified, the LC_ALL,
LC_COLLATE, or LANG environment variable of the master host determines the
locale. If these are not set, the default locale is C (POSIX). A locale identifier consists
of a language identifier and a region identifier, and optionally a character set
encoding. For example, sv_SE is Swedish as spoken in Sweden, en_US is U.S.
English, and fr_CA is French Canadian. If more than one character set can be useful
for a locale, then the specifications look like this: en_US.UTF-8 (locale
specification and character set encoding). On most systems, the command locale
will show the locale environment settings and locale -a will show a list of all
available locales.

--lc-collate=locale

Similar to --locale, but sets the locale used for collation (sorting data). The sort
order cannot be changed after Greenplum Database is initialized, so it is important
to choose a collation locale that is compatible with the character set encodings that
gpinitsystem 653

Greenplum Database Administrator Guide 4.1– Appendix B: Management Utility Reference
you plan to use for your data. There is a special collation name of C or POSIX
(byte-order sorting as opposed to dictionary-order sorting). The C collation can be
used with any character encoding.

--lc-ctype=locale

Similar to --locale, but sets the locale used for character classification (what
character sequences are valid and how they are interpreted). This cannot be changed
after Greenplum Database is initialized, so it is important to choose a character
classification locale that is compatible with the data you plan to store in Greenplum
Database.

--lc-messages=locale

Similar to --locale, but sets the locale used for messages output by Greenplum
Database. The current version of Greenplum Database does not support multiple
locales for output messages (all messages are in English), so changing this setting
will not have any effect.

--lc-monetary=locale

Similar to --locale, but sets the locale used for formatting currency amounts.

--lc-numeric=locale

Similar to --locale, but sets the locale used for formatting numbers.

--lc-time=locale

Similar to --locale, but sets the locale used for formatting dates and times.

-l logfile_directory

The directory to write the log file. Defaults to ~/gpAdminLogs.

--max_connections=number | -m number

Sets the maximum number of client connections allowed to the master. The default
is 25.

-p postgresql_conf_param_file

Optional. The name of a file that contains postgresql.conf parameter settings
that you want to set for Greenplum Database. These settings will be used when the
individual master and segment instances are initialized. You can also set parameters
after initialization using the gpconfig utility.

-q (no screen output)

Run in quiet mode. Command output is not displayed on the screen, but is still
written to the log file.

--shared_buffers=size | -b size

Sets the amount of memory a Greenplum server instance uses for shared memory
buffers. You can specify sizing in kilobytes (kB), megabytes (MB) or gigabytes
(GB). The default is 125MB.
gpinitsystem 654

Greenplum Database Administrator Guide 4.1– Appendix B: Management Utility Reference
-s standby_master_host

Optional. If you wish to configure a backup master host, specify the host name using
this option. The Greenplum Database software must already be installed and
configured on this host.

--su_password=superuser_password | -e superuser_password

The password to set for the Greenplum Database superuser. Defaults to gparray.
You can always change the superuser password at a later time using the ALTER ROLE
command. Client connections over the network require a password login for the
database superuser account (for example, the gpadmin user).

-S (spread mirror configuration)

If mirroring parameters are specified, spreads the mirror segments across the
available hosts. The default is to group the set of mirror segments together on an
alternate host from their primary segment set. Mirror spreading will place each
mirror on a different host within the Greenplum Database array. Spreading is only
allowed if there is a sufficient number of hosts in the array (number of hosts is
greater than the number of segment instances).

-v (show utility version)

Displays the version of this utility.

-? (help)

Displays the online help.

Initialization Configuration File Format

gpinitsystem requires a configuration file with the following parameters defined.
An example initialization configuration file can be found in
$GPHOME/docs/cli_help/gpconfigs/gpinitsystem_config.

ARRAY_NAME

Required. A name for the array you are configuring. You can use any name you like.
Enclose the name in quotes if the name contains spaces.

MACHINE_LIST_FILE

Optional. Can be used in place of the -h option. This specifies the file that contains
the list of segment host address names that comprise the Greenplum system. The
master host is assumed to be the host from which you are running the utility and
should not be included in this file. If your segment hosts have multiple network
interfaces, then this file would include all addresses for the host. Give the absolute
path to the file.

SEG_PREFIX

Required. This specifies a prefix that will be used to name the data directories on the
master and segment instances. The naming convention for data directories in a
Greenplum Database system is SEG_PREFIXnumber where number starts with 0 for
gpinitsystem 655

Greenplum Database Administrator Guide 4.1– Appendix B: Management Utility Reference
segment instances (the master is always -1). So for example, if you choose the prefix
gpseg, your master instance data directory would be named gpseg-1, and the
segment instances would be named gpseg0, gpseg1, gpseg2, gpseg3, and so on.

PORT_BASE

Required. This specifies the base number by which primary segment port numbers
are calculated. The first primary segment port on a host is set as PORT_BASE, and
then incremented by one for each additional primary segment on that host. Valid
values range from 1 through 65535.

DATA_DIRECTORY

Required. This specifies the data storage location(s) where the utility will create the
primary segment data directories. The number of locations in the list dictate the
number of primary segments that will get created per physical host (if multiple
addresses for a host are listed in the host file, the number of segments will be spread
evenly across the specified interface addresses). It is OK to list the same data storage
area multiple times if you want your data directories created in the same location.
The user who runs gpinitsystem (for example, the gpadmin user) must have
permission to write to these directories. For example, this will create six primary
segments per host:

declare -a DATA_DIRECTORY=(/data1/primary /data1/primary
/data1/primary /data2/primary /data2/primary /data2/primary)

MASTER_HOSTNAME

Required. The host name of the master instance. This host name must exactly match
the configured host name of the machine (run the hostname command to determine
the correct hostname).

MASTER_DIRECTORY

Required. This specifies the location where the data directory will be created on the
master host. You must make sure that the user who runs gpinitsystem (for
example, the gpadmin user) has permissions to write to this directory.

MASTER_PORT

Required. The port number for the master instance. This is the port number that
users and client connections will use when accessing the Greenplum Database
system.

TRUSTED_SHELL

Required. The shell the gpinitsystem utility uses to execute commands on remote
hosts. Allowed values are ssh. You must set up your trusted host environment
before running the gpinitsystem utility (you can use gpssh-exkeys to do this).
gpinitsystem 656

Greenplum Database Administrator Guide 4.1– Appendix B: Management Utility Reference
CHECK_POINT_SEGMENTS

Required. Maximum distance between automatic write ahead log (WAL)
checkpoints, in log file segments (each segment is normally 16 megabytes). This
will set the checkpoint_segments parameter in the postgresql.conf file for
each segment instance in the Greenplum Database system.

ENCODING

Required. The character set encoding to use. This character set must be compatible
with the --locale settings used, especially --lc-collate and --lc-ctype.
Greenplum Database supports the same character sets as PostgreSQL.

DATABASE_NAME

Optional. The name of a Greenplum Database database to create after the system is
initialized. You can always create a database later using the CREATE DATABASE
command or the createdb utility.

MIRROR_PORT_BASE

Optional. This specifies the base number by which mirror segment port numbers are
calculated. The first mirror segment port on a host is set as MIRROR_PORT_BASE, and
then incremented by one for each additional mirror segment on that host. Valid
values range from 1 through 65535 and cannot conflict with the ports calculated by
PORT_BASE.

REPLICATION_PORT_BASE

Optional. This specifies the base number by which the port numbers for the primary
file replication process are calculated. The first replication port on a host is set as
REPLICATION_PORT_BASE, and then incremented by one for each additional
primary segment on that host. Valid values range from 1 through 65535 and cannot
conflict with the ports calculated by PORT_BASE or MIRROR_PORT_BASE.

MIRROR_REPLICATION_PORT_BASE

Optional. This specifies the base number by which the port numbers for the mirror
file replication process are calculated. The first mirror replication port on a host is
set as MIRROR_REPLICATION_PORT_BASE, and then incremented by one for each
additional mirror segment on that host. Valid values range from 1 through 65535 and
cannot conflict with the ports calculated by PORT_BASE, MIRROR_PORT_BASE, or
REPLICATION_PORT_BASE.

MIRROR_DATA_DIRECTORY

Optional. This specifies the data storage location(s) where the utility will create the
mirror segment data directories. There must be the same number of data directories
declared for mirror segment instances as for primary segment instances (see the
DATA_DIRECTORY parameter). The user who runs gpinitsystem (for example, the
gpadmin user) must have permission to write to these directories. For example:

declare -a MIRROR_DATA_DIRECTORY=(/data1/mirror
/data1/mirror /data1/mirror /data2/mirror /data2/mirror
/data2/mirror)
gpinitsystem 657

Greenplum Database Administrator Guide 4.1– Appendix B: Management Utility Reference
Examples

Initialize a Greenplum Database array by supplying a configuration file and a segment
host address file, and set up a spread mirroring (-S) configuration:

$ gpinitsystem -c gpinitsystem_config -h
hostfile_gpinitsystem -S

Initialize a Greenplum Database array and set the superuser remote password:

$ gpinitsystem -c gpinitsystem_config -h
hostfile_gpinitsystem --su-password=mypassword

Initialize a Greenplum Database array with an optional standby master host:

$ gpinitsystem -c gpinitsystem_config -h
hostfile_gpinitsystem -s host09

See Also

gpssh-exkeys, gpdeletesystem
gpinitsystem 658

Greenplum Database Administrator Guide 4.1– Appendix B: Management Utility Reference
gpload
Runs a load job as defined in a YAML formatted control file.

Synopsis
gpload -f control_file [-l log_file] [-h hostname] [-p port] [-U
username] [-d database] [-W] [--gpfdist_timeout seconds] [[-v |
-V] [-q]] [-D]

gpload -?

gpload --version

Prerequisites

The client machine where gpload is executed must have the following:

• Python 2.6.2 or later, pygresql (the Python interface to PostgreSQL), and
pyyaml. Note that Python and the required Python libraries are included with the
Greenplum Database server installation, so if you have Greenplum Database
installed on the machine where gpload is running, you do not need a separate
Python installation.

• The gpfdist parallel file distribution program installed and in your $PATH. This
program is located in $GPHOME/bin of your Greenplum Database server
installation.

• Network access to and from all hosts in your Greenplum Database array (master
and segments).

• Network access to and from the hosts where the data to be loaded resides (ETL
servers).

Description

gpload is a data loading utility that acts as an interface to Greenplum Database’s
external table parallel loading feature. Using a load specification defined in a YAML
formatted control file, gpload executes a load by invoking the Greenplum parallel file
server (gpfdist), creating an external table definition based on the source data
defined, and executing an INSERT, UPDATE or MERGE operation to load the source data
into the target table in the database.

Options

-f control_file

Required. A YAML file that contains the load specification details. See “Control
File Format” on page 661.
gpload 659

Greenplum Database Administrator Guide 4.1– Appendix B: Management Utility Reference
--gpfdist_timeout seconds

Sets the timeout for the gpfdist parallel file distribution program to send a
response. Enter a value from 0 to 30 seconds (entering “0” to disables timeouts).
Note that you might need to increase this value when operating on high-traffic
networks.

-l log_file

Specifies where to write the log file. Defaults to
~/gpAdminLogs/gpload_YYYYMMDD. See also, “Log File Format” on page 668.

-v (verbose mode)

Show verbose output of the load steps as they are executed.

-V (very verbose mode)

Shows very verbose output.

-q (no screen output)

Run in quiet mode. Command output is not displayed on the screen, but is still
written to the log file.

-D (debug mode)

Check for error conditions, but do not execute the load.

-? (show help)

Show help, then exit.

--version

Show the version of this utility, then exit.

Connection Options

-d database

The database to load into. If not specified, reads from the load control file, the
environment variable $PGDATABASE or defaults to the current system user name.

-h hostname

Specifies the host name of the machine on which the Greenplum master database
server is running. If not specified, reads from the load control file, the environment
variable $PGHOST or defaults to localhost.

-p port

Specifies the TCP port on which the Greenplum master database server is listening
for connections. If not specified, reads from the load control file, the environment
variable $PGPORT or defaults to 5432.

-U username

The database role name to connect as. If not specified, reads from the load control
file, the environment variable $PGUSER or defaults to the current system user name.
gpload 660

Greenplum Database Administrator Guide 4.1– Appendix B: Management Utility Reference
-W (force password prompt)

Force a password prompt. If not specified, reads the password from the environment
variable $PGPASSWORD or from a password file specified by $PGPASSFILE or in
~/.pgpass. If these are not set, then gpload will prompt for a password even if -W
is not supplied.

Control File Format

The gpload control file uses the YAML 1.1 document format and then implements its
own schema for defining the various steps of a Greenplum Database load operation.
The control file must be a valid YAML document.

The gpload program processes the control file document in order and uses
indentation (spaces) to determine the document hierarchy and the relationships of the
sections to one another. The use of white space is significant. White space should not
be used simply for formatting purposes, and tabs should not be used at all.

The basic structure of a load control file is:

VERSION: 1.0.0.1

DATABASE: db_name

USER: db_username

HOST: master_hostname

PORT: master_port

GPLOAD:

 INPUT:

 - SOURCE:

 LOCAL_HOSTNAME:

 - hostname_or_ip

 PORT: http_port

 | PORT_RANGE: [start_port_range, end_port_range]

 FILE:

 - /path/to/input_file

 - COLUMNS:

 - field_name: data_type

 - FORMAT: text | csv

 - DELIMITER: 'delimiter_character'

 - ESCAPE: 'escape_character' | 'OFF'

 - NULL_AS: 'null_string'

 - FORCE_NOT_NULL: true | false

 - QUOTE: 'csv_quote_character'

 - HEADER: true | false

 - ENCODING: database_encoding
gpload 661

http://yaml.org/spec/1.1/

Greenplum Database Administrator Guide 4.1– Appendix B: Management Utility Reference
VERSION

Optional. The version of the gpload control file schema. The current version is
1.0.0.1.

DATABASE

Optional. Specifies which database in Greenplum to connect to. If not specified,
defaults to $PGDATABASE if set or the current system user name. You can also
specify the database on the command line using the -d option.

USER

Optional. Specifies which database role to use to connect. If not specified, defaults
to the current user or $PGUSER if set. You can also specify the database role on the
command line using the -U option.

If the user running gpload is not a Greenplum superuser, then the server
configuration parameter gp_external_grant_privileges must be set to on in
order for the load to be processed.

HOST

Optional. Specifies Greenplum master host name. If not specified, defaults to
localhost or $PGHOST if set. You can also specify the master host name on the
command line using the -h option.

 - ERROR_LIMIT: integer

 - ERROR_TABLE: schema.table_name

 OUTPUT:

 - TABLE: schema.table_name

 - MODE: insert | update | merge

 - MATCH_COLUMNS:

 - target_column_name

 - UPDATE_COLUMNS:

 - target_column_name

 - UPDATE_CONDITION: 'boolean_condition'

 - MAPPING:

 target_column_name: source_column_name | 'expression'

 PRELOAD:

 - TRUNCATE: true | false

 - REUSE_TABLES: true | false

 SQL:

 - BEFORE: "sql_command"

 - AFTER: "sql_command"
gpload 662

Greenplum Database Administrator Guide 4.1– Appendix B: Management Utility Reference
PORT

Optional. Specifies Greenplum master port. If not specified, defaults to 5432 or
$PGPORT if set. You can also specify the master port on the command line using the
-p option.

GPLOAD

Required. Begins the load specification section. A GPLOAD specification must have
an INPUT and an OUTPUT section defined.

INPUT

Required. Defines the location and the format of the input data to be loaded.
gpload will start one or more instances of the gpfdist file distribution program
on the current host and create the required external table definition(s) in
Greenplum Database that point to the source data. Note that the host from which
you run gpload must be accessible over the network by all Greenplum hosts
(master and segments).

SOURCE

Required. The SOURCE block of an INPUT specification defines the location of
a source file. An INPUT section can have more than one SOURCE block
defined. Each SOURCE block defined corresponds to one instance of the
gpfdist file distribution program that will be started on the local machine.
Each SOURCE block defined must have a FILE specification.

See “Using the Greenplum Parallel File Server (gpfdist)” on page 141 for
more information about single and multiple gpfdist instances.

LOCAL_HOSTNAME

Optional. Specifies the host name or IP address of the local machine on
which gpload is running. If this machine is configured with multiple
network interface cards (NICs), you can specify the host name or IP of each
individual NIC to allow network traffic to use all NICs simultaneously. The
default is to use the local machine’s primary host name or IP only.

PORT

Optional. Specifies the specific port number that the gpfdist file
distribution program should use. You can also supply a PORT_RANGE to
select an available port from the specified range. If both PORT and
PORT_RANGE are defined, then PORT takes precedence. If neither PORT or
PORT_RANGE are defined, the default is to select an available port between
8000 and 9000.

If multiple host names are declared in LOCAL_HOSTNAME, this port number is
used for all hosts. This configuration is desired if you want to use all NICs
to load the same file or set of files in a given directory location.
gpload 663

Greenplum Database Administrator Guide 4.1– Appendix B: Management Utility Reference
PORT_RANGE

Optional. Can be used instead of PORT to supply a range of port numbers
from which gpload can choose an available port for this instance of the
gpfdist file distribution program.

FILE

Required. Specifies the location of a file, named pipe, or directory location
on the local file system that contains data to be loaded. You can declare
more than one file so long as the data is of the same format in all files
specified.

If the files are compressed using gzip or bzip2 (have a .gz or .bz2 file
extension), the files will be uncompressed automatically (provided that
gunzip or bunzip2 is in your path).

When specifying which source files to load, you can use the wildcard
character (*) or other C-style pattern matching to denote multiple files. The
files specified are assumed to be relative to the current directory from which
gpload is executed (or you can declare an absolute path).

COLUMNS

Optional. Specifies the schema of the source data file(s) in the format of
field_name: data_type. The DELIMITER character in the source file is what
separates two data value fields (columns). A row is determined by a line feed
character (0x0a).

If the input COLUMNS are not specified, then the schema of the output TABLE is
implied, meaning that the source data must have the same column order,
number of columns, and data format as the target table.

The default source-to-target mapping is based on a match of column names as
defined in this section and the column names in the target TABLE. This default
mapping can be overridden using the MAPPING section.

FORMAT

Optional. Specifies the format of the source data file(s) - either plain text
(TEXT) or comma separated values (CSV) format. Defaults to TEXT if not
specified. For more information about the format of the source data, see
“Loading Data into Greenplum Database” on page 136.

DELIMITER

Optional. Specifies a single ASCII character that separates columns within
each row (line) of data. The default is a tab character in TEXT mode, a comma
in CSV mode. You can also specify a non-printable ASCII character via an
escape sequence using the decimal representation of the ASCII character. For
example, \014 represents the shift out character.
gpload 664

Greenplum Database Administrator Guide 4.1– Appendix B: Management Utility Reference
ESCAPE

Specifies the single character that is used for C escape sequences (such as
\n,\t,\100, and so on) and for escaping data characters that might otherwise
be taken as row or column delimiters. Make sure to choose an escape
character that is not used anywhere in your actual column data. The default
escape character is a \ (backslash) for text-formatted files and a " (double
quote) for csv-formatted files, however it is possible to specify another
character to represent an escape. It is also possible to disable escaping in
text-formatted files by specifying the value 'OFF' as the escape value. This is
very useful for data such as text-formatted web log data that has many
embedded backslashes that are not intended to be escapes.

NULL_AS

Optional. Specifies the string that represents a null value. The default is \N
(backslash-N) in TEXT mode, and an empty value with no quotations in CSV
mode. You might prefer an empty string even in TEXT mode for cases where
you do not want to distinguish nulls from empty strings. Any source data item
that matches this string will be considered a null value.

FORCE_NOT_NULL

Optional. In CSV mode, processes each specified column as though it were
quoted and hence not a NULL value. For the default null string in CSV mode
(nothing between two delimiters), this causes missing values to be evaluated
as zero-length strings.

QUOTE

Required when FORMAT is CSV. Specifies the quotation character for CSV
mode. The default is double-quote (").

HEADER

Optional. Specifies that the first line in the data file(s) is a header row
(contains the names of the columns) and should not be included as data to be
loaded. If using multiple data source files, all files must have a header row.
The default is to assume that the input files do not have a header row.

ENCODING

Optional. Character set encoding of the source data. Specify a string constant
(such as 'SQL_ASCII'), an integer encoding number, or 'DEFAULT' to use
the default client encoding. See “Character Set Support” on page 974. If not
specified, the default client encoding is used.

ERROR_LIMIT

Optional. Enables single row error isolation mode for this load operation.
When enabled, input rows that have format errors will be discarded provided
that the error limit count is not reached on any Greenplum segment instance
during input processing. If the error limit is not reached, all good rows will be
loaded and any error rows will either be discarded or logged to the table
gpload 665

Greenplum Database Administrator Guide 4.1– Appendix B: Management Utility Reference
specified in ERROR_TABLE. The default is to abort the load operation on the
first error encountered. Note that single row error isolation only applies to
data rows with format errors; for example, extra or missing attributes,
attributes of a wrong data type, or invalid client encoding sequences.
Constraint errors, such as primary key violations, will still cause the load
operation to abort if encountered. See “Handling Load Errors” on page 148
for more information.

ERROR_TABLE

Optional when ERROR_LIMIT is declared. Specifies an error table where rows
with formatting errors will be logged when running in single row error
isolation mode. You can then examine this error table to see error rows that
were not loaded (if any). If the error_table specified already exists, it will be
used. If it does not exist, it will be automatically generated. See “Handling
Load Errors” on page 148 for more information about error tables.

OUTPUT

Required. Defines the target table and final data column values that are to be
loaded into the database.

TABLE

Required. The name of the target table to load into.

MODE

Optional. Defaults to INSERT if not specified. There are three available load
modes:

INSERT - Loads data into the target table using the following method:
INSERT INTO target_table SELECT * FROM input_data;

UPDATE - Updates the UPDATE_COLUMNS of the target table where the rows
have MATCH_COLUMNS attribute values equal to those of the input data, and the
optional UPDATE_CONDITION is true.

MERGE - Inserts new rows and updates the UPDATE_COLUMNS of existing rows
where MATCH_COLUMNS attribute values are equal to those of the input data,
and the optional UPDATE_CONDITION is true. New rows are identified when
the MATCH_COLUMNS value in the source data does not have a corresponding
value in the existing data of the target table. In those cases, the entire row
from the source file is inserted, not only the MATCH and UPDATE columns. If
there are multiple new MATCH_COLUMNS values that are the same, only one new
row for that value will be inserted (use UPDATE_CONDITION to filter out the
rows you want to discard). MERGE is not supported on tables with a random
distribution policy.

MATCH_COLUMNS

Required if MODE is UPDATE or MERGE. Specifies the column(s) to use as the
join condition for the update. The attribute value in the specified target
column(s) must be equal to that of the corresponding source data column(s) in
gpload 666

Greenplum Database Administrator Guide 4.1– Appendix B: Management Utility Reference
order for the row to be updated in the target table. The MATCH_COLUMNS
declared must contain all Greenplum distribution key columns for the table.
Non-distribution key columns can also be specified in the declared
MATCH_COLUMNS.

UPDATE_COLUMNS

Required if MODE is UPDATE or MERGE. Specifies the column(s) to update for
the rows that meet the MATCH_COLUMNS criteria and the optional
UPDATE_CONDITION.

UPDATE_CONDITION

Optional. Specifies a Boolean condition (similar to what you would declare in
a WHERE clause) that must be met in order for a row in the target table to be
updated (or inserted in the case of a MERGE).

MAPPING

Optional. If a mapping is specified, it overrides the default source-to-target
column mapping. The default source-to-target mapping is based on a match
of column names as defined in the source COLUMNS section and the column
names of the target TABLE. A mapping is specified as either:
 target_column_name: source_column_name
or
 target_column_name: 'expression'
Where expression is any expression that you would specify in the SELECT
list of a query, such as a constant value, a column reference, an operator
invocation, a function call, and so on.

PRELOAD

Optional. Specifies operations to run prior to the load operation. Right now the
only preload operation is TRUNCATE.

TRUNCATE

Optional. If set to true, gpload will remove all rows in the target table prior
to loading it.

REUSE_TABLES

Optional. If set to true, gpload will not drop the external table objects and
staging table objects it creates. These objects will be reused for future load
operations that use the same load specifications. This improves performance
of trickle loads (ongoing small loads to the same target table).

SQL

Optional. Defines SQL commands to run before and/or after the load operation.
You can specify multiple BEFORE and/or AFTER commands. List commands in the
order of desired execution.
gpload 667

Greenplum Database Administrator Guide 4.1– Appendix B: Management Utility Reference
BEFORE

Optional. An SQL command to run before the load operation starts. Enclose
commands in quotes.

AFTER

Optional. An SQL command to run after the load operation completes.
Enclose commands in quotes.

Notes

If your database object names were created using a double-quoted identifier (delimited
identifier), you must specify the delimited name within single quotes in the gpload
control file. For example, if you create a table as follows:

CREATE TABLE "MyTable" ("MyColumn" text);

Your YAML-formatted gpload control file would refer to the above table and column
names as follows:

- COLUMNS:

- '"MyColumn"': text
OUTPUT:

- TABLE: public.'"MyTable"'

Log File Format

Log files output by gpload have the following format:

timestamp|level|message

Where timestamp takes the form: YYYY-MM-DD HH:MM:SS, level is one of DEBUG,
LOG, INFO, ERROR, and message is a normal text message.

Some INFO messages that may be of interest in the log files are (where # corresponds
to the actual number of seconds, units of data, or failed rows):

INFO|running time: #.## seconds

INFO|transferred #.# kB of #.# kB.

INFO|gpload succeeded

INFO|gpload succeeded with warnings

INFO|gpload failed

INFO|1 bad row

INFO|# bad rows

Examples

Run a load job as defined in my_load.yml:

gpload -f my_load.yml

Example load control file:

VERSION: 1.0.0.1
gpload 668

Greenplum Database Administrator Guide 4.1– Appendix B: Management Utility Reference
DATABASE: ops

USER: gpadmin

HOST: mdw-1

PORT: 5432

GPLOAD:

 INPUT:

 - SOURCE:

 LOCAL_HOSTNAME:

 - etl1-1

 - etl1-2

 - etl1-3

 - etl1-4

 PORT: 8081

 FILE:

 - /var/load/data/*

 - COLUMNS:

 - name: text

 - amount: float4

 - category: text

 - desc: text

 - date: date

 - FORMAT: text

 - DELIMITER: '|'

 - ERROR_LIMIT: 25

 - ERROR_TABLE: payables.err_expenses

 OUTPUT:

 - TABLE: payables.expenses

 - MODE: INSERT

 SQL:

 - BEFORE: "INSERT INTO audit VALUES('start', current_timestamp)"

 - AFTER: "INSERT INTO audit VALUES('end', current_timestamp)"

See Also

gpfdist, CREATE EXTERNAL TABLE
gpload 669

Greenplum Database Administrator Guide 4.1– Appendix B: Management Utility Reference
gplogfilter
Searches through Greenplum Database log files for specified entries.

Synopsis
gplogfilter [timestamp_options] [pattern_options]
[output_options] [input_options] [input_file]

gplogfilter --help

gplogfilter --version

Description

The gplogfilter utility can be used to search through a Greenplum Database log file
for entries matching the specified criteria. If an input file is not supplied, then
gplogfilter will use the $MASTER_DATA_DIRECTORY environment variable to
locate the Greenplum master log file in the standard logging location. To read from
standard input, use a dash (-) as the input file name. Input files may be compressed
using gzip. In an input file, a log entry is identified by its timestamp in YYYY-MM-DD
[hh:mm[:ss]] format.

You can also use gplogfilter to search through all segment log files at once by
running it through the gpssh utility. For example, to display the last three lines of each
segment log file:

gpssh -f seg_host_file

=> source /usr/local/greenplum-db/greenplum_path.sh

=> gplogfilter -n 3 /gpdata/*/pg_log/gpdb*.log

By default, the output of gplogfilter is sent to standard output. Use the -o option to
send the output to a file or a directory. If you supply an output file name ending in
.gz, the output file will be compressed by default using maximum compression. If the
output destination is a directory, the output file is given the same name as the input
file.

Options

Timestamp Options

-b datetime | --begin=datetime

Specifies a starting date and time to begin searching for log entries in the format of
YYYY-MM-DD [hh:mm[:ss]].

-e datetime | --end=datetime

Specifies an ending date and time to stop searching for log entries in the format of
YYYY-MM-DD [hh:mm[:ss]].
gplogfilter 670

Greenplum Database Administrator Guide 4.1– Appendix B: Management Utility Reference
-d time | --duration=time

Specifies a time duration to search for log entries in the format of [hh][:mm[:ss]].
If used without either the -b or -e option, will use the current time as a basis.

Pattern Matching Options

-c i[gnore]|r[espect] | --case=i[gnore]|r[espect]

Matching of alphabetic characters is case sensitive by default unless proceeded by
the --case=ignore option.

-C '<string>' | --columns='<string>'

Selects specific columns from the log file. Specify the desired columns as a
comma-delimited string of column numbers beginning with 1, where the second
column from left is 2, the third is 3, and so on. See “Log File Format” on page 227
for a list of the available columns and their associated number.

-f 'string' | --find='string'

Finds the log entries containing the specified string.

-F 'string' | --nofind='string'

Rejects the log entries containing the specified string.

-m regex | --match=regex

Finds log entries that match the specified Python regular expression. See
http://docs.python.org/library/re.html for Python regular expression syntax.

-M regex | --nomatch=regex

Rejects log entries that match the specified Python regular expression. See
http://docs.python.org/library/re.html for Python regular expression syntax.

-t | --trouble

Finds only the log entries that have ERROR:, FATAL:, or PANIC: in the first line.

Output Options

-n integer | --tail=integer

Limits the output to the last integer of qualifying log entries found.

-s offset [limit] | --slice=offset [limit]

From the list of qualifying log entries, returns the limit number of entries starting
at the offset entry number, where an offset of zero (0) denotes the first entry in
the result set and an offset of any number greater than zero counts back from the
end of the result set.

-o output_file | --out=output_file

Writes the output to the specified file or directory location instead of STDOUT.
gplogfilter 671

http://docs.python.org/library/re.html
http://docs.python.org/library/re.html

Greenplum Database Administrator Guide 4.1– Appendix B: Management Utility Reference
-z 0-9 | --zip=0-9

Compresses the output file to the specified compression level using gzip, where 0 is
no compression and 9 is maximum compression. If you supply an output file name
ending in .gz, the output file will be compressed by default using maximum
compression.

-a | --append

If the output file already exists, appends to the file instead of overwriting it.

Input Options

input_file

The name of the input log file(s) to search through. If an input file is not supplied,
gplogfilter will use the $MASTER_DATA_DIRECTORY environment variable to
locate the Greenplum master log file. To read from standard input, use a dash (-) as
the input file name.

-u | --unzip

Uncompress the input file using gunzip. If the input file name ends in .gz, it will
be uncompressed by default.

--help

Displays the online help.

--version

Displays the version of this utility.

Examples

Display the last three error messages in the master log file:

gplogfilter -t -n 3

Display all log messages in the master log file timestamped in the last 10 minutes:

gplogfilter -d :10

Display log messages in the master log file containing the string |con6 cmd11|:

gplogfilter -f '|con6 cmd11|'

Using gpssh, run gplogfilter on the segment hosts and search for log messages in
the segment log files containing the string con6 and save output to a file.

gpssh -f seg_hosts_file -e 'source
/usr/local/greenplum-db/greenplum_path.sh ; gplogfilter -f
con6 /gpdata/*/pg_log/gpdb.log' > seglog.out

See Also

gpssh, gpscp
gplogfilter 672

Greenplum Database Administrator Guide 4.1– Appendix B: Management Utility Reference
gpmapreduce
Runs Greenplum MapReduce jobs as defined in a YAML specification document.

Synopsis
gpmapreduce -f yaml_file [dbname [username]] [-k name=value |
--key name=value] [-h hostname | --host hostname] [-p port| --port
port] [-U username | --username username] [-W] [-v]

gpmapreduce -V | --version

gpmapreduce -h | --help

Prerequisites

The following are required prior to running this program:

• You must have your MapReduce job defined in a YAML file. See “Greenplum
MapReduce Specification” on page 824.

• You must be a Greenplum Database superuser to run MapReduce jobs written in
untrusted Perl or Python.

• You must be a Greenplum Database superuser to run MapReduce jobs with EXEC
and FILE inputs.

• You must be a Greenplum Database superuser to run MapReduce jobs with
GPFDIST input unless the server configuration parameter
gp_external_grant_privileges is set to on.

Description

MapReduce is a programming model developed by Google for processing and
generating large data sets on an array of commodity servers. Greenplum MapReduce
allows programmers who are familiar with the MapReduce paradigm to write map and
reduce functions and submit them to the Greenplum Database parallel engine for
processing.

In order for Greenplum to be able to process MapReduce functions, the functions need
to be defined in a YAML document, which is then passed to the Greenplum
MapReduce program, gpmapreduce, for execution by the Greenplum Database
parallel engine. The Greenplum system takes care of the details of distributing the
input data, executing the program across a set of machines, handling machine failures,
and managing the required inter-machine communication.

Options

-f yaml_file

Required. The YAML file that contains the Greenplum MapReduce job definitions.
See “Greenplum MapReduce Specification” on page 824.
gpmapreduce 673

http://en.wikipedia.org/wiki/MapReduce

Greenplum Database Administrator Guide 4.1– Appendix B: Management Utility Reference
-? | --help

Show help, then exit.

-V | --version

Show version information, then exit.

-v | --verbose

Show verbose output.

-k | --key name=value

Sets a YAML variable. A value is required. Defaults to “key” if no variable name is
specified.

Connection Options

-h host | --host host

Specifies the host name of the machine on which the Greenplum master database
server is running. If not specified, reads from the environment variable PGHOST or
defaults to localhost.

-p port | --port port

Specifies the TCP port on which the Greenplum master database server is listening
for connections. If not specified, reads from the environment variable PGPORT or
defaults to 5432.

-U username | --username username

The database role name to connect as. If not specified, reads from the environment
variable PGUSER or defaults to the current system user name.

-W | --password

Force a password prompt.

Examples

Run a MapReduce job as defined in my_yaml.txt and connect to the database
mydatabase:

gpmapreduce -f my_yaml.txt mydatabase

See Also

Greenplum MapReduce Specification
gpmapreduce 674

Greenplum Database Administrator Guide 4.1– Appendix B: Management Utility Reference
gpmapreduce 675

Greenplum Database Administrator Guide 4.1– Appendix B: Management Utility Reference
gpmigrator
Upgrades an existing Greenplum Database 4.0.x system without mirrors to 4.1.x.

Use gpmigrator_mirror to upgrade a 4.0.x system that has mirrors.

Note: Using gpmigrator on a system with mirrors causes an error.

Synopsis
gpmigrator old_GPHOME_path new_GPHOME_path
 [-d master_data_directory]
 [-l logfile_directory] [-q] [--debug] [-R]

gpmigrator --version | -v

gpmigrator --help | -h

Prerequisites

The following tasks should be performed prior to executing an upgrade:

• Make sure you are logged in to the master host as the Greenplum Database
superuser (gpadmin).

• Install the Greenplum Database 4.1 binaries on all Greenplum hosts.

• Copy any custom modules from your existing installation to your 4.1 installation
on all Greenplum hosts. For example, shared library files for user-defined
functions in $GPHOME/lib or PostgreSQL add-on modules (such as plr.so or
pgcrypto.so) in $GPHOME/lib/postgresql.

• Copy or preserve any additional folders or files (such as backup folders) that you
have added in the Greenplum data directories or $GPHOME directory. Only files or
folders strictly related to Greenplum Database operations are preserved by the
migration utility.

• (Optional) Run VACUUM on all databases, and remove old server log files from
pg_log in your master and segment data directories. This is not required, but will
reduce the size of Greenplum Database files to be backed up and migrated.

• Check for and recover any failed segments in your current Greenplum Database
system (gpstate, gprecoverseg).

• (Optional, but highly recommended) Backup your current databases (gpcrondump
or ZFS snapshots). If you find any issues when testing your upgraded system, you
can restore this backup.

• Remove the standby master from your system configuration (gpinitstandby
-r).

• Do a clean shutdown of your current system (gpstop).

• Update your environment to source the 4.1 installation.

• Inform all database users of the upgrade and lockout time frame. Once the
upgrade is in process, users will not be allowed on the system until the upgrade is
complete.
gpmigrator 676

Greenplum Database Administrator Guide 4.1– Appendix B: Management Utility Reference
Description

The gpmigrator utility upgrades an existing Greenplum Database 4.0.x.x system
without mirrors to 4.1. This utility updates the system catalog and internal version
number, but not the actual software binaries. During the migration process, all client
connections to Greenplum Database will be locked out.

Options

old_GPHOME_path

Required. The absolute path to the current version of Greenplum Database software
you want to migrate away from.

new_GPHOME_path

Required. The absolute path to the new version of Greenplum Database software
you want to migrate to.

-d master_data_directory

Optional. The current master host data directory. If not specified, the value set for
$MASTER_DATA_DIRECTORY will be used.

-l logfile_directory

The directory to write the log file. Defaults to ~/gpAdminLogs.

-q (quiet mode)

Run in quiet mode. Command output is not displayed on the screen, but is still
written to the log file.

-R (revert)

In the event of an error during upgrade, reverts all changes made by gpmigrator.

--help | -h

Displays the online help.

--debug

Sets logging level to debug.

--version | -v

Displays the version of this utility.

Examples

Upgrade to version 4.1 from version 4.0.4.0 (make sure you are using the 4.1 version
of gpmigrator):

/usr/local/greenplum-db-4.1.x.x/bin/gpmigrator \

 /usr/local/greenplum-db-4.0.4.0 \
gpmigrator 677

Greenplum Database Administrator Guide 4.1– Appendix B: Management Utility Reference
 /usr/local/greenplum-db-4.1.x.x

See Also

gpmigrator_mirror, gpstop, gpstate, gprecoverseg, gpcrondump
gpmigrator 678

Greenplum Database Administrator Guide 4.1– Appendix B: Management Utility Reference
gpmigrator_mirror
Upgrades an existing Greenplum Database 4.0.x system with mirrors to 4.1.x.

Use gpmigrator to upgrade a 4.0.x system that does not have mirrors.

Note: Using gpmigrator_mirror on a system without mirrors causes an error.

Synopsis
gpmigrator_mirror old_GPHOME_path new_GPHOME_path
 [-d master_data_directory]
 [-l logfile_directory] [-q] [--debug] [-R]

gpmigrator_mirror --version | -v

gpmigrator_mirror --help | -h

Prerequisites

The following tasks should be performed prior to executing an upgrade:

• Make sure you are logged in to the master host as the Greenplum Database
superuser (gpadmin).

• Install the Greenplum Database 4.1 binaries on all Greenplum hosts.

• Copy any custom modules from your existing installation to your 4.1 installation
on all Greenplum hosts. For example, shared library files for user-defined
functions in $GPHOME/lib or PostgreSQL add-on modules (such as plr.so or
pgcrypto.so) in $GPHOME/lib/postgresql.

• Copy or preserve any additional folders or files (such as backup folders) that you
have added in the Greenplum data directories or $GPHOME directory. Only files or
folders strictly related to Greenplum Database operations are preserved by the
migration utility.

• (Optional) Run VACUUM on all databases, and remove old server log files from
pg_log in your master and segment data directories. This is not required, but will
reduce the size of Greenplum Database files to be backed up and migrated.

• Check for and recover any failed segments in your current Greenplum Database
system (gpstate, gprecoverseg).

• (Optional, but highly recommended) Backup your current databases (gpcrondump
or ZFS snapshots). If you find any issues when testing your upgraded system, you
can restore this backup.

• Remove the standby master from your system configuration (gpinitstandby
-r).

• Do a clean shutdown of your current system (gpstop).

• Update your environment to source the 4.1 installation.

• Inform all database users of the upgrade and lockout time frame. Once the
upgrade is in process, users will not be allowed on the system until the upgrade is
complete.
gpmigrator_mirror 679

Greenplum Database Administrator Guide 4.1– Appendix B: Management Utility Reference
Description

The gpmigrator_mirror utility upgrades an existing Greenplum Database 4.0.x.x
system with mirrors to 4.1. This utility updates the system catalog and internal version
number, but not the actual software binaries. During the migration process, all client
connections to Greenplum Database will be locked out.

Options

old_GPHOME_path

Required. The absolute path to the current version of Greenplum Database software
you want to migrate away from.

new_GPHOME_path

Required. The absolute path to the new version of Greenplum Database software
you want to migrate to.

-d master_data_directory

Optional. The current master host data directory. If not specified, the value set for
$MASTER_DATA_DIRECTORY will be used.

-l logfile_directory

The directory to write the log file. Defaults to ~/gpAdminLogs.

-q (quiet mode)

Run in quiet mode. Command output is not displayed on the screen, but is still
written to the log file.

-R (revert)

In the event of an error during upgrade, reverts all changes made by gpmigrator.

--help | -h

Displays the online help.

--debug

Sets logging level to debug.

--version | -v

Displays the version of this utility.

Examples

Upgrade to version 4.1 from version 4.0.4.0 with mirrors (make sure you are using the
4.1 version of gpmigrator):

/usr/local/greenplum-db-4.1.x.x/bin/gpmigrator_mirror \

 /usr/local/greenplum-db-4.0.4.0 \
gpmigrator_mirror 680

Greenplum Database Administrator Guide 4.1– Appendix B: Management Utility Reference
 /usr/local/greenplum-db-4.1.x.x

See Also

gpmigrator, gpstop, gpstate, gprecoverseg, gpcrondump
gpmigrator_mirror 681

Greenplum Database Administrator Guide 4.1– Appendix B: Management Utility Reference
gpmigrator_mirror 682

Greenplum Database Administrator Guide 4.1– Appendix B: Management Utility Reference
gpperfmon_install
Installs the gpperfmon database and optionally enables the data collection agents.

Synopsis
gpperfmon_install
 [--enable --password gpmon_password --port gpdb_port]
 [--pgpass path_to_file]
 [--verbose]

gpperfmon_install --help | -h | -?

Description

The gpperfmon_install utility automates the steps required to enable the
performance monitor data collection agents. You must be the Greenplum Database
administrative user (gpadmin) in order to run this utility. If using the --enable
option, Greenplum Database must be restarted after the utility completes.

When run without any options, the utility will just create the gpperfmon database (the
database used to store performance monitor data). When run with the --enable
option, the utility will also run the following additional tasks necessary to enable the
performance monitor data collection agents:

1. Creates the gpmon superuser role in Greenplum Database. The performance
monitor data collection agents require this role to connect to the database and
write their data. The gpmon superuser role uses MD5-encrypted password
authentication by default. Use the --password option to set the gpmon
superuser’s password. Use the --port option to supply the port of the Greenplum
Database master instance.

2. Updates the $MASTER_DATA_DIRECTORY/pg_hba.conf file. The utility will add
the following line to the host-based authentication file (pg_hba.conf). This
allows the gpmon user to locally connect to any database using MD5-encrypted
password authentication:
local all gpmon md5

3. Updates the password file (.pgpass). In order to allow the data collection agents
to connect as the gpmon role without a password prompt, you must have a
password file that has an entry for the gpmon user. The utility add the following
entry to your password file (if the file does not exist, the utility will create it):
*:5432:gpperfmon:gpmon:gpmon_password
If your password file is not located in the default location (~/.pgpass), use the
--pgpass option to specify the file location.

4. Sets the server configuration parameters for performance monitor. The following
parameters must be enabled in order for the data collection agents to begin
collecting data. The utility will set the following parameters in the Greenplum
Database postgresql.conf configuration files:

gp_enable_gpperfmon=on (in all postgresql.conf files)
gpperfmon_install 683

Greenplum Database Administrator Guide 4.1– Appendix B: Management Utility Reference
gpperfmon_port=8888 (in all postgresql.conf files)
gp_external_enable_exec=on (in the master postgresql.conf file)

Options

--enable

In addition to creating the gpperfmon database, performs the additional steps
required to enable the performance monitor data collection agents. When --enable
is specified the utility will also create and configure the gpmon superuser account
and set the performance monitor server configuration parameters in the
postgresql.conf files.

--password gpmon_password

Required if --enable is specified. Sets the password of the gpmon superuser.

--port gpdb_port

Required if --enable is specified. Specifies the connection port of the Greenplum
Database master.

--pgpass path_to_file

Optional if --enable is specified. If the password file is not in the default location
of ~/.pgpass, specifies the location of the password file.

--verbose

Sets the logging level to verbose.

--help | -h | -?

Displays the online help.

Examples

Create the gpperfmon database only:

$ su - gpadmin

$ gpperfmon_install

Create the gpperfmon database, create the gpmon superuser, and enable the
performance monitor agents:

$ su - gpadmin

$ gpperfmon_install --enable --password p@$$word --port 5432

$ gpstop -r

See Also

gpstop
gpperfmon_install 684

Greenplum Database Administrator Guide 4.1– Appendix B: Management Utility Reference
gprecoverseg
Recovers a primary or mirror segment instance that has been marked as down (if
mirroring is enabled).

Synopsis
gprecoverseg [-p new_recover_host[,...] | -i recover_config_file
| -s filespace_config_file] [-d master_data_directory] [-B
parallel_processes] [-F] [-a] [-q] [-l logfile_directory]

gprecoverseg -r

gprecoverseg -o output_recover_config_file
 | -S output_filespace_config_file [-p new_recover_host]

gprecoverseg -?

gprecoverseg --version

Description

In a system with mirrors enabled, the gprecoverseg utility reactivates a failed
segment instance and identifies the changed database files that require
resynchronization. Once gprecoverseg completes this process, the system goes into
resyncronizing mode until the recovered segment is brought up to date. The system is
online and fully operational during resyncronization.

A segment instance can fail for several reasons, such as a host failure, network failure,
or disk failure. When a segment instance fails, its status is marked as down in the
Greenplum Database system catalog, and its mirror is activated in change tracking
mode. In order to bring the failed segment instance back into operation again, you
must first correct the problem that made it fail in the first place, and then recover the
segment instance in Greenplum Database using gprecoverseg.

Segment recovery using gprecoverseg requires that you have an active mirror to
recover from. For systems that do not have mirroring enabled, or in the event of a
double fault (a primary and mirror pair both down at the same time) — do a system
restart to bring the segments back online (gpstop -r).

By default, a failed segment is recovered in place, meaning that the system brings the
segment back online on the same host and data directory location on which it was
originally configured. In some cases, this may not be possible (for example, if a host
was physically damaged and cannot be recovered). In this situation, gprecoverseg
allows you to recover failed segments to a completely new host (using -p), on an
alternative data directory location on your remaining live segment hosts (using -s), or
by supplying a recovery configuration file (using -i) in the format of:

filespaceOrder=[filespace1_fsname[:filespace2_fsname:...]

failed_host_address:port:fselocation[:fselocation:...]
[recovery_host_address:port:replication_port:fselocation[:fselocation:
...]]

For example (if recovering to a different host than the failed host, and you do not have
additional filespaces configured besides the default pg_system filespace):
gprecoverseg 685

Greenplum Database Administrator Guide 4.1– Appendix B: Management Utility Reference
filespaceOrder=

sdw5-2:50002:/data1/primary sdw9-2:50002:53002:/data1/primary

The gp_segment_configuration, pg_filespace, and pg_filespace_entry system catalog
tables can help you determine your current segment configuration so that you can plan
your mirror recovery configuration. For example, run the following query:

=# SELECT dbid, content, address, port,

 replication_port, fselocation as datadir

 FROM gp_segment_configuration, pg_filespace_entry

 WHERE dbid=fsedbid

 ORDER BY dbid;

The new recovery segment host must be pre-installed with the Greenplum Database
software and configured exactly the same as the existing segment hosts. A spare data
directory location must exist on all currently configured segment hosts and have
enough disk space to accommodate the failed segments.

The recovery process marks the segment as up again in the Greenplum Database
system catalog, and then initiates the resyncronization process to bring the
transactional state of the segment up-to-date with the latest changes. The system is
online and available during resyncronization. To check the status of the
resyncronization process run:

gpstate -m

If you do not have mirroring enabled or if you have both a primary and its mirror
down, you must take manual steps to recover the failed segment instances and then
restart the system, for example:

gpstop -r

Options

-a (do not prompt)

Do not prompt the user for confirmation.

-B parallel_processes

The number of segments to recover in parallel. If not specified, the utility will start
up to four parallel processes depending on how many segment instances it needs to
recover.

-d master_data_directory

Optional. The master host data directory. If not specified, the value set for
$MASTER_DATA_DIRECTORY will be used.

-F (full recovery)

Optional. Perform a full copy of the active segment instance in order to recover the
failed segment. The default is to only copy over the incremental changes that
occurred while the segment was down.
gprecoverseg 686

Greenplum Database Administrator Guide 4.1– Appendix B: Management Utility Reference
-i recover_config_file

Specifies the name of a configuration file that has information about which failed
segments to recover, and where to recover them. Each line in the file is in the
following format. Note that you only need to specify a name for filespaceOrder
if your system has multiple filespaces configured. If your system does not have
additional filespaces configured besides the default pg_system filespace, this file
will only have one location per segment (for the default data directory filespace,
pg_system). pg_system does not need to be listed in the filespaceOrder line. It
will always be the first fselocation listed after replication_port.

filespaceOrder=[filespace1_fsname[:filespace2_fsname:...]

failed_host_address:port:fselocation
[recovery_host_address:port:replication_port:fselocation[:fselocation:
...]]

You can use the -o option to output a sample recovery configuration file to use as a
starting point.

-l logfile_directory

The directory to write the log file. Defaults to ~/gpAdminLogs.

-o output_recover_config_file

Specifies a file name and location to output a sample recovery configuration file.
The output file lists the currently invalid segments and their default recovery
location in the format that is required by the -i option. Use together with the -p
option to output a sample file for recovering on a different host. This file can be
edited to supply alternate recovery locations if needed.

-p new_recover_hostname

Specifies a spare host outside of the currently configured Greenplum Database array
on which to recover invalid segments. In the case of multiple failed segment hosts,
you can specify a comma-separated list. The spare host must have the Greenplum
Database software installed and configured, and have the same hardware and OS
configuration as the current segment hosts (same OS version, locales, gpadmin user
account, data directory locations created, ssh keys exchanged, number of network
interfaces, network interface naming convention, and so on.).

-q (no screen output)

Run in quiet mode. Command output is not displayed on the screen, but is still
written to the log file.

-r (rebalance segments)

After a segment recovery, segment instances may not be returned to the preferred
role that they were given at system initialization time. This can leave the system in a
potentially unbalanced state, as some segment hosts may have more active segments
than is optimal for top system performance. This option rebalances primary and
mirror segments by returning them to their preferred roles. All segments must be
valid and synchronized before running gprecoverseg -r. If there are any in
progress queries, they will be cancelled and rolled back.
gprecoverseg 687

Greenplum Database Administrator Guide 4.1– Appendix B: Management Utility Reference
-s filespace_config_file

Specifies the name of a configuration file that contains file system locations on the
currently configured segment hosts where you can recover failed segment instances.
The filespace configuration file is in the format of:

pg_system=default_fselocation

filespace1_name=filespace1_fselocation

filespace2_name=filespace2_fselocation

...

If your system does not have additional filespaces configured, this file will only
have one location (for the default filespace, pg_system). These file system locations
must exist on all segment hosts in the array and have sufficient disk space to
accommodate recovered segments.

-S output_filespace_config_file

Specifies a file name and location to output a sample filespace configuration file in
the format that is required by the -s option. This file should be edited to supply the
correct alternate filespace locations.

-v (verbose)

Sets logging output to verbose.

--version (version)

Displays the version of this utility.

-? (help)

Displays the online help.

Examples

Recover any failed segment instances in place:

$ gprecoverseg

Rebalance your Greenplum Database system after a recovery by resetting all segments
to their preferred role. First check that all segments are up and synchronized.

$ gpstate -m

$ gprecoverseg -r

Recover any failed segment instances to a newly configured spare segment host:

$ gprecoverseg -i recover_config_file

Output the default recovery configuration file:

$ gprecoverseg -o /home/gpadmin/recover_config_file

See Also

gpstart, gpstop
gprecoverseg 688

Greenplum Database Administrator Guide 4.1– Appendix B: Management Utility Reference
gprecoverseg 689

Greenplum Database Administrator Guide 4.1– Appendix B: Management Utility Reference
gpscp
Copies files between multiple hosts at once.

Synopsis
gpscp { -f hostfile_gpssh | - h hostname [-h hostname ...] }
[-J character] [-v] [[user@]hostname:]file_to_copy [...]
[[user@]hostname:]copy_to_path

gpscp -?

gpscp --version

Description

The gpscp utility allows you to copy one or more files from the specified hosts to
other specified hosts in one command using SCP (secure copy). For example, you can
copy a file from the Greenplum Database master host to all of the segment hosts at the
same time.

To specify the hosts involved in the SCP session, use the -f option to specify a file
containing a list of host names, or use the -h option to name single host names on the
command-line. At least one host name (-h) or a host file (-f) is required. The -J
option allows you to specify a single character to substitute for the hostname in the
copy from and to destination strings. If -J is not specified, the default substitution
character is an equal sign (=). For example, the following command will copy .bashrc
from the local host to /home/gpadmin on all hosts named in hostfile_gpssh:

gpscp -f hostfile_gpssh .bashrc =:/home/gpadmin

If a user name is not specified in the host list or with user@ in the file path, gpscp will
copy files as the currently logged in user. To determine the currently logged in user,
do a whoami command. By default, gpscp goes to $HOME of the session user on the
remote hosts after login. To ensure the file is copied to the correct location on the
remote hosts, it is recommended that you use absolute paths.

Before using gpscp, you must have a trusted host setup between the hosts involved in
the SCP session. You can use the utility gpssh-exkeys to update the known host files
and exchange public keys between hosts if you have not done so already.

Options

-f hostfile_gpssh

Specifies the name of a file that contains a list of hosts that will participate in this
SCP session. The host name is required, and you can optionally specify an alternate
user name and/or ssh port number per host. The syntax of the host file is one host per
line as follows:

[username@]hostname[:ssh_port]
gpscp 690

Greenplum Database Administrator Guide 4.1– Appendix B: Management Utility Reference
-h hostname

Specifies a single host name that will participate in this SCP session. You can use
the -h option multiple times to specify multiple host names.

-J character

The -J option allows you to specify a single character to substitute for the hostname
in the copy from and to destination strings. If -J is not specified, the default
substitution character is an equal sign (=).

-v (verbose mode)

Optional. Reports additional messages in addition to the SCP command output.

file_to_copy

Required. The file name (or absolute path) of a file that you want to copy to other
hosts (or file locations). This can be either a file on the local host or on another
named host.

copy_to_path

Required. The path where you want the file(s) to be copied on the named hosts. If an
absolute path is not used, the file will be copied relative to $HOME of the session user.
You can also use the equal sign ‘=’ (or another character that you specify with the
-J option) in place of a hostname. This will then substitute in each host name as
specified in the supplied host file (-f) or with the -h option.

-? (help)

Displays the online help.

--version

Displays the version of this utility.

Examples

Copy the file named installer.tar to / on all the hosts in the file hostfile_gpssh.

gpscp -f hostfile_gpssh installer.tar =:/

Copy the file named myfuncs.so to the specified location on the hosts named sdw1 and
sdw2:

gpscp -h sdw1 -h sdw2 myfuncs.so \

=:/usr/local/greenplum-db/lib
gpscp 691

Greenplum Database Administrator Guide 4.1– Appendix B: Management Utility Reference
gpseginstall
Installs the Greenplum Database software on multiple hosts.

Synopsis
gpseginstall -f hostfile_exkeys [-u gpdb_admin_user] [-p password]
 [-c u|p|c|s|E|e|l|v]

gpseginstall --help

Description

The gpseginstall utility allows system administrators to install the Greenplum
Database software on multiple hosts at once. When run as root, it also automates
other system configuration tasks such as creating the Greenplum system user
(gpadmin), setting the system user’s password, setting the ownership of the
Greenplum Database installation directory, and exchanging ssh keys between all
specified host address names.

When run as a non-root user, the gpseginstall utility will only install the
Greenplum Database software (provided the user has the appropriate permissions to
the install location), exchange ssh keys as the current user, and verify that the active
version of the Greenplum Database software is the same on all hosts.

To run this utility, the master host must have the Greenplum Database software
installed and the $GPHOME environment variable must be set.

Options

-c | --commands option_list

Optional. Controls which gpseginstall actions are executed. If run as root, all
actions will be executed by default. If run as a regular system user, only s e v
actions will be executed (provided the user has write permissions to the installation
location on all hosts).

• u: Add the Greenplum system user, gpadmin by default.

• p: Set the password for the specified system user, changeme by default.

• s: Compress, copy, and decompress (install) Greenplum Database on all
specified hosts.

• c: Change the ownership of the Greenplum Database installation directory to
the specified system user.

• E: Exchange ssh keys as root between all specified hosts.

• e: Exchange ssh keys as the specified system user (gpadmin) between all
specified hosts.

• l: (Linux only) Check and modify the user limits configuration file
(/etc/security/limits.conf) when adding a new system user.
gpseginstall 692

Greenplum Database Administrator Guide 4.1– Appendix B: Management Utility Reference
• v: Verify the active version of the Greenplum Database software on all hosts
by checking the $GPHOME environment variable and greenplum-db symbolic
link to make sure that all hosts are referencing the same installation directory.

-f | --file hostfile_exkeys

Required. The name of file containing the machine configured host names and host
addresses (interface names) for each host in your Greenplum system (master,
standby master and segments). Make sure there are no blank lines or extra spaces.
For example, if you have a master, standby master and three segments with two
network interfaces per host, your file would look something like this:

mdw

mdw-1

mdw-2

smdw

smdw-1

smdw-2

sdw1

sdw1-1

sdw1-2

sdw2

sdw2-1

sdw2-2

sdw3

sdw3-1

sdw3-2

-p | --password password

Optional. Sets the password for the system user specified with the -u option. The
default password is changeme.

-u | --user user

Optional. Creates the specified system user on all hosts. This is the user that owns
your Greenplum Database installation and is used for all database administration
tasks. The default is gpadmin.

--help (help)

Displays the online help.

Examples

As root, install a Greenplum Database on all segments, leave the system user as the
default (gpadmin) and set the gpadmin password to secret123:

gpseginstall -f hostfile_exkeys -p secret123

As a non-root user, install the Greenplum Database binaries on all hosts and exchange
ssh keys as the current user.
gpseginstall 693

Greenplum Database Administrator Guide 4.1– Appendix B: Management Utility Reference
$ gpseginstall -f hostfile_exkeys

See Also

gpinitsystem, gpssh-exkeys
gpseginstall 694

Greenplum Database Administrator Guide 4.1– Appendix B: Management Utility Reference
gpsetupsanfailover
Specify failover host/mountpoints for Greenplum Database in a SAN environment.

Synopsis
gpsetupsanfailover <output_san_sql_file>

gpsetupsanfailover [-d master_data_directory]
 <output_san_sql_file> [-p port_offset] [-D]
 [-l logfile_directory]

gpsetupsanfailover --version

gpsetupsanfailover -?

Description

This command creates a file that contains SQL code that is used for setting up
SAN/failover-specific catalog entries in the master database. It prompts you to specify
the failover mirror host/mountpoints for each primary host/mountpoint in the system.
gpsetupsanfailover then verifies that the mountpoint was properly exported to the
mirror failover host and that the failover mountpoint exists.

It then identifies the host’s identifiers on the SAN and the storage group name for each
primary mountpoint. If there are no errors, gpsetupsanfailover generates the SQL
output file. This file is used for setting up SAN/failover-specific catalog entries in the
master database.

When the master host is running, enter:

$ PGOPTIONS='-c gp_session_role=utility' psql template1 \
output_san_sql_file

This adds SAN/failover-specific catalog entries in the following master database
tables:

• gp_segment_configuration

• gp_fault_strategy

• gp_san_configuration

• gp_filespace_entry

Options

-d master_data_directory

The master data directory. If not specified, the value set for
$MASTER_DATA_DIRECTORY is used.

-l logfile_directory

The directory to write the log file. Defaults to ~/gpAdminLogs.
gpsetupsanfailover 695

Greenplum Database Administrator Guide 4.1– Appendix B: Management Utility Reference
-p port_offset

Optional. This number is used to calculate the database ports and failover ports used
for mirror segments. The default offset is 1000. Mirror port assignments are
calculated as follows:

• primary port + offset = mirror database port

• primary port + (2 * offset) = mirror failover port

• primary port + (3 * offset) = primary failover port

For example, if a primary segment has port 50001, then its mirror will use (listen on)
database port of 51001, a mirror failover port of 52001, and a primary failover port
of 53001 by default.

-D (debug)

Sets logging output to debug level.

--version (show utility version)

Displays the version of this utility.

-? (help)

Displays the online help.

Examples

Generate a SQL output file that you can use to add SAN/failover-specific catalog
entries in the master database tables:

gpsetupsanfailover output_san_sql_file

Generate a SQL output file that includes port offset of 2000.

gpsetupsanfailover output_san_sql_file -p 2000
gpsetupsanfailover 696

Greenplum Database Administrator Guide 4.1– Appendix B: Management Utility Reference
gpsnmpd
Reports on the health and state of a Greenplum Database system through SNMP.

Synopsis
gpsnmpd -s -C connect_string [-b] [-g] [-m MIB:...]
 [-M directory:...]

gpsnmpd -c FILE -C connect_string [-x address:port] [-b] [-g]
 [-m MIB:...] [-M directory:...]

gpsnmpd -?

gpsnmpd --version

Description

Greenplum’s gpsnmpd agent is an SNMP (Simple Network Management Protocol)
daemon that support SNMP requests on the health and state of a Greenplum Database
system by using a set of MIBs (Management Information Bases).

MIBs are a collection of objects that describe an SNMP-manageable entity — in this
case, a Greenplum Database system. An Agent is any SNMP software running on a
managed device that responds to queries or set requests. The gpsnmpd daemon
currently supports the generic RDBMS MIB and typically operates on the master host.

gpsnmpd works in conjunction with the SNMP support that already exists on the
Greenplum Database system. You can install and run gpsnmpd as a AgentX (Agent
Extensibility Protocol) sub-agent to the operating system’s SNMP agent (usually
called snmpd). This allows a Network Management System to get hardware and
operating system information, as well as Greenplum Database information from the
same port (161) and IP address. It also enables the auto-discovery of Greenplum
Database instances.

However, if required, you can run the Greenplum SNMP agent as a stand-alone agent
and use the gpsnmpd agent or SNMP notification features independently of each other.
As a standalone SNMP agent, gpsnmpd listens (on a network socket) for SNMP
queries, and requires the same extensive configuration as the system SNMP agent.

Greenplum recommends that you run gpsnmpd as a sub-agent to the system agent.
When it starts, the gpsnmpd sub-agent registers itself with the system-level SNMP
agent, and communicates to the system agent the parts of the MIB of which it is
aware. The system agent communicates with the SNMP client/network monitoring
application and forwards requests for particular sections of the MIB to the gpsnmpd
sub-agent.

To get information about a Greenplum Database instance, gpsnmpd logs into
Greenplum Database through a normal libpq client session. SNMP GetRequests
trigger SELECT statements against Greenplum Database to get the requested
information. It is important to note that gpsnmpd does not send SNMP trap
notifications; Greenplum Database itself sends this information to the network
monitor application.
gpsnmpd 697

Greenplum Database Administrator Guide 4.1– Appendix B: Management Utility Reference
The gpsnmpd sub-agent communicates with the system agent through UNIX sockets;
it does not listen on network sockets when used as a sub-agent.

Options

-s (sub-agent)

Run gpsnmpd as an AgentX sub-agent to the system snmpd process. You do not
need to use the -x option when using this option.

-b (background)

Run gpsnmpd as a background process.

-c (configuration file)

Specify the SNMP configuration file to use when starting gpsnmpd as a stand-alone
agent. Note that you can specify any configuration file to run gpsnmpd as a
stand-alone agent; you do not have to use the /etc/snmp/snmpd.conf file
(/etc/sma/snmp/ on Solaris platforms). The configuration file you use must
include a value for rocommunity.

-g (use syslog)

Logs gpsnmpd error messages to syslog.

-C (libpq connection string)

The libpq connection string to connect to Greenplum Database. Note that you can
run gpsnmpd from a remote system. Depending on your network configuration, the
gpsnmpd agent can establish a connection and monitor a remote Greenplum
Database database instance. The configuration string can contain the database name,
the port number, the username, the password, and other information if required.

Greenplum recommends using the postgres database in the connection string
(dbname=postgres).

You do not need to specify the –C option if you create a database role (user id)
called root, and add the following line in the pg_hba.conf file:

local postgres root ident

This allows the UNIX user root to connect to the postgres database over the local
connection. The root user does not require special permissions. The user and
password parameters are only required when starting gpsnmpd as a user other than
root.

Note: The connection string can be a conninfo data type. Use conninfo data for
this parameter to specify a LDAP connection lookup.

-x (address:port of a network interface)

Specify an IP address for a network interface card on the host system, and specify a
port other than the default SNMP port of 161. This enables you to run gpsnmpd
without root permissions (you must have root permissions to use ports 1024 and
lower).
gpsnmpd 698

Greenplum Database Administrator Guide 4.1– Appendix B: Management Utility Reference
You do not need to specify this option if you are running gpsnmpd as an AgentX
sub-agent (-s).

-m (MIB:...)

Loads one or more MIBs when starting gpsnmpd. Use a colon (:) to separate the
MIBs. Enter ALL to load all MIBs. If you do not enter -m in the gpsnmpd command,
a default set of MIBs are loaded by default.

-M (directory:...)

Loads all MIBs from one or more directories when starting gpsnmpd. Use a colon
(:) to separate the each directory. Enter the full path to each directory you specify
for this option. If you do not enter -M in the gpsnmpd command, a default set of
MIBs are loaded by default.

-? (help)

Displays the online help.

-V

Displays the version of this utility.

Examples

Start gpsnmpd as an agentx subagent:

gpsnmpd -s -b -m ALL -C "dbname=postgres user=gpadmin \
password=secret"

Start gpsnmpd as a stand-alone agent:

gpsnmpd -b -c /etc/snmp/snmpd.conf -x \
192.168.100.12:10161 -M /usr/mibs/mymibs -C \
"dbname=postgres user=gpadmin password=secret"
gpsnmpd 699

Greenplum Database Administrator Guide 4.1– Appendix B: Management Utility Reference
gpssh
Provides ssh access to multiple hosts at once.

Synopsis
gpssh { -f hostfile_gpssh | - h hostname [-h hostname ...] } [-v]
[-e] [bash_command]

gpssh -?

gpssh --version

Description

The gpssh utility allows you to run bash shell commands on multiple hosts at once
using SSH (secure shell). You can execute a single command by specifying it on the
command-line, or omit the command to enter into an interactive command-line
session.

To specify the hosts involved in the SSH session, use the -f option to specify a file
containing a list of host names, or use the -h option to name single host names on the
command-line. At least one host name (-h) or a host file (-f) is required. Note that the
current host is not included in the session by default — to include the local host, you
must explicitly declare it in the list of hosts involved in the session.

Before using gpssh, you must have a trusted host setup between the hosts involved in
the SSH session. You can use the utility gpssh-exkeys to update the known host files
and exchange public keys between hosts if you have not done so already.

If you do not specify a command on the command-line, gpssh will go into interactive
mode. At the gpssh command prompt (=>), you can enter a command as you would in
a regular bash terminal command-line, and the command will be executed on all hosts
involved in the session. To end an interactive session, press CTRL+D on the keyboard
or type exit or quit.

If a user name is not specified in the host file, gpssh will execute commands as the
currently logged in user. To determine the currently logged in user, do a whoami
command. By default, gpssh goes to $HOME of the session user on the remote hosts
after login. To ensure commands are executed correctly on all remote hosts, you
should always enter absolute paths.

Options

bash_command

A bash shell command to execute on all hosts involved in this session (optionally
enclosed in quotes). If not specified, gpssh will start an interactive session.

-e (echo)

Optional. Echoes the commands passed to each host and their resulting output while
running in non-interactive mode.
gpssh 700

Greenplum Database Administrator Guide 4.1– Appendix B: Management Utility Reference
-f hostfile_gpssh

Specifies the name of a file that contains a list of hosts that will participate in this
SSH session. The host name is required, and you can optionally specify an alternate
user name and/or SSH port number per host. The syntax of the host file is one host
per line as follows:

[username@]hostname[:ssh_port]

-h hostname

Specifies a single host name that will participate in this SSH session. You can use
the -h option multiple times to specify multiple host names.

-v (verbose mode)

Optional. Reports additional messages in addition to the command output when
running in non-interactive mode.

--version

Displays the version of this utility.

-? (help)

Displays the online help.

Examples

Start an interactive group SSH session with all hosts listed in the file hostfile_gpssh:

$ gpssh -f hostfile_gpssh

At the gpssh interactive command prompt, run a shell command on all the hosts
involved in this session.

=> ls -a /data/primary/*

Exit an interactive session:

=> exit

=> quit

Start a non-interactive group SSH session with the hosts named dw1 and dw2 and pass
a file containing several commands named command_file to gpssh:

$ gpssh -h sdw1 -h sdw2 -v -e < command_file

Execute single commands in non-interactive mode on hosts sdw2 and localhost:

$ gpssh -h sdw2 -h localhost -v -e 'ls -a /data/primary/*'

$ gpssh -h sdw2 -h localhost -v -e 'echo $GPHOME'

$ gpssh -h sdw2 -h localhost -v -e 'ls -1 | wc -l'
gpssh 701

Greenplum Database Administrator Guide 4.1– Appendix B: Management Utility Reference
gpssh-exkeys
Exchanges SSH public keys between hosts.

Synopsis
gpssh-exkeys -f hostfile_exkeys | - h hostname [-h hostname ...]

gpssh-exkeys -e hostfile_exkeys -x hostfile_gpexpand

gpssh-exkeys -?

gpssh-exkeys --version

Description

The gpssh-exkeys utility exchanges SSH keys between the specified host names (or
host addresses). This allows SSH connections between Greenplum hosts and network
interfaces without a password prompt. The utility is used to initially prepare a
Greenplum Database system for password-free SSH access, and also to add additional
ssh keys when expanding a Greenplum Database system.

To specify the hosts involved in an initial SSH key exchange, use the -f option to
specify a file containing a list of host names (recommended), or use the -h option to
name single host names on the command-line. At least one host name (-h) or a host
file is required. Note that the local host is included in the key exchange by default.

To specify new expansion hosts to be added to an existing Greenplum Database
system, use the -e and -x options. The -e option specifies a file containing a list of
existing hosts in the system that already have SSH keys. The -x option specifies a file
containing a list of new hosts that need to participate in the SSH key exchange.

Keys are exchanged as the currently logged in user. Greenplum recommends
performing the key exchange process twice: once as root and once as the gpadmin
user (the user designated to own your Greenplum Database installation). The
Greenplum Database management utilities require that the same non-root user be
created on all hosts in the Greenplum Database system, and the utilities must be able
to connect as that user to all hosts without a password prompt.

The gpssh-exkeys utility performs key exchange using the following steps:

• Creates an RSA identification key pair for the current user if one does not already
exist. The public key of this pair is added to the authorized_keys file of the
current user.

• Updates the known_hosts file of the current user with the host key of each host
specified using the -h, -f, -e, and -x options.

• Connects to each host using ssh and obtains the authorized_keys,
known_hosts, and id_rsa.pub files to set up password-free access.

• Adds keys from the id_rsa.pub files obtained from each host to the
authorized_keys file of the current user.

• Updates the authorized_keys, known_hosts, and id_rsa.pub files on all
hosts with new host information (if any).
gpssh-exkeys 702

Greenplum Database Administrator Guide 4.1– Appendix B: Management Utility Reference
Options

-e hostfile_exkeys

When doing a system expansion, this is the name and location of a file containing all
configured host names and host addresses (interface names) for each host in your
current Greenplum system (master, standby master and segments), one name per
line without blank lines or extra spaces. Hosts specified in this file cannot be
specified in the host file used with -x.

-f hostfile_exkeys

Specifies the name and location of a file containing all configured host names and
host addresses (interface names) for each host in your Greenplum system (master,
standby master and segments), one name per line without blank lines or extra
spaces.

-h hostname

Specifies a single host name (or host address) that will participate in the SSH key
exchange. You can use the -h option multiple times to specify multiple host names
and host addresses.

--version

Displays the version of this utility.

-x hostfile_gpexpand

When doing a system expansion, this is the name and location of a file containing all
configured host names and host addresses (interface names) for each new segment
host you are adding to your Greenplum system, one name per line without blank
lines or extra spaces. Hosts specified in this file cannot be specified in the host file
used with -e.

-? (help)

Displays the online help.

Examples

Exchange SSH keys between all host names and addresses listed in the file
hostfile_exkeys:

$ gpssh-exkeys -f hostfile_exkeys

Exchange SSH keys between the hosts sdw1, sdw2, and sdw3:

$ gpssh-exkeys -h sdw1 -h sdw2 -h sdw3

Exchange SSH keys between existing hosts sdw1, sdw2 and sdw3, and new hosts
sdw4 and sdw5 as part of a system expansion operation:

$ cat hostfile_exkeys

mdw

mdw-1
gpssh-exkeys 703

Greenplum Database Administrator Guide 4.1– Appendix B: Management Utility Reference
mdw-2

smdw

smdw-1

smdw-2

sdw1

sdw1-1

sdw1-2

sdw2

sdw2-1

sdw2-2

sdw3

sdw3-1

sdw3-2

$ cat hostfile_gpexpand

sdw4

sdw4-1

sdw4-2

sdw5

sdw5-1

sdw5-2

$ gpssh-exkeys -e hostfile_exkeys -x hostfile_gpexpand

See Also

gpssh, gpscp
gpssh-exkeys 704

Greenplum Database Administrator Guide 4.1– Appendix B: Management Utility Reference
gpstart
Starts a Greenplum Database system.

Synopsis
gpstart [-d master_data_directory] [-B parallel_processes] [-R]
[-m] [-y] [-a] [-t timeout_seconds] [-l logfile_directory] [-v |
-q]

gpstart -? | -h | --help

gpstart --version

Description

The gpstart utility is used to start the Greenplum Database server processes. When
you start a Greenplum Database system, you are actually starting several postgres
database server listener processes at once (the master and all of the segment
instances). The gpstart utility handles the startup of the individual instances. Each
instance is started in parallel.

The first time an administrator runs gpstart, the utility creates a hosts cache file
named .gphostcache in the user’s home directory. Subsequently, the utility uses this
list of hosts to start the system more efficiently. If new hosts are added to the system,
you must manually remove this file from the gpadmin user’s home directory. The
utility will create a new hosts cache file at the next startup.

Before you can start a Greenplum Database system, you must have initialized the
system using gpinitsystem first.

Options

-a (do not prompt)

Do not prompt the user for confirmation.

-B parallel_processes

The number of segments to start in parallel. If not specified, the utility will start up
to 60 parallel processes depending on how many segment instances it needs to start.

-d master_data_directory

Optional. The master host data directory. If not specified, the value set for
$MASTER_DATA_DIRECTORY will be used.

-l logfile_directory

The directory to write the log file. Defaults to ~/gpAdminLogs.
gpstart 705

Greenplum Database Administrator Guide 4.1– Appendix B: Management Utility Reference
-m (master only)

Optional. Starts the master instance only, which may be useful for maintenance
tasks. This mode only allows connections to the master in utility mode. For
example:

PGOPTIONS='-c gp_session_role=utility' psql

-q (no screen output)

Run in quiet mode. Command output is not displayed on the screen, but is still
written to the log file.

-R (restricted mode)

Starts Greenplum Database in restricted mode (only database superusers are allowed
to connect).

-t timeout_seconds

Specifies a timeout in seconds to wait for a segment instance to start up. If a segment
instance was shutdown abnormally (due to power failure or killing its postgres
database listener process, for example), it may take longer to start up due to the
database recovery and validation process. If not specified, the default timeout is 60
seconds.

-v (verbose output)

Displays detailed status, progress and error messages output by the utility.

-y (do not start standby master)

Optional. Do not start the standby master host. The default is to start the standby
master host and synchronization process.

-? | -h | --help (help)

Displays the online help.

--version (show utility version)

Displays the version of this utility.
gpstart 706

Greenplum Database Administrator Guide 4.1– Appendix B: Management Utility Reference
Examples

Start a Greenplum Database system:

gpstart

Start a Greenplum Database system in restricted mode (only allow superuser
connections):

gpstart -R

Start the Greenplum master instance only and connect in utility mode:

gpstart -m

PGOPTIONS='-c gp_session_role=utility' psql

Display the online help for the gpstart utility:

gpstart -?

See Also

gpstop
gpstart 707

Greenplum Database Administrator Guide 4.1– Appendix B: Management Utility Reference
gpstate
Shows the status of a running Greenplum Database system.

Synopsis
gpstate [-d master_data_directory] [-B parallel_processes]
[-s | -b | -Q | -e] [-m | -c] [-p] [-i] [-f] [-v | -q]
[-l log_directory]

gpstate -? | -h | --help

Description

The gpstate utility displays information about a running Greenplum Database
instance. There is additional information you may want to know about a Greenplum
Database system, since it is comprised of multiple PostgreSQL database instances
(segments) spanning multiple machines. The gpstate utility provides additional
status information for a Greenplum Database system, such as:

• Which segments are down.

• Master and segment configuration information (hosts, data directories, etc.).

• The ports used by the system.

• A mapping of primary segments to their corresponding mirror segments.

Options

-b (brief status)

Optional. Display a brief summary of the state of the Greenplum Database system.
This is the default option.

-B parallel_processes

The number of segments to check in parallel. If not specified, the utility will start up
to 60 parallel processes depending on how many segment instances it needs to
check.

-c (show primary to mirror mappings)

Optional. Display mapping of primary segments to their corresponding mirror
segments.

-d master_data_directory

Optional. The master data directory. If not specified, the value set for
$MASTER_DATA_DIRECTORY will be used.

-e (show segments with mirror status issues)

Show details on primary/mirror segment pairs that have potential issues such as 1)
the active segment is running in change tracking mode, meaning a segment is down
2) the active segment is in resynchronization mode, meaning it is catching up
gpstate 708

Greenplum Database Administrator Guide 4.1– Appendix B: Management Utility Reference
changes to the mirror 3) a segment is not in its preferred role, for example a segment
that was a primary at system initialization time is now acting as a mirror, meaning
you may have one or more segment hosts with unbalanced processing load.

-f (show standby master details)

Display details of the standby master host if configured.

-i (show Greenplum Database version)

Display the Greenplum Database software version information for each instance.

-l logfile_directory

The directory to write the log file. Defaults to ~/gpAdminLogs.

-m (list mirrors)

Optional. List the mirror segment instances in the system, their current role, and
synchronization status.

-p (show ports)

List the port numbers used throughout the Greenplum Database system.

-q (no screen output)

Optional. Run in quiet mode. Except for warning messages, command output is not
displayed on the screen. However, this information is still written to the log file.

-Q (quick status)

Optional. Checks segment status in the system catalog on the master host. Does not
poll the segments for status.

-s (detailed status)

Optional. Displays detailed status information for the Greenplum Database system.

-v (verbose output)

Optional. Displays error messages and outputs detailed status and progress
information.

-? | -h | --help (help)

Displays the online help.

Output Field Definitions

The following output fields are reported by gpstate -s for the master:

Table B.1 gpstate output data for the master

Output Data Description

Master host host name of the master

Master postgres process ID PID of the master database listener process
gpstate 709

Greenplum Database Administrator Guide 4.1– Appendix B: Management Utility Reference
The following output fields are reported by gpstate -s for each segment:

Master data directory file system location of the master data directory

Master port port of the master postgres database listener
process

Master current role dispatch = regular operating mode

utility = maintenance mode

Greenplum array configuration type Standard = one NIC per host

Multi-Home = multiple NICs per host

Greenplum initsystem version version of Greenplum Database when system was
first initialized

Greenplum current version current version of Greenplum Database

Postgres version version of PostgreSQL that Greenplum Database is
based on

Greenplum mirroring status physical mirroring, SAN or none

Master standby host name of the standby master

Standby master state status of the standby master: active or passive

Table B.2 gpstate output data for segments

Output Data Description

Hostname system-configured host name

Address network address host name (NIC name)

Datadir file system location of segment data directory

Port port number of segment postgres database listener
process

Current Role current role of a segment: Mirror or Primary

Preferred Role role at system initialization time: Mirror or Primary

Mirror Status status of a primary/mirror segment pair:

Synchronized = data is up to date on both

Resynchronization = data is currently being copied
from one to the other

Change Tracking = segment down and active
segment is logging changes

Change tracking data size when in Change Tracking mode, the size of the
change log file (may grow and shrink as compression
is applied)

Estimated total data to synchronize when in Resynchronization mode, the estimated size
of data left to syncronize

Data synchronized when in Resynchronization mode, the estimated size
of data that has already been syncronized

Table B.1 gpstate output data for the master

Output Data Description
gpstate 710

Greenplum Database Administrator Guide 4.1– Appendix B: Management Utility Reference
Examples

Show detailed status information of a Greenplum Database system:

gpstate -s

Do a quick check for down segments in the master host system catalog:

gpstate -Q

Show information about mirror segment instances:

gpstate -m

Show information about the standby master configuration:

gpstate -f

Display the Greenplum software version information:

gpstate -i

See Also

gpstart, gplogfilter

Estimated resync progress with mirror When in Resynchronization mode, the estimated
percentage of completion

Estimated resync end time when in Resynchronization mode, the estimated time
to complete

File postmaster.pid status of postmaster.pid lock file: Found or Missing

PID from postmaster.pid file PID found in the postmaster.pid file

Lock files in /tmp a segment port lock file for its postgres process is
created in /tmp (file is removed when a segment
shuts down)

Active PID active process ID of a segment

Master reports status as segment status as reported in the system catalog: Up
or Down

Database status status of Greenplum Database to incoming requests:
Up, Down, or Suspended. A Suspended state means
database activity is temporarily paused while a
segment transitions from one state to another.

Table B.2 gpstate output data for segments

Output Data Description
gpstate 711

Greenplum Database Administrator Guide 4.1– Appendix B: Management Utility Reference
gpstop
Stops or restarts a Greenplum Database system.

Synopsis
gpstop [-d master_data_directory] [-B parallel_processes]
[-M smart | fast | immediate] [-t timeout_seconds] [-r] [-y] [-a]
[-l logfile_directory] [-v | -q]

gpstop -m [-d master_data_directory] [-y] [-l logfile_directory]
[-v | -q]

gpstop -u [-d master_data_directory] [-l logfile_directory] [-v |
-q]

gpstop --version

gpstop -? | -h | --help

Description

The gpstop utility is used to stop the database servers that comprise a Greenplum
Database system. When you stop a Greenplum Database system, you are actually
stopping several postgres database server processes at once (the master and all of the
segment instances). The gpstop utility handles the shutdown of the individual
instances. Each instance is shutdown in parallel.

By default, you are not allowed to shut down Greenplum Database if there are any
client connections to the database. Use the -M fast option to roll back all in progress
transactions and terminate any connections before shutting down. If there are any
transactions in progress, the default behavior is to wait for them to commit before
shutting down.

With the -u option, the utility uploads changes made to the master pg_hba.conf file
or to runtime configuration parameters in the master postgresql.conf file without
interruption of service. Note that any active sessions will not pickup the changes until
they reconnect to the database.

Options

-a (do not prompt)

Do not prompt the user for confirmation.

-B parallel_processes

The number of segments to stop in parallel. If not specified, the utility will start up
to 60 parallel processes depending on how many segment instances it needs to stop.

-d master_data_directory

Optional. The master host data directory. If not specified, the value set for
$MASTER_DATA_DIRECTORY will be used.
gpstop 712

Greenplum Database Administrator Guide 4.1– Appendix B: Management Utility Reference
-l logfile_directory

The directory to write the log file. Defaults to ~/gpAdminLogs.

-m (master only)

Optional. Shuts down a Greenplum master instance that was started in maintenance
mode.

-M fast (fast shutdown - rollback)

Fast shut down. Any transactions in progress are interrupted and rolled back.

-M immediate (immediate shutdown - abort)

Immediate shut down. Any transactions in progress are aborted. This shutdown
mode is not recommended. This mode kills all postgres processes without
allowing the database server to complete transaction processing or clean up any
temporary or in-process work files.

-M smart (smart shutdown - warn)

Smart shut down. If there are active connections, this command fails with a warning.
This is the default shutdown mode.

-q (no screen output)

Run in quiet mode. Command output is not displayed on the screen, but is still
written to the log file.

-r (restart)

Restart after shutdown is complete.

-t timeout_seconds

Specifies a timeout threshold (in seconds) to wait for a segment instance to
shutdown. If a segment instance does not shutdown in the specified number of
seconds, gpstop displays a message indicating that one or more segments are still in
the process of shutting down and that you cannot restart Greenplum Database until
the segment instance(s) are stopped. This option is useful in situations where
gpstop is executed and there are very large transactions that need to rollback. These
large transactions can take over a minute to rollback and surpass the default timeout
period of 600 seconds.

-u (reload pg_hba.conf and postgresql.conf files only)

This option reloads the pg_hba.conf files of the master and segments and the
runtime parameters of the postgresql.conf files but does not shutdown the
Greenplum Database array. Use this option to make new configuration settings
active after editing postgresql.conf or pg_hba.conf. Note that this only applies
to configuration parameters that are designated as runtime parameters.

-v (verbose output)

Displays detailed status, progress and error messages output by the utility.
gpstop 713

Greenplum Database Administrator Guide 4.1– Appendix B: Management Utility Reference
--version (show utility version)

Displays the version of this utility.

-y (do not stop standby master)

Do not stop the standby master process. The default is to stop the standby master.

-? | -h | --help (help)

Displays the online help.

Examples

Stop a Greenplum Database system in smart mode:

gpstop

Stop a Greenplum Database system in fast mode:

gpstop -M fast

Stop all segment instances and then restart the system:

gpstop -r

Stop a master instance that was started in maintenance mode:

gpstop -m

Reload the postgresql.conf and pg_hba.conf files after making configuration
changes but do not shutdown the Greenplum Database array:

gpstop -u

See Also

gpstart
gpstop 714

gpsys1 715

Greenplum Database Administrator Guide 4.1– Appendix B: Management Utility Reference

gpsys1
Displays information about your operating system.

Synopsis
gpsys1 [-a | -m | -p]

gpsys1 -? | --version

Description

gpsys1 displays the platform and installed memory (in bytes) of the current host. For
example:

linux 1073741824

Options

-a (show all)

Shows both platform and memory information for the current host. This is the
default.

-m (show memory only)

Shows system memory installed in bytes.

-p (show platform only)

Shows the OS platform. Platform can be linux, darwin or sunos5.

-? (help)

Displays the online help.

--version

Displays the version of this utility.

Examples

Show information about the current host operating system:

gpsys1

See Also

gpcheckperf

Greenplum Database Administrator Guide 4.1– Appendix C: Client Utility Reference
C. Client Utility Reference

This appendix provides references for the command-line client utilities provided with
Greenplum Database. Greenplum Database utilizes the standard PostgreSQL client
programs, and also has additional management utilities to facilitate the administration
of a distributed Greenplum Database DBMS.

The following Greenplum Database client programs are located in $GPHOME/bin:

• clusterdb

• createdb

• createlang

• createuser

• dropdb

• droplang

• dropuser

• ecpg

• pg_config

• pg_dump

• pg_dumpall

• pg_restore

• psql

• reindexdb

• vacuumdb
Client Utility Reference 716

Greenplum Database Administrator Guide 4.1– Appendix C: Client Utility Reference
Client Utility Reference 717

Greenplum Database Administrator Guide 4.1 – Appendix C: Client Utility Summary
Client Utility Summary
-t table | --table=table
-T table | --exclude-table=table
-h host | --host host
-p port | --port port

clusterdb

Reclusters tables that were previously clustered with CLUSTER.

clusterdb [connection-option...] [-v] [-t table] [[-d] dbname]

clusterdb [connection-option...] [-a] [-v]

clusterdb --help | --version

-a | --all
[-d] dbname | [--dbname] dbname
-e | --echo
-q | --quiet
-t table | --table table
-v | --verbose
-h host | --host host
-p port | --port port
-U username | --username username
-w | --no-password
-W | --password

createdb

Creates a new database.

createdb [connection_option ...] [-D tablespace] [-E encoding] [-O owner] [-T tem-
plate] [-e] [dbname ['description']]

createdb --help | --version

dbname
description
-D tablespace | --tablespace tablespace
-e echo
-E encoding | --encoding encoding
-O owner | --owner owner
-T template | --template template
-h host | --host host
-p port | --port port
-U username | --username username
-w | --no-password
-W | --password
clusterdb 718

Greenplum Database Administrator Guide 4.1 – Appendix C: Client Utility Summary
createlang

Defines a new procedural language for a database.

createlang [connection_option ...] [-e] langname [[-d]dbname]

createlang [connection-option ...] -l dbname

createlang --help | --version

langname
[-d] dbname | [--dbname] dbname
-e | --echo
-l dbname | --list dbname
-h host | --host host
-p port | --port port
-U username | --username username
-w | --no-password
-W | --password

createuser

Creates a new database role.

createuser [connection_option ...] [role_attribute ...] [-e] role_name

createuser --help | --version

role_name
-c number | --connection-limit number
-D | --no-createdb
-d | --createdb
-e | --echo
-E | --encrypted
-i | --inherit
-I | --no-inherit
-l | --login
-L | --no-login
-N | --unencrypted
-P | --pwprompt
-r | --createrole
-R | --no-createrole
-s | --superuser
-S | --no-superuser
-h host | --host host
-p port | --port port
-U username | --username username
-w | --no-password
-W | --password
createlang 719

Greenplum Database Administrator Guide 4.1 – Appendix C: Client Utility Summary
dropdb

Removes a database.

dropdb [connection_option ...] [-e] [-i] dbname

dropdb --help | --version

dbname
-e | --echo
-i | --interactive
-h host | --host host
-p port | --port port
-U username | --username username
-w | --no-password
-W | --password

droplang

Removes a procedural language.

droplang [connection-option ...] [-e] langname [[-d] dbname]

droplang [connection-option ...] [-e] -l dbname

droplang --help | --version

langname
[-d] dbname | [--dbname] dbname
-e | --echo
-l | --list
-h host | --host host
-p port | --port port
-U username | --username username
-w | --no-password
-W | --password

dropuser

Removes a database role.

dropuser [connection_option ...] [-e] [-i] role_name

dropuser --help | --version

role_name
-e | --echo
-i | --interactive
-h host | --host host
-p port | --port port
-U username | --username username
-w | --no-password
-W | --password
dropdb 720

Greenplum Database Administrator Guide 4.1 – Appendix C: Client Utility Summary
ecpg

Embedded SQL C preprocessor.

ecpg [option ...] file ...

file
-c
-C mode
-D symbol
-i
-I directory
-o filename
-r option
-t
-v
--help
--version

pg_config

Retrieves information about the installed version of Greenplum Database.

pg_config [option ...]

--bindir
--docdir
--includedir
--pkgincludedir
--includedir-server
--libdir
--pkglibdir
--localedir
--mandir
--sharedir
--sysconfdir
--pgxs
--configure
--cc
--cppflags
--cflags
--cflags_sl
--ldflags
--ldflags_sl
--libs
--version
ecpg 721

Greenplum Database Administrator Guide 4.1 – Appendix C: Client Utility Summary
pg_dump

Extracts a database into a single script file or other archive file.

pg_dump [connection_option ...] [dump_option ...] dbname

dbname
-a | --data-only
-b | --blobs
-c | --clean
-C | --create
-d | --inserts
-D | --column-inserts | --attribute-inserts
-E encoding | --encoding=encoding
-f file | --file=file
-F p|c|t | --format=plain|custom|tar

-i | --ignore-version
-n schema | --schema=schema
-N schema | --exclude-schema=schema
-o | --oids
-O | --no-owner
-s | --schema-only
-S username | --superuser=username
-t table | --table=table
-T table | --exclude-table=table
-v | --verbose
-x | --no-privileges | --no-acl
--disable-dollar-quoting
--disable-triggers
--use-set-session-authorization
--gp-syntax | --no-gp-syntax
-Z 0..9 | --compress=0..9

-h host | --host host
-p port | --port port
-U username | --username username
-W | --password
pg_dump 722

Greenplum Database Administrator Guide 4.1 – Appendix C: Client Utility Summary
pg_dumpall

Extracts all databases in a Greenplum Database system to a single script file or other archive file.

pg_dumpall [connection_option ...] [dump_option ...]

-a | --data-only
-c | --clean
-d | --inserts
-D | --column-inserts | --attribute-inserts
-f | --filespaces

-g | --globals-only

-i | --ignore-version
-o | --oids
-O | --no-owner
-r | --resource-queues
-s | --schema-only
-S username | --superuser=username
-v | --verbose
-x | --no-privileges | --no-acl
--disable-dollar-quoting
--disable-triggers
--use-set-session-authorization
--gp-syntax
-h host | --host host
-p port | --port port
-U username | --username username
-W | --password
pg_dumpall 723

Greenplum Database Administrator Guide 4.1 – Appendix C: Client Utility Summary
pg_restore

Restores a database from an archive file created by pg_dump.

pg_restore [connection_option ...] [restore_option ...] filename

filename
-a | --data-only
-c | --clean
-C | --create
-d dbname | --dbname=dbname
-e | --exit-on-error
-f outfilename | --file=outfilename
-F t|c | --format=tar|custom

-i | --ignore-version

-I index | --index=index

-l | --list
-L list-file | --use-list=list-file
-n schema | --schema=schema
-O | --no-owner
-P 'function-name(argtype [, ...])' | --function='function-name(argtype [, ...])'

-s | --schema-only
-S username | --superuser=username
-t table | --table=table
-T trigger | --trigger=trigger
-v | --verbose
-x | --no-privileges | --no-acl
--disable-triggers
--no-data-for-failed-tables
-h host | --host host
-p port | --port port
-U username | --username username
-W | --password
-1 | --single-transaction
pg_restore 724

Greenplum Database Administrator Guide 4.1 – Appendix C: Client Utility Summary
psql

Interactive command-line interface for Greenplum Database

psql [option...] [dbname [username]]

-a | --echo-all
-A | --no-align
-c 'command' | --command 'command'

-d dbname | --dbname dbname
-e | --echo-queries
-E | --echo-hidden
-f filename | --file filename
-F separator | --field-separator separator
-H | --html
-l | --list
-L filename | --log-file filename
-o filename | --output filename
-P assignment | --pset assignment
-q | --quiet
-R separator | --record-separator separator
-s | --single-step
-S | --single-line
-t | --tuples-only
-T table_options | --table-attr table_options
-v assignment | --set assignment | --variable assignment
-V | --version
-x | --expanded
-X | --no-psqlrc
-1 | --single-transaction
-? | --help
-h host | --host host
-p port | --port port
-U username | --username username
-W | --password
-w
--no-password

reindexdb

Rebuilds indexes in a database.

reindexdb [connection-option...] [--table | -t table] [--index | -i index] [db-
psql 725

Greenplum Database Administrator Guide 4.1 – Appendix C: Client Utility Summary
name]

reindexdb [connection-option...] [--all | -a]

reindexdb [connection-option...] [--system | -s] [dbname]

reindexdb --help | --version

-a | --all
[-d] dbname | [--dbname] dbname
-e | --echo
-i index | --index index

-q | --quiet
-s | --system
-t table | --table table

-h host | --host host
-p port | --port port
-U username | --username username
-w | --no-password
-W | --password

vacuumdb

Garbage-collects and analyzes a database.

vacuumdb [connection-option...] [--full | -f] [-F] [--verbose | -v] [--analyze |
-z] [--table | -t table [(column [,...])]] [dbname]

vacuumdb [connection-options...] [--all | -a] [--full | -f] [-F] [--verbose | -v]
[--analyze | -z]

vacuumdb --help | --version

-a | --all
[-d] dbname | [--dbname] dbname
-e | --echo
-f | --full
-F | --freeze
-q | --quiet
-t table [(column)] | --table table [(column)]

-v | --verbose
-z | --analyze
-h host | --host host
-p port | --port port
-U username | --username username
-w | --no-password
-W | --password
vacuumdb 726

Greenplum Database Administrator Guide 4.1 – Appendix C: Client Utility Reference
clusterdb
Reclusters tables that were previously clustered with CLUSTER.

Synopsis
clusterdb [connection-option...] [-v] [-t table] [[-d] dbname]

clusterdb [connection-option...] [-a] [-v]

clusterdb --help | --version

Description

To cluster a table means to physically reorder a table on disk according to an index so
that index scan operations can access data on disk in a somewhat sequential order,
thereby improving index seek performance for queries that use that index.

The clusterdb utility will find any tables in a database that have previously been
clustered with the CLUSTER SQL command, and clusters them again on the same index
that was last used. Tables that have never been clustered are not affected.

clusterdb is a wrapper around the SQL command CLUSTER. Although clustering a
table in this way is supported in Greenplum Database, it is not recommended because
the CLUSTER operation itself is extremely slow.

If you do need to order a table in this way to improve your query performance,
Greenplum recommends using a CREATE TABLE AS statement to reorder the table on
disk rather than using CLUSTER. If you do ‘cluster’ a table in this way, then
clusterdb would not be relevant.

Options

-a | --all

Cluster all databases.

[-d] dbname | [--dbname] dbname

Specifies the name of the database to be clustered. If this is not specified, the
database name is read from the environment variable PGDATABASE. If that is not set,
the user name specified for the connection is used.

-e | --echo

Echo the commands that clusterdb generates and sends to the server.

-q | --quiet

Do not display a response.

-t table | --table table

Cluster the named table only.
clusterdb 727

Greenplum Database Administrator Guide 4.1 – Appendix C: Client Utility Reference
-v | --verbose

Print detailed information during processing.

Connection Options

-h host | --host host

The host name of the machine on which the Greenplum master database server is
running. If not specified, reads from the environment variable PGHOST or defaults to
localhost.

-p port | --port port

The TCP port on which the Greenplum master database server is listening for
connections. If not specified, reads from the environment variable PGPORT or
defaults to 5432.

-U username | --username username

The database role name to connect as. If not specified, reads from the environment
variable PGUSER or defaults to the current system role name.

-w | --no-password

Never issue a password prompt. If the server requires password authentication and a
password is not available by other means such as a .pgpass file, the connection
attempt will fail. This option can be useful in batch jobs and scripts where no user is
present to enter a password.

-W | --password

Force a password prompt.

Examples

To cluster the database test:

clusterdb test

To cluster a single table foo in a database named xyzzy:

clusterdb --table foo xyzzyb

See Also

CLUSTER
clusterdb 728

Greenplum Database Administrator Guide 4.1 – Appendix C: Client Utility Reference
createdb
Creates a new database.

Synopsis
createdb [connection_option ...] [-D tablespace] [-E encoding]
[-O owner] [-T template] [-e] [dbname ['description']]

createdb --help | --version

Description

createdb creates a new database in a Greenplum Database system.

Normally, the database user who executes this command becomes the owner of the
new database. However a different owner can be specified via the -O option, if the
executing user has appropriate privileges.

createdb is a wrapper around the SQL command CREATE DATABASE.

Options

dbname

The name of the database to be created. The name must be unique among all other
databases in the Greenplum system. If not specified, reads from the environment
variable PGDATABASE, then PGUSER or defaults to the current system user.

description

A comment to be associated with the newly created database. Descriptions
containing white space must be enclosed in quotes.

-D tablespace | --tablespace tablespace

The default tablespace for the database.

-e echo

Echo the commands that createdb generates and sends to the server.

-E encoding | --encoding encoding

Character set encoding to use in the new database. Specify a string constant (such as
'UTF8'), an integer encoding number, or DEFAULT to use the default encoding. See
“Character Set Support” on page 974 for the list of supported character sets.

-O owner | --owner owner

The name of the database user who will own the new database. Defaults to the user
executing this command.
createdb 729

Greenplum Database Administrator Guide 4.1 – Appendix C: Client Utility Reference
-T template | --template template

The name of the template from which to create the new database. Defaults to
template1.

Connection Options

-h host | --host host

The host name of the machine on which the Greenplum master database server is
running. If not specified, reads from the environment variable PGHOST or defaults to
localhost.

-p port | --port port

The TCP port on which the Greenplum master database server is listening for
connections. If not specified, reads from the environment variable PGPORT or
defaults to 5432.

-U username | --username username

The database role name to connect as. If not specified, reads from the environment
variable PGUSER or defaults to the current system role name.

-w | --no-password

Never issue a password prompt. If the server requires password authentication and a
password is not available by other means such as a .pgpass file, the connection
attempt will fail. This option can be useful in batch jobs and scripts where no user is
present to enter a password.

-W | --password

Force a password prompt.

Examples

To create the database test using the default options:

createdb test

To create the database demo using the Greenplum master on host gpmaster, port
54321, using the LATIN1 encoding scheme:

createdb -p 54321 -h gpmaster -E LATIN1 demo

See Also

CREATE DATABASE
createdb 730

Greenplum Database Administrator Guide 4.1 – Appendix C: Client Utility Reference
createlang
Defines a new procedural language for a database.

Synopsis
createlang [connection_option ...] [-e] langname [[-d]dbname]

createlang [connection-option ...] -l dbname

createlang --help | --version

Description

createlang is a utility for adding a new programming language to a database.
createlang is a wrapper around the CREATE LANGUAGE SQL command.

There are currently three procedural language packages included in the standard
Greenplum Database distribution: PL/pgSQL, PL/Perl and PL/Python. The PL/pgSQL
language is already registered in all databases by default.

A language handler has also been added for PL/R, but the PL/R language package is
not pre-installed with Greenplum Database. There is also a package available for
PL/Tcl, which can be enabled if needed. See the section on Procedural Languages in
the PostgreSQL documentation for more information.

Options

langname

Specifies the name of the procedural programming language to be defined.

[-d] dbname | [--dbname] dbname

Specifies to which database the language should be added. The default is to use the
PGDATABASE environment variable setting, or the same name as the current system
user.

-e | --echo

Echo the commands that createlang generates and sends to the server.

-l dbname | --list dbname

Show a list of already installed languages in the target database.

Connection Options

-h host | --host host

The host name of the machine on which the Greenplum master database server is
running. If not specified, reads from the environment variable PGHOST or defaults to
localhost.
createlang 731

http://www.postgresql.org/docs/8.2/static/xplang.html

Greenplum Database Administrator Guide 4.1 – Appendix C: Client Utility Reference
-p port | --port port

The TCP port on which the Greenplum master database server is listening for
connections. If not specified, reads from the environment variable PGPORT or
defaults to 5432.

-U username | --username username

The database role name to connect as. If not specified, reads from the environment
variable PGUSER or defaults to the current system role name.

-w | --no-password

Never issue a password prompt. If the server requires password authentication and a
password is not available by other means such as a .pgpass file, the connection
attempt will fail. This option can be useful in batch jobs and scripts where no user is
present to enter a password.

-W | --password

Force a password prompt.

Examples

To install the language plperl into the database template1:

createlang plperl template1

See Also

CREATE LANGUAGE, droplang
createlang 732

Greenplum Database Administrator Guide 4.1 – Appendix C: Client Utility Reference
createuser
Creates a new database role.

Synopsis
createuser [connection_option ...] [role_attribute ...] [-e]
role_name

createuser --help | --version

Description

createuser creates a new Greenplum Database role. Only superusers and users with
CREATEROLE privilege can create new roles, so createuser must be invoked by
someone who can connect as a superuser or a role with CREATEROLE privilege.

If you wish to create a new superuser, you must connect as a superuser, not merely
with CREATEROLE privilege. Being a superuser implies the ability to bypass all access
permission checks within the database, so superuser privileges should not be granted
lightly.

createuser is a wrapper around the SQL command CREATE ROLE.

Options

role_name

The name of the role to be created. This name must be different from all existing
roles in this Greenplum Database installation.

-c number | --connection-limit number

Set a maximum number of connections for the new role. The default is to set no
limit.

-D | --no-createdb

The new role will not be allowed to create databases. This is the default.

-d | --createdb

The new role will be allowed to create databases.

-e | --echo

Echo the commands that createuser generates and sends to the server.

-E | --encrypted

Encrypts the role’s password stored in the database. If not specified, the default
password behavior is used.
createuser 733

Greenplum Database Administrator Guide 4.1 – Appendix C: Client Utility Reference
-i | --inherit

The new role will automatically inherit privileges of roles it is a member of. This is
the default.

-I | --no-inherit

The new role will not automatically inherit privileges of roles it is a member of.

-l | --login

The new role will be allowed to log in to Greenplum Database. This is the default.

-L | --no-login

The new role will not be allowed to log in (a group-level role).

-N | --unencrypted

Does not encrypt the role’s password stored in the database. If not specified, the
default password behavior is used.

-P | --pwprompt

If given, createuser will issue a prompt for the password of the new role. This is
not necessary if you do not plan on using password authentication.

-r | --createrole

The new role will be allowed to create new roles (CREATEROLE privilege).

-R | --no-createrole

The new role will not be allowed to create new roles. This is the default.

-s | --superuser

The new role will be a superuser.

-S | --no-superuser

The new role will not be a superuser. This is the default.

Connection Options

-h host | --host host

The host name of the machine on which the Greenplum master database server is
running. If not specified, reads from the environment variable PGHOST or defaults to
localhost.

-p port | --port port

The TCP port on which the Greenplum master database server is listening for
connections. If not specified, reads from the environment variable PGPORT or
defaults to 5432.
createuser 734

Greenplum Database Administrator Guide 4.1 – Appendix C: Client Utility Reference
-U username | --username username

The database role name to connect as. If not specified, reads from the environment
variable PGUSER or defaults to the current system role name.

-w | --no-password

Never issue a password prompt. If the server requires password authentication and a
password is not available by other means such as a .pgpass file, the connection
attempt will fail. This option can be useful in batch jobs and scripts where no user is
present to enter a password.

-W | --password

Force a password prompt.

Examples

Create a role named joe using the default options:

createuser joe

Shall the new role be a superuser? (y/n) n

Shall the new role be allowed to create databases? (y/n) n

Shall the new role be allowed to create more new roles? (y/n)
n

CREATE ROLE

To create the same role joe using connection options and avoiding the prompts and
taking a look at the underlying command:

createuser -h masterhost -p 54321 -S -D -R -e joe

CREATE ROLE joe NOSUPERUSER NOCREATEDB NOCREATEROLE INHERIT
LOGIN;

CREATE ROLE

To create the role joe as a superuser, and assign a password immediately:

createuser -P -s -e joe

Enter password for new role: admin123

Enter it again: admin123

CREATE ROLE joe PASSWORD 'admin123' SUPERUSER CREATEDB
CREATEROLE INHERIT LOGIN;

CREATE ROLE

In the above example, the new password is not actually echoed when typed, but we
show what was typed for clarity. However the password will appear in the echoed
command, as illustrated if the -e option is used.

See Also

CREATE ROLE
createuser 735

Greenplum Database Administrator Guide 4.1 – Appendix C: Client Utility Reference
dropdb
Removes a database.

Synopsis
dropdb [connection_option ...] [-e] [-i] dbname

dropdb --help | --version

Description

dropdb destroys an existing database. The user who executes this command must be a
superuser or the owner of the database being dropped.

dropdb is a wrapper around the SQL command DROP DATABASE

Options

dbname

The name of the database to be removed.

-e | --echo

Echo the commands that dropdb generates and sends to the server.

-i | --interactive

Issues a verification prompt before doing anything destructive.

Connection Options

-h host | --host host

The host name of the machine on which the Greenplum master database server is
running. If not specified, reads from the environment variable PGHOST or defaults to
localhost.

-p port | --port port

The TCP port on which the Greenplum master database server is listening for
connections. If not specified, reads from the environment variable PGPORT or
defaults to 5432.

-U username | --username username

The database role name to connect as. If not specified, reads from the environment
variable PGUSER or defaults to the current system role name.

-w | --no-password

Never issue a password prompt. If the server requires password authentication and a
password is not available by other means such as a .pgpass file, the connection
attempt will fail. This option can be useful in batch jobs and scripts where no user is
present to enter a password.
dropdb 736

Greenplum Database Administrator Guide 4.1 – Appendix C: Client Utility Reference
-W | --password

Force a password prompt.

Examples

To destroy the database named demo using default connection parameters:

dropdb demo

To destroy the database named demo using connection options, with verification, and
a peek at the underlying command:

dropdb -p 54321 -h masterhost -i -e demo

Database "demo" will be permanently deleted.

Are you sure? (y/n) y

DROP DATABASE "demo"

DROP DATABASE

See Also

DROP DATABASE
dropdb 737

gp_db_interfaces 738

Greenplum Database Administrator Guide 4.1– Appendix H: System Catalog Reference

gp_db_interfaces
The gp_db_interfaces table contains information about the relationship of segments to network
interfaces. This information, joined with data from gp_interfaces, is used by the system to optimize the
usage of available network interfaces for various purposes, including fault detection.

Table H.1 pg_catalog.gp_db_interfaces

column type references description

gp_segment_config
uration.dbid

System-assigned ID. The unique
identifier of a segment (or master)
instance.

gp_interfaces.interf
aceid

System-assigned ID for a network
interface.

Priority of the network interface for
this segment.

dbid smallint

interfaceid smallint

priority smallint

Greenplum Database Administrator Guide 4.1 – Appendix C: Client Utility Reference
droplang
Removes a procedural language.

Synopsis
droplang [connection-option ...] [-e] langname [[-d] dbname]

droplang [connection-option ...] [-e] -l dbname

droplang --help | --version

Description

droplang is a utility for removing an existing programming language from a
database. droplang can drop any procedural language, even those not supplied by the
Greenplum Database distribution.

Although programming languages can be removed directly using several SQL
commands, it is recommended to use droplang because it performs a number of
checks and is much easier to use.

droplang is a wrapper for the SQL command DROP LANGUAGE.

Options

langname

Specifies the name of the programming language to be removed.

[-d] dbname | [--dbname] dbname

Specifies from which database the language should be removed. The default is to
use the PGDATABASE environment variable setting, or the same name as the current
system user.

-e | --echo

Echo the commands that droplang generates and sends to the server.

-l | --list

Show a list of already installed languages in the target database.

Connection Options

-h host | --host host

The host name of the machine on which the Greenplum master database server is
running. If not specified, reads from the environment variable PGHOST or defaults to
localhost.
droplang 739

Greenplum Database Administrator Guide 4.1 – Appendix C: Client Utility Reference
-p port | --port port

The TCP port on which the Greenplum master database server is listening for
connections. If not specified, reads from the environment variable PGPORT or
defaults to 5432.

-U username | --username username

The database role name to connect as. If not specified, reads from the environment
variable PGUSER or defaults to the current system role name.

-w | --no-password

Never issue a password prompt. If the server requires password authentication and a
password is not available by other means such as a .pgpass file, the connection
attempt will fail. This option can be useful in batch jobs and scripts where no user is
present to enter a password.

-W | --password

Force a password prompt.

Examples

To remove the language pltcl:

droplang pltcl mydatabase

See Also

DROP LANGUAGE
droplang 740

Greenplum Database Administrator Guide 4.1 – Appendix C: Client Utility Reference
dropuser
Removes a database role.

Synopsis
dropuser [connection_option ...] [-e] [-i] role_name

dropuser --help | --version

Description

dropuser removes an existing role from Greenplum Database. Only superusers and
users with the CREATEROLE privilege can remove roles. To remove a superuser role,
you must yourself be a superuser.

dropuser is a wrapper around the SQL command DROP ROLE.

Options

role_name

The name of the role to be removed. You will be prompted for a name if not
specified on the command line.

-e | --echo

Echo the commands that dropuser generates and sends to the server.

-i | --interactive

Prompt for confirmation before actually removing the role.

Connection Options

-h host | --host host

The host name of the machine on which the Greenplum master database server is
running. If not specified, reads from the environment variable PGHOST or defaults to
localhost.

-p port | --port port

The TCP port on which the Greenplum master database server is listening for
connections. If not specified, reads from the environment variable PGPORT or
defaults to 5432.

-U username | --username username

The database role name to connect as. If not specified, reads from the environment
variable PGUSER or defaults to the current system role name.
dropuser 741

Greenplum Database Administrator Guide 4.1 – Appendix C: Client Utility Reference
-w | --no-password

Never issue a password prompt. If the server requires password authentication and a
password is not available by other means such as a .pgpass file, the connection
attempt will fail. This option can be useful in batch jobs and scripts where no user is
present to enter a password.

-W | --password

Force a password prompt.

Examples

To remove the role joe using default connection options:

dropuser joe

DROP ROLE

To remove the role joe using connection options, with verification, and a peek at the
underlying command:

dropuser -p 54321 -h masterhost -i -e joe

Role "joe" will be permanently removed.

Are you sure? (y/n) y

DROP ROLE "joe"

DROP ROLE

See Also

DROP ROLE
dropuser 742

Greenplum Database Administrator Guide 4.1 – Appendix C: Client Utility Reference
ecpg
Embedded SQL C preprocessor.

Synopsis
ecpg [option ...] file ...

Description

ecpg is the embedded SQL preprocessor for C programs. It converts C programs with
embedded SQL statements to normal C code by replacing the SQL invocations with
special function calls. The output files can then be processed with any C compiler tool
chain.

ecpg will convert each input file given on the command line to the corresponding C
output file. Input files preferably have the extension .pgc, in which case the extension
will be replaced by .c to determine the output file name. If the extension of the input
file is not .pgc, then the output file name is computed by appending .c to the full file
name. The output file name can also be overridden using the -o option.

This reference page does not describe the embedded SQL language. See the ECPG -
Embedded SQL in C chapter of the PostgreSQL documentation for more information.

Options

file

The file to convert.

-c

Automatically generate certain C code from SQL code. Currently, this works for
EXEC SQL TYPE.

-C mode

Set a compatibility mode. mode may be INFORMIX or INFORMIX_SE.

-D symbol

Define a C preprocessor symbol.

-i

Parse system include files as well.

-I directory

Specify an additional include path, used to find files included via EXEC SQL
INCLUDE. Defaults are . (current directory), /usr/local/include, the Greenplum
Database include directory (/usr/local/greenplum-db-4.1.x.x/include),
and /usr/include, in that order.
ecpg 743

http://www.postgresql.org/docs/8.2/static/ecpg.html
http://www.postgresql.org/docs/8.2/static/ecpg.html

Greenplum Database Administrator Guide 4.1 – Appendix C: Client Utility Reference
-o filename

Specifies that ecpg should write all its output to the given filename.

-r option

Selects a run-time behavior. Currently, option can only be no_indicator.

-t

Turn on autocommit of transactions. In this mode, each SQL command is
automatically committed unless it is inside an explicit transaction block. In the
default mode, commands are committed only when EXEC SQL COMMIT is issued.

-v

Print additional information including the version and the include path.

--help

Show a brief summary of the command usage, then exit.

--version

Output version information, then exit.

Examples

If you have an embedded SQL C source file named prog1.pgc, you can create an
executable program using the following sequence of commands:

ecpg prog1.pgc

cc -I/usr/local/pgsql/include -c prog1.c

cc -o prog1 prog1.o -L/usr/local/greenplum-db-4.1.x.x/lib
-lecpg
ecpg 744

Greenplum Database Administrator Guide 4.1 – Appendix C: Client Utility Reference
pg_config
Retrieves information about the installed version of Greenplum Database.

Synopsis
pg_config [option ...]

Description

The pg_config utility prints configuration parameters of the currently installed
version of Greenplum Database. It is intended, for example, to be used by software
packages that want to interface to Greenplum Database to facilitate finding the
required header files and libraries. Note that information printed out by pg_config is
for the Greenplum Database master only.

If more than one option is given, the information is printed in that order, one item per
line. If no options are given, all available information is printed, with labels.

Options

--bindir

Print the location of user executables. Use this, for example, to find the psql
program. This is normally also the location where the pg_config program resides.

--docdir

Print the location of documentation files.

--includedir

Print the location of C header files of the client interfaces.

--pkgincludedir

Print the location of other C header files.

--includedir-server

Print the location of C header files for server programming.

--libdir

Print the location of object code libraries.

--pkglibdir

Print the location of dynamically loadable modules, or where the server would
search for them. (Other architecture-dependent data files may also be installed in
this directory.)

--localedir

Print the location of locale support files.
pg_config 745

Greenplum Database Administrator Guide 4.1 – Appendix C: Client Utility Reference
--mandir

Print the location of manual pages.

--sharedir

Print the location of architecture-independent support files.

--sysconfdir

Print the location of system-wide configuration files.

--pgxs

Print the location of extension makefiles.

--configure

Print the options that were given to the configure script when Greenplum Database
was configured for building.

--cc

Print the value of the CC variable that was used for building Greenplum Database.
This shows the C compiler used.

--cppflags

Print the value of the CPPFLAGS variable that was used for building Greenplum
Database. This shows C compiler switches needed at preprocessing time.

--cflags

Print the value of the CFLAGS variable that was used for building Greenplum
Database. This shows C compiler switches.

--cflags_sl

Print the value of the CFLAGS_SL variable that was used for building Greenplum
Database. This shows extra C compiler switches used for building shared libraries.

--ldflags

Print the value of the LDFLAGS variable that was used for building Greenplum
Database. This shows linker switches.

--ldflags_sl

Print the value of the LDFLAGS_SL variable that was used for building Greenplum
Database. This shows linker switches used for building shared libraries.

--libs

Print the value of the LIBS variable that was used for building Greenplum Database.
This normally contains -l switches for external libraries linked into Greenplum
Database.

--version

Print the version of Greenplum Database.
pg_config 746

Greenplum Database Administrator Guide 4.1 – Appendix C: Client Utility Reference
Examples

To reproduce the build configuration of the current Greenplum Database installation,
run the following command:

eval ./configure 'pg_config --configure'

The output of pg_config --configure contains shell quotation marks so arguments
with spaces are represented correctly. Therefore, using eval is required for proper
results.
pg_config 747

Greenplum Database Administrator Guide 4.1 – Appendix C: Client Utility Reference
pg_dump
Extracts a database into a single script file or other archive file.

Synopsis
pg_dump [connection_option ...] [dump_option ...] dbname

Description

pg_dump is a standard PostgreSQL utility for backing up a database, and is also
supported in Greenplum Database. It creates a single (non-parallel) dump file. For
routine backups of Greenplum Database it is better to use Greenplum’s parallel dump
utility, gp_dump, for the best performance.

Use pg_dump if you are migrating your data to another database vendor’s system, or to
another Greenplum Database system with a different segment configuration (for
example, if the system you are migrating to has greater or fewer segment instances).
To restore, you must use the corresponding pg_restore utility (if the dump file is in
archive format), or you can use a client program such as psql (if the dump file is in
plain text format).

Since pg_dump is compatible with regular PostgreSQL, it can be used to migrate data
into Greenplum Database. The pg_dump utility in Greenplum Database is very similar
to the PostgreSQL pg_dump utility, with the following exceptions and limitations:

• If using pg_dump to backup a Greenplum database, keep in mind that the dump
operation can take a long time (several hours) for very large databases. Also, you
must make sure you have sufficient disk space to create the dump file.

• If you are migrating data from one Greenplum Database system to another, use the
--gp-syntax command-line option to include the DISTRIBUTED BY clause in
CREATE TABLE statements. This ensures that Greenplum Database table data is
distributed with the correct distribution key columns upon restore.

pg_dump makes consistent backups even if the database is being used concurrently.
pg_dump does not block other users accessing the database (readers or writers).

When used with one of the archive file formats and combined with pg_restore,
pg_dump provides a flexible archival and transfer mechanism. pg_dump can be used to
backup an entire database, then pg_restore can be used to examine the archive
and/or select which parts of the database are to be restored. The most flexible output
file format is the custom format (-Fc). It allows for selection and reordering of all
archived items, and is compressed by default. The tar format (-Ft) is not compressed
and it is not possible to reorder data when loading, but it is otherwise quite flexible. It
can be manipulated with standard UNIX tools such as tar.
pg_dump 748

Greenplum Database Administrator Guide 4.1 – Appendix C: Client Utility Reference
Options

dbname

Specifies the name of the database to be dumped. If this is not specified, the
environment variable PGDATABASE is used. If that is not set, the user name specified
for the connection is used.

Dump Options

-a | --data-only

Dump only the data, not the schema (data definitions). This option is only
meaningful for the plain-text format. For the archive formats, you may specify the
option when you call pg_restore.

-b | --blobs

Include large objects in the dump. This is the default behavior except when
--schema, --table, or --schema-only is specified, so the -b switch is only
useful to add large objects to selective dumps.

-c | --clean

Adds commands to the text output file to clean (drop) database objects prior to (the
commands for) creating them. Note that objects are not dropped before the dump
operation begins, but DROP commands are added to the DDL dump output files so
that when you use those files to do a restore, the DROP commands are run prior to the
CREATE commands. This option is only meaningful for the plain-text format. For the
archive formats, you may specify the option when you call pg_restore.

-C | --create

Begin the output with a command to create the database itself and reconnect to the
created database. (With a script of this form, it doesn’t matter which database you
connect to before running the script.) This option is only meaningful for the
plain-text format. For the archive formats, you may specify the option when you call
pg_restore.

-d | --inserts

Dump data as INSERT commands (rather than COPY). This will make restoration
very slow; it is mainly useful for making dumps that can be loaded into
non-PostgreSQL-based databases. Also, since this option generates a separate
command for each row, an error in reloading a row causes only that row to be lost
rather than the entire table contents. Note that the restore may fail altogether if you
have rearranged column order. The -D option is safe against column order changes,
though even slower.

-D | --column-inserts | --attribute-inserts

Dump data as INSERT commands with explicit column names (INSERT INTO
table (column, ...) VALUES ...). This will make restoration very slow; it is
mainly useful for making dumps that can be loaded into non-PostgreSQL-based
pg_dump 749

Greenplum Database Administrator Guide 4.1 – Appendix C: Client Utility Reference
databases. Also, since this option generates a separate command for each row, an
error in reloading a row causes only that row to be lost rather than the entire table
contents.

-E encoding | --encoding=encoding

Create the dump in the specified character set encoding. By default, the dump is
created in the database encoding. (Another way to get the same result is to set the
PGCLIENTENCODING environment variable to the desired dump encoding.)

-f file | --file=file

Send output to the specified file. If this is omitted, the standard output is used.

-F p|c|t | --format=plain|custom|tar

Selects the format of the output. format can be one of the following:

p | plain — Output a plain-text SQL script file (the default).

c | custom — Output a custom archive suitable for input into pg_restore. This
is the most flexible format in that it allows reordering of loading data as well as
object definitions. This format is also compressed by default.

t | tar — Output a tar archive suitable for input into pg_restore. Using this
archive format allows reordering and/or exclusion of database objects at the time the
database is restored. It is also possible to limit which data is reloaded at restore time.

-i | --ignore-version

Ignore version mismatch between pg_dump and the database server. pg_dump can
dump from servers running previous releases of Greenplum Database (or
PostgreSQL), but very old versions may not be supported anymore. Use this option
if you need to override the version check.

-n schema | --schema=schema

Dump only schemas matching the schema pattern; this selects both the schema
itself, and all its contained objects. When this option is not specified, all non-system
schemas in the target database will be dumped. Multiple schemas can be selected by
writing multiple -n switches. Also, the schema parameter is interpreted as a pattern
according to the same rules used by psql’s \d commands, so multiple schemas can
also be selected by writing wildcard characters in the pattern. When using wildcards,
be careful to quote the pattern if needed to prevent the shell from expanding the
wildcards.

Note: When -n is specified, pg_dump makes no attempt to dump any other database
objects that the selected schema(s) may depend upon. Therefore, there is no
guarantee that the results of a specific-schema dump can be successfully restored by
themselves into a clean database.

Note: Non-schema objects such as blobs are not dumped when -n is specified. You
can add blobs back to the dump with the --blobs switch.
pg_dump 750

Greenplum Database Administrator Guide 4.1 – Appendix C: Client Utility Reference
-N schema | --exclude-schema=schema

Do not dump any schemas matching the schema pattern. The pattern is interpreted
according to the same rules as for -n. -N can be given more than once to exclude
schemas matching any of several patterns. When both -n and -N are given, the
behavior is to dump just the schemas that match at least one -n switch but no -N
switches. If -N appears without -n, then schemas matching -N are excluded from
what is otherwise a normal dump.

-o | --oids

Dump object identifiers (OIDs) as part of the data for every table. Use of this option
is not recommended for files that are intended to be restored into Greenplum
Database.

-O | --no-owner

Do not output commands to set ownership of objects to match the original database.
By default, pg_dump issues ALTER OWNER or SET SESSION AUTHORIZATION
statements to set ownership of created database objects. These statements will fail
when the script is run unless it is started by a superuser (or the same user that owns
all of the objects in the script). To make a script that can be restored by any user, but
will give that user ownership of all the objects, specify -O. This option is only
meaningful for the plain-text format. For the archive formats, you may specify the
option when you call pg_restore.

-s | --schema-only

Dump only the object definitions (schema), not data.

-S username | --superuser=username

Specify the superuser user name to use when disabling triggers. This is only relevant
if --disable-triggers is used. It is better to leave this out, and instead start the
resulting script as a superuser.

-t table | --table=table

Dump only tables (or views or sequences) matching the table pattern. Multiple
tables can be selected by writing multiple -t switches. Also, the table parameter is
interpreted as a pattern according to the same rules used by psql’s \d commands, so
multiple tables can also be selected by writing wildcard characters in the pattern.
When using wildcards, be careful to quote the pattern if needed to prevent the shell
from expanding the wildcards. The -n and -N switches have no effect when -t is
used, because tables selected by -t will be dumped regardless of those switches, and
non-table objects will not be dumped.

Note: When -t is specified, pg_dump makes no attempt to dump any other database
objects that the selected table(s) may depend upon. Therefore, there is no guarantee
that the results of a specific-table dump can be successfully restored by themselves
into a clean database.

Note: -t cannot be used to specify a child table partition. To dump a partitioned
table, you must specify the parent table name.
pg_dump 751

Greenplum Database Administrator Guide 4.1 – Appendix C: Client Utility Reference
-T table | --exclude-table=table

Do not dump any tables matching the table pattern. The pattern is interpreted
according to the same rules as for -t. -T can be given more than once to exclude
tables matching any of several patterns. When both -t and -T are given, the
behavior is to dump just the tables that match at least one -t switch but no -T
switches. If -T appears without -t, then tables matching -T are excluded from what
is otherwise a normal dump.

-v | --verbose

Specifies verbose mode. This will cause pg_dump to output detailed object
comments and start/stop times to the dump file, and progress messages to standard
error.

-x | --no-privileges | --no-acl

Prevent dumping of access privileges (GRANT/REVOKE commands).

--disable-dollar-quoting

This option disables the use of dollar quoting for function bodies, and forces them to
be quoted using SQL standard string syntax.

--disable-triggers

This option is only relevant when creating a data-only dump. It instructs pg_dump to
include commands to temporarily disable triggers on the target tables while the data
is reloaded. Use this if you have triggers on the tables that you do not want to invoke
during data reload. The commands emitted for --disable-triggers must be done
as superuser. So, you should also specify a superuser name with -S, or preferably be
careful to start the resulting script as a superuser. This option is only meaningful for
the plain-text format. For the archive formats, you may specify the option when you
call pg_restore.

--use-set-session-authorization

Output SQL-standard SET SESSION AUTHORIZATION commands instead of ALTER
OWNER commands to determine object ownership. This makes the dump more
standards compatible, but depending on the history of the objects in the dump, may
not restore properly. A dump using SET SESSION AUTHORIZATION will require
superuser privileges to restore correctly, whereas ALTER OWNER requires lesser
privileges.

--gp-syntax | --no-gp-syntax

Use --gp-syntax to dump Greenplum Database syntax in the CREATE TABLE
statements. This allows the distribution policy (DISTRIBUTED BY or DISTRIBUTED
RANDOMLY clauses) of a Greenplum Database table to be dumped, which is useful for
restoring into other Greenplum Database systems. The default is to include
Greenplum Database syntax when connected to a Greenplum system, and to exclude
it when connected to a regular PostgreSQL system.
pg_dump 752

Greenplum Database Administrator Guide 4.1 – Appendix C: Client Utility Reference
-Z 0..9 | --compress=0..9

Specify the compression level to use in archive formats that support compression.
Currently only the custom archive format supports compression.

Connection Options

-h host | --host host

The host name of the machine on which the Greenplum master database server is
running. If not specified, reads from the environment variable PGHOST or defaults to
localhost.

-p port | --port port

The TCP port on which the Greenplum master database server is listening for
connections. If not specified, reads from the environment variable PGPORT or
defaults to 5432.

-U username | --username username

The database role name to connect as. If not specified, reads from the environment
variable PGUSER or defaults to the current system role name.

-W | --password

Force a password prompt.

Notes

When a data-only dump is chosen and the option --disable-triggers is used,
pg_dump emits commands to disable triggers on user tables before inserting the data
and commands to re-enable them after the data has been inserted. If the restore is
stopped in the middle, the system catalogs may be left in the wrong state.

Members of tar archives are limited to a size less than 8 GB. (This is an inherent
limitation of the tar file format.) Therefore this format cannot be used if the textual
representation of any one table exceeds that size. The total size of a tar archive and
any of the other output formats is not limited, except possibly by the operating system.

The dump file produced by pg_dump does not contain the statistics used by the
optimizer to make query planning decisions. Therefore, it is wise to run ANALYZE after
restoring from a dump file to ensure good performance.

Examples

Dump a database called mydb into a SQL-script file:

pg_dump mydb > db.sql

To reload such a script into a (freshly created) database named newdb:

psql -d newdb -f db.sql

Dump a Greenplum database in tar file format and include distribution policy
information:

pg_dump -Ft --gp-syntax mydb > db.tar
pg_dump 753

Greenplum Database Administrator Guide 4.1 – Appendix C: Client Utility Reference
To dump a database into a custom-format archive file:

pg_dump -Fc mydb > db.dump

To reload an archive file into a (freshly created) database named newdb:

pg_restore -d newdb db.dump

To dump a single table named mytab:

pg_dump -t mytab mydb > db.sql

To specify an upper-case or mixed-case name in -t and related switches, you need to
double-quote the name; else it will be folded to lower case. But double quotes are
special to the shell, so in turn they must be quoted. Thus, to dump a single table with a
mixed-case name, you need something like:

pg_dump -t '"MixedCaseName"' mydb > mytab.sql

See Also

gp_dump, pg_dumpall, pg_restore, gp_restore, psql
pg_dump 754

Greenplum Database Administrator Guide 4.1 – Appendix C: Client Utility Reference
pg_dumpall
Extracts all databases in a Greenplum Database system to a single script file or other
archive file.

Synopsis
pg_dumpall [connection_option ...] [dump_option ...]

Description

pg_dumpall is a standard PostgreSQL utility for backing up all databases in a
Greenplum Database (or PostgreSQL) instance, and is also supported in Greenplum
Database. It creates a single (non-parallel) dump file. For routine backups of
Greenplum Database it is better to use Greenplum’s parallel dump utility, gp_dump, for
the best performance.

pg_dumpall creates a single script file that contains SQL commands that can be used
as input to psql to restore the databases. It does this by calling pg_dump for each
database. pg_dumpall also dumps global objects that are common to all databases.
(pg_dump does not save these objects.) This currently includes information about
database users and groups, and access permissions that apply to databases as a whole.

Since pg_dumpall reads tables from all databases you will most likely have to
connect as a database superuser in order to produce a complete dump. Also you will
need superuser privileges to execute the saved script in order to be allowed to add
users and groups, and to create databases.

The SQL script will be written to the standard output. Shell operators should be used
to redirect it into a file.

pg_dumpall needs to connect several times to the Greenplum Database master server
(once per database). If you use password authentication it is likely to ask for a
password each time. It is convenient to have a ~/.pgpass file in such cases.

Options

Dump Options

-a | --data-only

Dump only the data, not the schema (data definitions). This option is only
meaningful for the plain-text format. For the archive formats, you may specify the
option when you call pg_restore.

-c | --clean

Output commands to clean (drop) database objects prior to (the commands for)
creating them. This option is only meaningful for the plain-text format. For the
archive formats, you may specify the option when you call pg_restore.
pg_dumpall 755

Greenplum Database Administrator Guide 4.1 – Appendix C: Client Utility Reference
-d | --inserts

Dump data as INSERT commands (rather than COPY). This will make restoration
very slow; it is mainly useful for making dumps that can be loaded into
non-PostgreSQL-based databases. Also, since this option generates a separate
command for each row, an error in reloading a row causes only that row to be lost
rather than the entire table contents. Note that the restore may fail altogether if you
have rearranged column order. The -D option is safe against column order changes,
though even slower.

-D | --column-inserts | --attribute-inserts

Dump data as INSERT commands with explicit column names (INSERT INTO
table (column, ...) VALUES ...). This will make restoration very slow; it is
mainly useful for making dumps that can be loaded into non-PostgreSQL-based
databases. Also, since this option generates a separate command for each row, an
error in reloading a row causes only that row to be lost rather than the entire table
contents.

-f | --filespaces

Dump filespace definitions.

-g | --globals-only

Dump only global objects (roles and tablespaces), no databases.

-i | --ignore-version

Ignore version mismatch between pg_dump and the database server. pg_dump can
dump from servers running previous releases of Greenplum Database (or
PostgreSQL), but very old versions may not be supported anymore. Use this option
if you need to override the version check.

-o | --oids

Dump object identifiers (OIDs) as part of the data for every table. Use of this option
is not recommended for files that are intended to be restored into Greenplum
Database.

-O | --no-owner

Do not output commands to set ownership of objects to match the original database.
By default, pg_dump issues ALTER OWNER or SET SESSION AUTHORIZATION
statements to set ownership of created database objects. These statements will fail
when the script is run unless it is started by a superuser (or the same user that owns
all of the objects in the script). To make a script that can be restored by any user, but
will give that user ownership of all the objects, specify -O. This option is only
meaningful for the plain-text format. For the archive formats, you may specify the
option when you call pg_restore.

-r | --resource-queues

Dump resource queue definitions.
pg_dumpall 756

Greenplum Database Administrator Guide 4.1 – Appendix C: Client Utility Reference
-s | --schema-only

Dump only the object definitions (schema), not data.

-S username | --superuser=username

Specify the superuser user name to use when disabling triggers. This is only relevant
if --disable-triggers is used. It is better to leave this out, and instead start the
resulting script as a superuser.

-v | --verbose

Specifies verbose mode. This will cause pg_dump to output detailed object
comments and start/stop times to the dump file, and progress messages to standard
error.

-x | --no-privileges | --no-acl

Prevent dumping of access privileges (GRANT/REVOKE commands).

--disable-dollar-quoting

This option disables the use of dollar quoting for function bodies, and forces them to
be quoted using SQL standard string syntax.

--disable-triggers

This option is only relevant when creating a data-only dump. It instructs
pg_dumpall to include commands to temporarily disable triggers on the target
tables while the data is reloaded. Use this if you have triggers on the tables that you
do not want to invoke during data reload. The commands emitted for
--disable-triggers must be done as superuser. So, you should also specify a
superuser name with -S, or preferably be careful to start the resulting script as a
superuser.

--use-set-session-authorization

Output SQL-standard SET SESSION AUTHORIZATION commands instead of ALTER
OWNER commands to determine object ownership. This makes the dump more
standards compatible, but depending on the history of the objects in the dump, may
not restore properly. A dump using SET SESSION AUTHORIZATION will require
superuser privileges to restore correctly, whereas ALTER OWNER requires lesser
privileges.

--gp-syntax

Output Greenplum Database syntax in the CREATE TABLE statements. This allows
the distribution policy (DISTRIBUTED BY or DISTRIBUTED RANDOMLY clauses) of a
Greenplum Database table to be dumped, which is useful for restoring into other
Greenplum Database systems.
pg_dumpall 757

Greenplum Database Administrator Guide 4.1 – Appendix C: Client Utility Reference
Connection Options

-h host | --host host

The host name of the machine on which the Greenplum master database server is
running. If not specified, reads from the environment variable PGHOST or defaults to
localhost.

-p port | --port port

The TCP port on which the Greenplum master database server is listening for
connections. If not specified, reads from the environment variable PGPORT or
defaults to 5432.

-U username | --username username

The database role name to connect as. If not specified, reads from the environment
variable PGUSER or defaults to the current system role name.

-W | --password

Force a password prompt.

Notes

Since pg_dumpall calls pg_dump internally, some diagnostic messages will refer to
pg_dump.

Once restored, it is wise to run ANALYZE on each database so the query planner has
useful statistics. You can also run vacuumdb -a -z to analyze all databases.

pg_dumpall requires all needed tablespace (filespace) directories to exist before the
restore or database creation will fail for databases in non-default locations.

Examples

To dump all databases:

pg_dumpall > db.out

To reload this file:

psql template1 -f db.out

To dump only global objects (including filespaces and resource queues):

pg_dumpall -g -f -r

See Also

gp_dump, pg_dump
pg_dumpall 758

Greenplum Database Administrator Guide 4.1 – Appendix C: Client Utility Reference
pg_restore
Restores a database from an archive file created by pg_dump.

Synopsis
pg_restore [connection_option ...] [restore_option ...] filename

Description

pg_restore is a utility for restoring a database from an archive created by pg_dump in
one of the non-plain-text formats. It will issue the commands necessary to reconstruct
the database to the state it was in at the time it was saved. The archive files also allow
pg_restore to be selective about what is restored, or even to reorder the items prior to
being restored.

pg_restore can operate in two modes. If a database name is specified, the archive is
restored directly into the database. Otherwise, a script containing the SQL commands
necessary to rebuild the database is created and written to a file or standard output.
The script output is equivalent to the plain text output format of pg_dump. Some of the
options controlling the output are therefore analogous to pg_dump options.

pg_restore cannot restore information that is not present in the archive file. For
instance, if the archive was made using the “dump data as INSERT commands” option,
pg_restore will not be able to load the data using COPY statements.

Options

filename

Specifies the location of the archive file to be restored. If not specified, the standard
input is used.

-a | --data-only

Restore only the data, not the schema (data definitions).

-c | --clean

Clean (drop) database objects before recreating them.

-C | --create

Create the database before restoring into it. (When this option is used, the database
named with -d is used only to issue the initial CREATE DATABASE command. All
data is restored into the database name that appears in the archive.)

-d dbname | --dbname=dbname

Connect to this database and restore directly into this database. The default is to use
the PGDATABASE environment variable setting, or the same name as the current
system user.
pg_restore 759

Greenplum Database Administrator Guide 4.1 – Appendix C: Client Utility Reference
-e | --exit-on-error

Exit if an error is encountered while sending SQL commands to the database. The
default is to continue and to display a count of errors at the end of the restoration.

-f outfilename | --file=outfilename

Specify output file for generated script, or for the listing when used with -l. Default
is the standard output.

-F t|c | --format=tar|custom

The format of the archive produced by pg_dump. It is not necessary to specify the
format, since pg_restore will determine the format automatically. Format can be
either tar or custom.

-i | --ignore-version

Ignore database version checks.

-I index | --index=index

Restore definition of named index only.

-l | --list

List the contents of the archive. The output of this operation can be used with the -L
option to restrict and reorder the items that are restored.

-L list-file | --use-list=list-file

Restore elements in the list-file only, and in the order they appear in the file.
Lines can be moved and may also be commented out by placing a ; at the start of the
line.

-n schema | --schema=schema

Restore only objects that are in the named schema. This can be combined with the
-t option to restore just a specific table.

-O | --no-owner

Do not output commands to set ownership of objects to match the original database.
By default, pg_restore issues ALTER OWNER or SET SESSION AUTHORIZATION
statements to set ownership of created schema elements. These statements will fail
unless the initial connection to the database is made by a superuser (or the same user
that owns all of the objects in the script). With -O, any user name can be used for the
initial connection, and this user will own all the created objects.

-P 'function-name(argtype [, ...])' |
--function='function-name(argtype [, ...])'

Restore the named function only. The function name must be enclosed in quotes. Be
careful to spell the function name and arguments exactly as they appear in the dump
file’s table of contents (as shown by the --list option).
pg_restore 760

Greenplum Database Administrator Guide 4.1 – Appendix C: Client Utility Reference
-s | --schema-only

Restore only the schema (data definitions), not the data (table contents). Sequence
current values will not be restored, either. (Do not confuse this with the --schema
option, which uses the word schema in a different meaning.)

-S username | --superuser=username

Specify the superuser user name to use when disabling triggers. This is only relevant
if --disable-triggers is used.

-t table | --table=table

Restore definition and/or data of named table only.

-T trigger | --trigger=trigger

Restore named trigger only.

-v | --verbose

Specifies verbose mode.

-x | --no-privileges | --no-acl

Prevent restoration of access privileges (GRANT/REVOKE commands).

--disable-triggers

This option is only relevant when performing a data-only restore. It instructs
pg_restore to execute commands to temporarily disable triggers on the target
tables while the data is reloaded. Use this if you have triggers on the tables that you
do not want to invoke during data reload. The commands emitted for
--disable-triggers must be done as superuser. So, you should also specify a
superuser name with -S, or preferably run pg_restore as a superuser.

--no-data-for-failed-tables

By default, table data is restored even if the creation command for the table failed
(e.g., because it already exists). With this option, data for such a table is skipped.
This behavior is useful when the target database may already contain the desired
table contents. Specifying this option prevents duplicate or obsolete data from being
loaded. This option is effective only when restoring directly into a database, not
when producing SQL script output.

Connection Options

-h host | --host host

The host name of the machine on which the Greenplum master database server is
running. If not specified, reads from the environment variable PGHOST or defaults to
localhost.

-p port | --port port

The TCP port on which the Greenplum master database server is listening for
connections. If not specified, reads from the environment variable PGPORT or
defaults to 5432.
pg_restore 761

Greenplum Database Administrator Guide 4.1 – Appendix C: Client Utility Reference
-U username | --username username

The database role name to connect as. If not specified, reads from the environment
variable PGUSER or defaults to the current system role name.

-W | --password

Force a password prompt.

-1 | --single-transaction

Execute the restore as a single transaction. This ensures that either all the commands
complete successfully, or no changes are applied.

Notes

If your installation has any local additions to the template1 database, be careful to
load the output of pg_restore into a truly empty database; otherwise you are likely
to get errors due to duplicate definitions of the added objects. To make an empty
database without any local additions, copy from template0 not template1, for
example:

CREATE DATABASE foo WITH TEMPLATE template0;

When restoring data to a pre-existing table and the option --disable-triggers is
used, pg_restore emits commands to disable triggers on user tables before inserting
the data then emits commands to re-enable them after the data has been inserted. If the
restore is stopped in the middle, the system catalogs may be left in the wrong state.

pg_restore will not restore large objects for a single table. If an archive contains
large objects, then all large objects will be restored.

See also the pg_dump documentation for details on limitations of pg_dump.

Once restored, it is wise to run ANALYZE on each restored table so the query planner
has useful statistics.

Examples

Assume we have dumped a database called mydb into a custom-format dump file:

pg_dump -Fc mydb > db.dump

To drop the database and recreate it from the dump:

dropdb mydb

pg_restore -C -d template1 db.dump

To reload the dump into a new database called newdb. Notice there is no -C, we
instead connect directly to the database to be restored into. Also note that we clone the
new database from template0 not template1, to ensure it is initially empty:

createdb -T template0 newdb

pg_restore -d newdb db.dump

To reorder database items, it is first necessary to dump the table of contents of the
archive:
pg_restore 762

Greenplum Database Administrator Guide 4.1 – Appendix C: Client Utility Reference
pg_restore -l db.dump > db.list

The listing file consists of a header and one line for each item, for example,

; Archive created at Fri Jul 28 22:28:36 2006

; dbname: mydb

; TOC Entries: 74

; Compression: 0

; Dump Version: 1.4-0

; Format: CUSTOM

;

; Selected TOC Entries:

;

2; 145344 TABLE species postgres

3; 145344 ACL species

4; 145359 TABLE nt_header postgres

5; 145359 ACL nt_header

6; 145402 TABLE species_records postgres

7; 145402 ACL species_records

8; 145416 TABLE ss_old postgres

9; 145416 ACL ss_old

10; 145433 TABLE map_resolutions postgres

11; 145433 ACL map_resolutions

12; 145443 TABLE hs_old postgres

13; 145443 ACL hs_old

Semicolons start a comment, and the numbers at the start of lines refer to the internal
archive ID assigned to each item. Lines in the file can be commented out, deleted, and
reordered. For example,

10; 145433 TABLE map_resolutions postgres

;2; 145344 TABLE species postgres

;4; 145359 TABLE nt_header postgres

6; 145402 TABLE species_records postgres

;8; 145416 TABLE ss_old postgres

Could be used as input to pg_restore and would only restore items 10 and 6, in that
order:

pg_restore -L db.list db.dump

See Also

pg_dump, gp_restore, gp_dump
pg_restore 763

Greenplum Database Administrator Guide 4.1 – Appendix C: Client Utility Reference
psql
Interactive command-line interface for Greenplum Database

Synopsis
psql [option...] [dbname [username]]

Description

psql is a terminal-based front-end to Greenplum Database. It enables you to type in
queries interactively, issue them to Greenplum Database, and see the query results.
Alternatively, input can be from a file. In addition, it provides a number of
meta-commands and various shell-like features to facilitate writing scripts and
automating a wide variety of tasks.

Options

-a | --echo-all

Print all input lines to standard output as they are read. This is more useful for script
processing rather than interactive mode.

-A | --no-align

Switches to unaligned output mode. (The default output mode is aligned.)

-c 'command' | --command 'command'

Specifies that psql is to execute the specified command string, and then exit. This is
useful in shell scripts. command must be either a command string that is completely
parseable by the server, or a single backslash command. Thus you cannot mix SQL
and psql meta-commands with this option. To achieve that, you could pipe the
string into psql, like this: echo '\x \\ SELECT * FROM foo;' | psql. (\\ is
the separator meta-command.)

If the command string contains multiple SQL commands, they are processed in a
single transaction, unless there are explicit BEGIN/COMMIT commands included in
the string to divide it into multiple transactions. This is different from the behavior
when the same string is fed to psql’s standard input.

-d dbname | --dbname dbname

Specifies the name of the database to connect to. This is equivalent to specifying
dbname as the first non-option argument on the command line.

If this parameter contains an equals sign, it is treated as a conninfo string; for
example you can pass 'dbname=postgres user=username password=mypass'
as dbname.

-e | --echo-queries

Copy all SQL commands sent to the server to standard output as well.
psql 764

Greenplum Database Administrator Guide 4.1 – Appendix C: Client Utility Reference
-E | --echo-hidden

Echo the actual queries generated by \d and other backslash commands. You can
use this to study psql’s internal operations.

-f filename | --file filename

Use a file as the source of commands instead of reading commands interactively.
After the file is processed, psql terminates. If filename is - (hyphen), then
standard input is read. Using this option is subtly different from writing psql <
filename. In general, both will do what you expect, but using -f enables some nice
features such as error messages with line numbers.

-F separator | --field-separator separator

Use the specified separator as the field separator for unaligned output.

-H | --html

Turn on HTML tabular output.

-l | --list

List all available databases, then exit. Other non-connection options are ignored.

-L filename | --log-file filename

Write all query output into the specified log file, in addition to the normal output
destination.

-o filename | --output filename

Put all query output into the specified file.

-P assignment | --pset assignment

Allows you to specify printing options in the style of \pset on the command line.
Note that here you have to separate name and value with an equal sign instead of a
space. Thus to set the output format to LaTeX, you could write -P format=latex.

-q | --quiet

Specifies that psql should do its work quietly. By default, it prints welcome
messages and various informational output. If this option is used, none of this
happens. This is useful with the -c option.

-R separator | --record-separator separator

Use separator as the record separator for unaligned output.

-s | --single-step

Run in single-step mode. That means the user is prompted before each command is
sent to the server, with the option to cancel execution as well. Use this to debug
scripts.
psql 765

Greenplum Database Administrator Guide 4.1 – Appendix C: Client Utility Reference
-S | --single-line

Runs in single-line mode where a new line terminates an SQL command, as a
semicolon does.

-t | --tuples-only

Turn off printing of column names and result row count footers, etc. This command
is equivalent to \pset tuples_only and is provided for convenience.

-T table_options | --table-attr table_options

Allows you to specify options to be placed within the HTML table tag. See \pset
for details.

-v assignment | --set assignment | --variable assignment

Perform a variable assignment, like the \set internal command. Note that you must
separate name and value, if any, by an equal sign on the command line. To unset a
variable, leave off the equal sign. To just set a variable without a value, use the equal
sign but leave off the value. These assignments are done during a very early stage of
start-up, so variables reserved for internal purposes might get overwritten later.

-V | --version

Print the psql version and exit.

-x | --expanded

Turn on the expanded table formatting mode.

-X | --no-psqlrc

Do not read the start-up file (neither the system-wide psqlrc file nor the user’s
~/.psqlrc file).

-1 | --single-transaction

When psql executes a script with the -f option, adding this option wraps
BEGIN/COMMIT around the script to execute it as a single transaction. This ensures
that either all the commands complete successfully, or no changes are applied.

If the script itself uses BEGIN, COMMIT, or ROLLBACK, this option will not have the
desired effects. Also, if the script contains any command that cannot be executed
inside a transaction block, specifying this option will cause that command (and
hence the whole transaction) to fail.

-? | --help

Show help about psql command line arguments, and exit.

Connection Options

-h host | --host host

The host name of the machine on which the Greenplum master database server is
running. If not specified, reads from the environment variable PGHOST or defaults to
localhost.
psql 766

Greenplum Database Administrator Guide 4.1 – Appendix C: Client Utility Reference
-p port | --port port

The TCP port on which the Greenplum master database server is listening for
connections. If not specified, reads from the environment variable PGPORT or
defaults to 5432.

-U username | --username username

The database role name to connect as. If not specified, reads from the environment
variable PGUSER or defaults to the current system role name.

-W | --password

Force a password prompt. psql should automatically prompt for a password
whenever the server requests password authentication. However, currently password
request detection is not totally reliable, hence this option to force a prompt. If no
password prompt is issued and the server requires password authentication, the
connection attempt will fail.

-w
--no-password

Never issue a password prompt. If the server requires password authentication and a
password is not available by other means such as a .pgpass file, the connection
attempt will fail. This option can be useful in batch jobs and scripts where no user is
present to enter a password.

Note: This option remains set for the entire session, and so it affects uses of the
meta-command \connect as well as the initial connection attempt.

Exit Status

psql returns 0 to the shell if it finished normally, 1 if a fatal error of its own (out of
memory, file not found) occurs, 2 if the connection to the server went bad and the
session was not interactive, and 3 if an error occurred in a script and the variable
ON_ERROR_STOP was set.

Usage

Connecting To A Database

psql is a client application for Greenplum Database. In order to connect to a database
you need to know the name of your target database, the host name and port number of
the Greenplum master server and what database user name you want to connect as.
psql can be told about those parameters via command line options, namely -d, -h,
-p, and -U respectively. If an argument is found that does not belong to any option it
will be interpreted as the database name (or the user name, if the database name is
already given). Not all these options are required; there are useful defaults. If you omit
the host name, psql will connect via a UNIX-domain socket to a master server on the
local host, or via TCP/IP to localhost on machines that do not have UNIX-domain
sockets. The default master port number is 5432. If you use a different port for the
master, you must specify the port. The default database user name is your UNIX user
psql 767

Greenplum Database Administrator Guide 4.1 – Appendix C: Client Utility Reference
name, as is the default database name. Note that you cannot just connect to any
database under any user name. Your database administrator should have informed you
about your access rights.

When the defaults are not right, you can save yourself some typing by setting any or
all of the environment variables PGAPPNAME, PGDATABASE, PGHOST, PGPORT, and
PGUSER to appropriate values.

It is also convenient to have a ~/.pgpass file to avoid regularly having to type in
passwords. This file should reside in your home directory and contain lines of the
following format:

hostname:port:database:username:password

The permissions on .pgpass must disallow any access to world or group (for
example: chmod 0600 ~/.pgpass). If the permissions are less strict than this, the file
will be ignored. (The file permissions are not currently checked on Microsoft
Windows clients, however.)

If the connection could not be made for any reason (insufficient privileges, server is
not running, etc.), psql will return an error and terminate.

Entering SQL Commands

In normal operation, psql provides a prompt with the name of the database to which
psql is currently connected, followed by the string => for a regular user or =# for a
superuser. For example:

testdb=>

testdb=#

At the prompt, the user may type in SQL commands. Ordinarily, input lines are sent to
the server when a command-terminating semicolon is reached. An end of line does not
terminate a command. Thus commands can be spread over several lines for clarity. If
the command was sent and executed without error, the results of the command are
displayed on the screen.

Meta-Commands

Anything you enter in psql that begins with an unquoted backslash is a psql
meta-command that is processed by psql itself. These commands help make psql
more useful for administration or scripting. Meta-commands are more commonly
called slash or backslash commands.

The format of a psql command is the backslash, followed immediately by a command
verb, then any arguments. The arguments are separated from the command verb and
each other by any number of whitespace characters.

To include whitespace into an argument you may quote it with a single quote. To
include a single quote into such an argument, use two single quotes. Anything
contained in single quotes is furthermore subject to C-like substitutions for \n (new
line), \t (tab), \digits (octal), and \xdigits (hexadecimal).

If an unquoted argument begins with a colon (:), it is taken as a psql variable and the
value of the variable is used as the argument instead.
psql 768

Greenplum Database Administrator Guide 4.1 – Appendix C: Client Utility Reference
Arguments that are enclosed in backquotes (`) are taken as a command line that is
passed to the shell. The output of the command (with any trailing newline removed) is
taken as the argument value. The above escape sequences also apply in backquotes.

Some commands take an SQL identifier (such as a table name) as argument. These
arguments follow the syntax rules of SQL: Unquoted letters are forced to lowercase,
while double quotes (") protect letters from case conversion and allow incorporation
of whitespace into the identifier. Within double quotes, paired double quotes reduce to
a single double quote in the resulting name. For example, FOO"BAR"BAZ is interpreted
as fooBARbaz, and "A weird"" name" becomes A weird" name.

Parsing for arguments stops when another unquoted backslash occurs. This is taken as
the beginning of a new meta-command. The special sequence \\ (two backslashes)
marks the end of arguments and continues parsing SQL commands, if any. That way
SQL and psql commands can be freely mixed on a line. But in any case, the
arguments of a meta-command cannot continue beyond the end of the line.

The following meta-commands are defined:

\a

If the current table output format is unaligned, it is switched to aligned. If it is not
unaligned, it is set to unaligned. This command is kept for backwards compatibility.
See \pset for a more general solution.

\cd [directory]

Changes the current working directory. Without argument, changes to the current
user’s home directory. To print your current working directory, use \!pwd.

\C [title]

Sets the title of any tables being printed as the result of a query or unset any such
title. This command is equivalent to \pset title.

\c | \connect [dbname [username] [host] [port]]

Establishes a new connection. If the new connection is successfully made, the
previous connection is closed. If any of dbname, username, host or port are omitted,
the value of that parameter from the previous connection is used. If the connection
attempt failed, the previous connection will only be kept if psql is in interactive
mode. When executing a non-interactive script, processing will immediately stop
with an error. This distinction was chosen as a user convenience against typos, and a
safety mechanism that scripts are not accidentally acting on the wrong database.

\conninfo

Displays information about the current connection including the database name, the
user name, the type of connection (UNIX domain socket, TCP/IP, etc.), the host,
and the port.

\copy {table [(column_list)] | (query)}
{from | to} {filename | stdin | stdout | pstdin | pstdout}
[with] [binary] [oids] [delimiter [as] 'character']
[null [as] 'string'] [csv [header]
psql 769

Greenplum Database Administrator Guide 4.1 – Appendix C: Client Utility Reference
[quote [as] 'character'] [escape [as] 'character']
[force quote column_list] [force not null column_list]]

Performs a frontend (client) copy. This is an operation that runs an SQL COPY
command, but instead of the server reading or writing the specified file, psql reads
or writes the file and routes the data between the server and the local file system.
This means that file accessibility and privileges are those of the local user, not the
server, and no SQL superuser privileges are required.

The syntax of the command is similar to that of the SQL COPY command. Note that,
because of this, special parsing rules apply to the \copy command. In particular, the
variable substitution rules and backslash escapes do not apply.

\copy ... from stdin | to stdout reads/writes based on the command input
and output respectively. All rows are read from the same source that issued the
command, continuing until \. is read or the stream reaches EOF. Output is sent to the
same place as command output. To read/write from psql’s standard input or output,
use pstdin or pstdout. This option is useful for populating tables in-line within a
SQL script file.

This operation is not as efficient as the SQL COPY command because all data must
pass through the client/server connection.

\copyright

Shows the copyright and distribution terms of PostgreSQL on which Greenplum
Database is based.

\d [relation_pattern] |
\d+ [relation_pattern] |
\dS [relation_pattern]

For each relation (table, external table, view, index, or sequence) matching the
relation pattern, show all columns, their types, the tablespace (if not the default) and
any special attributes such as NOT NULL or defaults, if any. Associated indexes,
constraints, rules, and triggers are also shown, as is the view definition if the relation
is a view.

• The command form \d+ is identical, except that more information is
displayed: any comments associated with the columns of the table are shown,
as is the presence of OIDs in the table.

• The command form \dS is identical, except that system information is
displayed as well as user information.

For example, \dt displays user tables, but not system tables; \dtS displays both
user and system tables.Both these commands can take the + parameter to display
additional information, as in \dt+ and \dtS+.

If \d is used without a pattern argument, it is equivalent to \dtvs which will show a
list of all tables, views, and sequences.

\da [aggregate_pattern]

Lists all available aggregate functions, together with the data types they operate on.
If a pattern is specified, only aggregates whose names match the pattern are shown.
psql 770

Greenplum Database Administrator Guide 4.1 – Appendix C: Client Utility Reference
\db [tablespace_pattern] | \db+ [tablespace_pattern]

Lists all available tablespaces and their corresponding filespace locations. If pattern
is specified, only tablespaces whose names match the pattern are shown. If + is
appended to the command name, each object is listed with its associated
permissions.

\dc [conversion_pattern]

Lists all available conversions between character-set encodings. If pattern is
specified, only conversions whose names match the pattern are listed.

\dC

Lists all available type casts.

\dd [object_pattern]

Lists all available objects. If pattern is specified, only matching objects are shown.

\dD [domain_pattern]

Lists all available domains. If pattern is specified, only matching domains are
shown.

\df [function_pattern] | \df+ [function_pattern]

Lists available functions, together with their argument and return types. If pattern is
specified, only functions whose names match the pattern are shown. If the form
\df+ is used, additional information about each function, including language and
description, is shown. To reduce clutter, \df does not show data type I/O functions.
This is implemented by ignoring functions that accept or return type cstring.

\dg [role_pattern]

Lists all database roles. If pattern is specified, only those roles whose names match
the pattern are listed.

\distPvxS [index | sequence | table | parent table | view
| external_table | system_object]

This is not the actual command name: the letters i, s, t, P, v, x, S stand for index,
sequence, table, parent table, view, external table, and system table, respectively.
You can specify any or all of these letters, in any order, to obtain a listing of all the
matching objects. The letter S restricts the listing to system objects; without S, only
non-system objects are shown. If + is appended to the command name, each object
is listed with its associated description, if any. If a pattern is specified, only objects
whose names match the pattern are listed.

\dl

This is an alias for \lo_list, which shows a list of large objects.
psql 771

Greenplum Database Administrator Guide 4.1 – Appendix C: Client Utility Reference
\dn [schema_pattern] | \dn+ [schema_pattern]

Lists all available schemas (namespaces). If pattern is specified, only schemas
whose names match the pattern are listed. Non-local temporary schemas are
suppressed. If + is appended to the command name, each object is listed with its
associated permissions and description, if any.

\do [operator_pattern]

Lists available operators with their operand and return types. If pattern is specified,
only operators whose names match the pattern are listed.

\dp [relation_pattern_to_show_privileges]

Produces a list of all available tables, views and sequences with their associated
access privileges. If pattern is specified, only tables, views and sequences whose
names match the pattern are listed. The GRANT and REVOKE commands are used to
set access privileges.

\dT [datatype_pattern] | \dT+ [datatype_pattern]

Lists all data types or only those that match pattern. The command form \dT+ shows
extra information.

\du [role_pattern]

Lists all database roles, or only those that match pattern.

\e | \edit [filename]

If a file name is specified, the file is edited; after the editor exits, its content is
copied back to the query buffer. If no argument is given, the current query buffer is
copied to a temporary file which is then edited in the same fashion. The new query
buffer is then re-parsed according to the normal rules of psql, where the whole
buffer is treated as a single line. (Thus you cannot make scripts this way. Use \i for
that.) This means also that if the query ends with (or rather contains) a semicolon, it
is immediately executed. In other cases it will merely wait in the query buffer.

psql searches the environment variables PSQL_EDITOR, EDITOR, and VISUAL (in
that order) for an editor to use. If all of them are unset, vi is used on UNIX systems,
notepad.exe on Windows systems.

\echo text [...]

Prints the arguments to the standard output, separated by one space and followed by
a newline. This can be useful to intersperse information in the output of scripts.

If you use the \o command to redirect your query output you may wish to use
\qecho instead of this command.

\encoding [encoding]

Sets the client character set encoding. Without an argument, this command shows
the current encoding.
psql 772

Greenplum Database Administrator Guide 4.1 – Appendix C: Client Utility Reference
\f [field_separator_string]

Sets the field separator for unaligned query output. The default is the vertical bar
(|). See also \pset for a generic way of setting output options.

\g [{filename | |command }]

Sends the current query input buffer to the server and optionally stores the query’s
output in a file or pipes the output into a separate UNIX shell executing command.
A bare \g is virtually equivalent to a semicolon. A \g with argument is a one-shot
alternative to the \o command.

\h | \help [sql_command]

Gives syntax help on the specified SQL command. If a command is not specified,
then psql will list all the commands for which syntax help is available. Use an
asterisk (*) to show syntax help on all SQL commands. To simplify typing,
commands that consists of several words do not have to be quoted.

\H

Turns on HTML query output format. If the HTML format is already on, it is
switched back to the default aligned text format. This command is for compatibility
and convenience, but see \pset about setting other output options.

\i input_filename

Reads input from a file and executes it as though it had been typed on the keyboard.
If you want to see the lines on the screen as they are read you must set the variable
ECHO to all.

\l | \list | \l+ | \list+

List the names, owners, and character set encodings of all the databases in the
server. If + is appended to the command name, database descriptions are also
displayed.

\lo_export loid filename

Reads the large object with OID loid from the database and writes it to filename.
Note that this is subtly different from the server function lo_export, which acts
with the permissions of the user that the database server runs as and on the server’s
file system. Use \lo_list to find out the large object’s OID.

\lo_import large_object_filename [comment]

Stores the file into a large object. Optionally, it associates the given comment with
the object. Example:

mydb=> \lo_import '/home/gpadmin/pictures/photo.xcf' 'a
picture of me'

lo_import 152801

The response indicates that the large object received object ID 152801 which one
ought to remember if one wants to access the object ever again. For that reason it is
recommended to always associate a human-readable comment with every object.
psql 773

Greenplum Database Administrator Guide 4.1 – Appendix C: Client Utility Reference
Those can then be seen with the \lo_list command. Note that this command is
subtly different from the server-side lo_import because it acts as the local user on
the local file system, rather than the server’s user and file system.

\lo_list

Shows a list of all large objects currently stored in the database, along with any
comments provided for them.

\lo_unlink largeobject_oid

Deletes the large object of the specified OID from the database. Use \lo_list to
find out the large object’s OID.

\o [{query_result_filename | |command}]

Saves future query results to a file or pipes them into a UNIX shell command. If no
arguments are specified, the query output will be reset to the standard output. Query
results include all tables, command responses, and notices obtained from the
database server, as well as output of various backslash commands that query the
database (such as \d), but not error messages. To intersperse text output in between
query results, use \qecho.

\p

Print the current query buffer to the standard output.

\password [username]

Changes the password of the specified user (by default, the current user). This
command prompts for the new password, encrypts it, and sends it to the server as an
ALTER ROLE command. This makes sure that the new password does not appear in
cleartext in the command history, the server log, or elsewhere.

\prompt [text] name

Prompts the user to set a variable name. Optionally, you can specify a prompt.
Enclose prompts longer than one word in single quotes.

By default, \prompt uses the terminal for input and output. However, use the -f
command line switch to specify standard input and standard output.

\pset print_option [value]

This command sets options affecting the output of query result tables.
print_option describes which option is to be set. Adjustable printing options are:

• format – Sets the output format to one of unaligned, aligned, html,
latex, or troff-ms. First letter abbreviations are allowed. Unaligned writes
all columns of a row on a line, separated by the currently active field
separator. This is intended to create output that might be intended to be read in
by other programs. Aligned mode is the standard, human-readable, nicely
formatted text output that is default. The HTML and LaTeX modes put out
tables that are intended to be included in documents using the respective
mark-up language. They are not complete documents! (This might not be so
dramatic in HTML, but in LaTeX you must have a complete document
wrapper.)
psql 774

Greenplum Database Administrator Guide 4.1 – Appendix C: Client Utility Reference
• border – The second argument must be a number. In general, the higher the
number the more borders and lines the tables will have, but this depends on
the particular format. In HTML mode, this will translate directly into the
border=... attribute, in the others only values 0 (no border), 1 (internal
dividing lines), and 2 (table frame) make sense.

• columns – Sets the target width for the wrapped format, and also the width
limit for determining whether output is wide enough to require the pager. The
default is zero. Zero causes the target width to be controlled by the
environment variable COLUMNS, or the detected screen width if COLUMNS is not
set. In addition, if columns is zero then the wrapped format affects screen
output only. If columns is nonzero then file and pipe output is wrapped to that
width as well.

• expanded | x) – Toggles between regular and expanded format. When
expanded format is enabled, query results are displayed in two columns, with
the column name on the left and the data on the right. This mode is useful if
the data would not fit on the screen in the normal horizontal mode. Expanded
mode is supported by all four output formats.

• linestyle [unicode | ascii | old-ascii] – Sets the border
line drawing style to one of unicode, ascii, or old-ascii. Unique abbreviations,
including one letter, are allowed for the three styles. The default setting is
ascii. This option only affects the aligned and wrapped output formats.
ascii – uses plain ASCII characters. Newlines in data are shown using a +
symbol in the right-hand margin. When the wrapped format wraps data from
one line to the next without a newline character, a dot (.) is shown in the
right-hand margin of the first line, and again in the left-hand margin of the
following line.
old-ascii – style uses plain ASCII characters, using the formatting style
used in PostgreSQL 8.4 and earlier. Newlines in data are shown using a :
symbol in place of the left-hand column separator. When the data is wrapped
from one line to the next without a newline character, a ; symbol is used in
place of the left-hand column separator.
unicode – style uses Unicode box-drawing characters. Newlines in data are
shown using a carriage return symbol in the right-hand margin. When the data
is wrapped from one line to the next without a newline character, an ellipsis
symbol is shown in the right-hand margin of the first line, and again in the
left-hand margin of the following line.
When the border setting is greater than zero, this option also determines the
characters with which the border lines are drawn. Plain ASCII characters
work everywhere, but Unicode characters look nicer on displays that
recognize them.

• null 'string' – The second argument is a string to print whenever a
column is null. The default is not to print anything, which can easily be
mistaken for an empty string. For example, the command \pset null
'(empty)' displays (empty) in null columns.

• fieldsep – Specifies the field separator to be used in unaligned output
mode. That way one can create, for example, tab- or comma-separated output,
which other programs might prefer. To set a tab as field separator, type
\pset fieldsep '\t'. The default field separator is '|' (a vertical bar).

• footer – Toggles the display of the default footer (x rows).
psql 775

Greenplum Database Administrator Guide 4.1 – Appendix C: Client Utility Reference
• numericlocale – Toggles the display of a locale-aware character to
separate groups of digits to the left of the decimal marker. It also enables a
locale-aware decimal marker.

• recordsep – Specifies the record (line) separator to use in unaligned output
mode. The default is a newline character.

• title [text] – Sets the table title for any subsequently printed tables.
This can be used to give your output descriptive tags. If no argument is given,
the title is unset.

• tableattr | T [text] – Allows you to specify any attributes to be
placed inside the HTML table tag. This could for example be cellpadding
or bgcolor. Note that you probably don’t want to specify border here, as that
is already taken care of by \pset border.

• tuples_only | t [no value | on | off]– The \pset tuples_only
command by itselt toggles between tuples only and full display. The values on
and off set the tuples display, regardless of the current setting. Full display
may show extra information such as column headers, titles, and various
footers. In tuples only mode, only actual table data is shown The \t command
is equivalent to \pset tuples_only and is provided for convenience.

• pager – Controls the use of a pager for query and psql help output. When
on, if the environment variable PAGER is set, the output is piped to the
specified program. Otherwise a platform-dependent default (such as more) is
used. When off, the pager is not used. When on, the pager is used only when
appropriate. Pager can also be set to always, which causes the pager to be
always used.

• wrapped – Sets the output format like the aligned parameter in the format
option, but wraps wide data values across lines to make the output fit in the
target column width. The target width is set with the columns option. To
specify the column width and select the wrapped format, use two \pset
commands; for example, to set the with to 72 columns and specify wrapped
format, use the commands \pset columns 72 and then \pset wrapped.
Note: Since psql does not attempt to wrap column header titles, the wrapped
format behaves the same as aligned if the total width needed for column
headers exceeds the target.

\q

Quits the psql program.

\qecho text [...]

This command is identical to \echo except that the output will be written to the
query output channel, as set by \o.

\r

Resets (clears) the query buffer.

\s [history_filename]

Print or save the command line history to filename. If filename is omitted, the
history is written to the standard output.
psql 776

Greenplum Database Administrator Guide 4.1 – Appendix C: Client Utility Reference
\set [name [value [...]]]

Sets the internal variable name to value or, if more than one value is given, to the
concatenation of all of them. If no second argument is given, the variable is just set
with no value. To unset a variable, use the \unset command.

Valid variable names can contain characters, digits, and underscores. See
“Variables” on page 778. Variable names are case-sensitive.

Although you are welcome to set any variable to anything you want, psql treats
several variables as special. They are documented in the section about variables.

This command is totally separate from the SQL command SET.

\t [no value | on | off]

The \t command by itself toggles a display of output column name headings and
row count footer. The values on and off set the tuples display, regardless of the
current setting.This command is equivalent to \pset tuples_only and is provided
for convenience.

\T table_options

Allows you to specify attributes to be placed within the table tag in HTML tabular
output mode.

\timing [no value | on | off]

The \timing command by itself toggles a display of how long each SQL statement
takes, in milliseconds. The values on and off set the time display, regardless of the
current setting.

\w {filename | |command}

Outputs the current query buffer to a file or pipes it to a UNIX command.

\x

Toggles expanded table formatting mode.

\z [relation_to_show_privileges]

Produces a list of all available tables, views and sequences with their associated
access privileges. If a pattern is specified, only tables, views and sequences whose
names match the pattern are listed. This is an alias for \dp.

\! [command]

Escapes to a separate UNIX shell or executes the UNIX command. The arguments
are not further interpreted, the shell will see them as is.

\?

Shows help information about the psql backslash commands.
psql 777

Greenplum Database Administrator Guide 4.1 – Appendix C: Client Utility Reference
Patterns

The various \d commands accept a pattern parameter to specify the object name(s) to
be displayed. In the simplest case, a pattern is just the exact name of the object. The
characters within a pattern are normally folded to lower case, just as in SQL names;
for example, \dt FOO will display the table named foo. As in SQL names, placing
double quotes around a pattern stops folding to lower case. Should you need to include
an actual double quote character in a pattern, write it as a pair of double quotes within
a double-quote sequence; again this is in accord with the rules for SQL quoted
identifiers. For example, \dt "FOO""BAR" will display the table named FOO"BAR (not
foo"bar). Unlike the normal rules for SQL names, you can put double quotes around
just part of a pattern, for instance \dt FOO"FOO"BAR will display the table named
fooFOObar.

Within a pattern, * matches any sequence of characters (including no characters) and ?
matches any single character. (This notation is comparable to UNIX shell file name
patterns.) For example, \dt int* displays all tables whose names begin with int.
But within double quotes, * and ? lose these special meanings and are just matched
literally.

A pattern that contains a dot (.) is interpreted as a schema name pattern followed by
an object name pattern. For example, \dt foo*.bar* displays all tables whose table
name starts with bar that are in schemas whose schema name starts with foo. When
no dot appears, then the pattern matches only objects that are visible in the current
schema search path. Again, a dot within double quotes loses its special meaning and is
matched literally.

Advanced users can use regular-expression notations. All regular expression special
characters work as specified in the PostgreSQL documentation on regular expressions,
except for . which is taken as a separator as mentioned above, * which is translated to
the regular-expression notation .*, and ? which is translated to .. You can emulate
these pattern characters at need by writing ? for ., (R+|) for R*, or (R|) for R?.
Remember that the pattern must match the whole name, unlike the usual interpretation
of regular expressions; write * at the beginning and/or end if you don’t wish the
pattern to be anchored. Note that within double quotes, all regular expression special
characters lose their special meanings and are matched literally. Also, the regular
expression special characters are matched literally in operator name patterns (such as
the argument of \do).

Whenever the pattern parameter is omitted completely, the \d commands display all
objects that are visible in the current schema search path – this is equivalent to using
the pattern *. To see all objects in the database, use the pattern *.*.

Advanced Features

Variables

psql provides variable substitution features similar to common UNIX command
shells. Variables are simply name/value pairs, where the value can be any string of any
length. To set variables, use the psql meta-command \set:

testdb=> \set foo bar
psql 778

http://www.postgresql.org/docs/8.2/static/functions-matching.html#FUNCTIONS-POSIX-REGEXP

Greenplum Database Administrator Guide 4.1 – Appendix C: Client Utility Reference
sets the variable foo to the value bar. To retrieve the content of the variable, precede
the name with a colon and use it as the argument of any slash command:

testdb=> \echo :foo

bar

Note: The arguments of \set are subject to the same substitution rules as with other
commands. Thus you can construct interesting references such as \set :foo
'something' and get ‘soft links’ or ‘variable variables’ of Perl or PHP fame,
respectively. Unfortunately, there is no way to do anything useful with these
constructs. On the other hand, \set bar :foo is a perfectly valid way to copy a
variable.

If you call \set without a second argument, the variable is set, with an empty string as
value. To unset (or delete) a variable, use the command \unset.

psql’s internal variable names can consist of letters, numbers, and underscores in any
order and any number of them. A number of these variables are treated specially by
psql. They indicate certain option settings that can be changed at run time by altering
the value of the variable or represent some state of the application. Although you can
use these variables for any other purpose, this is not recommended, as the program
behavior might behave unexpectedly. By convention, all specially treated variables
consist of all upper-case letters (and possibly numbers and underscores). To ensure
maximum compatibility in the future, avoid using such variable names for your own
purposes. A list of all specially treated variables are as follows:

AUTOCOMMIT

When on (the default), each SQL command is automatically committed upon
successful completion. To postpone commit in this mode, you must enter a BEGIN or
START TRANSACTION SQL command. When off or unset, SQL commands are not
committed until you explicitly issue COMMIT or END. The autocommit-on mode
works by issuing an implicit BEGIN for you, just before any command that is not
already in a transaction block and is not itself a BEGIN or other transaction-control
command, nor a command that cannot be executed inside a transaction block (such
as VACUUM).

In autocommit-off mode, you must explicitly abandon any failed transaction by
entering ABORT or ROLLBACK. Also keep in mind that if you exit the session without
committing, your work will be lost.

The autocommit-on mode is PostgreSQL’s traditional behavior, but autocommit-off
is closer to the SQL spec. If you prefer autocommit-off, you may wish to set it in
your ~/.psqlrc file.

DBNAME

The name of the database you are currently connected to. This is set every time you
connect to a database (including program start-up), but can be unset.
psql 779

Greenplum Database Administrator Guide 4.1 – Appendix C: Client Utility Reference
ECHO

If set to all, all lines entered from the keyboard or from a script are written to the
standard output before they are parsed or executed. To select this behavior on
program start-up, use the switch -a. If set to queries, psql merely prints all queries
as they are sent to the server. The switch for this is -e.

ECHO_HIDDEN

When this variable is set and a backslash command queries the database, the query
is first shown. This way you can study the Greenplum Database internals and
provide similar functionality in your own programs. (To select this behavior on
program start-up, use the switch -E.) If you set the variable to the value noexec, the
queries are just shown but are not actually sent to the server and executed.

ENCODING

The current client character set encoding.

FETCH_COUNT

If this variable is set to an integer value > 0, the results of SELECT queries are
fetched and displayed in groups of that many rows, rather than the default behavior
of collecting the entire result set before display. Therefore only a limited amount of
memory is used, regardless of the size of the result set. Settings of 100 to 1000 are
commonly used when enabling this feature. Keep in mind that when using this
feature, a query may fail after having already displayed some rows.

Although you can use any output format with this feature, the default aligned format
tends to look bad because each group of FETCH_COUNT rows will be formatted
separately, leading to varying column widths across the row groups. The other
output formats work better.

HISTCONTROL

If this variable is set to ignorespace, lines which begin with a space are not
entered into the history list. If set to a value of ignoredups, lines matching the
previous history line are not entered. A value of ignoreboth combines the two
options. If unset, or if set to any other value than those above, all lines read in
interactive mode are saved on the history list.

HISTFILE

The file name that will be used to store the history list. The default value is
~/.psql_history. For example, putting

\set HISTFILE ~/.psql_history- :DBNAME

in ~/.psqlrc will cause psql to maintain a separate history for each database.

HISTSIZE

The number of commands to store in the command history. The default value is 500.

HOST

The database server host you are currently connected to. This is set every time you
connect to a database (including program start-up), but can be unset.
psql 780

Greenplum Database Administrator Guide 4.1 – Appendix C: Client Utility Reference
IGNOREEOF

If unset, sending an EOF character (usually CTRL+D) to an interactive session of psql
will terminate the application. If set to a numeric value, that many EOF characters
are ignored before the application terminates. If the variable is set but has no
numeric value, the default is 10.

LASTOID

The value of the last affected OID, as returned from an INSERT or lo_insert
command. This variable is only guaranteed to be valid until after the result of the
next SQL command has been displayed.

ON_ERROR_ROLLBACK

When on, if a statement in a transaction block generates an error, the error is ignored
and the transaction continues. When interactive, such errors are only ignored in
interactive sessions, and not when reading script files. When off (the default), a
statement in a transaction block that generates an error aborts the entire transaction.
The on_error_rollback-on mode works by issuing an implicit SAVEPOINT for you,
just before each command that is in a transaction block, and rolls back to the
savepoint on error.

ON_ERROR_STOP

By default, if non-interactive scripts encounter an error, such as a malformed SQL
command or internal meta-command, processing continues. This has been the
traditional behavior of psql but it is sometimes not desirable. If this variable is set,
script processing will immediately terminate. If the script was called from another
script it will terminate in the same fashion. If the outermost script was not called
from an interactive psql session but rather using the -f option, psql will return
error code 3, to distinguish this case from fatal error conditions (error code 1).

PORT

The database server port to which you are currently connected. This is set every time
you connect to a database (including program start-up), but can be unset.

PROMPT1
PROMPT2
PROMPT3

These specify what the prompts psql issues should look like. See “Prompting” on
page 783.

QUIET

This variable is equivalent to the command line option -q. It is not very useful in
interactive mode.

SINGLELINE

This variable is equivalent to the command line option -S.

SINGLESTEP

This variable is equivalent to the command line option -s.
psql 781

Greenplum Database Administrator Guide 4.1 – Appendix C: Client Utility Reference
USER

The database user you are currently connected as. This is set every time you connect
to a database (including program start-up), but can be unset.

VERBOSITY

This variable can be set to the values default, verbose, or terse to control the
verbosity of error reports.

SQL Interpolation

An additional useful feature of psql variables is that you can substitute (interpolate)
them into regular SQL statements. The syntax for this is again to prepend the variable
name with a colon (:).

testdb=> \set foo 'my_table'

testdb=> SELECT * FROM :foo;

would then query the table my_table. The value of the variable is copied literally, so it
can even contain unbalanced quotes or backslash commands. You must make sure that
it makes sense where you put it. Variable interpolation will not be performed into
quoted SQL entities.

A popular application of this facility is to refer to the last inserted OID in subsequent
statements to build a foreign key scenario. Another possible use of this mechanism is
to copy the contents of a file into a table column. First load the file into a variable and
then proceed as above.

testdb=> \set content '''' `cat my_file.txt` ''''

testdb=> INSERT INTO my_table VALUES (:content);

One problem with this approach is that my_file.txt might contain single quotes. These
need to be escaped so that they don’t cause a syntax error when the second line is
processed. This could be done with the program sed:

testdb=> \set content '''' `sed -e "s/'/''/g" < my_file.txt`
''''

If you are using non-standard-conforming strings then you’ll also need to double
backslashes. This is a bit tricky:

testdb=> \set content '''' `sed -e "s/'/''/g" -e
's/\\/\\\\/g' < my_file.txt` ''''

Note the use of different shell quoting conventions so that neither the single quote
marks nor the backslashes are special to the shell. Backslashes are still special to sed,
however, so we need to double them.

Since colons may legally appear in SQL commands, the following rule applies: the
character sequence ":name" is not changed unless "name" is the name of a variable
that is currently set. In any case you can escape a colon with a backslash to protect it
from substitution. (The colon syntax for variables is standard SQL for embedded
query languages, such as ECPG. The colon syntax for array slices and type casts are
Greenplum Database extensions, hence the conflict.)
psql 782

Greenplum Database Administrator Guide 4.1 – Appendix C: Client Utility Reference
Prompting

The prompts psql issues can be customized to your preference. The three variables
PROMPT1, PROMPT2, and PROMPT3 contain strings and special escape sequences that
describe the appearance of the prompt. Prompt 1 is the normal prompt that is issued
when psql requests a new command. Prompt 2 is issued when more input is expected
during command input because the command was not terminated with a semicolon or
a quote was not closed. Prompt 3 is issued when you run an SQL COPY command and
you are expected to type in the row values on the terminal.

The value of the selected prompt variable is printed literally, except where a percent
sign (%) is encountered. Depending on the next character, certain other text is
substituted instead. Defined substitutions are:

%M

The full host name (with domain name) of the database server, or [local] if the
connection is over a UNIX domain socket, or [local:/dir/name], if the UNIX
domain socket is not at the compiled in default location.

%m

The host name of the database server, truncated at the first dot, or [local] if the
connection is over a UNIX domain socket.

%>

The port number at which the database server is listening.

%n

The database session user name. (The expansion of this value might change during a
database session as the result of the command SET SESSION AUTHORIZATION.)

%/

The name of the current database.

%~

Like %/, but the output is ~ (tilde) if the database is your default database.

%#

If the session user is a database superuser, then a #, otherwise a >. (The expansion of
this value might change during a database session as the result of the command SET
SESSION AUTHORIZATION.)

%R

In prompt 1 normally =, but ^ if in single-line mode, and ! if the session is
disconnected from the database (which can happen if \connect fails). In prompt 2
the sequence is replaced by -, *, a single quote, a double quote, or a dollar sign,
depending on whether psql expects more input because the command wasn’t
terminated yet, because you are inside a /* ... */ comment, or because you are
inside a quoted or dollar-escaped string. In prompt 3 the sequence doesn’t produce
anything.
psql 783

Greenplum Database Administrator Guide 4.1 – Appendix C: Client Utility Reference
%x

Transaction status: an empty string when not in a transaction block, or * when in a
transaction block, or ! when in a failed transaction block, or ? when the transaction
state is indeterminate (for example, because there is no connection).

%digits

The character with the indicated octal code is substituted.

%:name:

The value of the psql variable name. See “Variables” on page 778 for details.

%`command`

The output of command, similar to ordinary back-tick substitution.

%[... %]

Prompts may contain terminal control characters which, for example, change the
color, background, or style of the prompt text, or change the title of the terminal
window. In order for line editing to work properly, these non-printing control
characters must be designated as invisible by surrounding them with %[and %].
Multiple pairs of these may occur within the prompt. For example,

testdb=> \set PROMPT1 '%[%033[1;33;40m%]%n@%/%R%[%033[0m%]%#
'

results in a boldfaced (1;) yellow-on-black (33;40) prompt on VT100-compatible,
color-capable terminals. To insert a percent sign into your prompt, write %%. The
default prompts are '%/%R%# ' for prompts 1 and 2, and '>> ' for prompt 3.

Command-Line Editing

psql supports the NetBSD libedit library for convenient line editing and retrieval. The
command history is automatically saved when psql exits and is reloaded when psql
starts up. Tab-completion is also supported, although the completion logic makes no
claim to be an SQL parser. If for some reason you do not like the tab completion, you
can turn it off by putting this in a file named .inputrc in your home directory:

$if psql

set disable-completion on

$endif

Environment

PAGER

If the query results do not fit on the screen, they are piped through this command.
Typical values are more or less. The default is platform-dependent. The use of the
pager can be disabled by using the \pset command.

PGDATABASE
PGHOST
psql 784

Greenplum Database Administrator Guide 4.1 – Appendix C: Client Utility Reference
PGPORT
PGUSER

Default connection parameters.

PSQL_EDITOR
EDITOR
VISUAL

Editor used by the \e command. The variables are examined in the order listed; the
first that is set is used.

SHELL

Command executed by the \! command.

TMPDIR

Directory for storing temporary files. The default is /tmp.

Files

Before starting up, psql attempts to read and execute commands from the user’s
~/.psqlrc file.

The command-line history is stored in the file ~/.psql_history.

Notes

psql only works smoothly with servers of the same version. That does not mean other
combinations will fail outright, but subtle and not-so-subtle problems might come up.
Backslash commands are particularly likely to fail if the server is of a different
version.

Notes for Windows users

psql is built as a console application. Since the Windows console windows use a
different encoding than the rest of the system, you must take special care when using
8-bit characters within psql. If psql detects a problematic console code page, it will
warn you at startup. To change the console code page, two things are necessary:

Set the code page by entering cmd.exe /c chcp 1252. (1252 is a character encoding
of the Latin alphabet, used by Microsoft Windows for English and some other Western
languages.) If you are using Cygwin, you can put this command in /etc/profile.

Set the console font to Lucida Console, because the raster font does not work with the
ANSI code page.

Examples

Start psql in interactive mode:

psql -p 54321 -U sally mydatabase

In psql interactive mode, spread a command over several lines of input. Notice the
changing prompt:
psql 785

Greenplum Database Administrator Guide 4.1 – Appendix C: Client Utility Reference
testdb=> CREATE TABLE my_table (

testdb(> first integer not null default 0,

testdb(> second text)

testdb-> ;

CREATE TABLE

Look at the table definition:

testdb=> \d my_table

 Table "my_table"

 Attribute | Type | Modifier

-----------+---------+--------------------

 first | integer | not null default 0

 second | text |

Run psql in non-interactive mode by passing in a file containing SQL commands:

psql -f /home/gpadmin/test/myscript.sql
psql 786

Greenplum Database Administrator Guide 4.1 – Appendix C: Client Utility Reference
reindexdb
Rebuilds indexes in a database.

Synopsis
reindexdb [connection-option...] [--table | -t table] [--index |
-i index] [dbname]

reindexdb [connection-option...] [--all | -a]

reindexdb [connection-option...] [--system | -s] [dbname]

reindexdb --help | --version

Description

reindexdb is a utility for rebuilding indexes in Greenplum Database, and is a
wrapper around the SQL command REINDEX.

Options

-a | --all

Reindex all databases.

[-d] dbname | [--dbname] dbname

Specifies the name of the database to be reindexed. If this is not specified and --all
is not used, the database name is read from the environment variable PGDATABASE.
If that is not set, the user name specified for the connection is used.

-e | --echo

Echo the commands that reindexdb generates and sends to the server.

-i index | --index index

Recreate index only.

-q | --quiet

Do not display a response.

-s | --system

Reindex system catalogs.

-t table | --table table

Reindex table only.
reindexdb 787

Greenplum Database Administrator Guide 4.1 – Appendix C: Client Utility Reference
Connection Options

-h host | --host host

Specifies the host name of the machine on which the Greenplum master database
server is running. If not specified, reads from the environment variable PGHOST or
defaults to localhost.

-p port | --port port

Specifies the TCP port on which the Greenplum master database server is listening
for connections. If not specified, reads from the environment variable PGPORT or
defaults to 5432.

-U username | --username username

The database role name to connect as. If not specified, reads from the environment
variable PGUSER or defaults to the current system user name.

-w | --no-password

Never issue a password prompt. If the server requires password authentication and a
password is not available by other means such as a .pgpass file, the connection
attempt will fail. This option can be useful in batch jobs and scripts where no user is
present to enter a password.

-W | --password

Force a password prompt.

Notes

reindexdb might need to connect several times to the master server, asking for a
password each time. It is convenient to have a ~/.pgpass file in such cases.

Examples

To reindex the database mydb:

reindexdb mydb

To reindex the table foo and the index bar in a database named abcd:

reindexdb --table foo --index bar abcd

See Also
REINDEX
reindexdb 788

Greenplum Database Administrator Guide 4.1 – Appendix C: Client Utility Reference
vacuumdb
Garbage-collects and analyzes a database.

Synopsis
vacuumdb [connection-option...] [--full | -f] [-F] [--verbose |
-v] [--analyze | -z] [--table | -t table [(column [,...])]]
[dbname]

vacuumdb [connection-options...] [--all | -a] [--full | -f] [-F]
[--verbose | -v] [--analyze | -z]

vacuumdb --help | --version

Description

vacuumdb is a utility for cleaning a PostgreSQL database. vacuumdb will also
generate internal statistics used by the PostgreSQL query optimizer.

vacuumdb is a wrapper around the SQL command VACUUM. There is no effective
difference between vacuuming databases via this utility and via other methods for
accessing the server.

Options

-a | --all

Vacuums all databases.

[-d] dbname | [--dbname] dbname

The name of the database to vacuum. If this is not specified and --all is not used,
the database name is read from the environment variable PGDATABASE. If that is not
set, the user name specified for the connection is used.

-e | --echo

Echo the commands that reindexdb generates and sends to the server.

-f | --full

Selects a full vacuum, which may reclaim more space, but takes much longer and
exclusively locks the table.
Warning: A VACUUM FULL is not recommended in Greenplum Database.

-F | --freeze

Freeze row transaction information.

-q | --quiet

Do not display a response.
vacuumdb 789

Greenplum Database Administrator Guide 4.1 – Appendix C: Client Utility Reference
-t table [(column)] | --table table [(column)]

Clean or analyze this table only. Column names may be specified only in
conjunction with the --analyze option. If you specify columns, you probably have
to escape the parentheses from the shell.

-v | --verbose

Print detailed information during processing.

-z | --analyze

Collect statistics for use by the query planner.

Connection Options

-h host | --host host

Specifies the host name of the machine on which the Greenplum master database
server is running. If not specified, reads from the environment variable PGHOST or
defaults to localhost.

-p port | --port port

Specifies the TCP port on which the Greenplum master database server is listening
for connections. If not specified, reads from the environment variable PGPORT or
defaults to 5432.

-U username | --username username

The database role name to connect as. If not specified, reads from the environment
variable PGUSER or defaults to the current system user name.

-w | --no-password

Never issue a password prompt. If the server requires password authentication and a
password is not available by other means such as a .pgpass file, the connection
attempt will fail. This option can be useful in batch jobs and scripts where no user is
present to enter a password.

-W | --password

Force a password prompt.

Notes

vacuumdb might need to connect several times to the master server, asking for a
password each time. It is convenient to have a ~/.pgpass file in such cases.

Examples

To clean the database test:

vacuumdb test

To clean and analyze a database named bigdb:

vacuumdb --analyze bigdb
vacuumdb 790

Greenplum Database Administrator Guide 4.1 – Appendix C: Client Utility Reference
To clean a single table foo in a database named mydb, and analyze a single column bar
of the table. Note the quotes around the table and column names to escape the
parentheses from the shell:

vacuumdb --analyze --verbose --table 'foo(bar)' mydb

See Also
VACUUM, ANALYZE
vacuumdb 791

Greenplum Database Administrator Guide 4.1– Appendix D: Server Configuration Parameters
D. Server Configuration Parameters

There are many configuration parameters that affect the behavior of the Greenplum Database system. Many of these
configuration parameters have the same names, settings, and behaviors as in a regular PostgreSQL database system.

Parameter Types and Values

All parameter names are case-insensitive. Every parameter takes a value of one of four types: boolean, integer,
floating point, or string. Boolean values may be written as ON, OFF, TRUE, FALSE, YES, NO, 1, 0 (all
case-insensitive).

Some settings specify a memory size or time value. Each of these has an implicit unit, which is either kilobytes,
blocks (typically eight kilobytes), milliseconds, seconds, or minutes. Valid memory size units are kB (kilobytes), MB
(megabytes), and GB (gigabytes). Valid time units are ms (milliseconds), s (seconds), min (minutes), h (hours), and d
(days). Note that the multiplier for memory units is 1024, not 1000. When specifying a memory or time unit using
the SET command, enclose the value in quotes. For example:

SET work_mem TO '200MB';

Setting Parameters

Many of the configuration parameters have limitations on who can change them and where or when they can be set.
For example, to change certain parameters, you must be a Greenplum Database superuser. Other parameters require
a restart of the system for the changes to take effect. A parameter that is classified as session can be set at the system
level (in the postgresql.conf file), at the database-level (using ALTER DATABASE), at the role-level (using ALTER
ROLE), or at the session-level (using SET). System parameters can only be set in the postgresql.conf file.

In Greenplum Database, the master and each segment instance has its own postgresql.conf file (located in their
respective data directories). Some parameters are considered local parameters, meaning that each segment instance
looks to its own postgresql.conf file to get the value of that parameter. You must set local parameters on every
instance in the system (master and segments). Others parameters are considered master parameters. Master
parameters need only be set at the master instance.

Table D.1 Settable Classifications

Set Classification Description

master or local A master parameter only needs to be set in the postgresql.conf file of the Greenplum
master instance. The value for this parameter is then either passed to (or ignored by) the
segments at run time.

A local parameter must be set in the postgresql.conf file of the master AND each segment
instance. Each segment instance looks to its own configuration to get the value for the
parameter. Local parameters always requires a system restart for changes to take effect.

session or system Session parameters can be changed on the fly within a database session, and can have a
hierarchy of settings: at the system level (postgresql.conf), at the database level (ALTER
DATABASE...SET), at the role level (ALTER ROLE...SET), or at the session level (SET). If the
parameter is set at multiple levels, then the most granular setting takes precedence (for
example, session overrides role, role overrides database, and database overrides system).

A system parameter can only be changed via the postgresql.conf file(s).
792

Greenplum Database Administrator Guide 4.1– Appendix D: Server Configuration Parameters
restart or reload When changing parameter values in the postgrsql.conf file(s), some require a restart of
Greenplum Database for the change to take effect. Other parameter values can be refreshed by
just reloading the server configuration file (using gpstop -u), and do not require stopping the
system.

superuser These session parameters can only be set by a database superuser. Regular database users
cannot set this parameter.

read only These parameters are not settable by database users or superusers. The current value of the
parameter can be shown but not altered.

Table D.1 Settable Classifications

Set Classification Description
793

Greenplum Database Administrator Guide 4.1– Appendix D: Server Configuration Parameters

Table D.2 Server Configuration Parameters

Parameter Value Range Default Description
Set
Classification
s

add_missing_from boolean off Automatically adds missing table references
to FROM clauses. Present for compatibility
with releases of PostgreSQL prior to 8.1,
where this behavior was allowed by default.

master

session

reload

application_name string Sets the application name for a client
session. For example, if connecting via
psql, this will be set to psql. Setting an
application name allows it to be reported in
log messages and statistics views.

master

session

reload

array_nulls boolean on This controls whether the array input parser
recognizes unquoted NULL as specifying a
null array element. By default, this is on,
allowing array values containing null values
to be entered. Greenplum Database versions
before 3.0 did not support null values in
arrays, and therefore would treat NULL as
specifying a normal array element with the
string value ‘NULL’.

master

session

reload

authentication_timeout number of seconds 1min Maximum time to complete client
authentication. This prevents hung clients
from occupying a connection indefinitely.

local

system

restart

backslash_quote on (allow \' always)

off (reject always)

safe_encoding
(allow only if client
encoding does not
allow ASCII \ within
a multibyte
character)

safe_enco
ding

This controls whether a quote mark can be
represented by \' in a string literal. The
preferred, SQL-standard way to represent a
quote mark is by doubling it ('') but
PostgreSQL has historically also accepted \'.
However, use of \' creates security risks
because in some client character set
encodings, there are multibyte characters in
which the last byte is numerically equivalent
to ASCII \.

master

session

reload

block_size number of bytes 32768 Reports the size of a disk block. read only

bonjour_name string unset Specifies the Bonjour broadcast name. By
default, the computer name is used, specified
as an empty string. This option is ignored if
the server was not compiled with Bonjour
support.

master

system

restart

check_function_bodies boolean on When set to off, disables validation of the
function body string during CREATE
FUNCTION. Disabling validation is
occasionally useful to avoid problems such
as forward references when restoring
function definitions from a dump.

master

session

reload
add_missing_from 794

Greenplum Database Administrator Guide 4.1– Appendix D: Server Configuration Parameters
client_encoding character set UTF8 Sets the client-side encoding (character set).
The default is to use the same as the
database encoding. See Supported
Character Sets in the PostgreSQL
documentation.

master

session

reload

client_min_messages DEBUG5
DEBUG4
DEBUG3
DEBUG2
DEBUG1
LOG
NOTICE
WARNING
ERROR
FATAL
PANIC

NOTICE Controls which message levels are sent to
the client. Each level includes all the levels
that follow it. The later the level, the fewer
messages are sent.

master

session

reload

cpu_index_tuple_cost floating point 0.005 Sets the planner’s estimate of the cost of
processing each index row during an index
scan. This is measured as a fraction of the
cost of a sequential page fetch.

master

session

reload

cpu_operator_cost floating point 0.0025 Sets the planner’s estimate of the cost of
processing each operator in a WHERE
clause. This is measured as a fraction of the
cost of a sequential page fetch.

master

session

reload

cpu_tuple_cost floating point 0.01 Sets the planner’s estimate of the cost of
processing each row during a query. This is
measured as a fraction of the cost of a
sequential page fetch.

master

session

reload

cursor_tuple_fraction integer 1 Tells the query planner how many rows are
expected to be fetched in a cursor query,
thereby allowing the planner to use this
information to optimize the query plan. The
default of 1 means all rows will be fetched.

master

session

reload

custom_variable_classes comma-separated
list of class names

unset Specifies one or several class names to be
used for custom variables. A custom variable
is a variable not normally known to the server
but used by some add-on module. Such
variables must have names consisting of a
class name, a dot, and a variable name.

local

system

restart

DateStyle <format>, <date
style>

where <format> is
ISO, Postgres,
SQL, or German
and <date style> is
DMY, MDY, or
YMD.

ISO, MDY Sets the display format for date and time
values, as well as the rules for interpreting
ambiguous date input values. This variable
contains two independent components: the
output format specification and the
input/output specification for year/month/day
ordering.

master

session

reload

Table D.2 Server Configuration Parameters

Parameter Value Range Default Description
Set
Classification
s

client_encoding 795

http://www.postgresql.org/docs/8.1/static/multibyte.html#MULTIBYTE-CHARSET-SUPPORTED
http://www.postgresql.org/docs/8.1/static/multibyte.html#MULTIBYTE-CHARSET-SUPPORTED

Greenplum Database Administrator Guide 4.1– Appendix D: Server Configuration Parameters
db_user_namespace boolean off This enables per-database user names. If on,
you should create users as
username@dbname. To create ordinary
global users, simply append @ when
specifying the user name in the client.

local

system

restart

deadlock_timeout number of
milliseconds

1s The number of milliseconds to wait on a lock
before checking to see if there is a deadlock
condition. On a heavily loaded server you
might want to raise this value. Ideally the
setting should exceed your typical
transaction time, so as to improve the odds
that a lock will be released before the waiter
decides to check for deadlock.

local

system

restart

debug_assertions boolean off Turns on various assertion checks. local

system

restart

debug_pretty_print boolean off Indents debug output to produce a more
readable but much longer output format.
client_min_messages or log_min_messages
must be DEBUG1 or lower.

master

session

reload

debug_print_parse boolean off For each executed query, prints the resulting
parse tree. client_min_messages or
log_min_messages must be DEBUG1 or
lower.

master

session

reload

debug_print_plan boolean off For each executed query, prints the
Greenplum parallel query execution plan.
client_min_messages or log_min_messages
must be DEBUG1 or lower.

master

session

reload

debug_print_prelim_plan boolean off For each executed query, prints the
preliminary query plan. client_min_messages
or log_min_messages must be DEBUG1 or
lower.

master

session

reload

debug_print_rewritten boolean off For each executed query, prints the query
rewriter output. client_min_messages or
log_min_messages must be DEBUG1 or
lower.

master

session

reload

debug_print_slice_table boolean off For each executed query, prints the
Greenplum query slice plan.
client_min_messages or log_min_messages
must be DEBUG1 or lower.

master

session

reload

default_statistics_target integer > 0 25 Sets the default statistics target for table
columns that have not had a column-specific
target set via ALTER TABLE SET
STATISTICS. Larger values increase the
time needed to do ANALYZE, but may
improve the quality of the planner’s
estimates.

master

session

reload

Table D.2 Server Configuration Parameters

Parameter Value Range Default Description
Set
Classification
s

db_user_namespace 796

Greenplum Database Administrator Guide 4.1– Appendix D: Server Configuration Parameters
default_tablespace name of a
tablespace

unset The default tablespace in which to create
objects (tables and indexes) when a
CREATE command does not explicitly
specify a tablespace.

master

session

reload

default_transaction_isolation read committed

read uncommitted

repeatable read

serializable

read
committed

Controls the default isolation level of each
new transaction.

master

session

reload

default_transaction_read_only boolean off Controls the default read-only status of each
new transaction. A read-only SQL transaction
cannot alter non-temporary tables.

master

session

reload

dynamic_library_path a list of absolute
directory paths
separated by
colons

$libdir If a dynamically loadable module needs to be
opened and the file name specified in the
CREATE FUNCTION or LOAD command
does not have a directory component (i.e. the
name does not contain a slash), the system
will search this path for the required file. The
compiled-in PostgreSQL package library
directory is substituted for $libdir. This is
where the modules provided by the standard
PostgreSQL distribution are installed.

local

system

restart

effective_cache_size floating point 512MB Sets the planner’s assumption about the
effective size of the disk cache that is
available to a single query. This is factored
into estimates of the cost of using an index; a
higher value makes it more likely index scans
will be used, a lower value makes it more
likely sequential scans will be used. This
parameter has no effect on the size of shared
memory allocated by a Greenplum server
instance, nor does it reserve kernel disk
cache; it is used only for estimation
purposes.

master

session

reload

enable_bitmapscan boolean on Enables or disables the query planner’s use
of bitmap-scan plan types. Note that this is
different than a Bitmap Index Scan. A Bitmap
Scan means that indexes will be dynamically
converted to bitmaps in memory when
appropriate, giving faster index performance
on complex queries against very large tables.
It is used when there are multiple predicates
on different indexed columns. Each bitmap
per column can be compared to create a final
list of selected tuples.

master

session

reload

enable_groupagg boolean on Enables or disables the query planner’s use
of group aggregation plan types.

master

session

reload

Table D.2 Server Configuration Parameters

Parameter Value Range Default Description
Set
Classification
s

default_tablespace 797

Greenplum Database Administrator Guide 4.1– Appendix D: Server Configuration Parameters
enable_hashagg boolean on Enables or disables the query planner’s use
of hash aggregation plan types.

master

session

reload

enable_hashjoin boolean on Enables or disables the query planner’s use
of hash-join plan types.

master

session

reload

enable_indexscan boolean on Enables or disables the query planner’s use
of index-scan plan types.

master

session

reload

enable_mergejoin boolean off Enables or disables the query planner’s use
of merge-join plan types. Merge join is based
on the idea of sorting the left- and right-hand
tables into order and then scanning them in
parallel. So, both data types must be capable
of being fully ordered, and the join operator
must be one that can only succeed for pairs
of values that fall at the ‘same place’ in the
sort order. In practice this means that the join
operator must behave like equality.

master

session

reload

enable_nestloop boolean off Enables or disables the query planner’s use
of nested-loop join plans. It's not possible to
suppress nested-loop joins entirely, but
turning this variable off discourages the
planner from using one if there are other
methods available.

master

session

reload

enable_seqscan boolean on Enables or disables the query planner’s use
of sequential scan plan types. It's not
possible to suppress sequential scans
entirely, but turning this variable off
discourages the planner from using one if
there are other methods available.

master

session

reload

enable_sort boolean on Enables or disables the query planner’s use
of explicit sort steps. It's not possible to
suppress explicit sorts entirely, but turning
this variable off discourages the planner from
using one if there are other methods
available.

master

session

reload

enable_tidscan boolean on Enables or disables the query planner’s use
of tuple identifier (TID) scan plan types.

master

session

reload

escape_string_warning boolean on When on, a warning is issued if a backslash
(\) appears in an ordinary string literal ('...'
syntax). Escape string syntax (E'...') should
be used for escapes, because in future
versions, ordinary strings will have the SQL
standard-conforming behavior of treating
backslashes literally.

master

session

reload

Table D.2 Server Configuration Parameters

Parameter Value Range Default Description
Set
Classification
s

enable_hashagg 798

Greenplum Database Administrator Guide 4.1– Appendix D: Server Configuration Parameters
explain_pretty_print boolean on Determines whether EXPLAIN VERBOSE
uses the indented or non-indented format for
displaying detailed query-tree dumps.

master

session

reload

extra_float_digits integer 0 Adjusts the number of digits displayed for
floating-point values, including float4, float8,
and geometric data types. The parameter
value is added to the standard number of
digits. The value can be set as high as 2, to
include partially-significant digits; this is
especially useful for dumping float data that
needs to be restored exactly. Or it can be set
negative to suppress unwanted digits.

master

session

reload

from_collapse_limit 1-n 16 The planner will merge sub-queries into
upper queries if the resulting FROM list
would have no more than this many items.
Smaller values reduce planning time but may
yield inferior query plans.

master

session

reload

gp_adjust_selectivity_for_oute
rjoins

boolean on Enables the selectivity of NULL tests over
outer joins.

master

session

reload

gp_analyze_relative_error floating point < 1.0 0.25 Sets the estimated acceptable error in the
cardinality of the table — a value of 0.5 is
supposed to be equivalent to an acceptable
error of 50% (this is the default value used in
PostgreSQL). If the statistics collected during
ANALYZE are not producing good estimates
of cardinality for a particular table attribute,
decreasing the relative error fraction
(accepting less error) tells the system to
sample more rows.

master

session

reload

Table D.2 Server Configuration Parameters

Parameter Value Range Default Description
Set
Classification
s

explain_pretty_print 799

Greenplum Database Administrator Guide 4.1– Appendix D: Server Configuration Parameters
gp_autostats_mode none

on_change

on_no_stats

on_no_
stats

Specifies the mode for triggering automatic
statistics collection with ANALYZE. The
on_no_stats option triggers statistics
collection for CREATE TABLE AS SELECT,
INSERT, or COPY operations on any table
that has no existing statistics.

The on_change option triggers statistics
collection only when the number of rows
affected meets or exceeds the threshold
defined by gp_autostats_on_change_
threshold. Operations that can trigger
automatic statistics collection with
on_change are:

CREATE TABLE AS SELECT

UPDATE

DELETE

INSERT

COPY

Default is on_no_stats.

master

session

reload

gp_autostats_on_change_thre
shold

integer 21474836
47

Specifies the threshold for automatic
statistics collection when
gp_autostats_mode is set to on_change.
When a triggering table operation affects a
number of rows exceeding this threshold,
ANALYZE is added and statistics are
collected for the table.

master

session

reload

gp_cached_segworkers_thresh
old

integer > 0 5 When a user starts a session with Greenplum
Database and issues a query, the system
creates groups or ‘gangs’ of worker
processes on each segment to do the work.
After the work is done, the segment worker
processes are destroyed except for a cached
number which is set by this parameter. A
lower setting conserves system resources on
the segment hosts, but a higher setting may
improve performance for power-users that
want to issue many complex queries in a row.

master

session

reload

gp_command_count integer > 0 1 Shows how many commands the master has
received from the client. Note that a single
SQLcommand might actually involve more
than one command internally, so the counter
may increment by more than one for a single
query. This counter also is shared by all of
the segment processes working on the
command.

read only

Table D.2 Server Configuration Parameters

Parameter Value Range Default Description
Set
Classification
s

gp_autostats_mode 800

Greenplum Database Administrator Guide 4.1– Appendix D: Server Configuration Parameters
gp_connectemc_mode on, off, local on Controls the ConnectEMC event logging and
dial-home capabilities of Greenplum
Performance Monitor on the EMC Greenplum
Data Computing Appliance (DCA).
ConnectEMC must be installed in order to
generate events. Allowed values are:

• on (the default) - log events to the
gpperfmon database and send dial-home
notifications to EMC Support

• off - turns off ConnectEMC event logging
and dial-home capabilities

• local - log events to the gpperfmon
database only

master

system

restart

superuser

gp_connections_per_thread integer 512 A value larger than or equal to the number of
primary segments means that each slice in a
query plan will get its own thread when
dispatching to the segments. A value of 0
indicates that the dispatcher should use a
single thread when dispatching all query plan
slices to a segment. Lower values will use
more threads, which utilizes more resources
on the master. Typically, the default does not
need to be changed unless there is a known
throughput performance problem.

master

session

reload

gp_content integer The local content id if a segment. read only

gp_dbid integer The local content dbid if a segment. read only

gp_debug_linger number of seconds 0 Number of seconds for a Greenplum process
to linger after a fatal internal error.

master

session

reload

gp_email_from string The email address used to send email alerts,
in the format of:

'username@domain.com'
or

'Name <username@domain.com>'

master

system

restart

gp_email_smtp_password string The password/passphrase used to
authenticate with the SMTP server.

master

system

restart

gp_email_smtp_server string The fully qualified domain name or IP
address and port of the SMTP server to use
to send the email alerts. Must be in the
format of:
smtp_servername.domain.com:port

master

system

restart

gp_email_smtp_userid string The user id used to authenticate with the
SMTP server.

master

system

restart

Table D.2 Server Configuration Parameters

Parameter Value Range Default Description
Set
Classification
s

gp_connectemc_mode 801

Greenplum Database Administrator Guide 4.1– Appendix D: Server Configuration Parameters
gp_email_to string A semi-colon (;) separated list of email
addresses to receive email alert messages to
in the format of:

'username@domain.com'
or

'Name <username@domain.com>'

If this parameter is not set, then email alerts
are disabled.

master

system

restart

gp_enable_adaptive_nestloop boolean on Enables the query planner to use a new type
of join node called “Adaptive Nestloop” at
query execution time. This causes the
planner to favor a hash-join over a
nested-loop join if the number of rows on the
outer side of the join exceeds a precalculated
threshold. This parameter improves
performance of index operations, which
previously favored slower nested-loop joins.

master

session

reload

gp_enable_agg_distinct boolean on Enables or disables two-phase aggregation
to compute a single distinct-qualified
aggregate. This applies only to subqueries
that include a single distinct-qualified
aggregate function.

master

session

reload

gp_enable_agg_distinct_pruni
ng

boolean on Enables or disables three-phase aggregation
and join to compute distinct-qualified
aggregates. This applies only to subqueries
that include one or more distinct-qualified
aggregate functions.

master

session

reload

gp_enable_direct_dispatch boolean on Enables or disables the dispatching of
targeted query plans for queries that access
data on a single segment. When on, queries
that target rows on a single segment will only
have their query plan dispatched to that
segment (rather than to all segments). This
significantly reduces the response time of
qualifying queries as there is no interconnect
setup involved. Direct dispatch does require
more CPU utilization on the master.

master

system

restart

gp_enable_fallback_plan boolean on Allows use of disabled plan types when a
query would not be feasible without them.

master

session

reload

gp_enable_fast_sri boolean on When set to on, the query planner plans
single row inserts so that they are sent
directly to the correct segment instance (no
motion operation required). This significantly
improves performance of single-row-insert
statements.

master

session

reload

Table D.2 Server Configuration Parameters

Parameter Value Range Default Description
Set
Classification
s

gp_email_to 802

Greenplum Database Administrator Guide 4.1– Appendix D: Server Configuration Parameters
gp_enable_gpperfmon boolean off Enables or disables the data collection
agents of Greenplum Performance Monitor.

local

system

restart

gp_enable_groupext_distinct_
gather

boolean on Enables or disables gathering data to a
single node to compute distinct-qualified
aggregates on grouping extension queries.
When this parameter and
gp_enable_groupext_distinct_pruni
ng are both enabled, the planner uses the
cheaper plan.

master

session

reload

gp_enable_groupext_distinct_
pruning

boolean on Enables or disables three-phase aggregation
and join to compute distinct-qualified
aggregates on grouping extension queries.
Usually, enabling this parameter generates a
cheaper query plan that the planner will use
in preference to existing plan.

master

session

reload

gp_enable_multiphase_agg boolean on Enables or disables the query planner’s use
of two or three-stage parallel aggregation
plans. This approach applies to any subquery
with aggregation. If
gp_enable_multiphase_agg is off, then
gp_enable_agg_distinct and

gp_enable_agg_distinct_pruning are
disabled.

master

session

reload

gp_enable_predicate_propagat
ion

boolean on When enabled, the query planner applies
query predicates to both table expressions in
cases where the tables are joined on their
distribution key column(s). Filtering both
tables prior to doing the join (when possible)
is more efficient.

master

session

reload

gp_enable_preunique boolean on Enables two-phase duplicate removal for
SELECT DISTINCT queries (not SELECT
COUNT(DISTINCT)). When enabled, it adds
an extra SORT DISTINCT set of plan nodes
before motioning. In cases where the distinct
operation greatly reduces the number of
rows, this extra SORT DISTINCT is much
cheaper than the cost of sending the rows
across the Interconnect.

master

session

reload

gp_enable_sequential_window
_plans

boolean on If on, enables non-parallel (sequential) query
plans for queries containing window function
calls. If off, evaluates compatible window
functions in parallel and rejoins the results.
This is an experimental parameter.

master

session

reload

gp_enable_sort_distinct boolean on Enable duplicates to be removed while
sorting.

master

session

reload

Table D.2 Server Configuration Parameters

Parameter Value Range Default Description
Set
Classification
s

gp_enable_gpperfmon 803

Greenplum Database Administrator Guide 4.1– Appendix D: Server Configuration Parameters
gp_enable_sort_limit boolean on Enable LIMIT operation to be performed
while sorting. Sorts more efficiently when the
plan requires the first limit_number of rows at
most.

master

session

reload

gp_external_enable_exec boolean on Enables or disables the use of external tables
that execute OS commands or scripts on the
segment hosts (CREATE EXTERNAL TABLE
EXECUTE syntax). Must be enabled if using
the Performance Monitor or MapReduce
features.

master

system

restart

gp_external_grant_privileges boolean off In releases prior to 4.0, enables or disables
non-superusers to issue a CREATE
EXTERNAL [WEB] TABLE command in
cases where the LOCATION clause specifies
http or gpfdist. In releases after 4.0, the
ability to create an external table can be
granted to a role using CREATE ROLE or
ALTER ROLE.

master

system

restart

gp_external_max_segs integer 64 Sets the number of segments that will scan
external table data during an external table
operation, the purpose being not to overload
the system with scanning data and take away
resources from other concurrent operations.
This only applies to external tables that use
the gpfdist:// protocol to access external
table data.

master

system

restart

gp_fts_probe_interval 10 seconds or
greater

1min Specifies the polling interval for the fault
detection process (ftsprobe). The
ftsprobe process will take approximately
this amount of time to detect a segment
failure.

master

system

restart

gp_fts_probe_threadcount 1 - 128 5 Specifies the number of ftsprobe threads
to create. This parameter should be set to a
value equal to or greater than the number of
segments per host.

master

system

restart

gp_fts_probe_timeout 10 seconds or
greater

3min Specifies the allowed timeout for the fault
detection process (ftsprobe) to establish a
connection to a segment before declaring it
down.

master

system

restart

gp_gpperfmon_send_interval number of seconds 1 Sets the frequency that the Greenplum
Database server processes send query
execution updates to the Performance
Monitor agent processes. Query operations
(iterators) executed during this interval are
sent through UDP to the segment monitor
agents. If you find that an excessive number
of UDP packets are dropped during
long-running, complex queries, you may
consider increasing this value.

master

system

restart

Table D.2 Server Configuration Parameters

Parameter Value Range Default Description
Set
Classification
s

gp_enable_sort_limit 804

Greenplum Database Administrator Guide 4.1– Appendix D: Server Configuration Parameters
gp_hashjoin_tuples_per_bucke
t

integer 5 Sets the target density of the hash table used
by HashJoin operations. A smaller value will
tend to produce larger hash tables, which can
increase join performance.

master

session

reload

gp_interconnect_hash_multipli
er

2-25 2 Sets the size of the hash table used by the
UDP interconnect to track connections. This
number is multiplied by the number of
segments to determine the number of
buckets in the hash table. Increasing the
value may increase interconnect
performance for complex multi-slice queries
(while consuming slightly more memory on
the segment hosts).

master

session

reload

gp_interconnect_queue_depth 1-2048 4 Sets the amount of data per-peer to be
queued by the UDP interconnect on
receivers (when data is received but no
space is available to receive it the data will be
dropped, and the transmitter will need to
resend it). Increasing the depth from its
default value will cause the system to use
more memory; but may increase
performance. It is reasonable for this to be
set between 1 and 10. Queries with data
skew potentially perform better when this is
increased. Increasing this may radically
increase the amount of memory used by the
system.

master

session

reload

gp_interconnect_setup_timeou
t

0-n seconds 20s Number of seconds to wait for the
Interconnect to complete setup before it
times out.

master

session

reload

gp_interconnect_type TCP

UDP

UDP Sets the networking protocol used for
Interconnect traffic. With the TCP protocol,
Greenplum Database has an upper limit of
1000 segment instances - less than that if the
query workload involves complex, multi-slice
queries. UDP allows for greater interconnect
scalability. Note that the Greenplum software
does the additional packet verification and
checking not performed by UDP, so reliability
and performance is equivalent to TCP.

master

session

reload

gp_log_format csv

text

csv Specifies the format of the server log files. If
using gp_toolkit administrative schema, the
log files must be in csv format.

local

system

restart

gp_max_csv_line_length number of bytes 1048576 The maximum length of a line in a CSV
formatted file that will be imported into the
system. The default is 1MB (1048576 bytes).
Maximum allowed is 4MB (4194184 bytes).
The default may need to be increased if
using the gp_toolkit administrative schema to
read Greenplum Database log files.

local

system

restart

Table D.2 Server Configuration Parameters

Parameter Value Range Default Description
Set
Classification
s

gp_hashjoin_tuples_per_bucket 805

Greenplum Database Administrator Guide 4.1– Appendix D: Server Configuration Parameters
gp_max_databases integer 16 The maximum number of databases allowed
in a Greenplum Database system.

master

system

restart

gp_max_filespaces integer 8 The maximum number of filespaces allowed
in a Greenplum Database system.

master

system

restart

gp_max_local_distributed_cac
he

integer 1024 Sets the number of local to distributed
transactions to cache. Higher settings may
improve performance.

local

system

restart

gp_max_packet_size 512-65536 8192 Sets the size (in bytes) of messages sent by
the UDP interconnect, and sets the
tuple-serialization chunk size for both the
UDP and TCP interconnect.

master

system

restart

gp_max_tablespaces integer 16 The maximum number of tablespaces
allowed in a Greenplum Database system.

master

system

restart

gp_motion_cost_per_row floating point 0 Sets the query planner cost estimate for a
Motion operator to transfer a row from one
segment to another, measured as a fraction
of the cost of a sequential page fetch. If 0,
then the value used is two times the value of
cpu_tuple_cost.

master

session

reload

gp_num_contents_in_cluster - - The number of primary segments in the
Greenplum Database system.

read only

gp_reject_percent_threshold 1-n 300 For single row error handling on COPY and
external table SELECTs, sets the number of
rows processed before SEGMENT REJECT
LIMIT n PERCENT starts calculating.

master

session

reload

gp_reraise_signal boolean on If enabled, will attempt to dump core if a fatal
server error occurs.

master

session

reload

gp_resqueue_memory_policy none, auto auto Enables Greenplum memory management
features. When set to none, memory
management is the same as in Greenplum
Database releases prior to 4.1. When set to
auto, query memory usage is controlled by
statement_mem and resource queue
memory limits. The work_mem,
max_work_mem and
maintenance_work_mem parameters
become obsolete when this is enabled.

local

system

restart

gp_resqueue_priority boolean on Enables or disables query prioritization.
When this parameter is disabled, existing
priority settings are not evaluated at query
run time.

local

system

restart

Table D.2 Server Configuration Parameters

Parameter Value Range Default Description
Set
Classification
s

gp_max_databases 806

Greenplum Database Administrator Guide 4.1– Appendix D: Server Configuration Parameters
gp_resqueue_priority_cpucore
s_per_segment

0.1 - 25.0 segments
= 4

master =
24

Specifies the number of CPU units per
segment. In a configuration where one
segment is configured per CPU core on a
host, this unit is 1.0 (default). If an 8-core
host is configured with four segments, the
value would be 2.0. A master host typically
only has one segment running on it (the
master instance), so the value for the master
should reflect the usage of all available CPU
cores. Incorrect settings can result in CPU
under-utilization. The default values are
appropriate for the Greenplum Data
Computing Appliance.

local

system

restart

gp_resqueue_priority_sweeper
_interval

500 - 15000 ms 1000 Specifies the interval at which the sweeper
process evaluates current CPU usage. When
a new statement becomes active, its priority
is evaluated and its CPU share determined
when the next interval is reached.

local

system

restart

gp_role dispatch

execute

utility

The role of this server process — set to
dispatch for the master and execute for a
segment.

read only

gp_safefswritesize integer 0 Specifies a minimum size for safe write
operations to append-only tables in a
non-mature file system. When a number of
bytes greater than zero is specified, the
append-only writer adds padding data up to
that number in order to prevent data
corruption due to file system errors. Each
non-mature file system has a known safe
write size that must be specified here when
using Greenplum Database with that type of
file system. This is commonly set to a
multiple of the extent size of the file system;
for example, Linux ext3 is 4096 bytes, so a
value of 32768 is commonly used.

local

system

restart

gp_segment_connect_timeout 0-n seconds 1min Time that the Greenplum interconnect will try
to connect to a segment instance over the
network before timing out. Controls the
network connection timeout between master
and primary segments, and primary to mirror
segment replication processes.

local

system

reload

gp_segments_for_planner 0-n 0 Sets the number of primary segment
instances for the planner to assume in its
cost and size estimates. If 0, then the value
used is the actual number of primary
segments. This variable affects the planner’s
estimates of the number of rows handled by
each sending and receiving process in
Motion operators.

master

session

reload

Table D.2 Server Configuration Parameters

Parameter Value Range Default Description
Set
Classification
s

gp_resqueue_priority_cpucores_per_segment 807

Greenplum Database Administrator Guide 4.1– Appendix D: Server Configuration Parameters
gp_session_id 1-n A system assigned ID number for a client
session. Starts counting from 1 when the
master instance is first started.

read only

gp_set_proc_affinity boolean off If enabled, when a Greenplum server
process (postmaster) is started it will bind to
a CPU.

master

system

restart

gp_set_read_only boolean off Set to on to disable writes to the database.
Any in progress transactions must finish
before read-only mode takes affect.

master

session

reload

gp_snmp_community SNMP community
name

public Set to the community name you specified for
your environment.

master

system

reload

gp_snmp_monitor_address hostname:port The hostname:port of your network
monitor application. Typically, the port
number is 162. If there are multiple monitor
addresses, separate them with a comma.

master

system

reload

gp_snmp_use_inform_or_trap inform

trap

trap Trap notifications are SNMP messages sent
from one application to another (for example,
between Greenplum Database and a network
monitoring application). These messages are
unacknowledged by the monitoring
application, but generate less network
overhead.

Inform notifications are the same as trap
messages, except that the application sends
an acknowledgement to the application that
generated the alert.

master

system

reload

gp_statistics_pullup_from_chil
d_partition

boolean on Enables the query planner to utilize statistics
from child tables when planning queries on
the parent table.

master

session

reload

gp_statistics_use_fkeys boolean off When enabled, allows the optimizer to use
foreign key information stored in the system
catalog to optimize joins between foreign
keys and primary keys.

master

session

reload

gp_vmem_idle_resource_time
out

time in seconds 18s If a database session is idle for longer than
the time specified, the session will free
system resources (such as shared memory),
but remain connected to the database. This
allows more concurrent connections to the
database at one time.

master

system

restart

Table D.2 Server Configuration Parameters

Parameter Value Range Default Description
Set
Classification
s

gp_session_id 808

Greenplum Database Administrator Guide 4.1– Appendix D: Server Configuration Parameters
gp_vmem_protect_limit integer 8192 Sets the amount of memory (in number of
MBs) that all postgres processes of an active
segment instance can consume. To prevent
over allocation of memory, set to:

(X * physical_memory) /
primary_segments
Where X is a value between 1.0 and 1.5. X=1
offers the best system performance. X=1.5
may cause more swapping on the system,
but less queries will be cancelled.

For example, on a segment host with 16GB
physical memory and 4 primary segment
instances the calculation would be:

(1 * 16) / 4 = 4GB
4 * 1024 = 4096MB
If a query causes this limit to be exceeded,
memory will not be allocated and the query
will fail. Note that this is a local parameter
and must be set for every segment in the
system (primary and mirrors).

local

system

restart

gp_vmem_protect_segworker_
cache_limit

number of
megabytes

500 If a query executor process consumes more
than this configured amount, then the
process will not be cached for use in
subsequent queries after the process
completes. Systems with lots of connections
or idle processes may want to reduce this
number to free more memory on the
segments. Note that this is a local parameter
and must be set for every segment.

local

system

restart

gp_workfile_checksumming boolean on Adds a checksum value to each block of a
work file (or spill file) used by HashAgg and
HashJoin query operators. This adds an
additional safeguard from faulty OS disk
drivers writing corrupted blocks to disk. When
a checksum operation fails, the query will
cancel and rollback rather than potentially
writing bad data to disk.

master

session

reload

gp_workfile_compress_algorith
m

none

zlib

none When a hash aggregation or hash join
operation spills to disk during query
processing, specifies the compression
algorithm to use on the spill files. If using zlib,
it must be in your $PATH on all segments.

master

session

reload

gpperfmon_port integer 8888 Sets the port on which all performance
monitor agents communicate with the master.

master

system

restart

integer_datetimes boolean on Reports whether PostgreSQL was built with
support for 64-bit-integer dates and times.

read only

Table D.2 Server Configuration Parameters

Parameter Value Range Default Description
Set
Classification
s

gp_vmem_protect_limit 809

Greenplum Database Administrator Guide 4.1– Appendix D: Server Configuration Parameters
IntervalStyle postgres

postgres_verbose

sql_standard

iso_8601

postgres Sets the display format for interval values.
The value sql_standard produces output
matching SQL standard interval literals. The
value postgres produces output matching
PostgreSQL releases prior to 8.4 when the
DateStyle parameter was set to ISO. The
value postgres_verbose produces output
matching Greenplum releases prior to 3.3
when the DateStyle parameter was set to
non-ISO output. The value iso_8601 will
produce output matching the time interval
format with designators defined in section
4.4.3.2 of ISO 8601. See the PostgreSQL 8.4
documentation for more information.

master

session

reload

join_collapse_limit 1-n 16 The planner will rewrite explicit inner JOIN
constructs into lists of FROM items whenever
a list of no more than this many items in total
would result. By default, this variable is set
the same as from_collapse_limit, which is
appropriate for most uses. Setting it to 1
prevents any reordering of inner JOINs.
Setting this variable to a value between 1 and
from_collapse_limit might be useful to trade
off planning time against the quality of the
chosen plan (higher values produce better
plans).

master

session

reload

krb_caseins_users boolean off Sets whether Kerberos user names should
be treated case-insensitively. The default is
case sensitive (off).

master

system

restart

krb_server_keyfile path and file name unset Sets the location of the Kerberos server key
file.

master

system

restart

krb_srvname service name postgres Sets the Kerberos service name. master

system

restart

lc_collate <system
dependent>

Reports the locale in which sorting of textual
data is done. The value is determined when
the Greenplum Database array is initialized.

read only

lc_ctype <system
dependent>

Reports the locale that determines character
classifications. The value is determined when
the Greenplum Database array is initialized.

read only

Table D.2 Server Configuration Parameters

Parameter Value Range Default Description
Set
Classification
s

IntervalStyle 810

http://www.postgresql.org/docs/8.4/static/datatype-datetime.html
http://www.postgresql.org/docs/8.4/static/datatype-datetime.html

Greenplum Database Administrator Guide 4.1– Appendix D: Server Configuration Parameters
lc_messages <system
dependent>

Sets the language in which messages are
displayed. The locales available depends on
what was installed with your operating
system - use locale -a to list available
locales. The default value is inherited from
the execution environment of the server. On
some systems, this locale category does not
exist. Setting this variable will still work, but
there will be no effect. Also, there is a chance
that no translated messages for the desired
language exist. In that case you will continue
to see the English messages.

local

system

restart

lc_monetary <system
dependent>

Sets the locale to use for formatting monetary
amounts, for example with the to_char family
of functions. The locales available depends
on what was installed with your operating
system - use locale -a to list available
locales. The default value is inherited from
the execution environment of the server.

local

system

restart

lc_numeric <system
dependent>

Sets the locale to use for formatting numbers,
for example with the to_char family of
functions. The locales available depends on
what was installed with your operating
system - use locale -a to list available
locales. The default value is inherited from
the execution environment of the server.

local

system

restart

lc_time <system
dependent>

This parameter currently does nothing, but
may in the future.

local

system

restart

listen_addresses localhost,

host names,

IP addresses,

*

* Specifies the TCP/IP address(es) on which
the server is to listen for connections from
client applications - a comma-separated list
of host names and/or numeric IP addresses.
The special entry * corresponds to all
available IP interfaces. If the list is empty,
only UNIX-domain sockets can connect.

master

system

restart

local_preload_libraries Comma separated list of shared library files
to preload at the start of a client session.

local

system

restart

log_autostats boolean on Logs information about automatic ANALYZE
operations related to gp_autostats_mode
and gp_autostats_on_change_threshold.

master

session

reload

superuser

Table D.2 Server Configuration Parameters

Parameter Value Range Default Description
Set
Classification
s

lc_messages 811

Greenplum Database Administrator Guide 4.1– Appendix D: Server Configuration Parameters
log_connections boolean off This outputs a line to the server log detailing
each successful connection. Some client
programs, like psql, attempt to connect twice
while determining if a password is required,
so duplicate “connection received” messages
do not always indicate a problem.

local

system

restart

log_disconnections boolean off This outputs a line in the server log at
termination of a client session, and includes
the duration of the session.

local

system

restart

log_dispatch_stats boolean off When set to “on,” this parameter adds a log
message with verbose information about the
dispatch of the statement.

local

system

restart

log_duration boolean off Causes the duration of every completed
statement which satisfies log_statement to
be logged.

master

session

reload

superuser

log_error_verbosity TERSE

DEFAULT

VERBOSE

DEFAULT Controls the amount of detail written in the
server log for each message that is logged.

master

session

reload

superuser

log_executor_stats boolean off For each query, write performance statistics
of the query executor to the server log. This
is a crude profiling instrument. Cannot be
enabled together with log_statement_stats.

local

system

restart

log_hostname boolean off By default, connection log messages only
show the IP address of the connecting host.
Turning on this option causes logging of the
host name as well. Note that depending on
your host name resolution setup this might
impose a non-negligible performance
penalty.

local

system

restart

log_min_duration_statement number of
milliseconds, 0, -1

-1 Logs the statement and its duration on a
single log line if its duration is greater than or
equal to the specified number of
milliseconds. Setting this to 0 will print all
statements and their durations. -1 disables
the feature. For example, if you set it to 250
then all SQL statements that run 250ms or
longer will be logged. Enabling this option
can be useful in tracking down unoptimized
queries in your applications.

master

session

reload

superuser

Table D.2 Server Configuration Parameters

Parameter Value Range Default Description
Set
Classification
s

log_connections 812

Greenplum Database Administrator Guide 4.1– Appendix D: Server Configuration Parameters
log_min_error_statement DEBUG5
DEBUG4
DEBUG3
DEBUG2,
DEBUG1
INFO
NOTICE
WARNING
ERROR
FATAL
PANIC

ERROR Controls whether or not the SQL statement
that causes an error condition will also be
recorded in the server log. All SQL
statements that cause an error of the
specified level or higher are logged. The
default is PANIC (effectively turning this
feature off for normal use). Enabling this
option can be helpful in tracking down the
source of any errors that appear in the server
log.

master

session

reload

superuser

log_min_messages DEBUG5
DEBUG4
DEBUG3
DEBUG2
DEBUG1
INFO
NOTICE
WARNING
ERROR
LOG
FATAL
PANIC

NOTICE Controls which message levels are written to
the server log. Each level includes all the
levels that follow it. The later the level, the
fewer messages are sent to the log.

master

session

reload

superuser

log_parser_stats boolean off For each query, write performance statistics
of the query parser to the server log. This is a
crude profiling instrument. Cannot be
enabled together with log_statement_stats.

master

session

reload

superuser

log_planner_stats boolean off For each query, write performance statistics
of the query planner to the server log. This is
a crude profiling instrument. Cannot be
enabled together with log_statement_stats.

master

session

reload

superuser

log_rotation_age number of minutes 1d Determines the maximum lifetime of an
individual log file. After this time has elapsed,
a new log file will be created. Set to zero to
disable time-based creation of new log files.

local

system

restart

log_rotation_size number of
kilobytes

0 Determines the maximum size of an
individual log file. After this many kilobytes
have been emitted into a log file, a new log
file will be created. Set to zero to disable
size-based creation of new log files.

local

system

restart

log_statement NONE

DDL

MOD

ALL

ALL Controls which SQL statements are logged.
DDL logs all data definition commands like
CREATE, ALTER, and DROP commands.
MOD logs all DDL statements, plus INSERT,
UPDATE, DELETE, TRUNCATE, and COPY
FROM. PREPARE and EXPLAIN ANALYZE
statements are also logged if their contained
command is of an appropriate type.

master

session

reload

superuser

Table D.2 Server Configuration Parameters

Parameter Value Range Default Description
Set
Classification
s

log_min_error_statement 813

Greenplum Database Administrator Guide 4.1– Appendix D: Server Configuration Parameters
log_statement_stats boolean off For each query, write total performance
statistics of the query parser, planner, and
executor to the server log. This is a crude
profiling instrument.

master

session

reload

superuser

log_timezone string unknown Sets the time zone used for timestamps
written in the log. Unlike TimeZone, this value
is system-wide, so that all sessions will report
timestamps consistently. The default is
unknown, which means to use whatever the
system environment specifies as the time
zone.

local

system

restart

log_truncate_on_rotation boolean off Truncates (overwrites), rather than appends
to, any existing log file of the same name.
Truncation will occur only when a new file is
being opened due to time-based rotation. For
example, using this setting in combination
with a log_filename such as
gpseg#-%H.log would result in generating
twenty-four hourly log files and then cyclically
overwriting them. When off, pre-existing files
will be appended to in all cases.

local

system

restart

maintenance_work_mem number of
kilobytes

64MB Specifies the maximum amount of memory
(in kilobytes) to be used in maintenance
operations, such as VACUUM or CREATE
INDEX. Since only one of these operations
can be executed at a time by a database
session, and an installation normally doesn’t
have very many of them happening
concurrently, it's safe to set this value
significantly larger than work_mem. Larger
settings may improve performance for
vacuuming and for restoring database
dumps.

master

session

reload

max_appendonly_tables 2048 Sets the maximum number of append-only
relations that can be written to or loaded
concurrently. Append-only table partitions
and subpartitions are considered as unique
tables against this limit. Increasing the limit
will allocate more shared memory at server
start.

master

system

restart

Table D.2 Server Configuration Parameters

Parameter Value Range Default Description
Set
Classification
s

log_statement_stats 814

Greenplum Database Administrator Guide 4.1– Appendix D: Server Configuration Parameters
max_connections 10-n 25 on
master

125 on
segments

The maximum number of concurrent
connections to the database server. In a
Greenplum Database system, user client
connections go through the Greenplum
master instance only. Segment instances
should allow 5-10 times the amount as the
master. When you increase this parameter,
max_prepared_transactions must be
increased as well. For more information, see
Limiting Concurrent Connections.

Increasing this parameter may cause
Greenplum Database to request more shared
memory.

local

system

restart

max_files_per_process integer 1000 Sets the maximum number of simultaneously
open files allowed to each server
subprocess. If the kernel is enforcing a safe
per-process limit, you don’t need to worry
about this setting. Some platforms such as
BSD, the kernel will allow individual
processes to open many more files than the
system can really support.

local

system

restart

max_fsm_pages integer > 16 *
max_fsm_relations

200000 Sets the maximum number of disk pages for
which free space will be tracked in the shared
free-space map. Six bytes of shared memory
are consumed for each page slot.

local

system

restart

max_fsm_relations integer 1000 Sets the maximum number of relations for
which free space will be tracked in the shared
memory free-space map. Should be set to a
value larger than the total number of:

tables + indexes + system tables.

It costs about 60 bytes of memory for each
relation per segment instance. It is better to
allow some room for overhead and set too
high rather than too low.

local

system

restart

max_function_args integer 100 Reports the maximum number of function
arguments.

read only

max_identifier_length integer 63 Reports the maximum identifier length. read only

max_index_keys integer 32 Reports the maximum number of index keys. read only

Table D.2 Server Configuration Parameters

Parameter Value Range Default Description
Set
Classification
s

max_connections 815

Greenplum Database Administrator Guide 4.1– Appendix D: Server Configuration Parameters
max_locks_per_transaction integer 64 The shared lock table is created with room to
describe locks on
max_locks_per_transaction *
(max_connections +
max_prepared_transactions) objects, so no
more than this many distinct objects can be
locked at any one time. This is not a hard
limit on the number of locks taken by any one
transaction, but rather a maximum average
value. You might need to raise this value if
you have clients that touch many different
tables in a single transaction.

local

system

restart

max_prepared_transactions integer 50 on
master

50 on
segments

Sets the maximum number of transactions
that can be in the prepared state
simultaneously. Greenplum uses prepared
transactions internally to ensure data integrity
across the segments. This value must be at
least as large as the value of
max_connections on the master. Segment
instances should be set to the same value as
the master. For more information, see
Limiting Concurrent Connections.

local

system

restart

max_resource_portals_per_tra
nsaction

integer 64 Sets the maximum number of simultaneously
open user-declared cursors allowed per
transaction. Note that an open cursor will
hold an active query slot in a resource queue.
Used for workload management.

master

system

restart

max_resource_queues integer 8 Sets the maximum number of resource
queues that can be created in a Greenplum
Database system. Note that resource queues
are system-wide (as are roles) so they apply
to all databases in the system.

master

system

restart

max_stack_depth number of
kilobytes

2MB Specifies the maximum safe depth of the
server’s execution stack. The ideal setting for
this parameter is the actual stack size limit
enforced by the kernel (as set by ulimit -s or
local equivalent), less a safety margin of a
megabyte or so. Setting the parameter higher
than the actual kernel limit will mean that a
runaway recursive function can crash an
individual backend process.

local

system

restart

Table D.2 Server Configuration Parameters

Parameter Value Range Default Description
Set
Classification
s

max_locks_per_transaction 816

Greenplum Database Administrator Guide 4.1– Appendix D: Server Configuration Parameters
max_statement_mem number of
kilobytes

2000MB Sets the maximum memory limit for a query.
Helps avoid out-of-memory errors on a
segment host during query processing as a
result of setting statement_mem too high.
When gp_resqueue_memory_policy=auto,
this parameter replaces max_work_mem.
Taking into account the configuration of a
single segment host, calculate this setting as
follows:

(seghost_physical_memory) /
(average_number_concurrent_querie
s)

master

session

reload

superuser

max_work_mem number of
kilobytes

1000MB Sets the maximum amount of memory that
can be used by a single segment worker
process during query processing. Helps
avoid out-of-memory errors on a segment
host during query processing as a result of
setting work_mem too high. Taking into
account the configuration of a single segment
host, calculate this setting as follows:

(physical_memory/segments) /
(average_query_slice_count)
The average number of query slices can be
determined from looking at your EXPLAIN
query plans. When
gp_resqueue_memory_policy=auto, this
parameter is obsolete. Use
max_statement_mem instead.

master

session

reload

superuser

password_encryption boolean on When a password is specified in CREATE
USER or ALTER USER without writing either
ENCRYPTED or UNENCRYPTED, this
option determines whether the password is to
be encrypted.

master

session

reload

pljava_classpath string A colon (:) separated list of the jar files
containing the Java classes used in any
PL/Java functions. The jar files listed here
must also be installed on all Greenplum hosts
in the following location:
$GPHOME/lib/postgresql/java/

master

session

reload

pljava_statement_cache_size number of
kilobytes

10 Sets the size in KB of the JRE MRU (Most
Recently Used) cache for prepared
statements.

master

system

restart

superuser

pljava_release_lingering_save
points

boolean true If true, lingering savepoints used in PL/Java
functions will be released on function exit. If
false, savepoints will be rolled back.

master

system

restart

superuser

Table D.2 Server Configuration Parameters

Parameter Value Range Default Description
Set
Classification
s

max_statement_mem 817

Greenplum Database Administrator Guide 4.1– Appendix D: Server Configuration Parameters
pljava_vmoptions string -Xmx64M Defines the startup options for the Java VM. master

system

restart

superuser

port any valid port
number

5432 The database listener port for a Greenplum
instance. The master and each segment has
its own port. Port numbers for the Greenplum
system must also be changed in the
gp_segment_configuration catalog. You must
shut down your Greenplum Database system
before changing port numbers.

local

system

restart

random_page_cost floating point 100 Sets the planner’s estimate of the cost of a
nonsequentially fetched disk page. This is
measured as a multiple of the cost of a
sequential page fetch. A higher value makes
it more likely a sequential scan will be used, a
lower value makes it more likely an index
scan will be used.

master

session

reload

regex_flavor advanced

extended

basic

advanced The ‘extended’ setting may be useful for
exact backwards compatibility with pre-7.4
releases of PostgreSQL.

master

session

reload

resource_cleanup_gangs_on_
wait

boolean on If a statement is submitted through a
resource queue, clean up any idle query
executor worker processes before taking a
lock on the resource queue.

master

system

restart

resource_select_only boolean off Sets the types of queries managed by
resource queues. If set to on, then SELECT,
SELECT INTO, CREATE TABLE AS
SELECT, and DECLARE CURSOR
commands are evaluated. If set to off
INSERT, UPDATE, and DELETE commands
will be evaluated as well.

master

system

restart

search_path a
comma-separated
list of schema
names

$user,publ
ic

Specifies the order in which schemas are
searched when an object is referenced by a
simple name with no schema component.
When there are objects of identical names in
different schemas, the one found first in the
search path is used. The system catalog
schema, pg_catalog, is always searched,
whether it is mentioned in the path or not.
When objects are created without specifying
a particular target schema, they will be
placed in the first schema listed in the search
path. The current effective value of the
search path can be examined via the SQL
function current_schemas().
current_schemas() shows how the requests
appearing in search_path were resolved.

master

session

reload

Table D.2 Server Configuration Parameters

Parameter Value Range Default Description
Set
Classification
s

pljava_vmoptions 818

Greenplum Database Administrator Guide 4.1– Appendix D: Server Configuration Parameters
seq_page_cost floating point 1 Sets the planner’s estimate of the cost of a
disk page fetch that is part of a series of
sequential fetches.

master

session

reload

server_encoding <system
dependent>

UTF8 Reports the database encoding (character
set). It is determined when the Greenplum
Database array is initialized. Ordinarily,
clients need only be concerned with the value
of client_encoding.

read only

server_version string 8.2.15 Reports the version of PostgreSQL that this
release of Greenplum Database is based on.

read only

server_version_num integer 80215 Reports the version of PostgreSQL that this
release of Greenplum Database is based on
as an integer.

read only

shared_buffers integer > 16K *
max_connections

125MB Sets the amount of memory a Greenplum
server instance uses for shared memory
buffers. This setting must be at least 128
kilobytes and at least 16 kilobytes times
max_connections.

local

system

restart

shared_preload_libraries A comma-separated list of shared libraries
that are to be preloaded at server start.
PostgreSQL procedural language libraries
can be preloaded in this way, typically by
using the syntax '$libdir/plXXX' where XXX is
pgsql, perl, tcl, or python. By preloading a
shared library, the library startup time is
avoided when the library is first used. If a
specified library is not found, the server will
fail to start.

local

system

restart

ssl boolean off Enables SSL connections. master

system

restart

ssl_ciphers string ALL Specifies a list of SSL ciphers that are
allowed to be used on secure connections.
See the openssl manual page for a list of
supported ciphers.

master

system

restart

standard_conforming_strings boolean of Reports whether ordinary string literals ('...')
treat backslashes literally, as specified in the
SQL standard. The value is currently always
off, indicating that backslashes are treated as
escapes. It is planned that this will change to
on in a future release when string literal
syntax changes to meet the standard.
Applications may check this parameter to
determine how string literals will be
processed. The presence of this parameter
can also be taken as an indication that the
escape string syntax (E'...') is supported.

read only

Table D.2 Server Configuration Parameters

Parameter Value Range Default Description
Set
Classification
s

seq_page_cost 819

Greenplum Database Administrator Guide 4.1– Appendix D: Server Configuration Parameters
statement_mem number of
kilobytes

125MB Allocates segment host memory per query.
The amount of memory allocated with this
parameter cannot exceed
max_statement_mem or the memory limit on
the resource queue through which the query
was submitted. When
gp_resqueue_memory_policy=auto, this
parameter replaces work_mem and
maintenance_work_mem.

master

session

reload

statement_timeout number of
milliseconds

0 Abort any statement that takes over the
specified number of milliseconds. 0 turns off
the limitation.

master

session

reload

stats_queue_level boolean off Collects resource queue statistics on
database activity.

master

session

reload

superuser_reserved_connectio
ns

integer <
max_connections

3 Determines the number of connection slots
that are reserved for Greenplum Database
superusers.

local

system

restart

tcp_keepalives_count number of lost
keepalives

0 How many keepalives may be lost before the
connection is considered dead. A value of 0
uses the system default. If TCP_KEEPCNT
is not supported, this parameter must be 0.

local

system

restart

tcp_keepalives_idle number of seconds 0 Number of seconds between sending
keepalives on an otherwise idle connection.
A value of 0 uses the system default. If
TCP_KEEPIDLE is not supported, this
parameter must be 0.

local

system

restart

tcp_keepalives_interval number of seconds 0 How many seconds to wait for a response to
a keepalive before retransmitting. A value of
0 uses the system default. If
TCP_KEEPINTVL is not supported, this
parameter must be 0.

local

system

restart

temp_buffers integer 1024 Sets the maximum number of temporary
buffers used by each database session.
These are session-local buffers used only for
access to temporary tables. The setting can
be changed within individual sessions, but
only up until the first use of temporary tables
within a session. The cost of setting a large
value in sessions that do not actually need a
lot of temporary buffers is only a buffer
descriptor, or about 64 bytes, per increment.
However if a buffer is actually used, an
additional 8192 bytes will be consumed.

master

session

reload

Table D.2 Server Configuration Parameters

Parameter Value Range Default Description
Set
Classification
s

statement_mem 820

Greenplum Database Administrator Guide 4.1– Appendix D: Server Configuration Parameters
TimeZone time zone
abbreviation

Sets the time zone for displaying and
interpreting time stamps. The default is to
use whatever the system environment
specifies as the time zone. See Date/Time
Keywords in the PostgreSQL documentation.

master

session

reload

timezone_abbreviations string Default Sets the collection of time zone abbreviations
that will be accepted by the server for date
time input. The default is Default, which is
a collection that works in most of the world.
Australia and India, and other
collections can be defined for a particular
installation. Possible values are names of
configuration files stored in
/share/timezonesets/ in the installation
directory.

master

session

reload

track_activities boolean on Enables the collection of statistics on the
currently executing command of each
session, along with the time at which that
command began execution. When enabled,
this information is not visible to all users, only
to superusers and the user owning the
session. This data can be accessed via the
pg_stat_activity system view.

master

session

reload

track_counts boolean off Enables the collection of row and block level
statistics on database activity. If enabled, the
data that is produced can be accessed via
the pg_stat and pg_statio family of system
views.

local

system

restart

transaction_isolation read committed

serializable

read
committed

Sets the current transaction’s isolation level. master

session

reload

transaction_read_only boolean off Sets the current transaction’s read-only
status.

master

session

reload

transform_null_equals boolean off When on, expressions of the form expr =
NULL (or NULL = expr) are treated as expr IS
NULL, that is, they return true if expr
evaluates to the null value, and false
otherwise. The correct SQL-spec-compliant
behavior of expr = NULL is to always return
null (unknown).

master

session

reload

unix_socket_directory directory path unset Specifies the directory of the UNIX-domain
socket on which the server is to listen for
connections from client applications.

local

system

restart

unix_socket_group UNIX group name unset Sets the owning group of the UNIX-domain
socket. By default this is an empty string,
which uses the default group for the current
user.

local

system

restart

Table D.2 Server Configuration Parameters

Parameter Value Range Default Description
Set
Classification
s

TimeZone 821

http://www.postgresql.org/docs/8.2/static/datetime-keywords.html
http://www.postgresql.org/docs/8.2/static/datetime-keywords.html

Greenplum Database Administrator Guide 4.1– Appendix D: Server Configuration Parameters
unix_socket_permissions numeric UNIX file
permission mode
(as accepted by
the chmod or
umask commands)

511 Sets the access permissions of the
UNIX-domain socket. UNIX-domain sockets
use the usual UNIX file system permission
set. Note that for a UNIX-domain socket, only
write permission matters.

local

system

restart

update_process_title boolean on Enables updating of the process title every
time a new SQL command is received by the
server. The process title is typically viewed by
the ps command.

local

system

restart

vacuum_cost_delay milliseconds < 0 (in
multiples of 10)

0 The length of time that the process will sleep
when the cost limit has been exceeded. 0
disables the cost-based vacuum delay
feature.

local

system

restart

vacuum_cost_limit integer > 0 200 The accumulated cost that will cause the
vacuuming process to sleep.

local

system

restart

vacuum_cost_page_dirty integer > 0 20 The estimated cost charged when vacuum
modifies a block that was previously clean. It
represents the extra I/O required to flush the
dirty block out to disk again.

local

system

restart

vacuum_cost_page_hit integer > 0 1 The estimated cost for vacuuming a buffer
found in the shared buffer cache. It
represents the cost to lock the buffer pool,
lookup the shared hash table and scan the
content of the page.

local

system

restart

vacuum_cost_page_miss integer > 0 10 The estimated cost for vacuuming a buffer
that has to be read from disk. This represents
the effort to lock the buffer pool, lookup the
shared hash table, read the desired block in
from the disk and scan its content.

local

system

restart

Table D.2 Server Configuration Parameters

Parameter Value Range Default Description
Set
Classification
s

unix_socket_permissions 822

Greenplum Database Administrator Guide 4.1– Appendix D: Server Configuration Parameters
vacuum_freeze_min_age integer
0-100000000000

10000000
0

Specifies the cutoff age (in transactions) that
VACUUM should use to decide whether to
replace transaction IDs with FrozenXID while
scanning a table. VACUUM will limit the
effective value to half the value of
autovacuum_freeze_max_age, so that there
is not an unreasonably short time between
forced autovacuums.

local

system

restart

work_mem number of
kilobytes

32MB Specifies the amount of memory to be used
by internal sort operations and hash tables
before switching to temporary disk files. Note
that for a complex query, several sort or hash
operations might be running in parallel; each
one will be allowed to use as much memory
as this value specifies before it starts to put
data into temporary files. Also, several
running sessions could be doing such
operations concurrently. So the total memory
used could be many times the value of
work_mem; it is necessary to keep this fact in
mind when choosing the value. Sort
operations are used for ORDER BY,
DISTINCT, and merge joins. Hash tables are
used in hash joins, hash-based aggregation,
and hash-based processing of IN subqueries.
See also, max_work_mem.

master

session

reload

Table D.2 Server Configuration Parameters

Parameter Value Range Default Description
Set
Classification
s

vacuum_freeze_min_age 823

Greenplum Database Administrator Guide 4.1– Appendix E: Greenplum MapReduce Specification
E. Greenplum MapReduce Specification

MapReduce is a programming model developed by Google for processing and
generating large data sets on an array of commodity servers. Greenplum MapReduce
allows programmers who are familiar with the MapReduce paradigm to write map and
reduce functions and submit them to the Greenplum Database parallel engine for
processing.

In order for Greenplum to be able to process MapReduce functions, the functions need
to be defined in a document, which is then passed to the Greenplum MapReduce
program, gpmapreduce, for execution by the Greenplum Database parallel engine.
The Greenplum Database system takes care of the details of distributing the input
data, executing the program across a set of machines, handling machine failures, and
managing the required inter-machine communication.

This specification describes the document format and schema for defining Greenplum
MapReduce jobs.

Greenplum MapReduce Document Format
This section explains some basics of the Greenplum MapReduce document format to
help you get started creating your own Greenplum MapReduce documents.
Greenplum uses the YAML 1.1 document format and then implements its own
schema for defining the various steps of a MapReduce job.

All Greenplum MapReduce files must first declare the version of the YAML
specification they are using. After that, three dashes (---) denote the start of a
document, and three dots (...) indicate the end of a document without starting a new
one. Comment lines are prefixed with a pound symbol (#). It is possible to declare
multiple Greenplum MapReduce documents in the same file:

%YAML 1.1

Begin Document 1

...

Begin Document 2

...

Within a Greenplum MapReduce document, there are three basic types of data
structures or nodes: scalars, sequences and mappings.

A scalar is a basic string of text indented by a space. If you have a scalar input that
spans multiple lines, a preceding pipe (|) denotes a literal style, where all line breaks
are significant. Alternatively, a preceding angle bracket (>) folds a single line break
Greenplum MapReduce Document Format 824

http://yaml.org/spec/1.1/
http://en.wikipedia.org/wiki/MapReduce

Greenplum Database Administrator Guide 4.1– Appendix E: Greenplum MapReduce Specification
to a space for subsequent lines that have the same indentation level. If a string contains
characters that have reserved meaning, the string must be quoted or the special
character must be escaped with a backslash (\).

Read each new line literally

somekey: |

 this value contains two lines

 and each line is read literally

Treat each new line as a space

anotherkey: >

 this value contains two lines

 but is treated as one continuous line

This quoted string contains a special character

ThirdKey: "This is a string: not a mapping"

A sequence is a list with each entry in the list on its own line denoted by a dash and a
space (-). Alternatively, you can specify an inline sequence as a comma-separated
list within square brackets. A sequence provides a set of data and gives it an order.
When you load a list into the Greenplum MapReduce program, the order is kept.

list sequence

- this

- is

- a list

- with

- five scalar values

inline sequence

[this, is, a list, with, five scalar values]

A mapping is used to pair up data values with indentifiers called keys. Mappings use a
colon and space (:) for each key: value pair, or can also be specified inline as a
comma-separated list within curly braces. The key is used as an index for retrieving
data from a mapping.

a mapping of items

title: War and Peace

author: Leo Tolstoy

date: 1865

same mapping written inline

{title: War and Peace, author: Leo Tolstoy, date: 1865}
Greenplum MapReduce Document Format 825

Greenplum Database Administrator Guide 4.1– Appendix E: Greenplum MapReduce Specification
Keys are used to associate meta information with each node and specify the expected
node type (scalar, sequence or mapping). See “Greenplum MapReduce Document
Schema” on page 827 for the keys expected by the Greenplum MapReduce program.

The Greenplum MapReduce program processes the nodes of a document in order and
uses indentation (spaces) to determine the document hierarchy and the relationships of
the nodes to one another. The use of white space is significant. White space should not
be used simply for formatting purposes, and tabs should not be used at all.
Greenplum MapReduce Document Format 826

Greenplum Database Administrator Guide 4.1– Appendix E: Greenplum MapReduce Specification
Greenplum MapReduce Document Schema
Greenplum MapReduce uses the YAML document framework and implements its
own YAML schema. The basic structure of a Greenplum MapReduce document is:

%YAML 1.1

VERSION: 1.0.0.2

DATABASE: dbname

USER: db_username

HOST: master_hostname

PORT: master_port

DEFINE:

 - INPUT:

 NAME: input_name

 FILE:

 - hostname:/path/to/file

 GPFDIST:

 - hostname:port:/file_pattern

 TABLE: table_name

 QUERY: SELECT_statement

 EXEC: command_string

 COLUMNS:

 - field_name data_type

 FORMAT: TEXT | CSV

 DELIMITER: delimiter_character

 ESCAPE: escape_character

 NULL: null_string

 QUOTE: csv_quote_character

 ERROR_LIMIT: integer

 ENCODING: database_encoding
Greenplum MapReduce Document Schema 827

Greenplum Database Administrator Guide 4.1– Appendix E: Greenplum MapReduce Specification
 - OUTPUT:

 NAME: output_name

 FILE: file_path_on_client

 TABLE: table_name

 KEYS:

 - column_name

 MODE: REPLACE | APPEND

 - MAP:

 NAME: function_name

 FUNCTION: function_definition

 LANGUAGE: perl | python | c

 LIBRARY: /path/filename.so

 PARAMETERS:

 - name type

 RETURNS:

 - name type

 OPTIMIZE: STRICT IMMUTABLE

 MODE: SINGLE | MULTI

 - TRANSITION | CONSOLIDATE | FINALIZE:

 NAME: function_name

 FUNCTION: function_definition

 LANGUAGE: perl | python | c

 LIBRARY: /path/filename.so

 PARAMETERS:

 - name type

 RETURNS:

 - name type

 OPTIMIZE: STRICT IMMUTABLE

 MODE: SINGLE | MULTI
Greenplum MapReduce Document Schema 828

Greenplum Database Administrator Guide 4.1– Appendix E: Greenplum MapReduce Specification
VERSION

Required. The version of the Greenplum MapReduce YAML specification. Current
versions are 1.0.0.1.

DATABASE

Optional. Specifies which database in Greenplum to connect to. If not specified,
defaults to the default database or $PGDATABASE if set.

USER

Optional. Specifies which database role to use to connect. If not specified, defaults
to the current user or $PGUSER if set. You must be a Greenplum superuser to run
functions written in untrusted Python and Perl. Regular database users can run
functions written in trusted Perl. You also must be a database superuser to run
MapReduce jobs that contain FILE, GPFDIST or EXEC input types.

 - REDUCE:

 NAME: reduce_job_name

 TRANSITION: transition_function_name

 CONSOLIDATE: consolidate_function_name

 FINALIZE: finalize_function_name

 INITIALIZE: value

 KEYS:

 - key_name

 - TASK:

 NAME: task_name

 SOURCE: input_name

 MAP: map_function_name

 REDUCE: reduce_function_name

EXECUTE:

 - RUN:

 SOURCE: input_or_task_name

 TARGET: output_name

 MAP: map_function_name

 REDUCE: reduce_function_name

...
Greenplum MapReduce Document Schema 829

Greenplum Database Administrator Guide 4.1– Appendix E: Greenplum MapReduce Specification
HOST

Optional. Specifies Greenplum master host name. If not specified, defaults to
localhost or $PGHOST if set.

PORT

Optional. Specifies Greenplum master port. If not specified, defaults to 5432 or
$PGPORT if set.

DEFINE

Required. A sequence of definitions for this MapReduce document. The DEFINE
section must have at least one INPUT definition.

INPUT

Required. Defines the input data. Every MapReduce document must have at least
one input defined. Multiple input definitions are allowed in a document, but each
input definition can specify only one of these access types:a file, a gpfdist file
distribution program, a table in the database, an SQL command, or an operating
system command.

NAME

A name for this input. Names must be unique with regards to the names of
other objects in this MapReduce job (such as map function, task, reduce
function and output names). Also, names cannot conflict with existing objects
in the database (such as tables, functions or views).

FILE

A sequence of one or more input files in the format:
seghostname:/path/to/filename. You must be a Greenplum Database
superuser to run MapReduce jobs with FILE input. The file must reside on a
Greenplum segment host.

GPFDIST

A sequence of one or more running gpfdist file distribution programs in the
format: hostname[:port]/file_pattern. You must be a Greenplum
Database superuser to run MapReduce jobs with GPFDIST input, unless the
server configuration parameter gp_external_grant_privileges is set to on.

TABLE

The name of an existing table in the database.

QUERY

An SQL SELECT command to run within the database.
Greenplum MapReduce Document Schema 830

Greenplum Database Administrator Guide 4.1– Appendix E: Greenplum MapReduce Specification
EXEC

An operating system command to run on the Greenplum segment hosts. The
command is run by all segment instances in the system by default. For
example, if you have four segment instances per segment host, the command
will be run four times on each host. You must be a Greenplum Database
superuser to run MapReduce jobs with EXEC input and the server
configuration parameter gp_external_enable_exec is set to on.

COLUMNS

Optional. Columns are specified as: column_name [data_type]. If not
specified, the default is value text. The DELIMITER character is what
separates two data value fields (columns). A row is determined by a line feed
character (0x0a).

FORMAT

Optional. Specifies the format of the data - either delimited text (TEXT) or
comma separated values (CSV) format. If the data format is not specified,
defaults to TEXT.

DELIMITER

Optional for FILE, GPFDIST and EXEC inputs. Specifies a single character that
separates data values. The default is a tab character in TEXT mode, a comma
in CSV mode.The delimiter character must only appear between any two data
value fields. Do not place a delimiter at the beginning or end of a row.

ESCAPE

Optional for FILE, GPFDIST and EXEC inputs. Specifies the single character
that is used for C escape sequences (such as \n,\t,\100, and so on) and for
escaping data characters that might otherwise be taken as row or column
delimiters. Make sure to choose an escape character that is not used anywhere
in your actual column data. The default escape character is a \ (backslash) for
text-formatted files and a " (double quote) for csv-formatted files, however it
is possible to specify another character to represent an escape. It is also
possible to disable escaping by specifying the value 'OFF' as the escape
value. This is very useful for data such as text-formatted web log data that has
many embedded backslashes that are not intended to be escapes.

NULL

Optional for FILE, GPFDIST and EXEC inputs. Specifies the string that
represents a null value. The default is \N in TEXT format, and an empty value
with no quotations in CSV format. You might prefer an empty string even in
TEXT mode for cases where you do not want to distinguish nulls from empty
strings. Any input data item that matches this string will be considered a null
value.
Greenplum MapReduce Document Schema 831

Greenplum Database Administrator Guide 4.1– Appendix E: Greenplum MapReduce Specification
QUOTE

Optional for FILE, GPFDIST and EXEC inputs. Specifies the quotation character
for CSV formatted files. The default is a double quote ("). In CSV formatted
files, data value fields must be enclosed in double quotes if they contain any
commas or embedded new lines. Fields that contain double quote characters
must be surrounded by double quotes, and the embedded double quotes must
each be represented by a pair of consecutive double quotes. It is important to
always open and close quotes correctly in order for data rows to be parsed
correctly.

ERROR_LIMIT

If the input rows have format errors they will be discarded provided that the
error limit count is not reached on any Greenplum segment instance during
input processing. If the error limit is not reached, all good rows will be
processed and any error rows discarded.

ENCODING

Character set encoding to use for the data. Specify a string constant (such as
'SQL_ASCII'), an integer encoding number, or DEFAULT to use the default
client encoding. See “Character Set Support” on page 974.

OUTPUT

Optional. Defines where to output the formatted data of this MapReduce job. If
output is not defined, the default is STDOUT (standard output of the client). You
can send output to a file on the client host or to an existing table in the database.

NAME

A name for this output. The default output name is STDOUT. Names must be
unique with regards to the names of other objects in this MapReduce job
(such as map function, task, reduce function and input names). Also, names
cannot conflict with existing objects in the database (such as tables, functions
or views).

FILE

Specifies a file location on the MapReduce client machine to output data in
the format: /path/to/filename

TABLE

Specifies the name of a table in the database to output data. If this table does
not exist prior to running the MapReduce job, it will be created using the
distribution policy specified with KEYS.

KEYS

Optional for TABLE output. Specifies the column(s) to use as the Greenplum
Database distribution key. If the EXECUTE task contains a REDUCE definition,
then the REDUCE keys will be used as the table distribution key by default.
Otherwise, the first column of the table will be used as the distribution key.
Greenplum MapReduce Document Schema 832

Greenplum Database Administrator Guide 4.1– Appendix E: Greenplum MapReduce Specification
MODE

Optional for TABLE output. If not specified, the default is to create the table if
it does not already exist, but error out if it does exist. Declaring APPEND adds
output data to an existing table (provided the table schema matches the output
format) without removing any existing data. Declaring REPLACE will drop the
table if it exists and then recreate it. Both APPEND and REPLACE will create a
new table if one does not exist.

MAP

Required. Each MAP function takes data structured in (key, value) pairs,
processes each pair, and generates zero or more output (key, value) pairs. The
Greenplum MapReduce framework then collects all pairs with the same key from
all output lists and groups them together. This output is then passed to the REDUCE
task, which is comprised of TRANSITION | CONSOLIDATE | FINALIZE functions.
There is one predefined MAP function named IDENTITY that returns (key, value)
pairs unchanged. Although (key, value) are the default parameters, you can
specify other prototypes as needed.

TRANSITION | CONSOLIDATE | FINALIZE

TRANSITION, CONSOLIDATE and FINALIZE are all component pieces of REDUCE.
A TRANSITION function is required. CONSOLIDATE and FINALIZE functions are
optional. By default, all take state as the first of their input PARAMETERS, but
other prototypes can be defined as well.

A TRANSITION function iterates through each value of a given key and
accumulates values in a state variable. When the transition function is called on
the first value of a key, the state is set to the value specified by INITIALIZE of a
REDUCE job (or the default state value for the data type). A transition takes two
arguments as input; the current state of the key reduction, and the next value,
which then produces a new state.

If a CONSOLIDATE function is specified, TRANSITION processing is performed at
the segment-level before redistributing the keys across the Greenplum
interconnect for final aggregation (two-phase aggregation). Only the resulting
state value for a given key is redistributed, resulting in lower interconnect
traffic and greater parallelism. CONSOLIDATE is handled like a TRANSITION,
except that instead of (state + value) => state, it is (state + state) =>
state.

If a FINALIZE function is specified, it takes the final state produced by
CONSOLIDATE (if present) or TRANSITION and does any final processing before
emitting the final result. TRANSITION and CONSOLIDATE functions cannot return
a set of values. If you need a REDUCE job to return a set, then a FINALIZE is
necessary to transform the final state into a set of output values.
Greenplum MapReduce Document Schema 833

Greenplum Database Administrator Guide 4.1– Appendix E: Greenplum MapReduce Specification
NAME

Required. A name for the function. Names must be unique with regards to the
names of other objects in this MapReduce job (such as function, task, input
and output names). You can also specify the name of a function built-in to
Greenplum Database. If using a built-in function, do not supply LANGUAGE or
a FUNCTION body.

FUNCTION

Optional. Specifies the full body of the function using the specified
LANGUAGE. If FUNCTION is not specified, then a built-in database function
corresponding to NAME is used.

LANGUAGE

Required when FUNCTION is used. Specifies the implementation language
used to interpret the function. This release has language support for perl,
python and C. If calling a built-in database function, LANGUAGE should not be
specified.

LIBRARY

Required when LANGUAGE is C (not allowed for other language functions). To
use this attribute, VERSION must be 1.0.0.2. The specified library file must be
installed prior to running the MapReduce job, and it must exist in the same
file system location on all Greenplum hosts (master and segments).

PARAMETERS

Optional. Function input parameters. The default type is text.

MAP default - key text, value text

TRANSITION default - state text, value text

CONSOLIDATE default - state1 text, state2 text (must have exactly two
input parameters of the same data type)

FINALIZE default - state text (single parameter only)

RETURNS

Optional. The default return type is text.

MAP default - key text, value text

TRANSITION default - state text (single return value only)

CONSOLIDATE default - state text (single return value only)

FINALIZE default - value text

OPTIMIZE

Optional optimization parameters for the function:

STRICT - function is not affected by NULL values
Greenplum MapReduce Document Schema 834

Greenplum Database Administrator Guide 4.1– Appendix E: Greenplum MapReduce Specification
IMMUTABLE - function will always return the same value for a given input

MODE

Optional. Specifies the number of rows returned by the function.

MULTI - returns 0 or more rows per input record. The return value of the
function must be an array of rows to return, or the function must be written as
an iterator using yield in Python or return_next in Perl. MULTI is the
default mode for MAP and FINALIZE functions.

SINGLE - returns exactly one row per input record. SINGLE is the only mode
supported for TRANSITION and CONSOLIDATE functions. When used with
MAP and FINALIZE functions, SINGLE mode can provide modest performance
improvement.

REDUCE

Required. A REDUCE definition names the TRANSITION | CONSOLIDATE |
FINALIZE functions that comprise the reduction of (key, value) pairs to the final
result set. There are also several predefined REDUCE jobs you can execute, which
all operate over a column named value:

IDENTITY - returns (key, value) pairs unchanged

SUM - calculates the sum of numeric data

AVG - calculates the average of numeric data

COUNT - calculates the count of input data

MIN - calculates minimum value of numeric data

MAX - calculates maximum value of numeric data

NAME

Required. The name of this REDUCE job. Names must be unique with regards
to the names of other objects in this MapReduce job (function, task, input and
output names). Also, names cannot conflict with existing objects in the
database (such as tables, functions or views).

TRANSITION

Required. The name of the TRANSITION function.

CONSOLIDATE

Optional. The name of the CONSOLIDATE function.

FINALIZE

Optional. The name of the FINALIZE function.
Greenplum MapReduce Document Schema 835

Greenplum Database Administrator Guide 4.1– Appendix E: Greenplum MapReduce Specification
INITIALIZE

Optional for text and float data types. Required for all other data types.
The default value for text is '' . The default value for float is 0.0 . Sets the
initial state value of the TRANSITION function.

KEYS

Optional. Defaults to [key, *]. When using a multi-column reduce it may
be necessary to specify which columns are key columns and which columns
are value columns. By default, any input columns that are not passed to the
TRANSITION function are key columns, and a column named key is always a
key column even if it is passed to the TRANSITION function. The special
indicator * indicates all columns not passed to the TRANSITION function. If
this indicator is not present in the list of keys then any unmatched columns
are discarded.

TASK

Optional. A TASK defines a complete end-to-end INPUT/MAP/REDUCE stage within
a Greenplum MapReduce job pipeline. It is similar to EXECUTE except it is not
immediately executed. A task object can be called as INPUT to further processing
stages.

NAME

Required. The name of this task. Names must be unique with regards to the
names of other objects in this MapReduce job (such as map function, reduce
function, input and output names). Also, names cannot conflict with existing
objects in the database (such as tables, functions or views).

SOURCE

The name of an INPUT or another TASK.

MAP

Optional. The name of a MAP function. If not specified, defaults to IDENTITY.

REDUCE

Optional. The name of a REDUCE function. If not specified, defaults to
IDENTITY.

EXECUTE

Required. EXECUTE defines the final INPUT/MAP/REDUCE stage within a Greenplum
MapReduce job pipeline.

RUN

SOURCE

Required. The name of an INPUT or TASK.
Greenplum MapReduce Document Schema 836

Greenplum Database Administrator Guide 4.1– Appendix E: Greenplum MapReduce Specification
TARGET

Optional. The name of an OUTPUT. The default output is STDOUT.

MAP

Optional. The name of a MAP function. If not specified, defaults to IDENTITY.

REDUCE

Optional. The name of a REDUCE function. Defaults to IDENTITY.
Greenplum MapReduce Document Schema 837

Greenplum Database Administrator Guide 4.1– Appendix E: Greenplum MapReduce Specification
Example Greenplum MapReduce Document

This example MapReduce job processes documents and looks for keywords in them.

It takes two database tables as input:

- documents (doc_id integer, url text, data text)

- keywords (keyword_id integer, keyword text)#

The documents data is searched for occurences of keywords and returns results of

url, data and keyword (a keyword can be multiple words, such as "high performance
computing")

%YAML 1.1

VERSION: 1.0.0.1

Connect to Greenplum Database using this database and role

DATABASE: webdata

USER: jsmith

Begin definition section

DEFINE:

 # Declare the input, which selects all columns and rows from the

 # 'documents' and 'keywords' tables.

 - INPUT:

 NAME: doc

 TABLE: documents

 - INPUT:

 NAME: kw

 TABLE: keywords

Define the map functions to extract terms from documents and keyword

This example simply splits on white space, but it would be possible

to make use of a python library like nltk (the natural language toolkit)

to perform more complex tokenization and word stemming.
Example Greenplum MapReduce Document 838

Greenplum Database Administrator Guide 4.1– Appendix E: Greenplum MapReduce Specification
 - MAP:

 NAME: doc_map

 LANGUAGE: python

 FUNCTION: |

 i = 0 # the index of a word within the document

 terms = {} # a hash of terms and their indexes within the document

 # Lower-case and split the text string on space

 for term in data.lower().split():

 i = i + 1 # increment i (the index)

 # Check for the term in the terms list:

 # if stem word already exists, append the i value to the array entry

 # corresponding to the term. This counts multiple occurances of the word.

 # If stem word does not exist, add it to the dictionary with position i.

 # For example:

 # data: "a computer is a machine that manipulates data"

 # "a" [1, 4]

 # "computer" [2]

 # "machine" [3]

 # …

 if term in terms:

 terms[term] += ','+str(i)

 else:

 terms[term] = str(i)

 # Return multiple lines for each document. Each line consists of

 # the doc_id, a term and the positions in the data where the term appeared.

 # For example:

 # (doc_id => 100, term => "a", [1,4]

 # (doc_id => 100, term => "computer", [2]

 # …

 for term in terms:

 yield([doc_id, term, terms[term]])

 OPTIMIZE: STRICT IMMUTABLE

 PARAMETERS:

 - doc_id integer

 - data text

 RETURNS:

 - doc_id integer
Example Greenplum MapReduce Document 839

 - term text

 - positions text

Greenplum Database Administrator Guide 4.1– Appendix E: Greenplum MapReduce Specification
 # The map function for keywords is almost identical to the one for documents

 # but it also counts of the number of terms in the keyword.

 - MAP:

 NAME: kw_map

 LANGUAGE: python

 FUNCTION: |

 i = 0

 terms = {}

 for term in keyword.lower().split():

 i = i + 1

 if term in terms:

 terms[term] += ','+str(i)

 else:

 terms[term] = str(i)

 # output 4 values including i (the total count for term in terms):

 yield([keyword_id, i, term, terms[term]])

 OPTIMIZE: STRICT IMMUTABLE

 PARAMETERS:

 - keyword_id integer

 - keyword text

 RETURNS:

 - keyword_id integer

 - nterms integer

 - term text

 - positions text

A TASK is an object that defines an entire INPUT/MAP/REDUCE stage

within a Greenplum MapReduce pipeline. It is like EXECUTION, but it is

executed only when called as input to other processing stages.

Identify a task called 'doc_prep' which takes in the 'doc' INPUT defined earlier

and runs the 'doc_map' MAP function which returns doc_id, term, [term_position]

 - TASK:

 NAME: doc_prep

 SOURCE: doc

 MAP: doc_map
Example Greenplum MapReduce Document 840

Greenplum Database Administrator Guide 4.1– Appendix E: Greenplum MapReduce Specification
Identify a task called 'kw_prep' which takes in the 'kw' INPUT defined earlier

and runs the kw_map MAP function which returns kw_id, term, [term_position]

 - TASK:

 NAME: kw_prep

 SOURCE: kw

 MAP: kw_map

One advantage of Greenplum MapReduce is that MapReduce tasks can be

used as input to SQL operations and SQL can be used to process a MapReduce task.

This INPUT defines a SQL query that joins the output of the 'doc_prep'

TASK to that of the 'kw_prep' TASK. Matching terms are output to the 'candidate'

list (any keyword that shares at least one term with the document).

 - INPUT:

 NAME: term_join

 QUERY: |

 SELECT doc.doc_id, kw.keyword_id, kw.term, kw.nterms,

 doc.positions as doc_positions,

 kw.positions as kw_positions

 FROM doc_prep doc INNER JOIN kw_prep kw ON (doc.term = kw.term)

In Greenplum MapReduce, a REDUCE function is comprised of one or more functions.

A REDUCE has an initial 'state' variable defined for each grouping key. that is

A TRANSITION function adjusts the state for every value in a key grouping.

If present, an optional CONSOLIDATE function combines multiple

'state' variables. This allows the TRANSITION function to be executed locally at

the segment-level and only redistribute the accumulated 'state' over

the network. If present, an optional FINALIZE function can be used to perform

final computation on a state and emit one or more rows of output from the state.

#

This REDUCE function is called 'term_reducer' with a TRANSITION function

called 'term_transition' and a FINALIZE function called 'term_finalizer'

- REDUCE:

 NAME: term_reducer

 TRANSITION: term_transition

 FINALIZE: term_finalizer
Example Greenplum MapReduce Document 841

Greenplum Database Administrator Guide 4.1– Appendix E: Greenplum MapReduce Specification
- TRANSITION:

 NAME: term_transition

 LANGUAGE: python

 PARAMETERS:

 - state text

 - term text

 - nterms integer

 - doc_positions text

 - kw_positions text

 FUNCTION: |

 # 'state' has an initial value of '' and is a colon delimited set

 # of keyword positions. keyword positions are comma delimited sets of

 # integers. For example, '1,3,2:4:'

 # If there is an existing state, split it into the set of keyword positions

 # otherwise construct a set of 'nterms' keyword positions - all empty

 if state:

 kw_split = state.split(':')

 else:

 kw_split = []

 for i in range(0,nterms):

 kw_split.append('')

 # 'kw_positions' is a comma delimited field of integers indicating what

 # position a single term occurs within a given keyword.

 # Splitting based on ',' converts the string into a python list.

 # add doc_positions for the current term

 for kw_p in kw_positions.split(','):

 kw_split[int(kw_p)-1] = doc_positions

 # This section takes each element in the 'kw_split' array and strings

 # them together placing a ':' in between each element from the array.

 # For example: for the keyword "computer software computer hardware",

 # the 'kw_split' array matched up to the document data of

 # "in the business of computer software software engineers"

 # would look like: ['5', '6,7', '5', '']

 # and the outstate would look like: 5:6,7:5:

 outstate = kw_split[0]

 for s in kw_split[1:]:

 outstate = outstate + ':' + s

 return outstate
Example Greenplum MapReduce Document 842

Greenplum Database Administrator Guide 4.1– Appendix E: Greenplum MapReduce Specification
 - FINALIZE:

 NAME: term_finalizer

 LANGUAGE: python

 RETURNS:

 - count integer

 MODE: MULTI

 FUNCTION: |

 if not state:

 return 0

 kw_split = state.split(':')

 # This function does the following:

 # 1) Splits 'kw_split' on ':'

 # for example, 1,5,7:2,8 creates '1,5,7' and '2,8'

 # 2) For each group of positions in 'kw_split', splits the set on ','

 # to create ['1','5','7'] from Set 0: 1,5,7 and

 # eventually ['2', '8'] from Set 1: 2,8

 # 3) Checks for empty strings

 # 4) Adjusts the split sets by subtracting the position of the set

 # in the 'kw_split' array

 # ['1','5','7'] - 0 from each element = ['1','5','7']

 # ['2', '8'] - 1 from each element = ['1', '7']

 # 5) Resulting arrays after subtracting the offset in step 4 are

 # intersected and their overlaping values kept:

 # ['1','5','7'].intersect['1', '7'] = [1,7]

 # 6) Determines the length of the intersection, which is the number of

 # times that an entire keyword (with all its pieces) matches in the

 # document data.

 previous = None

 for i in range(0,len(kw_split)):

 isplit = kw_split[i].split(',')

 if any(map(lambda(x): x == '', isplit)):

 return 0

 adjusted = set(map(lambda(x): int(x)-i, isplit))

 if (previous):

 previous = adjusted.intersection(previous)

 else:

 previous = adjusted

 # return the final count
Example Greenplum MapReduce Document 843

 if previous:

 return len(previous)

 return 0

Greenplum Database Administrator Guide 4.1– Appendix E: Greenplum MapReduce Specification
 # Define the 'term_match' task which is then executed as part

 # of the 'final_output' query. It takes the INPUT 'term_join' defined

 # earlier and uses the REDUCE function 'term_reducer' defined earlier

 - TASK:

 NAME: term_match

 SOURCE: term_join

 REDUCE: term_reducer

 - INPUT:

 NAME: final_output

 QUERY: |

 SELECT doc.*, kw.*, tm.count

 FROM documents doc, keywords kw, term_match tm

 WHERE doc.doc_id = tm.doc_id

 AND kw.keyword_id = tm.keyword_id

 AND tm.count > 0

Execute this MapReduce job and send output to STDOUT

EXECUTE:

 - RUN:

 SOURCE: final_output

 TARGET: STDOUT
Example Greenplum MapReduce Document 844

Greenplum Database Administrator Guide 4.1– Appendix E: Greenplum MapReduce Specification
MapReduce Flow Diagram

The following diagram shows the job flow of the MapReduce job defined in the
example:
Example Greenplum MapReduce Document 845

Greenplum Database Administrator Guide 4.1– Appendix F: Greenplum Environment Variables
F. Greenplum Environment Variables

This is a reference of the environment variables to set for Greenplum Database. Set
these in your user’s startup shell profile (such as ~/.bashrc or ~/.bash_profile),
or in /etc/profile if you want to set them for all users.

Required Environment Variables

Note: GPHOME, PATH and LD_LIBRARY_PATH can be set by sourcing the
greenplum_path.sh file from your Greenplum Database installation directory.

GPHOME

This is the installed location of your Greenplum Database software. For example:

GPHOME=/usr/local/greenplum-db-4.1.x.x

export GPHOME

PATH

Your PATH environment variable should point to the location of the Greenplum
Database bin directory. Solaris users must also add /usr/sfw/bin and
/opt/sfw/bin to their PATH. For example:

PATH=$GPHOME/bin:$PATH

PATH=$GPHOME/bin:/usr/local/bin:/usr/sbin:/usr/sfw/bin:/opt/sfw/b
in:$PATH

export PATH

LD_LIBRARY_PATH

The LD_LIBRARY_PATH environment variable should point to the location of the
Greenplum Database/PostgreSQL library files. For Solaris, this also points to the
GNU compiler and readline library files as well (readline libraries may be required for
Python support on Solaris). For example:

LD_LIBRARY_PATH=$GPHOME/lib

LD_LIBRARY_PATH=$GPHOME/lib:/usr/sfw/lib

export LD_LIBRARY_PATH

MASTER_DATA_DIRECTORY

This should point to the directory created by the gpinitsystem utility in the master
data directory location. For example:

MASTER_DATA_DIRECTORY=/data/master/gpseg-1

export MASTER_DATA_DIRECTORY

Required Environment Variables 846

Greenplum Database Administrator Guide 4.1– Appendix F: Greenplum Environment Variables
Optional Environment Variables
The following are standard PostgreSQL environment variables, which are also
recognized in Greenplum Database. You may want to add the connection-related
environment variables to your profile for convenience, so you do not have to type so
many options on the command line for client connections. Note that these
environment variables should be set on the Greenplum Database master host only.

PGAPPNAME

The name of the application that is usually set by an application when it connects to
the server. This name is displayed in the activity view and in log entries. The
PGAPPNAME environmental variable behaves the same as the application_name
connection parameter. The default value for application_name is psql. The name
cannot be longer than 63 characters.

PGDATABASE

The name of the default database to use when connecting.

PGHOST

The Greenplum Database master host name.

PGHOSTADDR

The numeric IP address of the master host. This can be set instead of or in addition to
PGHOST to avoid DNS lookup overhead.

PGPASSWORD

The password used if the server demands password authentication. Use of this
environment variable is not recommended for security reasons (some operating
systems allow non-root users to see process environment variables via ps). Instead
consider using the ~/.pgpass file.

PGPASSFILE

The name of the password file to use for lookups. If not set, it defaults to ~/.pgpass.
See the section about The Password File in the PostgreSQL documentation for more
information.

PGOPTIONS

Sets additional configuration parameters for the Greenplum Database master server.

PGPORT

The port number of the Greenplum Database server on the master host. The default
port is 5432.

PGUSER

The Greenplum Database user name used to connect.

PGDATESTYLE

Sets the default style of date/time representation for a session. (Equivalent to SET
datestyle TO)
Optional Environment Variables 847

http://www.postgresql.org/docs/8.2/static/libpq-pgpass.html

Greenplum Database Administrator Guide 4.1– Appendix F: Greenplum Environment Variables
PGTZ

Sets the default time zone for a session. (Equivalent to SET timezone TO)

PGCLIENTENCODING

Sets the default client character set encoding for a session. (Equivalent to SET
client_encoding TO)
Optional Environment Variables 848

Greenplum Database Administrator Guide 4.1– Appendix G: Greenplum Database Data Types
G. Greenplum Database Data Types

Greenplum Database has a rich set of native data types available to users. Users may
also define new data types using the CREATE TYPE command. This reference shows
all of the built-in data types. In addition to the types listed here, there are also some
internally used data types, such as oid (object identifier), but those are not documented
in this guide.

The following data types are specified by SQL: bit, bit varying, boolean, character
varying, varchar, character, char, date, double precision, integer, interval, numeric,
decimal, real, smallint, time (with or without time zone), and timestamp (with or
without time zone).

Each data type has an external representation determined by its input and output
functions. Many of the built-in types have obvious external formats. However, several
types are either unique to PostgreSQL (and Greenplum Database), such as geometric
paths, or have several possibilities for formats, such as the date and time types. Some
of the input and output functions are not invertible. That is, the result of an output
function may lose accuracy when compared to the original input.

Table G.1 Greenplum Database Built-in Data Types

Name1 Alias Size Range Description

bigint int8 8 bytes -9223372036854775808
to
9223372036854775807

large range integer

bigserial serial8 8 bytes 1 to
9223372036854775807

large autoincrementing integer

bit [(n)] n bits bit string constant fixed-length bit string

bit varying [(n)] varbit actual
number of
bits

bit string constant variable-length bit string

boolean bool 1 byte true/false, t/f, yes/no,
y/n, 1/0

logical boolean (true/false)

box 32 bytes ((x1,y1),(x2,y2)) rectangular box in the plane - not
allowed in distribution key
columns.

bytea 1 byte +
binary
string

sequence of octets variable-length binary string

character [(n)] char [(n)] 1 byte + n strings up to n
characters in length

fixed-length, blank padded

character varying [(n)] varchar [(n)] 1 byte +
string size

strings up to n
characters in length

variable-length with limit

cidr 12 or 24
bytes

IPv4 and IPv6 networks
Greenplum Data Types 849

http://www.postgresql.org/docs/8.2/static/sql-syntax.html#SQL-SYNTAX-BIT-STRINGS
http://www.postgresql.org/docs/8.2/static/sql-syntax.html#SQL-SYNTAX-BIT-STRINGS
http://www.postgresql.org/docs/8.2/static/datatype-binary.html#DATATYPE-BINARY-SQLESC

Greenplum Database Administrator Guide 4.1– Appendix G: Greenplum Database Data Types
circle 24 bytes <(x,y),r> (center and
radius)

circle in the plane - not allowed in
distribution key columns.

date 4 bytes 4713 BC - 5874897 AD calendar date (year, month, day)

decimal [(p, s)] numeric [(p, s)] variable no limit user-specified precision, exact

double precision float8

float

8 bytes 15 decimal digits
precision

variable-precision, inexact

inet 12 or 24
bytes

IPv4 and IPv6 hosts and
networks

integer int, int4 4 bytes -2147483648 to
+2147483647

usual choice for integer

interval [(p)] 12 bytes -178000000 years -
178000000 years

time span

lseg 32 bytes ((x1,y1),(x2,y2)) line segment in the plane - not
allowed in distribution key
columns.

macaddr 6 bytes MAC addresses

money 4 bytes -21474836.48 to
+21474836.47

currency amount

path 16+16n
bytes

[(x1,y1),...] geometric path in the plane - not
allowed in distribution key
columns.

point 16 bytes (x,y) geometric point in the plane - not
allowed in distribution key
columns.

polygon 40+16n
bytes

((x1,y1),...) closed geometric path in the
plane - not allowed in distribution
key columns.

real float4 4 bytes 6 decimal digits
precision

variable-precision, inexact

serial serial4 4 bytes 1 to 2147483647 autoincrementing integer

smallint int2 2 bytes -32768 to +32767 small range integer

text 1 byte +
string size

strings of any length variable unlimited length

time [(p)] [without
time zone]

8 bytes 00:00:00[.000000] -
24:00:00[.000000]

time of day only

time [(p)] with time
zone

timetz 12 bytes 00:00:00+1359 -
24:00:00-1359

time of day only, with time zone

timestamp [(p)] [
without time zone]

8 bytes 4713 BC - 5874897 AD both date and time

timestamp [(p)] with
time zone

timestamptz 8 bytes 4713 BC - 5874897 AD both date and time, with time
zone

1. For variable length data types (such as char, varchar, text, etc.) if the data is greater than or equal to 127 bytes, the storage
overhead is 4 bytes instead of 1.

Table G.1 Greenplum Database Built-in Data Types

Name1 Alias Size Range Description
Greenplum Data Types 850

Greenplum Database Administrator Guide 4.1– Appendix G: Greenplum Database Data Types
Greenplum Data Types 851

Greenplum Database Administrator Guide 4.1– Appendix H: System Catalog Reference
H. System Catalog Reference

This is a reference of the system catalog tables and views of Greenplum Database. All
system tables related to the parallel features of Greenplum Database are prefixed with
gp_. Tables prefixed with pg_ are either standard PostgreSQL system catalog tables
(which are also used in Greenplum Database), or are related to features Greenplum
has added to enhance PostgreSQL for data warehousing workloads. Note that the
global system catalog for Greenplum Database resides on the master instance.

System Tables

• gp_configuration (no longer used, see gp_segment_configuration)

• gp_configuration_history

• gp_db_interfaces

• gp_distribution_policy

• gp_fastsequence

• gp_fault_strategy

• gp_global_sequence

• gp_id

• gp_interfaces

• gp_master_mirroring

• gp_persistent_database_node

• gp_persistent_filespace_node

• gp_persistent_relation_node

• gp_persistent_tablespace_node

• gp_relation_node

• gp_san_configuration

• gp_segment_configuration

• gp_version_at_initdb

• gpexpand.status

• gpexpand.status_detail

• pg_aggregate

• pg_am

• pg_amop

• pg_amproc

• pg_appendonly

• pg_appendonly_alter_column (not implemented in 4.1 - for a future release)
System Catalog Reference 852

Greenplum Database Administrator Guide 4.1– Appendix H: System Catalog Reference
• pg_attrdef

• pg_attribute

• pg_auth_members

• pg_authid

• pg_autovacuum

• pg_cast

• pg_class

• pg_constraint

• pg_conversion

• pg_database

• pg_depend

• pg_description

• pg_exttable

• pg_filespace

• pg_filespace_entry

• pg_foreign_data_wrapper (not implemented in 4.1 - for a future release)

• pg_foreign_server (not implemented in 4.1 - for a future release)

• pg_foreign_table (not implemented in 4.1 - for a future release)

• pg_index

• pg_inherits

• pg_language

• pg_largeobject

• pg_listener

• pg_namespace

• pg_opclass

• pg_operator

• pg_partition

• pg_partition_rule

• pg_pltemplate

• pg_proc

• pg_resourcetype

• pg_resqueue

• pg_resqueuecapability

• pg_rewrite

• pg_shdepend
System Catalog Reference 853

Greenplum Database Administrator Guide 4.1– Appendix H: System Catalog Reference
• pg_shdescription

• pg_stat_last_operation

• pg_stat_last_shoperation

• pg_statistic

• pg_tablespace

• pg_trigger

• pg_type

• pg_user_mapping (not implemented in 4.1 - for a future release)

• pg_window

System Views

Greenplum Database also contains the following system views currently not available
in PostgreSQL.

• gp_distributed_log

• gp_distributed_xacts

• gp_pgdatabase

• gp_resqueue_status

• gp_transaction_log

• gpexpand.expansion_progress

• pg_max_external_files (shows number of external table files allowed per segment
host when using the file protocol)

• pg_partition_columns

• pg_partition_templates

• pg_partitions

• pg_resqueue_attributes

• pg_resqueue_status deprecated (use gp_toolkit.gp_resqueue_status)

• pg_stat_resqueues

• pg_user_mappings (not implemented in 4.1 - for a future release)

For more information on the standard system views in PostgreSQL (which are also
used in Greenplum Database), see the following sections of the PostgreSQL
documentation:

• System Views

• Statistics Collector Views

• The Information Schema
System Catalog Reference 854

http://www.postgresql.org/docs/8.2/static/views-overview.html
http://www.postgresql.org/docs/8.2/static/monitoring-stats.html#MONITORING-STATS-VIEWS-TABLE
http://www.postgresql.org/docs/8.2/static/information-schema.html

gp_configuration_history 855

Greenplum Database Administrator Guide 4.1– Appendix H: System Catalog Reference

gp_configuration_history
The gp_configuration_history table contains information about system changes related to fault
detection and recovery operations. The fts_probe process logs data to this table, as do certain
related management utilities such as gpcheck, gprecoverseg, and gpinitsystem. For example, when
you add a new segment and mirror segment to the system, records for these events are logged to
gp_configuration_history.

The event descriptions stored in this table may be helpful for troubleshooting serious system issues in
collaboration with Greenplum support technicians.

This table is populated only on the master. This table is defined in the pg_global tablespace, meaning it
is globally shared across all databases in the system.

Table H.1 pg_catalog.gp_configuration_history

column type references description

Timestamp for the event recorded.

gp_segment_config
uration.dbid

System-assigned ID. The unique
identifier of a segment (or master)
instance.

Text description of the event.

time timestamp with time
zone

dbid smallint

desc text

gp_distributed_log 856

Greenplum Database Administrator Guide 4.1– Appendix H: System Catalog Reference

gp_distributed_log
The gp_distributed_log view contains status information about distributed transactions and their
associated local transactions. A distributed transaction is a transaction that involves modifying data on
the segment instances. Greenplum’s distributed transaction manager ensures that the segments stay in
synch. This view allows you to see the status of distributed transactions.

Table H.1 pg_catalog.gp_distributed_log

column type references description

gp_segment_configurati
on.content

The content id if the segment. The
master is always -1 (no content).

gp_segment_configurati
on.dbid

The unique id of the segment
instance.

The global transaction id.

A system assigned ID for a
distributed transaction.

The status of the distributed
transaction (Committed or Aborted).

The local transaction ID.

segment_id smallint

dbid small_int

distributed_xid xid

distributed_id text

status text

local_transaction xid

gp_distributed_xacts 857

Greenplum Database Administrator Guide 4.1– Appendix H: System Catalog Reference

gp_distributed_xacts
The gp_distributed_xacts view contains information about Greenplum Database distributed
transactions. A distributed transaction is a transaction that involves modifying data on the segment
instances. Greenplum’s distributed transaction manager ensures that the segments stay in synch. This
view allows you to see the currently active sessions and their associated distributed transactions.

Table H.1 pg_catalog.gp_distributed_xacts

column type references description

The transaction ID used by the
distributed transaction across the
Greenplum Database array.

The distributed transaction identifier.
It has 2 parts — a unique timestamp
and the distributed transaction
number.

The current state of this session with
regards to distributed transactions.

The ID number of the Greenplum
Database session associated with
this transaction.

The minimum distributed transaction
number found among all open
transactions when this transaction
was started. It is used for MVCC
distributed snapshot purposes.

distributed_xid xid

distributed_id text

state text

gp_session_id int

xmin_distributed_snapshot xid

gp_distribution_policy 858

Greenplum Database Administrator Guide 4.1– Appendix H: System Catalog Reference

gp_distribution_policy
The gp_distribution_policy table contains information about Greenplum Database tables and their
policy for distributing table data across the segments. This table is populated only on the master. This
table is not globally shared, meaning each database has its own copy of this table.

Table H.1 pg_catalog.gp_distribution_policy

column type references description

pg_class.oid The table object identifier (OID).

pg_attribute.attnum The column number(s) of the
distribution column(s).

localoid oid

attrnums smallint[]

gp_fastsequence 859

Greenplum Database Administrator Guide 4.1– Appendix H: System Catalog Reference

gp_fastsequence
The gp_fastsequence table contains information about indexes on append-only column-oriented tables.
It is used to track the maximum row number used by a file segment of an append-only column-oriented
table.

Table H.1 pg_catalog.gp_fastsequence

column type references description

pg_class.oid Object id of the
pg_aoseg.pg_aocsseg_* table
used to track append-only file
segments.

Object modifier.

The last sequence number used
by the object.

objid oid

objmod bigint

last_sequence bigint

gp_fault_strategy 860

Greenplum Database Administrator Guide 4.1– Appendix H: System Catalog Reference

gp_fault_strategy
The gp_fault_strategy table specifies the fault action.

Table H.1 pg_catalog.gp_fault_strategy

column type references description

The mirror failover action to take
when a segment failure occurs:

n = nothing.

f = file-based failover.

s = SAN-based failover.

fault_strategy char

gp_global_sequence 861

Greenplum Database Administrator Guide 4.1– Appendix H: System Catalog Reference

gp_global_sequence
The gp_global_sequence table contains the log sequence number position in the transaction log, which
is used by the file replication process to determine the file blocks to replicate from a primary to a
mirror segment.

Table H.1 pg_catalog.gp_global_sequence

column type references description

log sequence number position in
the transaction log

sequence_num bigint

gpexpand.status 862

Greenplum Database Administrator Guide 4.1– Appendix H: System Catalog Reference

gpexpand.status
The gpexpand.status table contains information about the status of a system expansion operation.
Status for specific tables involved in the expansion is stored in gpexpand.status_detail.

In a normal expansion operation it is not necessary to modify the data stored in this table. .

Table H.1 gpexpand.status

column type references description

Tracks the status of an expansion
operation. Valid values are:

SETUP

SETUP DONE
EXPANSION STARTED

EXPANSION STOPPED
COMPLETED

Timestamp of the last change in
status.

status text

updated timestamp with time
zone

Greenplum Database Administrator Guide 4.1– Appendix H: System Catalog Reference
gpexpand.status_detail
The gpexpand.status_detail table contains information about the status of tables involved in a system
expansion operation. You can query this table to determine the status of tables being expanded, or to
view the start and end time for completed tables.

This table also stores related information about the table such as the oid, disk size, and normal
distribution policy and key. Overall status information for the expansion is stored in gpexpand.status.

In a normal expansion operation it is not necessary to modify the data stored in this table. .

Table H.1 gpexpand.status_detail

column type references description

dbname text Name of the database to which the
table belongs.

fq_name text Fully qualified name of the table.

schema_oid oid OID for the schema of the
database to which the table
belongs.

table_oid oid OID of the table.

distribution_policy smallint() Array of column IDs for the
distribution key of the table.

distribution_policy_names text Column names for the hash
distribution key.

distribution_policy_coloids text Column IDs for the distribution
keys of the table.

storage_options text Not enabled in this release. Do not
update this field.

rank int Rank determines the order in
which tables are expanded. The
expansion utility will sort on rank
and expand the lowest-ranking
tables first.

status text Status of expansion for this table.
Valid values are:

NOT STARTED
IN PROGRESS
FINISHED

last updated timestamp with time
zone

Timestamp of the last change in
status for this table.

expansion started timestamp with time
zone

Timestamp for the start of the
expansion of this table. This field is
only populated after a table is
successfully expanded.
gpexpand.status_detail 863

Greenplum Database Administrator Guide 4.1– Appendix H: System Catalog Reference
expansion finished timestamp with time
zone

Timestamp for the completion of
expansion of this table.

source bytes The size of disk space associated
with the source table. Due to table
bloat in heap tables and differing
numbers of segments after
expansion, it is not expected that
the final number of bytes will equal
the source number. This
information is tracked to help
provide progress measurement to
aid in duration estimation for the
end-to-end expansion operation.

Table H.1 gpexpand.status_detail

column type references description
gpexpand.status_detail 864

gp_id 865

Greenplum Database Administrator Guide 4.1– Appendix H: System Catalog Reference

gp_id
The gp_id system catalog table identifies the Greenplum Database system name and number of
segments for the system. It also has local values for the particular database instance (segment or
master) on which the table resides. This table is defined in the pg_global tablespace, meaning it is
globally shared across all databases in the system.

Table H.1 pg_catalog.gp_id

column type references description

The name of this Greenplum
Database system.

The number of segments in the
Greenplum Database system.

The unique identifier of this segment
(or master) instance.

The ID for the portion of data on this
segment instance. A primary and its
mirror will have the same content ID.

For a segment the value is from 0-N,
where N is the number of segments
in Greenplum Database.

For the master, the value is -1.

gpname name

numsegments integer

dbid integer

content integer

gp_interfaces 866

Greenplum Database Administrator Guide 4.1– Appendix H: System Catalog Reference

gp_interfaces
The gp_interfaces table contains information about network interfaces on segment hosts. This
information, joined with data from gp_db_interfaces, is used by the system to optimize the usage of
available network interfaces for various purposes, including fault detection.

Table H.1 gp_interfaces

column type references description

System-assigned ID. The unique
identifier of a network interface.

Hostname address for the
segment host containing the
network interface. Can be a
numeric IP address or a hostname.

Status for the network interface. A
value of 0 indicates that the
interface is unavailable.

interfaceid smallint

address name

status smallint

gp_master_mirroring 867

Greenplum Database Administrator Guide 4.1– Appendix H: System Catalog Reference

gp_master_mirroring
The gp_master_mirroring table contains state information about the standby master host and its
associated write-ahead log (WAL) replication process. If this synchronization process (gpsyncagent)
fails on the standby master, it may not always be noticeable to users of the system. This catalog is a
place where Greenplum Database administrators can check to see if the standby master is current and
fully synchronized.

Table H.1 pg_catalog.gp_master_mirroring

column type references description

The current state of the log
replication process between the
master and standby master - logs
are either ‘Synchronized’ or ‘Not
Synchronized’

If not synchronized, this column
will have information about the
cause of the error.

This contains the timestamp of the
last time the master sent its logs to
the standby master.

If not synchronized, this column
will have the error message from
the failed synchronization attempt.

summary_state text

detail_state text

log_time timestampz

error_message text

gp_persistent_database_node 868

Greenplum Database Administrator Guide 4.1– Appendix H: System Catalog Reference

gp_persistent_database_node
The gp_persistent_database_node table keeps track of the status of file system objects in relation to
the transaction status of database objects. This information is used to make sure the state of the system
catalogs and the file system files persisted to disk are synchronized. This information is used by the
primary to mirror file replication process.

Table H.1 pg_catalog.gp_persistent_database_node

column type references description

pg_tablespace.oid Table space object id.

pg_database.oid Database object id.

1 - create pending

2 - created

3 - drop pending

4 - dropped

0 - rsync pending or no mirrors

1 - rsync complete

Global transaction id.

Log sequence number position in
the transaction log for a file block.

Used by Greenplum Database to
internally manage persistent
representations of file system
objects.

tablespace_oid oid

database_oid oid

persistent_state smallint

mirror_state smallint

parent_xid integer

persistent_serial_num bigint

previous_free_tid tid

gp_persistent_filespace_node 869

Greenplum Database Administrator Guide 4.1– Appendix H: System Catalog Reference

gp_persistent_filespace_node
The gp_persistent_filespace_node table keeps track of the status of file system objects in relation to
the transaction status of filespace objects. This information is used to make sure the state of the system
catalogs and the file system files persisted to disk are synchronized. This information is used by the
primary to mirror file replication process.

Table H.1 pg_catalog.gp_persistent_filespace_node

column type references description

pg_filespace.oid object id of the filespace

primary segment id

primary filesystem location

mirror segment id

mirror filesystem location

1 - create pending

2 - created

3 - drop pending

4 - dropped

0 - rsync pending or no mirrors

1 - rsync complete

Global transaction id.

Log sequence number position in
the transaction log for a file block.

Used by Greenplum Database to
internally manage persistent
representations of file system
objects.

filespace_oid oid

db_id_1 smallint

location_1 text

db_id_2 smallint

location_2 text

persistent_state smallint

mirror_state smallint

parent_xid integer

persistent_serial_num bigint

previous_free_tid tid

gp_persistent_relation_node 870

Greenplum Database Administrator Guide 4.1– Appendix H: System Catalog Reference

gp_persistent_relation_node
The gp_persistent_relation_node table table keeps track of the status of file system objects in relation
to the transaction status of relation objects (tables, view, indexes, and so on). This information is used
to make sure the state of the system catalogs and the file system files persisted to disk are
synchronized. This information is used by the primary to mirror file replication process.

Table H.1 pg_catalog.gp_persistent_relation_node

column type references description

pg_tablespace.oid Tablespace object id

pg_database.oid Database object id

pg_class.relfilenode The object id of the relation file
node.

For append-only tables, the
append-only segment file number.

Whether the relation is heap
storage or append-only storage.

1 - create pending

2 - created

3 - drop pending

4 - dropped

0 - rsync pending or no mirrors

1 - rsync complete

For append-only tables, the last
end of file position on the mirror.

Global transaction id.

Log sequence number position in
the transaction log for a file block.

Used by Greenplum Database to
internally manage persistent
representations of file system
objects.

tablespace_oid oid

database_oid oid

relfilenode_oid oid

segment_file_num integer

relation_storage_manager smallint

persistent_state smallint

mirror_state smallint

mirror_append_only_eof bigint

parent_xid integer

persistent_serial_num bigint

previous_free_tid tid

gp_persistent_tablespace_node 871

Greenplum Database Administrator Guide 4.1– Appendix H: System Catalog Reference

gp_persistent_tablespace_node
The gp_persistent_tablespace_node table keeps track of the status of file system objects in relation to
the transaction status of tablespace objects. This information is used to make sure the state of the
system catalogs and the file system files persisted to disk are synchronized. This information is used by
the primary to mirror file replication process

Table H.1 pg_catalog.gp_persistent_tablespace_node

column type references description

pg_filespace.oid Filespace object id

pg_tablespace.oid Tablespace object id

1 - create pending

2 - created

3 - drop pending

4 - dropped

0 - rsync pending or no mirrors

1 - rsync complete

Global transaction id.

Log sequence number position in
the transaction log for a file block.

Used by Greenplum Database to
internally manage persistent
representations of file system
objects.

filespace_oid oid

tablespace_oid oid

persistent_state smallint

mirror_state smallint

parent_xid integer

persistent_serial_num bigint

previous_free_tid tid

gp_relation_node 872

Greenplum Database Administrator Guide 4.1– Appendix H: System Catalog Reference

gp_relation_node
The gp_relation_node table contains information about the file system objects for a relation (table,
view, index, and so on).

Table H.1 pg_catalog.gp_relation_node

column type references description

pg_tablespace.oid Tablespace object id.

pg_class.relfilenode The object id of the relation file
node.

For append-only tables, the
append-only segment file number.

Used by Greenplum Database to
internally manage persistent
representations of file system
objects.

Log sequence number position in
the transaction log for a file block.

tablespace_oid oid

relfilenode_oid oid

segment_file_num integer

persistent_tid tid

persistent_serial_num bigint

Greenplum Database Administrator Guide 4.1– Appendix H: System Catalog Reference
gp_san_configuration
The gp_san_configuration table contains mount-point information for SAN failover.

Table H.1 pg_catalog.gp_san_configuration

column type references description

mountid smallint A value that identifies the
mountpoint for the primary and
mirror hosts. This is the primary
key which is referred to by the
value that appears in the
san_mounts structure in
gp_segment_configuration.

active_host char The current active host. p

indidcates primary, and m indicates
mirror.

san_type char The type of shared storage in use.
n indidcates NFS, and e indicates
EMC SAN.

primary_host text The name of the primary host
system

primary_mountpoint text The mount point for the primary
host.

primary_device text A string specifying the device to
mount on the primary mountpoint.

For NFS, this string is similar to:
nfs-server:/exported/fs.

For EMC this is a larger string that
includes the WWN for the storage
processor, the storage-processor
IP, and the storage-group name.

The primary_device field is
identical to the mirror_device
field.

mirror_host text The name or the mirror/backup
host system.
gp_san_configuration 873

Greenplum Database Administrator Guide 4.1– Appendix H: System Catalog Reference
mirror_mountpoint text The mount point for the
mirror/backup host.

mirror_device text A string specifying the device to
mount on the mirror mountpoint.

For NFS, this string is similar to:
nfs-server:/exported/fs.

For EMC this is a larger string that
includes the WWN for the storage
processor, the storage-processor
IP, and the storage-group name.

The mirror_device field is
identical to the primary_device
field.

Table H.1 pg_catalog.gp_san_configuration

column type references description
gp_san_configuration 874

gp_segment_configuration 875

Greenplum Database Administrator Guide 4.1– Appendix H: System Catalog Reference

gp_segment_configuration
The gp_segment_configuration table contains information about mirroring and segment configuration.

Table H.1 pg_catalog.gp_segment_configuration

column type references description

The unique identifier of a segment
(or master) instance.

The content identifier for a
segment instance. A primary
segment instance and its
corresponding mirror will always
have the same content identifier.

For a segment the value is from
0-N, where N is the number of
primary segments in the system.

For the master, the value is always
-1.

The role that a segment is
currently running as. Values are p
(primary) or m (mirror).

The role that a segment was
originally assigned at initialization
time. Values are p (primary) or m
(mirror).

The synchronization status of a
segment with its mirror copy.
Values are s (synchronized), c
(change logging), or r (resyncing).

The fault status of a segment.
Values are u (up) or d (down).

The TCP port the database server
listener process is using.

The hostname of a segment host.

The hostname used to access a
particular segment on a segment
host. This value may be the same
as hostname in systems
upgraded from 3.x or on systems
that do not have per-interface
hostnames configured.

The TCP port the file block
replication process is using to keep
primary and mirror segments
synchronized.

gp_san_configurati
on.oid

An array of references to the
gp_san_configuration table. Only
used on systems that were
initialized using sharred storage.

dbid smallint

content smallint

role char

preferred_role char

mode char

status char

port integer

hostname text

address text

replication_port integer

san_mounts int2vector

gp_pgdatabase 876

Greenplum Database Administrator Guide 4.1– Appendix H: System Catalog Reference

gp_pgdatabase
The gp_pgdatabase view shows status information about the Greenplum segment instances and
whether they are acting as the mirror or the primary. This view is used internally by the Greenplum
fault detection and recovery utilities to determine failed segments.

Table H.1 pg_catalog.gp_pgdatabase

column type references description

gp_segment_configuration.dbid System-assigned ID. The unique
identifier of a segment (or master)
instance.

gp_segment_configuration.role Whether or not this instance is active.
Is it currently acting as the primary
segment (as opposed to the mirror).

gp_segment_configuration.cont
ent

The ID for the portion of data on an
instance. A primary segment
instance and its mirror will have the
same content ID.

For a segment the value is from 0-N,
where N is the number of segments
in Greenplum Database.

For the master, the value is -1.

gp_segment_configuration.prefe
rred_role

Whether or not this instance was
defined as the primary (as opposed
to the mirror) at the time the system
was initialized.

dbid smallint

isprimary boolean

content smallint

definedprimary boolean

gp_transaction_log 877

Greenplum Database Administrator Guide 4.1– Appendix H: System Catalog Reference

gp_transaction_log
The gp_transaction_log view contains status information about transactions local to a particular
segment. This view allows you to see the status of local transactions.

Table H.1 pg_catalog.gp_transaction_log

column type references description

gp_segment_configurati
on.content

The content id if the segment. The
master is always -1 (no content).

gp_segment_configurati
on.dbid

The unique id of the segment
instance.

The local transaction ID.

The status of the local transaction
(Committed or Aborted).

segment_id smallint

dbid smallint

transaction xid

status text

gp_version_at_initdb 878

Greenplum Database Administrator Guide 4.1– Appendix H: System Catalog Reference

gp_version_at_initdb
The gp_version_at_initdb table is populated on the master and each segment in the Greenplum
Database system. It identifies the version of Greenplum Database used when the system was first
initialized. This table is defined in the pg_global tablespace, meaning it is globally shared across all
databases in the system.

Table H.1 pg_catalog.gp_version

column type references description

Schema version number.

Product version number.

schemaversion integer

productversion text

gpexpand.expansion_progress 879

Greenplum Database Administrator Guide 4.1– Appendix H: System Catalog Reference

gpexpand.expansion_progress
The gpexpand.expansion_progress view contains information about the status of a system expansion
operation. The view provides calculations of the estimated rate of table redistribution and estimated
time to completion.

Status for specific tables involved in the expansion is stored in gpexpand.status_detail..

Table H.1 gpexpand.expansion_progress

column type references description

Name for the data field provided
Includes:

Bytes Left

Bytes Done

Estimated Expansion Rate

Estimated Time to Completion

Tables Expanded

Tables Left

The value for the progress data.
For example:

Estimated Expansion Rate
- 9.75667095996092 MB/s

name text

value text

pg_aggregate 880

Greenplum Database Administrator Guide 4.1– Appendix H: System Catalog Reference

pg_aggregate
The pg_aggregate table stores information about aggregate functions. An aggregate function is a
function that operates on a set of values (typically one column from each row that matches a query
condition) and returns a single value computed from all these values. Typical aggregate functions are
sum, count, and max. Each entry in pg_aggregate is an extension of an entry in pg_proc. The pg_proc
entry carries the aggregate’s name, input and output data types, and other information that is similar to
ordinary functions.

Table H.1 pg_catalog.pg_aggregate

column type references description

pg_proc.oid Aggregate function OID

pg_proc.oid Transition function OID

Preliminary function OID (zero if
none)

pg_proc.oid Final function OID (zero if none)

The initial value of the transition
state. This is a text field containing
the initial value in its external string
representation. If this field is NULL,
the transition state value starts out
NULL

pg_proc.oid The OID in pg_proc of the inverse
function of aggtransfn

pg_proc.oid The OID in pg_proc of the inverse
function of aggprelimfn

If true, the aggregate is defined as

ORDERED.

pg_operator.oid Associated sort operator OID (zero if
none)

pg_type.oid Data type of the aggregate function’s
internal transition (state) data

aggfnoid regproc

aggtransfn regproc

aggprelimfn regproc

aggfinalfn regproc

agginitval text

agginvtransfn regproc

agginvprelimfn regproc

aggordered Boolean

aggsortop oid

aggtranstype oid

Greenplum Database Administrator Guide 4.1– Appendix H: System Catalog Reference
pg_am
The pg_am table stores information about index access methods. There is one row for each index
access method supported by the system.

Table H.1 pg_catalog.pg_am

column type references description

amname name Name of the access method

amstrategies int2 Number of operator strategies for this
access method

amsupport int2 Number of support routines for this
access method

amorderstrategy int2 Zero if the index offers no sort order,
otherwise the strategy number of the
strategy operator that describes the
sort order

amcanunique boolean Does the access method support
unique indexes?

amcanmulticol boolean Does the access method support
multicolumn indexes?

amoptionalkey boolean Does the access method support a
scan without any constraint for the
first index column?

amindexnulls boolean Does the access method support null
index entries?

amstorage boolean Can index storage data type differ
from column data type?

amclusterable boolean Can an index of this type be
clustered on?

aminsert regproc pg_proc.oid “Insert this tuple” function

ambeginscan regproc pg_proc.oid “Start new scan” function

amgettuple regproc pg_proc.oid “Next valid tuple” function

amgetmulti regproc pg_proc.oid “Fetch multiple tuples” function

amrescan regproc pg_proc.oid “Restart this scan” function

amendscan regproc pg_proc.oid “End this scan” function

ammarkpos regproc pg_proc.oid “Mark current scan position” function

amrestrpos regproc pg_proc.oid “Restore marked scan position”
function

ambuild regproc pg_proc.oid “Build new index” function

ambulkdelete regproc pg_proc.oid Bulk-delete function

amvacuumcleanup regproc pg_proc.oid Post-VACUUM cleanup function
pg_am 881

Greenplum Database Administrator Guide 4.1– Appendix H: System Catalog Reference
amcostestimate regproc pg_proc.oid Function to estimate cost of an index
scan

amoptions regproc pg_proc.oid Function to parse and validate
reloptions for an index

Table H.1 pg_catalog.pg_am

column type references description
pg_am 882

pg_amop 883

Greenplum Database Administrator Guide 4.1– Appendix H: System Catalog Reference

pg_amop
The pg_amop table stores information about operators associated with index access method operator
classes. There is one row for each operator that is a member of an operator class.

Table H.1 pg_catalog.pg_amop

column type references description

pg_opclass.oid The index operator class this entry is
for

pg_type.oid Subtype to distinguish multiple
entries for one strategy; zero for
default

Operator strategy number

Index hit must be rechecked

pg_operator.oid OID of the operator

amopclaid oid

amopsubtype oid

amopstrategy int2

amopreqcheck boolean

amopopr oid

pg_amproc 884

Greenplum Database Administrator Guide 4.1– Appendix H: System Catalog Reference

pg_amproc
The pg_amproc table stores information about support procedures associated with index access
method operator classes. There is one row for each support procedure belonging to an operator class.

Table H.1 pg_catalog.pg_amproc

column type references description

pg_opclass.oid The index operator class this entry is
for

pg_type.oid Subtype, if cross-type routine, else
zero

Support procedure number

pg_proc.oid OID of the procedure

ì

amopclaid oid

amprocsubtype oid

amprocnum int2

amproc regproc

Greenplum Database Administrator Guide 4.1– Appendix H: System Catalog Reference
pg_appendonly
The pg_appendonly table contains information about the storage options and other characteristics of
append-only tables. This table is populated only on the master.

Table H.1 pg_catalog.pg_appendonly

column type references description

relid oid The table object identifier (OID) of
the compressed table.

blocksize integer Block size used for compression of
append-only tables. Valid values
are 8K - 2M. Default is 32K.

safefswritesize integer Minimum size for safe write
operations to append-only tables in
a non-mature file system.
Commonly set to a multiple of the
extent size of the file system; for
example, Linux ext3 is 4096 bytes,
so a value of 32768 is commonly
used.

majorversion smallint The major version number of the
pg_appendonly table.

minorversion smallint The minor version number of the
pg_appendonly table.

checksum boolean A checksum value that is stored to
compare the state of a block of
data at compression time and at
scan time to ensure data integrity.
This data is stored only if
gp_appendonly_verify_bloc
k_checksums is enabled (this
parameter is disabled by default to
optimize performance).

compresstype text Type of compression used to
compress append-only tables.
Valid values are zlib (gzip
compression) and quicklz.

compresslevel smallint The compression level, with
compression ratio increasing from
1 to 9. When quicklz is specified
for compresstype, valid values are
1 or 3. With zlib specified, valid
values are 1-9.

columnstore boolean 1 for column-oriented storage, 0
for row-oriented storage.

segrelid oid Table on-disk segment file id.

segidxid oid Index on-disk segment file id.
pg_appendonly 885

Greenplum Database Administrator Guide 4.1– Appendix H: System Catalog Reference
blkdirrelid oid Block used for on-disk
column-oriented table file.

blkdiridxid oid Block used for on-disk
column-oriented index file.

Table H.1 pg_catalog.pg_appendonly

column type references description
pg_appendonly 886

pg_attrdef 887

Greenplum Database Administrator Guide 4.1– Appendix H: System Catalog Reference

pg_attrdef
The pg_attrdef table stores column default values. The main information about columns is stored in
pg_attribute. Only columns that explicitly specify a default value (when the table is created or the
column is added) will have an entry here.

Table H.1 pg_catalog.pg_attrdef

column type references description

pg_class.oid The table this column belongs to

pg_attribute.attnum The number of the column

The internal representation of the
column default value

A human-readable representation of
the default value. This field is
historical, and is best not used.

adrelid oid

adnum int2

adbin text

adsrc text

Greenplum Database Administrator Guide 4.1– Appendix H: System Catalog Reference
pg_attribute
The pg_attribute table stores information about table columns. There will be exactly one pg_attribute
row for every column in every table in the database. (There will also be attribute entries for indexes,
and all objects that have pg_class entries.) The term attribute is equivalent to column.

Table H.1 pg_catalog.pg_attribute

column type references description

attrelid oid pg_class.oid The table this column belongs to

attname name The column name

atttypid oid pg_type.oid The data type of this column

attstattarget int4 Controls the level of detail of
statistics accumulated for this column
by ANALYZE. A zero value indicates
that no statistics should be collected.
A negative value says to use the
system default statistics target. The
exact meaning of positive values is
data type-dependent. For scalar data
types, it is both the target number of
“most common values” to collect, and
the target number of histogram bins
to create.

attlen int2 A copy of pg_type.typlen of this
column’s type.

attnum int2 The number of the column. Ordinary
columns are numbered from 1 up.
System columns, such as oid, have
(arbitrary) negative numbers.

attndims int4 Number of dimensions, if the column
is an array type; otherwise 0.
(Presently, the number of dimensions
of an array is not enforced, so any
nonzero value effectively means it is
an array)

attcacheoff int4 Always -1 in storage, but when
loaded into a row descriptor in
memory this may be updated to
cache the offset of the attribute within
the row

atttypmod int4 Records type-specific data supplied
at table creation time (for example,
the maximum length of a varchar
column). It is passed to type-specific
input functions and length coercion
functions. The value will generally be
-1 for types that do not need it.

attbyval boolean A copy of pg_type.typbyval of this
column’s type
pg_attribute 888

Greenplum Database Administrator Guide 4.1– Appendix H: System Catalog Reference
attstorage char Normally a copy of
pg_type.typstorage of this column’s
type. For TOAST-able data types,
this can be altered after column
creation to control storage policy.

attalign char A copy of pg_type.typalign of this
column’s type

attnotnull boolean This represents a not-null constraint.
It is possible to change this column to
enable or disable the constraint.

atthasdef boolean This column has a default value, in
which case there will be a
corresponding entry in the pg_attrdef
catalog that actually defines the
value

attisdropped boolean This column has been dropped and
is no longer valid. A dropped column
is still physically present in the table,
but is ignored by the parser and so
cannot be accessed via SQL

attislocal boolean This column is defined locally in the
relation. Note that a column may be
locally defined and inherited
simultaneously

attinhcount int4 The number of direct ancestors this
column has. A column with a
nonzero number of ancestors cannot
be dropped nor renamed

Table H.1 pg_catalog.pg_attribute

column type references description
pg_attribute 889

pg_auth_members 890

Greenplum Database Administrator Guide 4.1– Appendix H: System Catalog Reference

pg_auth_members
The pg_auth_members system catalog table shows the membership relations between roles. Any
non-circular set of relationships is allowed. Because roles are system-wide, pg_auth_members is
shared across all databases of a Greenplum Database system.

Table H.1 pg_catalog.pg_auth_members

column type references description

pg_authid.oid ID of the parent-level (group) role

pg_authid.oid ID of a member role

pg_authid.oid ID of the role that granted this
membership

True if role member may grant
membership to others

roleid oid

member oid

grantor oid

admin_option boolean

pg_authid 891

Greenplum Database Administrator Guide 4.1– Appendix H: System Catalog Reference

pg_authid
The pg_authid table contains information about database authorization identifiers (roles). A role
subsumes the concepts of users and groups. A user is a role with the rolcanlogin flag set. Any role
(with or without rolcanlogin) may have other roles as members. See pg_auth_members.

Since this catalog contains passwords, it must not be publicly readable. pg_roles is a publicly readable
view on pg_authid that blanks out the password field.

Because user identities are system-wide, pg_authid is shared across all databases in a Greenplum
Database system: there is only one copy of pg_authid per system, not one per database.

Table H.1 pg_catalog.pg_authid

column type references description

Role name

Role has superuser privileges

Role automatically inherits privileges
of roles it is a member of

Role may create more roles

Role may create databases

Role may update system catalogs
directly. (Even a superuser may not
do this unless this column is true)

Role may log in. That is, this role can
be given as the initial session
authorization identifier

For roles that can log in, this sets
maximum number of concurrent
connections this role can make. -1
means no limit

Password (possibly encrypted);
NULL if none

Password expiry time (only used for
password authentication); NULL if no
expiration

Session defaults for server
configuration parameters

rolname name

rolsuper boolean

rolinherit boolean

rolcreaterole boolean

rolcreatedb boolean

rolcatupdate boolean

rolcanlogin boolean

rolconnlimit int4

rolpassword text

rolvaliduntil timestamptz

rolconfig text[]

pg_autovacuum 892

Greenplum Database Administrator Guide 4.1– Appendix H: System Catalog Reference

pg_autovacuum
The pg_autovacuum system catalog table stores optional per-relation configuration parameters for the
autovacuum daemon. If there is an entry here for a particular relation, the given parameters will be
used for autovacuuming that table. If no entry is present, the system-wide defaults will be used.

The autovacuum daemon will initiate a VACUUM operation on a particular table when the number of
updated or deleted tuples exceeds vac_base_thresh plus vac_scale_factor times the number of live
tuples currently estimated to be in the relation. Similarly, it will initiate an ANALYZE operation when
the number of inserted, updated or deleted tuples exceeds anl_base_thresh plus anl_scale_factor times
the number of live tuples currently estimated to be in the relation.

Also, the autovacuum daemon will perform a VACUUM operation to prevent transaction ID wraparound
if the table’s pg_class.relfrozenxid field attains an age of more than freeze_max_age transactions,
whether the table has been changed or not. The system will launch autovacuum to perform such
VACUUMs even if autovacuum is otherwise disabled.

Any of the numerical fields can contain -1 to indicate that the system-wide default should be used for
this particular value. Observe that the vac_cost_delay variable inherits its default value from the
autovacuum_vacuum_cost_delay configuration parameter, or from vacuum_cost_delay if the
former is set to a negative value. The same applies to vac_cost_limit. Also, autovacuum will ignore
attempts to set a per-table freeze_max_age larger than the system-wide setting (it can only be set
smaller), and the freeze_min_age value will be limited to half the system-wide
autovacuum_freeze_max_age setting.

Table H.1 pg_catalog.pg_autovacuum

column type references description

pg_class.oid The table this entry is for

If false, this table is never
autovacuumed

Minimum number of modified tuples
before vacuum

Multiplier for reltuples to add to
vac_base_thresh

Minimum number of modified tuples
before analyze

Multiplier for reltuples to add to
anl_base_thresh

Custom vacuum_cost_delay
parameter

Custom vacuum_cost_limit
parameter

Custom vacuum_freeze_min_age
parameter

Custom
autovacuum_freeze_max_age
parameter

vacrelid oid

enabled boolean

vac_base_thresh integer

vac_scale_factor float4

anl_base_thresh integer

anl_scale_factor float4

vac_cost_delay integer

vac_cost_limit integer

freeze_min_age integer

freeze_max_age integer

pg_cast 893

Greenplum Database Administrator Guide 4.1– Appendix H: System Catalog Reference

pg_cast
The catalog pg_cast stores data type conversion paths, both built-in paths and those defined with
CREATE CAST. The cast functions listed in pg_cast must always take the cast source type as their first
argument type, and return the cast destination type as their result type. A cast function can have up to
three arguments. The second argument, if present, must be type integer; it receives the type modifier
associated with the destination type, or -1 if there is none. The third argument, if present, must be type
boolean; it receives true if the cast is an explicit cast, false otherwise.

It is legitimate to create a pg_cast entry in which the source and target types are the same, if the
associated function takes more than one argument. Such entries represent ‘length coercion functions’
that coerce values of the type to be legal for a particular type modifier value. Note however that at
present there is no support for associating non-default type modifiers with user-created data types, and
so this facility is only of use for the small number of built-in types that have type modifier syntax built
into the grammar.

When a pg_cast entry has different source and target types and a function that takes more than one
argument, it represents converting from one type to another and applying a length coercion in a single
step. When no such entry is available, coercion to a type that uses a type modifier involves two steps,
one to convert between data types and a second to apply the modifier.

Table H.1 pg_catalog.pg_cast

column type references description

pg_type.oid OID of the source data type.

pg_type.oid OID of the target data type.

pg_proc.oid The OID of the function to use to
perform this cast. Zero is stored if the
data types are binary compatible
(that is, no run-time operation is
needed to perform the cast).

Indicates what contexts the cast may
be invoked in. e means only as an
explicit cast (using CAST or ::
syntax). a means implicitly in
assignment to a target column, as
well as explicitly. i means implicitly in
expressions, as well as the other
cases.

castsource oid

casttarget oid

castfunc oid

castcontext char

Greenplum Database Administrator Guide 4.1– Appendix H: System Catalog Reference
pg_class
The system catalog table pg_class catalogs tables and most everything else that has columns or is
otherwise similar to a table (also known as relations). This includes indexes (see also pg_index),
sequences, views, composite types, and TOAST tables. Not all columns are meaningful for all relation
types.

Table H.1 pg_catalog.pg_class

column type references description

relname name Name of the table, index, view, etc.

relnamespace oid pg_namespace.oid The OID of the namespace (schema)
that contains this relation

reltype oid pg_type.oid The OID of the data type that
corresponds to this table’s row type,
if any (zero for indexes, which have
no pg_type entry)

relowner oid pg_authid.oid Owner of the relation

relam oid pg_am.oid If this is an index, the access method
used (B-tree, Bitmap, hash, etc.)

relfilenode oid Name of the on-disk file of this
relation; 0 if none.

reltablespace oid pg_tablespace.oid The tablespace in which this relation
is stored. If zero, the database’s
default tablespace is implied. (Not
meaningful if the relation has no
on-disk file.)

relpages int4 Size of the on-disk representation of
this table in pages (of 32K each).
This is only an estimate used by the
planner. It is updated by VACUUM,
ANALYZE, and a few DDL
commands.

reltuples float4 Number of rows in the table. This is
only an estimate used by the planner.
It is updated by VACUUM, ANALYZE,
and a few DDL commands.

reltoastrelid oid pg_class.oid OID of the TOAST table associated
with this table, 0 if none. The TOAST
table stores large attributes “out of
line” in a secondary table.

reltoastidxid oid pg_class.oid For a TOAST table, the OID of its
index. 0 if not a TOAST table.

relaosegidxid oid Deprecated in Greenplum Database
3.4.

relaosegrelid oid Deprecated in Greenplum Database
3.4.
pg_class 894

Greenplum Database Administrator Guide 4.1– Appendix H: System Catalog Reference
relhasindex boolean True if this is a table and it has (or
recently had) any indexes. This is set
by CREATE INDEX, but not cleared
immediately by DROP INDEX.
VACUUM will clear if it finds the table
has no indexes.

relisshared boolean True if this table is shared across all
databases in the system. Only
certain system catalog tables are
shared.

relkind char The type of object

r = heap or append-only table, i =
index, S = sequence, v = view, c =
composite type, t = TOAST value, o
= internal append-only segment files
and EOFs, c = composite type, u =
uncataloged temporary heap table

relstorage char The storage mode of a table

a= append-only, h = heap, v =
virtual, x= external table.

relnatts int2 Number of user columns in the
relation (system columns not
counted). There must be this many
corresponding entries in pg_attribute.

relchecks int2 Number of check constraints on the
table.

reltriggers int2 Number of triggers on the table.

relukeys int2 Unused

relfkeys int2 Unused

relrefs int2 Unused

relhasoids boolean True if an OID is generated for each
row of the relation.

relhaspkey boolean True if the table has (or once had) a
primary key.

relhasrules boolean True if table has rules.

relhassubclass boolean True if table has (or once had) any
inheritance children.

Table H.1 pg_catalog.pg_class

column type references description
pg_class 895

Greenplum Database Administrator Guide 4.1– Appendix H: System Catalog Reference
relfrozenxid xid All transaction IDs before this one
have been replaced with a
permanent (frozen) transaction ID in
this table. This is used to track
whether the table needs to be
vacuumed in order to prevent
transaction ID wraparound or to allow
pg_clog to be shrunk. Zero
(InvalidTransactionId) if the
relation is not a table.

relacl aclitem[] Access privileges assigned by
GRANT and REVOKE.

reloptions text[] Access-method-specific options, as
“keyword=value” strings.

Table H.1 pg_catalog.pg_class

column type references description
pg_class 896

pg_constraint 897

Greenplum Database Administrator Guide 4.1– Appendix H: System Catalog Reference

pg_constraint
The pg_constraint system catalog table stores check, primary key, unique, and foreign key constraints
on tables. Column constraints are not treated specially. Every column constraint is equivalent to some
table constraint. Not-null constraints are represented in the pg_attribute catalog. Check constraints on
domains are stored here, too.

Table H.1 pg_catalog.pg_constraint

column type references description

Constraint name (not necessarily
unique!)

pg_namespace.oid The OID of the namespace (schema)
that contains this constraint.

c = check constraint, f = foreign key
constraint, p = primary key
constraint, u = unique constraint.

Is the constraint deferrable?

Is the constraint deferred by default?

pg_class.oid The table this constraint is on; 0 if not
a table constraint.

pg_type.oid The domain this constraint is on; 0 if
not a domain constraint.

pg_class.oid If a foreign key, the referenced table;
else 0.

Foreign key update action code.

Foreign key deletion action code.

Foreign key match type.

pg_attribute.attnum If a table constraint, list of columns
which the constraint constrains.

pg_attribute.attnum If a foreign key, list of the referenced
columns.

If a check constraint, an internal
representation of the expression.

If a check constraint, a
human-readable representation of
the expression. This is not updated
when referenced objects change; for
example, it won’t track renaming of
columns. Rather than relying on this
field, it is best to use
pg_get_constraintdef() to
extract the definition of a check
constraint.

conname name

connamespace oid

contype char

condeferrable boolean

condeferred boolean

conrelid oid

contypid oid

confrelid oid

confupdtype char

confdeltype char

confmatchtype char

conkey int2[]

confkey int2[]

conbin text

consrc text

pg_conversion 898

Greenplum Database Administrator Guide 4.1– Appendix H: System Catalog Reference

pg_conversion
The pg_conversion system catalog table describes the available encoding conversion procedures as
defined by CREATE CONVERSION.

Table H.1 pg_catalog.pg_conversion

column type references description

Conversion name (unique within a
namespace).

pg_namespace.oid The OID of the namespace (schema)
that contains this conversion.

pg_authid.oid Owner of the conversion.

Source encoding ID.

Destination encoding ID.

pg_proc.oid Conversion procedure.

True if this is the default conversion.

conname name

connamespace oid

conowner oid

conforencoding int4

contoencoding int4

conproc regproc

condefault boolean

Greenplum Database Administrator Guide 4.1– Appendix H: System Catalog Reference
pg_database
The pg_database system catalog table stores information about the available databases. Databases are
created with the CREATE DATABASE SQL command. Unlike most system catalogs, pg_database is
shared across all databases in the system. There is only one copy of pg_database per system, not one
per database.

Table H.1 pg_catalog.pg_database

column type references description

datname name Database name.

datdba oid pg_authid.oid Owner of the database, usually the
user who created it.

encoding int4 Character encoding for this
database.
pg_encoding_to_char() can
translate this number to the encoding
name.

datistemplate boolean If true then this database can be
used in the TEMPLATE clause of
CREATE DATABASE to create a new
database as a clone of this one.

datallowconn boolean If false then no one can connect to
this database. This is used to protect
the template0 database from being
altered.

datconnlimit int4 Sets the maximum number of
concurrent connections that can be
made to this database. -1 means no
limit.

datlastsysoid oid Last system OID in the database;
useful particularly to
pg_dump/gp_dump.

datfrozenxid xid All transaction IDs before this one
have been replaced with a
permanent (frozen) transaction ID in
this database. This is used to track
whether the database needs to be
vacuumed in order to prevent
transaction ID wraparound or to allow
pg_clog to be shrunk. It is the
minimum of the per-table
pg_class.relfrozenxid values.

dattablespace oid pg_tablespace.oid The default tablespace for the
database. Within this database, all
tables for which
pg_class.reltablespace is zero will be
stored in this tablespace. All
non-shared system catalogs will also
be there.
pg_database 899

Greenplum Database Administrator Guide 4.1– Appendix H: System Catalog Reference
datconfig text[] Session defaults for user-settable
server configuration parameters.

datacl aclitem[] Database access privileges as given
by GRANT and REVOKE.

Table H.1 pg_catalog.pg_database

column type references description
pg_database 900

pg_depend 901

Greenplum Database Administrator Guide 4.1– Appendix H: System Catalog Reference

pg_depend
The pg_depend system catalog table records the dependency relationships between database objects.
This information allows DROP commands to find which other objects must be dropped by DROP
CASCADE or prevent dropping in the DROP RESTRICT case. See also pg_shdepend, which performs a
similar function for dependencies involving objects that are shared across a Greenplum system.

In all cases, a pg_depend entry indicates that the referenced object may not be dropped without also
dropping the dependent object. However, there are several subflavors identified by deptype:

• DEPENDENCY_NORMAL (n) — A normal relationship between separately-created objects.
The dependent object may be dropped without affecting the referenced object. The referenced
object may only be dropped by specifying CASCADE, in which case the dependent object is
dropped, too. Example: a table column has a normal dependency on its data type.

• DEPENDENCY_AUTO (a) — The dependent object can be dropped separately from the
referenced object, and should be automatically dropped (regardless of RESTRICT or CASCADE
mode) if the referenced object is dropped. Example: a named constraint on a table is made
autodependent on the table, so that it will go away if the table is dropped.

• DEPENDENCY_INTERNAL (i) — The dependent object was created as part of creation of the
referenced object, and is really just a part of its internal implementation. A DROP of the dependent
object will be disallowed outright (we’ll tell the user to issue a DROP against the referenced object,
instead). A DROP of the referenced object will be propagated through to drop the dependent object
whether CASCADE is specified or not. Example: a trigger that’s created to enforce a foreign-key
constraint is made internally dependent on the constraint’s pg_constraint entry.

• DEPENDENCY_PIN (p) — There is no dependent object; this type of entry is a signal that the
system itself depends on the referenced object, and so that object must never be deleted. Entries of
this type are created only by system initialization. The columns for the dependent object contain
zeroes.

Table H.1 pg_catalog.pg_depend

column type references description

pg_class.oid The OID of the system catalog the
dependent object is in.

any OID column The OID of the specific dependent
object.

For a table column, this is the column
number. For all other object types,
this column is zero.

pg_class.oid The OID of the system catalog the
referenced object is in.

any OID column The OID of the specific referenced
object.

For a table column, this is the
referenced column number. For all
other object types, this column is
zero.

A code defining the specific
semantics of this dependency
relationship.

classid oid

objid oid

objsubid int4

refclassid oid

refobjid oid

refobjsubid int4

deptype char

pg_description 902

Greenplum Database Administrator Guide 4.1– Appendix H: System Catalog Reference

pg_description
The pg_description system catalog table stores optional descriptions (comments) for each database
object. Descriptions can be manipulated with the COMMENT command and viewed with psql’s \d
meta-commands. Descriptions of many built-in system objects are provided in the initial contents of
pg_description. See also pg_shdescription, which performs a similar function for descriptions
involving objects that are shared across a Greenplum system.

Table H.1 pg_catalog.pg_description

column type references description

any OID column The OID of the object this description
pertains to.

pg_class.oid The OID of the system catalog this
object appears in

For a comment on a table column,
this is the column number. For all
other object types, this column is
zero.

Arbitrary text that serves as the
description of this object.

objoid oid

classoid oid

objsubid int4

description text

pg_exttable 903

Greenplum Database Administrator Guide 4.1– Appendix H: System Catalog Reference

pg_exttable
The pg_exttable system catalog table is used to track external tables and web tables created by the
CREATE EXTERNAL TABLE command.

Table H.1 pg_catalog.pg_exttable

column type references description

pg_class.oid The OID of this external table.

The URI location(s) of the external
table files.

Format of the external table files: t
for text, or c for csv.

Formatting options of the external
table files, such as the field delimiter,
null string, escape character, etc.

The OS command to execute when
the external table is accessed.

The per segment reject limit for rows
with errors, after which the load will
fail.

Type of reject limit threshold: r for
number of rows.

pg_class.oid The object id of the error table where
format errors will be logged.

The client encoding.

0 for readable external tables, 1 for
writable external tables.

reloid oid

location text[]

fmttype char

fmtopts text

command text

rejectlimit integer

rejectlimittype char

fmterrtbl oid

encoding text

writable boolean

pg_filespace 904

Greenplum Database Administrator Guide 4.1– Appendix H: System Catalog Reference

pg_filespace
The pg_filespace table contains information about the filespaces created in a Greenplum Database
system. Every system contains a default filespace, pg_system, which is a collection of all the data
directory locations created at system initialization time.

A tablespace requires a file system location to store its database files. In Greenplum Database, the
master and each segment (primary and mirror) needs its own distinct storage location. This collection
of file system locations for all components in a Greenplum system is referred to as a filespace.

Table H.1 pg_catalog.pg_filespace

column type references description

The name of the filespace.

pg_roles.oid The object id of the role that
created the filespace.

fsname name

fsowner oid

pg_filespace_entry 905

Greenplum Database Administrator Guide 4.1– Appendix H: System Catalog Reference

pg_filespace_entry
A tablespace requires a file system location to store its database files. In Greenplum Database, the
master and each segment (primary and mirror) needs its own distinct storage location. This collection
of file system locations for all components in a Greenplum system is referred to as a filespace. The
pg_filespace_entry table contains information about the collection of file system locations across a
Greenplum Database system that comprise a Greenplum Database filespace.

Table H.1 pg_catalog.pg_filespace_entry

column type references description

pg_filespace.oid Object id of the filespace.

gp_segment_config
uration.dbid

Segment id.

File system location for this
segment id.

fsefsoid OID

fsedbid integer

fselocation text

Greenplum Database Administrator Guide 4.1– Appendix H: System Catalog Reference
pg_index
The pg_index system catalog table contains part of the information about indexes. The rest is mostly in
pg_class.

Table H.1 pg_catalog.pg_index

column type references description

indexrelid oid pg_class.oid The OID of the pg_class entry for this
index.

indrelid oid pg_class.oid The OID of the pg_class entry for the
table this index is for.

indnatts int2 The number of columns in the index
(duplicates pg_class.relnatts).

indisunique boolean If true, this is a unique index.

indisprimary boolean If true, this index represents the
primary key of the table. (indisunique
should always be true when this is
true.)

indisclustered boolean If true, the table was last clustered on
this index via the CLUSTER
command.

indisvalid boolean If true, the index is currently valid for
queries. False means the index is
possibly incomplete: it must still be
modified by INSERT/UPDATE
operations, but it cannot safely be
used for queries.

indkey int2vector pg_attribute.attnum This is an array of indnatts values
that indicate which table columns this
index indexes. For example a value
of 1 3 would mean that the first and
the third table columns make up the
index key. A zero in this array
indicates that the corresponding
index attribute is an expression over
the table columns, rather than a
simple column reference.

indclass oidvector pg_opclass.oid For each column in the index key this
contains the OID of the operator
class to use.
pg_index 906

Greenplum Database Administrator Guide 4.1– Appendix H: System Catalog Reference
indexprs text Expression trees (in
nodeToString() representation)
for index attributes that are not
simple column references. This is a
list with one element for each zero
entry in indkey. NULL if all index
attributes are simple references.

indpred text Expression tree (in
nodeToString() representation)
for partial index predicate. NULL if
not a partial index.

Table H.1 pg_catalog.pg_index

column type references description
pg_index 907

pg_inherits 908

Greenplum Database Administrator Guide 4.1– Appendix H: System Catalog Reference

pg_inherits
The pg_inherits system catalog table records information about table inheritance hierarchies. There is
one entry for each direct child table in the database. (Indirect inheritance can be determined by
following chains of entries.) In Greenplum Database, inheritance relationships are created by both the
INHERITS clause (standalone inheritance) and the PARTITION BY clause (partitioned child table
inheritance) of CREATE TABLE.

Table H.1 pg_catalog.pg_inherits

column type references description

pg_class.oid The OID of the child table.

pg_class.oid The OID of the parent table.

If there is more than one direct
parent for a child table (multiple
inheritance), this number tells the
order in which the inherited columns
are to be arranged. The count starts
at 1.

inhrelid oid

inhparent oid

inhseqno int4

pg_language 909

Greenplum Database Administrator Guide 4.1– Appendix H: System Catalog Reference

pg_language
The pg_language system catalog table registers languages in which you can write functions or stored
procedures. It is populated by CREATE LANGUAGE.

Table H.1 pg_catalog.pg_language

column type references description

Name of the language.

This is false for internal languages
(such as SQL) and true for
user-defined languages. Currently,
pg_dump still uses this to determine
which languages need to be
dumped, but this may be replaced by
a different mechanism in the future.

True if this is a trusted language,
which means that it is believed not to
grant access to anything outside the
normal SQL execution environment.
Only superusers may create
functions in untrusted languages.

pg_proc.oid For noninternal languages this
references the language handler,
which is a special function that is
responsible for executing all
functions that are written in the
particular language.

pg_proc.oid This references a language validator
function that is responsible for
checking the syntax and validity of
new functions when they are created.
Zero if no validator is provided.

Access privileges for the language.

lanname name

lanispl boolean

lanpltrusted boolean

lanplcallfoid oid

lanvalidator oid

lanacl aclitem[]

pg_largeobject 910

Greenplum Database Administrator Guide 4.1– Appendix H: System Catalog Reference

pg_largeobject
The pg_largeobject system catalog table holds the data making up ‘large objects’. A large object is
identified by an OID assigned when it is created. Each large object is broken into segments or ‘pages’
small enough to be conveniently stored as rows in pg_largeobject. The amount of data per page is
defined to be LOBLKSIZE (which is currently BLCKSZ/4, or typically 8K).

Each row of pg_largeobject holds data for one page of a large object, beginning at byte offset (pageno
* LOBLKSIZE) within the object. The implementation allows sparse storage: pages may be missing,
and may be shorter than LOBLKSIZE bytes even if they are not the last page of the object. Missing
regions within a large object read as zeroes.

Table H.1 pg_catalog.pg_largeobject

column type references description

Identifier of the large object that
includes this page.

Page number of this page within its
large object (counting from zero).

Actual data stored in the large object.
This will never be more than
LOBLKSIZE bytes and may be less.

loid oid

pageno int4

data bytea

pg_listener 911

Greenplum Database Administrator Guide 4.1– Appendix H: System Catalog Reference

pg_listener
The pg_listener system catalog table supports the LISTEN and NOTIFY commands. A listener creates
an entry in pg_listener for each notification name it is listening for. A notifier scans and updates each
matching entry to show that a notification has occurred. The notifier also sends a signal (using the PID
recorded in the table) to awaken the listener from sleep.

This table is not currently used in Greenplum Database.

Table H.1 pg_catalog.pg_listener

column type references description

Notify condition name. (The name
need not match any actual relation in
the database.

PID of the server process that
created this entry.

Zero if no event is pending for this
listener. If an event is pending, the
PID of the server process that sent
the notification.

relname name

listenerpid int4

notification int4

Greenplum Database Administrator Guide 4.1– Appendix H: System Catalog Reference
pg_locks
The view pg_locks provides access to information about the locks held by open transactions within
Greenplum Database.

pg_locks contains one row per active lockable object, requested lock mode, and relevant transaction.
Thus, the same lockable object may appear many times, if multiple transactions are holding or waiting
for locks on it. However, an object that currently has no locks on it will not appear at all.

There are several distinct types of lockable objects: whole relations (such as tables), individual pages
of relations, individual tuples of relations, transaction IDs, and general database objects. Also, the right
to extend a relation is represented as a separate lockable object.

Table H.1 pg_catalog.pg_locks

column type references description

locktype text Type of the lockable object:
relation, extend, page, tuple,
transactionid, object,
userlock, resource queue, or
advisory

database oid pg_database.oid OID of the database in which the
object exists, zero if the object is a
shared object, or NULL if the object
is a transaction ID

relation oid pg_class.oid OID of the relation, or NULL if the
object is not a relation or part of a
relation

page integer Page number within the relation, or
NULL if the object is not a tuple or
relation page

tuple smallint Tuple number within the page, or
NULL if the object is not a tuple

transactionid xid ID of a transaction, or NULL if the
object is not a transaction ID

classid oid pg_class.oid OID of the system catalog containing
the object, or NULL if the object is
not a general database object

objid oid any OID column OID of the object within its system
catalog, or NULL if the object is not a
general database object

objsubid smallint For a table column, this is the column
number (the classid and objid refer to
the table itself). For all other object
types, this column is zero. NULL if
the object is not a general database
object

transaction xid ID of the transaction that is holding or
awaiting this lock
pg_locks 912

Greenplum Database Administrator Guide 4.1– Appendix H: System Catalog Reference
pid integer Process ID of the server process
holding or awaiting this lock. NULL if
the lock is held by a prepared
transaction

mode text Name of the lock mode held or
desired by this process

granted boolean True if lock is held, false if lock is
awaited

mppsessionid integer The id of the client session
associated with this lock.

mppiswriter boolean Is the lock held by a writer process?

gp_segment_id integer The Greenplum segment id (dbid)
where the lock is held.

Table H.1 pg_catalog.pg_locks

column type references description
pg_locks 913

pg_namespace 914

Greenplum Database Administrator Guide 4.1– Appendix H: System Catalog Reference

pg_namespace
The pg_namespace system catalog table stores namespaces. A namespace is the structure underlying
SQL schemas: each namespace can have a separate collection of relations, types, etc. without name
conflicts.

Table H.1 pg_catalog.pg_namespace

column type references description

Name of the namespace

pg_authid.oid Owner of the namespace

Access privileges as given by GRANT
and REVOKE.

nspname name

nspowner oid

nspacl aclitem[]

pg_opclass 915

Greenplum Database Administrator Guide 4.1– Appendix H: System Catalog Reference

pg_opclass
The pg_opclass system catalog table defines index access method operator classes. Each operator class
defines semantics for index columns of a particular data type and a particular index access method.
Note that there can be multiple operator classes for a given data type/access method combination, thus
supporting multiple behaviors. The majority of the information defining an operator class is actually
not in its pg_opclass row, but in the associated rows in pg_amop and pg_amproc. Those rows are
considered to be part of the operator class definition — this is not unlike the way that a relation is
defined by a single pg_class row plus associated rows in pg_attribute and other tables.

Table H.1 pg_catalog.pg_opclass

column type references description

pg_am.oid Index access method operator class
is for.

Name of this operator class

pg_namespace.oid Namespace of this operator class

pg_authid.oid Owner of the operator class

pg_type.oid Data type that the operator class
indexes.

True if this operator class is the
default for the data type opcintype.

pg_type.oid Type of data stored in index, or zero
if same as opcintype.

opcamid oid

opcname name

opcnamespace oid

opcowner oid

opcintype oid

opcdefault boolean

opckeytype oid

pg_operator 916

Greenplum Database Administrator Guide 4.1– Appendix H: System Catalog Reference

pg_operator
The pg_operator system catalog table stores information about operators, both built-in and those
defined by CREATE OPERATOR. Unused column contain zeroes. For example, oprleft is zero for a
prefix operator.

Table H.1 pg_catalog.pg_operator

column type references description

Name of the operator.

pg_namespace.oid The OID of the namespace that
contains this operator.

pg_authid.oid Owner of the operator.

b = infix (both), l = prefix (left), r =
postfix (right)

This operator supports hash joins.

pg_type.oid Type of the left operand.

pg_type.oid Type of the right operand.

pg_type.oid Type of the result.

pg_operator.oid Commutator of this operator, if any.

pg_operator.oid Negator of this operator, if any.

pg_operator.oid If this operator supports merge joins,
the operator that sorts the type of the
left-hand operand (L<L).

pg_operator.oid f this operator supports merge joins,
the operator that sorts the type of the
right-hand operand (R<R).

pg_operator.oid If this operator supports merge joins,
the less-than operator that compares
the left and right operand types
(L<R).

pg_operator.oid If this operator supports merge joins,
the greater-than operator that
compares the left and right operand
types (L>R).

pg_proc.oid Function that implements this
operator.

pg_proc.oid Restriction selectivity estimation
function for this operator.

pg_proc.oid Join selectivity estimation function for
this operator.

oprname name

oprnamespace oid

oprowner oid

oprkind char

oprcanhash boolean

oprleft oid

oprright oid

oprresult oid

oprcom oid

oprnegate

oprlsortop oid

oprrsortop I oid

oprltcmpop oid

oprgtcmpop oid

oprcode regproc

oprrest regproc

oprjoin regproc

pg_partition 917

Greenplum Database Administrator Guide 4.1– Appendix H: System Catalog Reference

pg_partition
The pg_partition system catalog table is used to track partitioned tables and their inheritance level
relationships. Each row of pg_partition represents either the level of a partitioned table in the partition
hierarchy, or a subpartition template description. The value of the attribute paristemplate determines
what a particular row represents.

Table H.1 pg_catalog.pg_partition

column type references description

pg_class.oid The object identifier of the table.

The partition type - R for range or L
for list.

The partition level of this row: 0 for
the top-level parent table, 1 for the
first level under the parent table, 2 for
the second level, and so on.

Whether or not this row represents a
subpartition template definition (true)
or an actual partitioning level (false).

pg_attribute.oid The number of attributes that define
this level.

An array of the attribute numbers (as
in pg_attribute.attnum) of the
attributes that participate in defining
this level.

pg_opclass.oid The operator class identifier(s) of the
partition columns.

parrelid oid

parkind char

parlevel smallint

paristemplate boolean

parnatts smallint

paratts smallint()

parclass oidvector

pg_partition_columns 918

Greenplum Database Administrator Guide 4.1– Appendix H: System Catalog Reference

pg_partition_columns
The pg_partition_columns system view is used to show the partition key columns of a partitioned
table.

Table H.1 pg_catalog.pg_partition_columns

column type references description

The name of the schema the
partitioned table is in.

The table name of the top-level
parent table.

The name of the partition key
column.

The level of this subpartition in the
hierarchy.

For list partitions you can have a
composite (multi-column) partition
key. This shows the position of the
column in a composite key.

schemaname name

tablename name

columnname name

partitionlevel smallint

position_in_partition_key integer

pg_partition_rule 919

Greenplum Database Administrator Guide 4.1– Appendix H: System Catalog Reference

pg_partition_rule
The pg_partition_rule system catalog table is used to track partitioned tables, their check constraints,
and data containment rules. Each row of pg_partition_rule represents either a leaf partition (the bottom
level partitions that contain data), or a branch partition (a top or mid-level partition that is used to
define the partition hierarchy, but does not contain any data).

Table H.1 pg_catalog.pg_partition_rule

column type references description

pg_partition.oid Row identifier of the partitioning level
(from pg_partition) to which this
partition belongs. In the case of a
branch partition, the corresponding
table (identified by parchildrelid) is an
empty container table. In case of a
leaf partition, the table contains the
rows for that partition containment
rule.

pg_class.oid The table identifier of the partition
(child table).

pg_partition_rule.pa
roid

The row identifier of the rule
associated with the parent table of
this partition.

The given name of this partition.

Whether or not this partition is a
default partition.

For range partitioned tables, the rank
of this partition on this level of the
partition hierarchy.

For range partitioned tables, whether
or not the starting value is inclusive.

For range partitioned tables, whether
or not the ending value is inclusive.

For range partitioned tables, the
starting value of the range.

For range partitioned tables, the
ending value of the range.

For range partitioned tables, the
interval value of the EVERY clause.

For list partitioned tables, the list of
values assigned to this partition.

An array describing the storage
characteristics of the particular
partition.

paroid oid

parchildrelid oid

parparentrule oid

parname name

parisdefault boolean

parruleord smallint

parrangestartincl boolean

parrangeendincl boolean

parrangestart text

parrangeend text

parrangeevery text

parlistvalues text

parreloptions text

pg_partition_templates 920

Greenplum Database Administrator Guide 4.1– Appendix H: System Catalog Reference

pg_partition_templates
The pg_partition_templates system view is used to show the subpartitions that were created using a
subpartition template.

Table H.1 pg_catalog.pg_partition_templates

column type references description

The name of the schema the
partitioned table is in.

The table name of the top-level
parent table.

The name of the subpartition (this is
the name to use if referring to the
partition in an ALTER TABLE
command). NULL if the partition was
not given a name at create time or
generated by an EVERY clause.

The type of subpartition (range or
list).

The level of this subpartition in the
hierarchy.

For range partitions, the rank of the
partition compared to other partitions
of the same level.

The rule order position of this
subpartition.

For list partitions, the list value(s)
associated with this subpartition.

For range partitions, the start value of
this subpartition.

T if the start value is included in this
subpartition. F if it is excluded.

For range partitions, the end value of
this subpartition.

T if the end value is included in this
subpartition. F if it is excluded.

The EVERY clause (interval) of this
subpartition.

T if this is a default subpartition,
otherwise F.

The entire partition specification for
this subpartition.

schemaname name

tablename name

partitionname name

partitiontype text

partitionlevel smallint

partitionrank bigint

partitionposition smallint

partitionlistvalues text

partitionrangestart text

partitionstartinclusive boolean

partitionrangeend text

partitionendinclusive boolean

partitioneveryclause text

partitionisdefault boolean

partitionboundary text

Greenplum Database Administrator Guide 4.1– Appendix H: System Catalog Reference
pg_partitions
The pg_partitions system view is used to show the structure of a partitioned table.

Table H.1 pg_catalog.pg_partitions

column type references description

schemaname name The name of the schema the
partitioned table is in.

tablename name The name of the top-level parent
table.

partitiontablename name The relation name of the partitioned
table (this is the table name to use if
accessing the partition directly).

partitionname name The name of the partition (this is the
name to use if referring to the
partition in an ALTER TABLE
command). NULL if the partition was
not given a name at create time or
generated by an EVERY clause.

parentpartitiontablename name The relation name of the parent table
one level up from this partition.

parentpartitionname name The given name of the parent table
one level up from this partition.

partitiontype text The type of partition (range or list).

partitionlevel smallint The level of this partition in the
hierarchy.

partitionrank bigint For range partitions, the rank of the
partition compared to other partitions
of the same level.

partitionposition smallint The rule order position of this
partition.

partitionlistvalues text For list partitions, the list value(s)
associated with this partition.

partitionrangestart text For range partitions, the start value of
this partition.

partitionstartinclusive boolean T if the start value is included in this
partition. F if it is excluded.

partitionrangeend text For range partitions, the end value of
this partition.

partitionendinclusive boolean T if the end value is included in this
partition. F if it is excluded.

partitioneveryclause text The EVERY clause (interval) of this
partition.
pg_partitions 921

Greenplum Database Administrator Guide 4.1– Appendix H: System Catalog Reference
partitionisdefault boolean T if this is a default partition,
otherwise F.

partitionboundary text The entire partition specification for
this partition.

Table H.1 pg_catalog.pg_partitions

column type references description
pg_partitions 922

pg_pltemplate 923

Greenplum Database Administrator Guide 4.1– Appendix H: System Catalog Reference

pg_pltemplate
The pg_pltemplate system catalog table stores template information for procedural languages. A
template for a language allows the language to be created in a particular database by a simple CREATE
LANGUAGE command, with no need to specify implementation details. Unlike most system catalogs,
pg_pltemplate is shared across all databases of Greenplum system: there is only one copy of
pg_pltemplate per system, not one per database. This allows the information to be accessible in each
database as it is needed.

There are not currently any commands that manipulate procedural language templates; to change the
built-in information, a superuser must modify the table using ordinary INSERT, DELETE, or UPDATE
commands.

Table H.1 pg_catalog.pg_pltemplate

column type references description

Name of the language this template
is for

True if language is considered
trusted

Name of call handler function

Name of validator function, or NULL
if none

Path of shared library that
implements language

Access privileges for template (not
yet implemented).

tmplname name

tmpltrusted boolean

tmplhandler text

tmplvalidator text

tmpllibrary text

tmplacl aclitem[]

Greenplum Database Administrator Guide 4.1– Appendix H: System Catalog Reference
pg_proc
The pg_proc system catalog table stores information about functions (or procedures), both built-in
functions and those defined by CREATE FUNCTION. The table contains data for aggregate and window
functions as well as plain functions. If proisagg is true, there should be a matching row in
pg_aggregate. If proiswin is true, there should be a matching row in pg_window.

For compiled functions, both built-in and dynamically loaded, prosrc contains the function’s
C-language name (link symbol). For all other currently-known language types, prosrc contains the
function’s source text. probin is unused except for dynamically-loaded C functions, for which it gives
the name of the shared library file containing the function.

Table H.1 pg_catalog.pg_proc

column type references description

proname name Name of the function.

pronamespace oid pg_namespace.oid The OID of the namespace that
contains this function.

proowner oid pg_authid.oid Owner of the function.

prolang oid pg_language.oid Implementation language or call
interface of this function.

proisagg boolean Function is an aggregate function.

prosecdef boolean Function is a security definer (for
example, a ‘setuid’ function).

proisstrict boolean Function returns NULL if any call
argument is NULL. In that case the
function will not actually be called at
all. Functions that are not strict must
be prepared to handle NULL inputs.

proretset boolean Function returns a set (multiple
values of the specified data type).

provolatile char Tells whether the function’s result
depends only on its input arguments,
or is affected by outside factors. i =
immutable (always delivers the same
result for the same inputs), s = stable
(results (for fixed inputs) do not
change within a scan), or v = volatile
(results may change at any time or
functions with side-effects).

pronargs int2 Number of arguments.

prorettype oid pg_type.oid Data type of the return value.

proiswin boolean Function is neither an aggregate nor
a scalar function, but a pure window
function.
pg_proc 924

Greenplum Database Administrator Guide 4.1– Appendix H: System Catalog Reference
proargtypes oidvector pg_type.oid An array with the data types of the
function arguments. This includes
only input arguments (including
INOUT arguments), and thus
represents the call signature of the
function.

proallargtypes oid[] pg_type.oid An array with the data types of the
function arguments. This includes all
arguments (including OUT and
INOUT arguments); however, if all
the arguments are IN arguments,
this field will be null. Note that
subscripting is 1-based, whereas for
historical reasons proargtypes is
subscripted from 0.

proargmodes char[] An array with the modes of the
function arguments: i = IN, o = OUT ,
b = INOUT. If all the arguments are
IN arguments, this field will be null.
Note that subscripts correspond to
positions of proallargtypes not
proargtypes.

proargnames text[] An array with the names of the
function arguments. Arguments
without a name are set to empty
strings in the array. If none of the
arguments have a name, this field
will be null. Note that subscripts
correspond to positions of
proallargtypes not proargtypes.

prosrc text This tells the function handler how to
invoke the function. It might be the
actual source code of the function for
interpreted languages, a link symbol,
a file name, or just about anything
else, depending on the
implementation language/call
convention.

probin bytea Additional information about how to
invoke the function. Again, the
interpretation is language-specific.

proacl aclitem[] Access privileges for the function as
given by GRANT/REVOKE.

Table H.1 pg_catalog.pg_proc

column type references description
pg_proc 925

pg_resqueue 926

Greenplum Database Administrator Guide 4.1– Appendix H: System Catalog Reference

pg_resqueue
The pg_resqueue system catalog table contains information about Greenplum Database resource
queues, which are used for the workload management feature. This table is populated only on the
master. This table is defined in the pg_global tablespace, meaning it is globally shared across all
databases in the system.

Table H.1 pg_catalog.pg_resqueue

column type references description

The name of the resource queue.

The active query threshold of the
resource queue.

The query cost threshold of the
resource queue.

Allows queries that exceed the cost
threshold to run when the system is
idle.

The query cost limit of what is
considered a ‘small query’. Queries
with a cost under this limit will not be
queued and run immediately.

rsqname name

rsqcountlimit real

rsqcostlimit real

rsqovercommit boolean

rsqignorecostlimit real

pg_resourcetype 927

Greenplum Database Administrator Guide 4.1– Appendix H: System Catalog Reference

pg_resourcetype
The pg_resourcetype system catalog table contains information about the extended attributes that can
be assigned to Greenplum Database resource queues. Each row details an attribute and inherent
qualities such as its default setting, whether it is required, and the value to disable it (when allowed).

This table is populated only on the master. This table is defined in the pg_global tablespace, meaning it
is globally shared across all databases in the system.

Table H.1 pg_catalog.pg_resourcetype

column type references description

The resource type ID.

The name of the resource type.

Whether the resource type is
required for a valid resource queue.

Whether the resource type has a
default value. When true, the default
value is specified in
reshasdefaultsetting.

Whether the type can be removed or
disabled. When true, the default
value is specified in
resdisabledsetting.

Default setting for the resource type,
when applicable.

The value that disables this resource
type (when allowed).

restypid smallint

resname name

resrequired boolean

reshasdefault boolean

rescandisable boolean

resdefaultsetting text

resdisabledsetting text

pg_resqueue_attributes 928

Greenplum Database Administrator Guide 4.1– Appendix H: System Catalog Reference

pg_resqueue_attributes
The pg_resqueue_attributes view allows administrators to see the attributes set for a resource queue,
such as its active statement limit, query cost limits, and priority.

Table H.1 pg_catalog.pg_resqueue_attributes

column type references description

pg_resqueue.rsqname The name of the resource queue.

The name of the resource queue
attribute.

The current value of a resource
queue attribute.

System assigned resource type id.

rsqname name

resname text

ressetting text

restypid integer

pg_resqueue_status - Deprecated 929

Greenplum Database Administrator Guide 4.1– Appendix H: System Catalog Reference

pg_resqueue_status - Deprecated
Replaced by gp_resqueue_status.

The pg_resqueue_status view allows administrators to see status and activity for a workload
management resource queue. It shows how many queries are waiting to run and how many queries are
currently active in the system from a particular resource queue.

Table H.1 pg_catalog.pg_resqueue_status

column type references description

pg_resqueue.rsqname The name of the resource queue.

pg_resqueue.countlimit The active query threshold of the
resource queue. A value of -1 means
no limit.

The number of active query slots
currently being used in the resource
queue.

pg_resqueue.costlimit The query cost threshold of the
resource queue. A value of -1 means
no limit.

The total cost of all statements
currently in the resource queue.

The number of statements currently
waiting in the resource queue.

The number of statements currently
running on the system from this
resource queue.

rsqname name

rsqcountlimit real

rsqcountvalue real

rsqcostlimit real

rsqcostvalue real

rsqwaiters integer

rsqholders integer

pg_resqueuecapability 930

Greenplum Database Administrator Guide 4.1– Appendix H: System Catalog Reference

pg_resqueuecapability
The pg_resqueuecapability system catalog table contains information about the extended attributes, or
capabilities, of existing Greenplum Database resource queues. Only resource queues that have been
assigned an extended capability, such as a priority setting, are recorded in this table. This table is
joined to the pg_resqueue table by resource queue object ID, and to the pg_resourcetype table by
resource type ID (restypid).

This table is populated only on the master. This table is defined in the pg_global tablespace, meaning it
is globally shared across all databases in the system.

Table H.1 pg_catalog.pg_resqueuecapability

column type references description

The object ID of the associated
resource queue.

The resource type, derived from the
pg_resourcetype system table.

The specific value set for the
capability referenced in this record.
Depending on the actual resource
type, this value may have different
data types.

rsqueueid oid pg_resqueue.oid

restypid smallint pg_resourcetype.res
typeid

ressetting opaque type

pg_rewrite 931

Greenplum Database Administrator Guide 4.1– Appendix H: System Catalog Reference

pg_rewrite
The pg_rewrite system catalog table stores rewrite rules for tables and views. pg_class.relhasrules
must be true if a table has any rules in this catalog.

Table H.1 pg_catalog.pg_rewrite

column type references description

Rule name.

pg_class.oid The table this rule is for.

The column this rule is for (currently,
always zero to indicate the whole
table).

Event type that the rule is for: 1 =
SELECT, 2 = UPDATE, 3 = INSERT,
4 = DELETE.

True if the rule is an INSTEAD rule.

Expression tree (in the form of a
nodeToString() representation)
for the rule’s qualifying condition.

Query tree (in the form of a
nodeToString() representation)
for the rule’s action.

rulename name

ev_class oid

ev_attr int2

ev_type char

is_instead boolean

ev_qual text

ev_action text

pg_roles 932

Greenplum Database Administrator Guide 4.1– Appendix H: System Catalog Reference

pg_roles
The view pg_roles provides access to information about database roles. This is simply a publicly
readable view of pg_authid that blanks out the password field. This view explicitly exposes the OID
column of the underlying table, since that is needed to do joins to other catalogs.

Table H.1 pg_catalog.pg_roles

column type references description

Role name

Role has superuser privileges

Role automatically inherits privileges
of roles it is a member of

Role may create more roles

Role may create databases

Role may update system catalogs
directly. (Even a superuser may not
do this unless this column is true.)

Role may log in. That is, this role can
be given as the initial session
authorization identifier

For roles that can log in, this sets
maximum number of concurrent
connections this role can make. -1
means no limit

Not the password (always reads as
********)

Password expiry time (only used for
password authentication); NULL if no
expiration

Session defaults for run-time
configuration variables

pg_resqueue.oid Object ID of the resource queue this
role is assigned to.

pg_authid.oid Object ID of role

Role may create readable external
tables that use the gpfdist protocol.

Role may create readable external
tables that use the gpfdist protocol.

Role may create writable external
tables that use the gpfdist protocol.

rolname name

rolsuper bool

rolinherit bool

rolcreaterole bool

rolcreatedb bool

rolcatupdate bool

rolcanlogin bool

rolconnlimit int4

rolpassword text

rolvaliduntil timestamptz

rolconfig text[]

 rolresqueue oid

oid oid

rolcreaterextgpfd bool

rolcreaterexthttp bool

rolcreatewextgpfd bool

pg_shdepend 933

Greenplum Database Administrator Guide 4.1– Appendix H: System Catalog Reference

pg_shdepend
The pg_shdepend system catalog table records the dependency relationships between database objects
and shared objects, such as roles. This information allows Greenplum Database to ensure that those
objects are unreferenced before attempting to delete them. See also pg_depend, which performs a
similar function for dependencies involving objects within a single database. Unlike most system
catalogs, pg_shdepend is shared across all databases of Greenplum system: there is only one copy of
pg_shdepend per system, not one per database.

In all cases, a pg_shdepend entry indicates that the referenced object may not be dropped without also
dropping the dependent object. However, there are several subflavors identified by deptype:

• SHARED_DEPENDENCY_OWNER (o) — The referenced object (which must be a role) is the
owner of the dependent object.

• SHARED_DEPENDENCY_ACL (a) — The referenced object (which must be a role) is
mentioned in the ACL (access control list) of the dependent object.

• SHARED_DEPENDENCY_PIN (p) — There is no dependent object; this type of entry is a
signal that the system itself depends on the referenced object, and so that object must never be
deleted. Entries of this type are created only by system initialization. The columns for the
dependent object contain zeroes.

Table H.1 pg_catalog.pg_shdepend

column type references description

pg_database.oid The OID of the database the
dependent object is in, or zero for a
shared object.

pg_class.oid The OID of the system catalog the
dependent object is in.

any OID column The OID of the specific dependent
object.

For a table column, this is the column
number. For all other object types,
this column is zero.

pg_class.oid The OID of the system catalog the
referenced object is in (must be a
shared catalog).

any OID column The OID of the specific referenced
object.

For a table column, this is the
referenced column number. For all
other object types, this column is
zero.

A code defining the specific
semantics of this dependency
relationship.

dbid oid

classid oid

objid oid

objsubid int4

refclassid oid

refobjid oid

refobjsubid int4

deptype char

pg_shdescription 934

Greenplum Database Administrator Guide 4.1– Appendix H: System Catalog Reference

pg_shdescription
The pg_shdescription system catalog table stores optional descriptions (comments) for shared database
objects. Descriptions can be manipulated with the COMMENT command and viewed with psql’s \d
meta-commands. See also pg_description, which performs a similar function for descriptions
involving objects within a single database. Unlike most system catalogs, pg_shdescription is shared
across all databases of a Greenplum system: there is only one copy of pg_shdescription per system, not
one per database.

Table H.1 pg_catalog.pg_shdescription

column type references description

any OID column The OID of the object this description
pertains to.

pg_class.oid The OID of the system catalog this
object appears in

Arbitrary text that serves as the
description of this object.

objoid oid

classoid oid

description text

pg_stat_activity 935

Greenplum Database Administrator Guide 4.1– Appendix H: System Catalog Reference

pg_stat_activity
The view pg_stat_activity shows one row per server process and details about it associated user
session and query. The columns that report data on the current query are available unless the parameter
stats_command_string has been turned off. Furthermore, these columns are only visible if the user
examining the view is a superuser or the same as the user owning the process being reported on.

Table H.1 pg_catalog.pg_stat_activity

column type references description

pg_database.oid Database OID

Database name

Process ID of the server process

Session ID

pg_authid.oid Role OID

Role name

Current query that process is running

True if waiting on a lock, false if not
waiting

Time query began execution

Time backend process was started

Client address

Client port

Client application name

Transaction start time

datid oid

datname name

procpid integer

sess_id integer

usesysid oid

usename name

current_query text

waiting boolean

query_start timestampz

backend_start timestampz

client_addr inet

client_port integer

application_name text

xact_start timestampz

pg_stat_operations 936

Greenplum Database Administrator Guide 4.1– Appendix H: System Catalog Reference

pg_stat_operations
The view pg_stat_operations shows details about the last operation performed on a database object
(such as a table, index, view or database) or a global object (such as a role).

Table H.1 pg_catalog.pg_stat_operations

column type references description

The name of the system table in the
pg_catalog schema where the record
about this object is stored
(pg_class=relations,
pg_database=databases,

pg_namespace=schemas,

pg_authid=roles)

The name of the object.

The OID of the object.

The name of the schema where the
object resides.

The status of the role who performed
the last operation on the object
(CURRENT=a currently active role in
the system, DROPPED=a role that
no longer exists in the system,
CHANGED=a role name that exists
in the system, but has changed since
the last operation was performed).

The name of the role that performed
the operation on this object.

The action that was taken on the
object.

The type of object operated on or the
subclass of operation performed.

The timestamp of the operation. This
is the same timestamp that is written
to the Greenplum Database server
log files in case you need to look up
more detailed information about the
operation in the logs.

classname text

objname name

objid oid

schemaname name

usestatus text

usename name

actionname name

subtype text

statime timestampz

pg_stat_partition_operations 937

Greenplum Database Administrator Guide 4.1– Appendix H: System Catalog Reference

pg_stat_partition_operations
The view pg_stat_partition_operations shows details about the last operation performed on a
partitioned table.

Table H.1 pg_catalog.pg_stat_partition_operations

column type references description

The name of the system table in the
pg_catalog schema where the record
about this object is stored (always
pg_class for tables and partitions).

The name of the object.

The OID of the object.

The name of the schema where the
object resides.

The status of the role who performed
the last operation on the object
(CURRENT=a currently active role in
the system, DROPPED=a role that
no longer exists in the system,
CHANGED=a role name that exists
in the system, but its definition has
changed since the last operation was
performed).

The name of the role that performed
the operation on this object.

The action that was taken on the
object.

The type of object operated on or the
subclass of operation performed.

The timestamp of the operation. This
is the same timestamp that is written
to the Greenplum Database server
log files in case you need to look up
more detailed information about the
operation in the logs.

The level of this partition in the
hierarchy.

The relation name of the parent table
one level up from this partition.

The name of the schema where the
parent table resides.

The OID of the parent table one level
up from this partition.

classname text

objname name

objid oid

schemaname name

usestatus text

usename name

actionname name

subtype text

statime timestampz

partitionlevel smallint

parenttablename name

parentschemaname name

parent_relid oid

pg_stat_resqueues 938

Greenplum Database Administrator Guide 4.1– Appendix H: System Catalog Reference

pg_stat_resqueues
The pg_stat_resqueues view allows administrators to view metrics about a resource queue’s workload
over time. To allow statistics to be collected for this view, you must enable the stats_queue_level
server configuration parameter on the Greenplum Database master instance. Enabling the collection of
these metrics does incur a small performance penalty, as each statement submitted through a resource
queue must be logged in the system catalog tables.

Table H.1 pg_catalog.pg_stat_resqueues

column type references description

The OID of the resource queue.

The name of the resource queue.

Number of queries submitted for
execution from this resource queue.

Number of queries submitted to this
resource queue that had to wait
before they could execute.

Total elapsed execution time for
statements submitted through this
resource queue.

Total elapsed time that statements
submitted through this resource
queue had to wait before they were
executed.

queueoid oid

queuename name

n_queries_exec bigint

n_queries_wait bigint

elapsed_exec bigint

elapsed_wait bigint

pg_stat_last_operation 939

Greenplum Database Administrator Guide 4.1– Appendix H: System Catalog Reference

pg_stat_last_operation
The pg_stat_last_operation table contains metadata tracking information about database objects
(tables, views, etc.).

Table H.1 pg_catalog.pg_stat_last_operation

column type references description

pg_class.oid OID of the system catalog
containing the object.

any OID column OID of the object within its system
catalog.

The action that was taken on the
object.

pg_authid.oid A foreign key to pg_authid.oid.

The name of the role that
performed the operation on this
object.

The type of object operated on or
the subclass of operation
performed.

The timestamp of the operation.
This is the same timestamp that is
written to the Greenplum
Database server log files in case
you need to look up more detailed
information about the operation in
the logs.

classid oid

objid oid

staactionname name

stasysid oid

stausename name

stasubtype text

statime timestamp with timezone

pg_stat_last_shoperation 940

Greenplum Database Administrator Guide 4.1– Appendix H: System Catalog Reference

pg_stat_last_shoperation
The pg_stat_last_shoperation table contains metadata tracking information about global objects (roles,
tablespaces, etc.)

Table H.1 pg_catalog.pg_stat_last_shoperation

column type references description

pg_class.oid OID of the system catalog
containing the object.

any OID column OID of the object within its system
catalog.

The action that was taken on the
object.

The name of the role that
performed the operation on this
object.

The type of object operated on or
the subclass of operation
performed.

The timestamp of the operation.
This is the same timestamp that
is written to the Greenplum
Database server log files in case
you need to look up more detailed
information about the operation in
the logs.

.

classid oid

objid oid

staactionname name

stasysid oid

stausename name

stasubtype text

statime timestamp with timezone

Greenplum Database Administrator Guide 4.1– Appendix H: System Catalog Reference
pg_statistic
The pg_statistic system catalog table stores statistical data about the contents of the database. Entries
are created by ANALYZE and subsequently used by the query planner. There is one entry for each table
column that has been analyzed. Note that all the statistical data is inherently approximate, even
assuming that it is up-to-date.

pg_statistic also stores statistical data about the values of index expressions. These are described as if
they were actual data columns; in particular, starelid references the index. No entry is made for an
ordinary non-expression index column, however, since it would be redundant with the entry for the
underlying table column.

Since different kinds of statistics may be appropriate for different kinds of data, pg_statistic is
designed not to assume very much about what sort of statistics it stores. Only extremely general
statistics (such as nullness) are given dedicated columns in pg_statistic. Everything else is stored in
slots, which are groups of associated columns whose content is identified by a code number in one of
the slot’s columns.

pg_statistic should not be readable by the public, since even statistical information about a table’s
contents may be considered sensitive (for example: minimum and maximum values of a salary
column). pg_stats is a publicly readable view on pg_statistic that only exposes information about those
tables that are readable by the current user.

Table H.1 pg_catalog.pg_statistic

column type references description

starelid oid pg_class.oid The table or index that the described
column belongs to.

staattnum int2 pg_attribute.attnum The number of the described column.

stanullfrac float4 The fraction of the column’s entries
that are null.

stawidth int4 The average stored width, in bytes,
of nonnull entries.

stadistinct float4 The number of distinct nonnull data
values in the column. A value greater
than zero is the actual number of
distinct values. A value less than
zero is the negative of a fraction of
the number of rows in the table (for
example, a column in which values
appear about twice on the average
could be represented by stadistinct =
-0.5). A zero value means the
number of distinct values is
unknown.

stakindN int2 A code number indicating the kind of
statistics stored in the Nth slot of the
pg_statistic row.
pg_statistic 941

Greenplum Database Administrator Guide 4.1– Appendix H: System Catalog Reference
staopN oid pg_operator.oid An operator used to derive the
statistics stored in the Nth slot. For
example, a histogram slot would
show the < operator that defines the
sort order of the data.

stanumbersN float4[] Numerical statistics of the
appropriate kind for the Nth slot, or
NULL if the slot kind does not involve
numerical values.

stavaluesN anyarray Column data values of the
appropriate kind for the Nth slot, or
NULL if the slot kind does not store
any data values. Each array’s
element values are actually of the
specific column’s data type, so there
is no way to define these columns'
type more specifically than anyarray.

Table H.1 pg_catalog.pg_statistic

column type references description
pg_statistic 942

pg_tablespace 943

Greenplum Database Administrator Guide 4.1– Appendix H: System Catalog Reference

pg_tablespace
The pg_tablespace system catalog table stores information about the available tablespaces. Tables can
be placed in particular tablespaces to aid administration of disk layout. Unlike most system catalogs,
pg_tablespace is shared across all databases of a Greenplum system: there is only one copy of
pg_tablespace per system, not one per database.

Table H.1 pg_catalog.pg_tablespace

column type references description

Tablespace name.

pg_authid.oid Owner of the tablespace, usually the
user who created it.

Deprecated.

Tablespace access privileges.

Deprecated.

Deprecated.

pg_filespace.oid The object id of the filespace used by
this tablespace. A filespace defines
directory locations on the primary,
mirror and master segments.

spcname name

spcowner oid

spclocation text[]

spcacl aclitem[]

spcprilocations text[]

spcmrilocations text[]

spcfsoid oid

pg_trigger 944

Greenplum Database Administrator Guide 4.1– Appendix H: System Catalog Reference

pg_trigger
The pg_trigger system catalog table stores triggers on tables.

Table H.1 pg_catalog.pg_trigger

column type references description

pg_class.oid The table this trigger is on.

Trigger name (must be unique
among triggers of same table).

pg_proc.oid The function to be called.

Bit mask identifying trigger
conditions.

True if trigger is enabled.

True if trigger implements a
referential integrity constraint.

Referential integrity constraint name.

pg_class.oid The table referenced by an
referential integrity constraint.

True if deferrable.

True if initially deferred.

Number of argument strings passed
to trigger function.

Currently unused.

Argument strings to pass to trigger,
each NULL-terminated.

tgrelid oid

tgname name

tgfoid oid

tgtype int2

tgenabled boolean

tgisconstraint boolean

tgconstrname name

tgconstrrelid oid

tgdeferrable boolean

tginitdeferred boolean

tgnargs int2

tgattr int2vector

tgargs bytea

Greenplum Database Administrator Guide 4.1– Appendix H: System Catalog Reference
pg_type
The pg_type system catalog table stores information about data types. Base types (scalar types) are
created with CREATE TYPE, and domains with CREATE DOMAIN. A composite type is automatically
created for each table in the database, to represent the row structure of the table. It is also possible to
create composite types with CREATE TYPE AS.

Table H.1 pg_catalog.pg_type

column type references description

typname name Data type name.

typnamespace oid pg_namespace.oid The OID of the namespace that contains this
type.

typowner oid pg_authid.oid Owner of the type.

typlen int2 For a fixed-size type, typlen is the number of
bytes in the internal representation of the type.
But for a variable-length type, typlen is negative.
-1 indicates a ‘varlena’ type (one that has a
length word), -2 indicates a null-terminated C
string.

typbyval boolean Determines whether internal routines pass a
value of this type by value or by reference.
typbyval had better be false if typlen is not 1, 2,
or 4 (or 8 on machines where Datum is 8 bytes).
Variable-length types are always passed by
reference. Note that typbyval can be false even
if the length would allow pass-by-value; this is
currently true for type float4, for example.

typtype char b for a base type, c for a composite type, d for a
domain, or p for a pseudo-type.

typisdefined boolean True if the type is defined, false if this is a
placeholder entry for a not-yet-defined type.
When false, nothing except the type name,
namespace, and OID can be relied on.

typdelim char Character that separates two values of this type
when parsing array input. Note that the delimiter
is associated with the array element data type,
not the array data type.

typrelid oid pg_class.oid If this is a composite type, then this column
points to the pg_class entry that defines the
corresponding table. (For a free-standing
composite type, the pg_class entry does not
really represent a table, but it is needed anyway
for the type’s pg_attribute entries to link to.) Zero
for non-composite types.
pg_type 945

Greenplum Database Administrator Guide 4.1– Appendix H: System Catalog Reference
typelem oid pg_type.oid If not 0 then it identifies another row in pg_type.
The current type can then be subscripted like an
array yielding values of type typelem. A true
array type is variable length (typlen = -1), but
some fixed-length (typlen > 0) types also have
nonzero typelem, for example name and point.
If a fixed-length type has a typelem then its
internal representation must be some number of
values of the typelem data type with no other
data. Variable-length array types have a header
defined by the array subroutines.

typinput regproc pg_proc.oid Input conversion function (text format).

typoutput regproc pg_proc.oid Output conversion function (text format).

typreceive regproc pg_proc.oid Input conversion function (binary format), or 0 if
none.

typsend regproc pg_proc.oid Output conversion function (binary format), or 0
if none.

typanalyze regproc pg_proc.oid Custom ANALYZE function, or 0 to use the
standard function.

typalign char The alignment required when storing a value of
this type. It applies to storage on disk as well as
most representations of the value inside
Greenplum Database. When multiple values are
stored consecutively, such as in the
representation of a complete row on disk,
padding is inserted before a datum of this type
so that it begins on the specified boundary. The
alignment reference is the beginning of the first
datum in the sequence. Possible values are:

c = char alignment (no alignment needed).

s = short alignment (2 bytes on most machines).

i = int alignment (4 bytes on most machines).

d = double alignment (8 bytes on many
machines, but not all).

typstorage char For varlena types (those with typlen = -1) tells if
the type is prepared for toasting and what the
default strategy for attributes of this type should
be. Possible values are:

p: Value must always be stored plain.

e: Value can be stored in a secondary relation (if
relation has one, see pg_class.reltoastrelid).

m: Value can be stored compressed inline.

x: Value can be stored compressed inline or
stored in secondary storage.

Note that m columns can also be moved out to
secondary storage, but only as a last resort (e
and x columns are moved first).

typnotnull boolean Represents a not-null constraint on a type. Used
for domains only.

Table H.1 pg_catalog.pg_type

column type references description
pg_type 946

Greenplum Database Administrator Guide 4.1– Appendix H: System Catalog Reference
typbasetype oid pg_type.oid Identifies the type that a domain is based on.
Zero if this type is not a domain.

typtypmod int4 Domains use typtypmod to record the typmod to
be applied to their base type (-1 if base type
does not use a typmod). -1 if this type is not a
domain.

typndims int4 The number of array dimensions for a domain
that is an array (if typbasetype is an array type;
the domain’s typelem will match the base type’s
typelem). Zero for types other than array
domains.

typdefaultbin text If not null, it is the nodeToString()
representation of a default expression for the
type. This is only used for domains.

typdefault text Null if the type has no associated default value.
If not null, typdefault must contain a
human-readable version of the default
expression represented by typdefaultbin. If
typdefaultbin is null and typdefault is not, then
typdefault is the external representation of the
type’s default value, which may be fed to the
type’s input converter to produce a constant.

Table H.1 pg_catalog.pg_type

column type references description
pg_type 947

Greenplum Database Administrator Guide 4.1– Appendix H: System Catalog Reference
pg_window
The pg_window table stores information about window functions. Window functions are often used to
compose complex OLAP (online analytical processing) queries. Window functions are applied to
partitioned result sets within the scope of a single query expression. A window partition is a subset of
rows returned by a query, as defined in a special OVER() clause. Typical window functions are rank,
dense_rank, and row_number. Each entry in pg_window is an extension of an entry in pg_proc. The
pg_proc entry carries the window function’s name, input and output data types, and other information
that is similar to ordinary functions.

Table H.1 pg_catalog.pg_window

column type references description

winfnoid regproc pg_proc.oid The OID in pg_proc of the window
function.

winrequireorder boolean The window function requires its
window specification to have an
ORDER BY clause.

winallowframe boolean The window function permits its
window specification to have a ROWS
or RANGE framing clause.

winpeercount boolean The peer group row count is required
to compute this window function, so
the Window node implementation
must ‘look ahead’ as necessary to
make this available in its internal
state.

wincount boolean The partition row count is required to
compute this window function.

winfunc regproc pg_proc.oid The OID in pg_proc of a function to
compute the value of an
immediate-type window function.

winprefunc regproc pg_proc.oid The OID in pg_proc of a preliminary
window function to compute the
partial value of a deferred-type
window function.

winpretype oid pg_type.oid The OID in pg_type of the
preliminary window function’s result
type.
pg_window 948

Greenplum Database Administrator Guide 4.1– Appendix H: System Catalog Reference
winfinfunc regproc pg_proc.oid The OID in pg_proc of a function to
compute the final value of a
deferred-type window function from
the partition row count and the result
of winprefunc.

winkind char A character indicating membership of
the window function in a class of
related functions:

w - ordinary window functions

n - NTILE functions

f - FIRST_VALUE functions

l - LAST_VALUE functions

g - LAG functions

d - LEAD functions

Table H.1 pg_catalog.pg_window

column type references description
pg_window 949

Greenplum Database Administrator Guide 4.1 – Appendix I: The gp_toolkit Administrative Schema
I. The gp_toolkit Administrative Schema

Greenplum provides an administrative schema called gp_toolkit that you can use to
query the system catalogs, log files, and operating environment for system status
information. The gp_toolkit schema contains a number of views that you can access
using SQL commands. The gp_toolkit schema is accessible to all database users,
although some objects may require superuser permissions. For convenience, you may
want to add the gp_toolkit schema to your schema search path. For example:

=> ALTER ROLE myrole SET search_path TO myschema,gp_toolkit;

This documentation describes the most useful views in gp_toolkit. You may notice
other objects (views, functions, and external tables) within the gp_toolkit schema that
are not described in this documentation (these are supporting objects to the views
described in this section).

Checking for Tables that Need Routine Maintenance
The following views can help identify tables that need routine table maintenance
(VACUUM and/or ANALYZE).

• gp_bloat_diag

• gp_stats_missing

The VACUUM or VACUUM FULL command reclaims disk space occupied by deleted or
obsolete rows. Because of the MVCC transaction concurrency model used in
Greenplum Database, data rows that are deleted or updated still occupy physical space
on disk even though they are not visible to any new transactions. Expired rows
increase table size on disk and eventually slow down scans of the table.

The ANALYZE command collects column-level statistics needed by the query planner.
Greenplum Database uses a cost-based query planner that relies on database statistics.
Accurate statistics allow the query planner to better estimate selectivity and the
number of rows retrieved by a query operation in order to choose the most efficient
query plan.
Checking for Tables that Need Routine Maintenance 950

Greenplum Database Administrator Guide 4.1 – Appendix I: The gp_toolkit Administrative Schema
gp_bloat_diag

This view shows tables that have bloat (the actual number of pages on disk exceeds
the expected number of pages given the table statistics). Tables that are bloated require
a VACUUM or a VACUUM FULL in order to reclaim disk space occupied by deleted or
obsolete rows. This view is accessible to all users, however non-superusers will only
be able to see the tables that they have permission to access.

Table I.1 gp_bloat_diag view

Column Description

bdirelid Table object id.

bdinspname Schema name.

bdirelname Table name.

bdirelpages Actual number of pages on disk.

bdiexppages Expected number of pages given the table data.

bdidiag Bloat diagnostic message.

gp_stats_missing

This view shows tables that do not have statistics and therefore may require an
ANALYZE be run on the table.

Table I.2 gp_stats_missing view

Column Description

smischema Schema name.

smitable Table name.

smisize Does this table have statistics? False if the table does not have row
count and row sizing statistics recorded in the system catalog, which
may indicate that the table needs to be analyzed. This will also be
false if the table does not contain any rows. For example, the parent
tables of partitioned tables are always empty and will always return a
false result.

smicols Number of columns in the table.

smirecs Number of rows in the table.

Checking for Locks
When a transaction accesses a relation (such as a table), it acquires a lock. Depending
on the type of lock acquired, subsequent transactions may have to wait before they can
access the same relation. For more information on the types of locks, see “Lock
Modes in Greenplum Database” on page 99. Greenplum Database resource queues
(used for workload management) also use locks to control the admission of queries
into the system.
Checking for Locks 951

Greenplum Database Administrator Guide 4.1 – Appendix I: The gp_toolkit Administrative Schema
The gp_locks_* family of views can help diagnose queries and sessions that are
waiting to access an object due to a lock.

• gp_locks_on_relation

• gp_locks_on_resqueue

gp_locks_on_relation

This view shows any locks currently being held on a relation, and the associated
session information about the query associated with the lock. For more information on
the types of locks, see “Lock Modes in Greenplum Database” on page 99. This view is
accessible to all users, however non-superusers will only be able to see the locks for
relations that they have permission to access.

Table I.3 gp_locks_on_relation view

Column Description

lorlocktype Type of the lockable object: relation, extend, page, tuple,
transactionid, object, userlock, resource queue, or
advisory

lordatabase Object ID of the database in which the object exists, zero if the object
is a shared object.

lorrelname The name of the relation.

lorrelation The object ID of the relation.

lortransaction The transaction ID that is affected by the lock.

lorpid Process ID of the server process holding or awaiting this lock. NULL
if the lock is held by a prepared transaction.

lormode Name of the lock mode held or desired by this process.

lorgranted Displays whether the lock is granted (true) or not granted (false).

lorcurrentquery The current query in the session.

gp_locks_on_resqueue

This view shows any locks currently being held on a resource queue, and the
associated session information about the query associated with the lock. This view is
accessible to all users, however non-superusers will only be able to see the locks
associated with their own sessions.

Table I.4 gp_locks_on_resqueue view

Column Description

lorusename Name of the user executing the session.

lorrsqname The resource queue name.

lorlocktype Type of the lockable object: resource queue

lorobjid The ID of the locked transaction.

lortransaction The ID of the transaction that is affected by the lock.
Checking for Locks 952

Greenplum Database Administrator Guide 4.1 – Appendix I: The gp_toolkit Administrative Schema
Viewing Greenplum Database Server Log Files
Each component of a Greenplum Database system (master, standby master, primary
segments, and mirror segments) keeps its own server log files. The gp_log_* family of
views allows you to issue SQL queries against the server log files to find particular
entries of interest. The use of these views require superuser permissions.

• gp_log_command_timings

• gp_log_database

• gp_log_master_concise

• gp_log_system

gp_log_command_timings

This view uses an external table to read the log files on the master and report the
execution time of SQL commands executed in a database session. The use of this view
requires superuser permissions.

Table I.5 gp_log_command_timings view

Column Description

logsession The session identifier (prefixed with "con").

logcmdcount The command number within a session (prefixed with "cmd").

logdatabase The name of the database.

loguser The name of the database user.

logpid The process id (prefixed with "p").

logtimemin The time of the first log message for this command.

logtimemax The time of the last log message for this command.

logduration Statement duration from start to end time.

lorpid The process ID of the transaction that is affected by the lock.

lormode The name of the lock mode held or desired by this process.

lorgranted Displays whether the lock is granted (true) or not granted (false).

lorwaiting Displays whether or not the session is waiting.

Table I.4 gp_locks_on_resqueue view

Column Description
Viewing Greenplum Database Server Log Files 953

Greenplum Database Administrator Guide 4.1 – Appendix I: The gp_toolkit Administrative Schema
gp_log_database

This view uses an external table to read the server log files of the entire Greenplum
system (master, segments, and mirrors) and lists log entries associated with the current
database. Associated log entries can be identified by the session id (logsession) and
command id (logcmdcount). The use of this view requires superuser permissions.

Table I.6 gp_log_database view

Column Description

logtime The timestamp of the log message.

loguser The name of the database user.

logdatabase The name of the database.

logpid The associated process id (prefixed with "p").

logthread The associated thread count (prefixed with "th").

loghost The segment or master host name.

logport The segment or master port.

logsessiontime Time session connection was opened.

logtransaction Global transaction id.

logsession The session identifier (prefixed with "con").

logcmdcount The command number within a session (prefixed with "cmd").

logsegment The segment content identifier (prefixed with "seg" for primary or
"mir" for mirror. The master always has a content id of -1).

logslice The slice id (portion of the query plan being executed).

logdistxact Distributed transaction id.

loglocalxact Local transaction id.

logsubxact Subtransaction id.

logseverity LOG, ERROR, FATAL, PANIC, DEBUG1 or DEBUG2.

logstate SQL state code associated with the log message.

logmessage Log or error message text.

logdetail Detail message text associated with an error message.

loghint Hint message text associated with an error message.

logquery The internally-generated query text.

logquerypos The cursor index into the internally-generated query text.

logcontext The context in which this message gets generated.

logdebug Query string with full detail for debugging.

logcursorpos The cursor index into the query string.

logfunction The function in which this message is generated.

logfile The log file in which this message is generated.
Viewing Greenplum Database Server Log Files 954

Greenplum Database Administrator Guide 4.1 – Appendix I: The gp_toolkit Administrative Schema
gp_log_master_concise

This view uses an external table to read a subset of the log fields from the master log
file. The use of this view requires superuser permissions.

Table I.7 gp_log_master_concise view

Column Description

logtime The timestamp of the log message.

logdatabase The name of the database.

logsession The session identifier (prefixed with "con").

logcmdcount The command number within a session (prefixed with "cmd").

logmessage Log or error message text.

gp_log_system

This view uses an external table to read the server log files of the entire Greenplum
system (master, segments, and mirrors) and lists all log entries. Associated log entries
can be identified by the session id (logsession) and command id (logcmdcount). The
use of this view requires superuser permissions.

logline The line in the log file in which this message is generated.

logstack Full text of the stack trace associated with this message.

Table I.8 gp_log_system view

Column Description

logtime The timestamp of the log message.

loguser The name of the database user.

logdatabase The name of the database.

logpid The associated process id (prefixed with "p").

logthread The associated thread count (prefixed with "th").

loghost The segment or master host name.

logport The segment or master port.

logsessiontime Time session connection was opened.

logtransaction Global transaction id.

logsession The session identifier (prefixed with "con").

logcmdcount The command number within a session (prefixed with "cmd").

logsegment The segment content identifier (prefixed with "seg" for primary or
"mir" for mirror. The master always has a content id of -1).

Table I.6 gp_log_database view

Column Description
Viewing Greenplum Database Server Log Files 955

Greenplum Database Administrator Guide 4.1 – Appendix I: The gp_toolkit Administrative Schema
Checking Server Configuration Files
Each component of a Greenplum Database system (master, standby master, primary
segments, and mirror segments) has its own server configuration file
(postgresql.conf). The following gp_toolkit objects can be used to check
parameter settings across all primary postgresql.conf files in the system:

• gp_param_setting('parameter_name')

• gp_param_settings_seg_value_diffs

logslice The slice id (portion of the query plan being executed).

logdistxact Distributed transaction id.

loglocalxact Local transaction id.

logsubxact Subtransaction id.

logseverity LOG, ERROR, FATAL, PANIC, DEBUG1 or DEBUG2.

logstate SQL state code associated with the log message.

logmessage Log or error message text.

logdetail Detail message text associated with an error message.

loghint Hint message text associated with an error message.

logquery The internally-generated query text.

logquerypos The cursor index into the internally-generated query text.

logcontext The context in which this message gets generated.

logdebug Query string with full detail for debugging.

logcursorpos The cursor index into the query string.

logfunction The function in which this message is generated.

logfile The log file in which this message is generated.

logline The line in the log file in which this message is generated.

logstack Full text of the stack trace associated with this message.

Table I.8 gp_log_system view

Column Description
Checking Server Configuration Files 956

Greenplum Database Administrator Guide 4.1 – Appendix I: The gp_toolkit Administrative Schema
gp_param_setting('parameter_name')

This function takes the name of a server configuration parameter and returns the
postgresql.conf value for the master and each active segment. This function is
accessible to all users.

Table I.9 gp_param_setting('parameter_name') function

Column Description

paramsegment The segment content id (only active segments are shown). The
master content id is always -1.

paramname The name of the parameter.

paramvalue The value of the parameter.

Example:

SELECT * FROM gp_param_setting('max_connections');

gp_param_settings_seg_value_diffs

Server configuration parameters that are classified as local parameters (meaning each
segment gets the parameter value from its own postgresql.conf file), should be set
identically on all segments. This view shows local parameter settings that are
inconsistent. Parameters that are supposed to have different values (such as port) are
not included. This view is accessible to all users.

Table I.10 gp_param_settings_seg_value_diffs view

Column Description

psdname The name of the parameter.

psdvalue The value of the parameter.

psdcount The number of segments that have this value.

Checking for Failed Segments
The gp_pgdatabase_invalid view can be used to check for down segments.

gp_pgdatabase_invalid

This view shows information about segments that are marked as down in the system
catalog. This view is accessible to all users.

Table I.11 gp_pgdatabase_invalid view

Column Description

pgdbidbid The segment dbid. Every segment has a unique dbid.

pgdbiisprimary Is the segment currently acting as the primary (active) segment? (t or f)
Checking for Failed Segments 957

Greenplum Database Administrator Guide 4.1 – Appendix I: The gp_toolkit Administrative Schema
Checking Resource Queue Activity and Status
The purpose of resource queues is to limit the number of active queries in the system
at any given time in order to avoid exhausting system resources such as memory,
CPU, and disk I/O. All database users are assigned to a resource queue, and every
statement submitted by a user is first evaluated against the resource queue limits
before it can run. The gp_resq_* family of views can be used to check the status of
statements currently submitted to the system through their respective resource queue.
Note that statements issued by superusers are exempt from resource queuing.

• gp_resq_activity

• gp_resq_activity_by_queue

• gp_resq_priority_statement

• gp_resq_role

• gp_resqueue_status

gp_resq_activity

For the resource queues that have active workload, this view shows one row for each
active statement submitted through a resource queue. This view is accessible to all
users.

Table I.12 gp_resq_activity view

Column Description

resqprocpid Process ID assigned to this statement (on the master).

resqrole User name.

resqoid Resource queue object id.

resqname Resource queue name.

resqstart Time statement was issued to the system.

resqstatus Status of statement: running, waiting or cancelled.

pgdbicontent The content id of this segment. A primary and mirror will have the same
content id.

pgdbivalid Is this segment up and valid? (t or f)

pgdbidefinedprimary Was this segment assigned the role of primary at system initialization time?
(t or f)

Table I.11 gp_pgdatabase_invalid view

Column Description
Checking Resource Queue Activity and Status 958

Greenplum Database Administrator Guide 4.1 – Appendix I: The gp_toolkit Administrative Schema
gp_resq_activity_by_queue

For the resource queues that have active workload, this view shows a summary of
queue activity. This view is accessible to all users.

Table I.13 gp_resq_activity_by_queue Column

Column Description

resqoid Resource queue object id.

resqname Resource queue name.

resqlast Time of the last statement issued to the queue.

resqstatus Status of last statement: running, waiting or cancelled.

resqtotal Total statements in this queue.

gp_resq_priority_statement

This view shows the resource queue priority, session ID, and other information for all
statements currently running in the Greenplum Database system. This view is
accessible to all users.

Table I.14 gp_resq_priority_statement view

Column Description

rqpdatname The database name that the session is connected to.

rqpusename The user who issued the statement.

rqpsession The session ID.

rqpcommand The number of the statement within this session (the command id and
session id uniquely identify a statement).

rqppriority The resource queue priority for this statement (MAX, HIGH,
MEDIUM, LOW).

rqpweight An integer value associated with the priority of this statement.

rqpquery The query text of the statement.

gp_resq_role

This view shows the resource queues associated with a role. This view is accessible to
all users.

Table I.15 gp_resq_role view

Column Description

rrrolname Role (user) name.

rrrsqname The resource queue name assigned to this role. If a role has not been
explicitly assigned to a resource queue, it will be in the default
resource queue (pg_default).
Checking Resource Queue Activity and Status 959

Greenplum Database Administrator Guide 4.1 – Appendix I: The gp_toolkit Administrative Schema
gp_resqueue_status

This view allows administrators to see status and activity for a workload management
resource queue. It shows how many queries are waiting to run and how many queries
are currently active in the system from a particular resource queue.

Table I.16 gp_resqueue_status view

Column Description

The ID of the resource queue.

The name of the resource queue.

The active query threshold of the resource queue.
A value of -1 means no limit.

The number of active query slots currently being
used in the resource queue.

The query cost threshold of the resource queue. A
value of -1 means no limit.

The total cost of all statements currently in the
resource queue.

The memory limit for the resource queue.

The total memory used by all statements currently
in the resource queue.

The number of statements currently waiting in the
resource queue.

The number of statements currently running on the
system from this resource queue.

Viewing Users and Groups (Roles)
It is frequently convenient to group users (roles) together to ease management of
object privileges: that way, privileges can be granted to, or revoked from, a group as a
whole. In Greenplum Database this is done by creating a role that represents the
group, and then granting membership in the group role to individual user roles.

The gp_roles_assigned view can be used to see all of the roles in the system, and their
assigned members (if the role is also a group role).

queueid

rsqname

rsqcountlimit

rsqcountvalue

rsqcostlimit

rsqcostvalue

rsqmemorylimit

rsqmemoryvalue

rsqwaiters

rsqholders
Viewing Users and Groups (Roles) 960

Greenplum Database Administrator Guide 4.1 – Appendix I: The gp_toolkit Administrative Schema
gp_roles_assigned

This view shows all of the roles in the system, and their assigned members (if the role
is also a group role). This view is accessible to all users.

Table I.17 gp_roles_assigned view

Column Description

raroleid The role object ID. If this role has members (users), it is considered
a group role.

rarolename The role (user or group) name.

ramemberid The role object ID of the role that is a member of this role.

ramembername Name of the role that is a member of this role.

Checking Database Object Sizes and Disk Space
The gp_size_* family of views can be used to determine the disk space usage for a
distributed Greenplum database, schema, table, or index. The following views
calculate the total size of an object across all primary segments (mirrors are not
included in the size calculations).

• gp_size_of_all_table_indexes

• gp_size_of_database

• gp_size_of_index

• gp_size_of_partition_and_indexes_disk

• gp_size_of_schema_disk

• gp_size_of_table_and_indexes_disk

• gp_size_of_table_and_indexes_licensing

• gp_size_of_table_disk

• gp_size_of_table_uncompressed

• gp_disk_free

The table and index sizing views list the relation by object ID (not by name). To check
the size of a table or index by name, you must look up the relation name (relname) in
the pg_class table. For example:

SELECT relname as name, sotdsize as size, sotdtoastsize as
toast, sotdadditionalsize as other

FROM gp_size_of_table_disk as sotd, pg_class

WHERE sotd.sotdoid=pg_class.oid ORDER BY relname;
Checking Database Object Sizes and Disk Space 961

Greenplum Database Administrator Guide 4.1 – Appendix I: The gp_toolkit Administrative Schema
gp_size_of_all_table_indexes

This view shows the total size of all indexes for a table. This view is accessible to all
users, however non-superusers will only be able to see relations that they have
permission to access.

Table I.18 gp_size_of_all_table_indexes view

Column Description

soatioid The object ID of the table

soatisize The total size of all table indexes in bytes

soatischemaname The schema name

soatitablename The table name

gp_size_of_database

This view shows the total size of a database. This view is accessible to all users,
however non-superusers will only be able to see databases that they have permission
to access.

Table I.19 gp_size_of_database view

Column Description

sodddatname The name of the database

sodddatsize The size of the database in bytes

gp_size_of_index

This view shows the total size of an index. This view is accessible to all users,
however non-superusers will only be able to see relations that they have permission to
access.

Table I.20 gp_size_of_index view

Column Description

soioid The object ID of the index

soitableoid The object ID of the table to which the index belongs

soisize The size of the index in bytes

soiindexschemaname The name of the index schema

soiindexname The name of the index

soitableschemaname The name of the table schema

soitablename The name of the table
Checking Database Object Sizes and Disk Space 962

Greenplum Database Administrator Guide 4.1 – Appendix I: The gp_toolkit Administrative Schema
gp_size_of_partition_and_indexes_disk

This view shows the size on disk of partitioned child tables and their indexes. This
view is accessible to all users, however non-superusers will only be able to see
relations that they have permission to access..

Table I.21 gp_size_of_partition_and_indexes_disk view

Column Description

sopaidparentoid The object ID of the parent table

sopaidpartitionoid The object ID of the partition table

sopaidpartitiontablesize The partition table size in bytes

sopaidpartitionindexessize The total size of all indexes on this partition

Sopaidparentschemaname The name of the parent schema

Sopaidparenttablename The name of the parent table

Sopaidpartitionschemaname The name of the partition schema

sopaidpartitiontablename The name of the partition table

gp_size_of_schema_disk

This view shows schema sizes for the schemas in the current database. This view is
accessible to all users, however non-superusers will only be able to see schemas that
they have permission to access.

Table I.22 gp_size_of_schema_disk view

Column Description

sosdnsp The name of the schema

sosdschematablesize The total size of tables in the schema in bytes

sosdschemaidxsize The total size of indexes in the schema in bytes

gp_size_of_table_and_indexes_disk

This view shows the size on disk of tables and their indexes. This view is accessible to
all users, however non-superusers will only be able to see relations that they have
permission to access.

Table I.23 gp_size_of_table_and_indexes_disk view

Column Description

sotaidoid The object ID of the parent table

sotaidtablesize The disk size of the table

sotaididxsize The total size of all indexes on the table

sotaidschemaname The name of the schema

sotaidtablename The name of the table

Checking Database Object Sizes and Disk Space 963

Greenplum Database Administrator Guide 4.1 – Appendix I: The gp_toolkit Administrative Schema
gp_size_of_table_and_indexes_licensing

This view shows the total size of tables and their indexes for licensing purposes. The
use of this view requires superuser permissions.

Table I.24 gp_size_of_table_and_indexes_licensing view

Column Description

sotailoid The object ID of the table

sotailtablesizedisk The total disk size of the table

sotailtablesizeuncompressed If the table is a compressed append-only table,
shows the uncompressed table size in bytes.

sotailindexessize The total size of all indexes in the table

sotailschemaname The schema name

sotailtablename The table name

gp_size_of_table_disk

This view shows the size of a table on disk. This view is accessible to all users,
however non-superusers will only be able to see tables that they have permission to
access

Table I.25 gp_size_of_table_disk view

Column Description

sotdoid The object ID of the table

sotdsize The total size of the table in bytes (main relation, plus oversized
(toast) attributes, plus additional storage objects for AO tables).

sotdtoastsize The size of the TOAST table (oversized attribute storage), if there is
one.

sotdadditionalsize Reflects the segment and block directory table sizes for append-only
(AO) tables.

sotdschemaname The schema name

sotdtablename The table name

gp_size_of_table_uncompressed

This view shows the uncompressed table size for append-only (AO) tables. Otherwise,
the table size on disk is shown. The use of this view requires superuser permissions.

Table I.26 gp_size_of_table_uncompressed view

Column Description

sotuoid The object ID of the table

sotusize The uncomressed size of the table in bytes if it is a compressed AO
table. Otherwise, the table size on disk.
Checking Database Object Sizes and Disk Space 964

Greenplum Database Administrator Guide 4.1 – Appendix I: The gp_toolkit Administrative Schema
gp_disk_free

This external table runs the df (disk free) command on the active segment hosts and
reports back the results. Inactive mirrors are not included in the calculation. The use of
this external table requires superuser permissions.

Table I.27 gp_disk_free external table

Column Description

dfsegment The content id of the segment (only active segments are
shown)

dfhostname The hostname of the segment host

dfdevice The device name

dfspace Free disk space in the segment file system in kilobytes

Checking for Uneven Data Distribution
All tables in Greenplum Database are distributed, meaning their data is divided across
all of the segments in the system. If the data is not distributed evenly, then query
processing performance may suffer. The following views can help diagnose if a table
has uneven data distribution:

• gp_skew_coefficients

• gp_skew_idle_fractions

gp_skew_coefficients

This view shows data distribution skew by calculating the coefficient of variation
(CV) for the data stored on each segment. This view is accessible to all users, however
non-superusers will only be able to see tables that they have permission to access

Table I.28 gp_skew_coefficients view

Column Description

skcoid The object id of the table.

skcnamespace The namespace where the table is defined.

skcrelname The table name.

skccoeff The coefficient of variation (CV) is calculated as the standard
deviation divided by the average. It takes into account both the
average and variability around the average of a data series. The
lower the value, the better. Higher values indicate greater data skew.

sotuschemaname The schema name

sotutablename The table name

Table I.26 gp_size_of_table_uncompressed view

Column Description
Checking for Uneven Data Distribution 965

Greenplum Database Administrator Guide 4.1 – Appendix I: The gp_toolkit Administrative Schema
gp_skew_idle_fractions

This view shows data distribution skew by calculating the percentage of the system
that is idle during a table scan, which is an indicator of processing data skew. This
view is accessible to all users, however non-superusers will only be able to see tables
that they have permission to access

Table I.29 gp_skew_idle_fractions view

Column Description

sifoid The object id of the table.

sifnamespace The namespace where the table is defined.

sifrelname The table name.

siffraction The percentage of the system that is idle during a table scan, which is
an indicator of uneven data distribution or query processing skew. For
example, a value of 0.1 indicates 10% skew, a value of 0.5 indicates
50% skew, and so on. Tables that have more than 10% skew should
have their distribution policies evaluated.
Checking for Uneven Data Distribution 966

Greenplum Database Administrator Guide 4.1– Appendix J: Oracle Compatibility Functions
J. Oracle Compatibility Functions

This appendix provides references for the Oracle Compatibility SQL functions that are
available in Greenplum Database. These functions target PostgreSQL.

Installing Oracle Compatibility Functions
Before using any Oracle Compatibility Functions, run the installation script
$GPHOME/share/postgresql/contrib/orafunc.sql once for each database. For
example, to install the functions in database testdb, use the command

$ psql –d testdb –f
 $GPHOME/share/postgresql/contrib/orafunc.sql

To uninstall Oracle Compatibity Functions, use the script
$GPHOME/share/postgresql/contrib/uninstall_orafunc.sql.

Note: The decode function is available by default and can be accessed without
running the Oracle Compatibility installer.

Oracle and Greenplum Implementation Differences
The are some differences in the implementation of these compatibility functions in the
Greenplum Database from the Oracle implementation. If you use validation scripts,
the output may not be exactly the same as in Oracle. Some of the differences are as
follows:

• Oracle performs a decimal round off, Greenplum Database does not. 2.00
becomes 2 in Oracle and remains 2.00 in Greenplum Database.

• The provided Oracle Compatibility functions handle implicit type conversions
differently. For example, using the decode function
decode(expression, value, return [,value, return]...
 [, default])

Oracle automatically converts expression and each value to the datatype of the
first value before comparing. Oracle automatically converts return to the same
datatype as the first result.

The Greenplum implementation restricts return, and default to be of the same
data type; and expression and search value to be of the same data type. There
are no implicit type conversions; if decode is called with arguments with different
data types for the expression and search value, the function fails with error.

ERROR: function decode(...) does not exist

• Numbers in bigint format are displayed in scientific notation in Oracle, but not
in Greenplum Database. 9223372036854775 displays as 9.2234E+15 in Oracle
and remains 9223372036854775 in Greenplum Database.

• Greenplum Database limits the number of search/return pairs to three.
Oracle Compatibility Functions 967

Greenplum Database Administrator Guide 4.1– Appendix J: Oracle Compatibility Functions
• The default date and timestamp format in Oracle is different than the default
format in Greenplum Database. If the following code is executed

CREATE TABLE TEST(date1 date, time1 timestamp, time2
 timestamp with timezone);

INSERT INTO TEST VALUES ('2001-11-11','2001-12-13
 01:51:15','2001-12-13 01:51:15 -08:00');

SELECT DECODE(date1, '2001-11-11', '2001-01-01') FROM TEST;

Greenplum Database returns the row, but Oracle does not return any rows.

Note: The correct syntax in Oracle is

SELECT DECODE(to_char(date1, 'YYYY-MM-DD'), '2001-11-11',
 '2001-01-01') FROM TEST

which returns the row.

• A null to null comparison returns different results in Greenplum Database and
Oracle. The decode function
decode(null, null, 23, 79)

returns the following error in Greenplum Database

ERROR: could not determine anyarray/anyelement type because
input has type "unknown"

but returns the value 23 in Oracle.

Available Oracle Compatibility Functions
The following Oracle Compatibility Functions are available.

• decode

• nvl
Oracle Compatibility Functions 968

Greenplum Database Administrator Guide 4.1– Appendix J: Oracle Compatibility Functions
decode
Oracle-compliant function to transform a data value to a specified return value. This
function is a way to implement a set of CASE statements.

Note: This function is an overloaded function. It shares the same name with the
Postgres decode function that decodes binary strings previously encoded to
ASCII-only representation. The number of arguments determines the functionality.

• The Postgres decode function for binary strings takes exactly two arguments.

• This Oracle-compliant decode function takes three or more arguments.

Synopsis
decode(expression, value, return [,value, return]...
 [, default])

Description

The Oracle-compatible function decode searches for a value in an expression. If the
value is found, the function returns the specified value.

Note: This function is available by default and can be accessed without running the
Oracle Compatibility installer.

Parameters

expression

The expression to search.

value

The value to find in the expression.

return

What to return if expression matches value.

default

What to return if expression does not match any of the values.

Only one expression is passed to the function. Multiple value/return pairs can be
passed.

The default parameter is optional. If default is not specified and if expression
does not match any of the passed value parameters, decode returns null. There are
data type restrictions on the parameters, as follows:

• The parameters return and default must all be the same data type.

• The parameters expression and value must all be the same data type.

There are no implicit data type conversions. If decode is called with arguments of
different data types, the function fails with the following error message:
Oracle Compatibility Functions 969

Greenplum Database Administrator Guide 4.1– Appendix J: Oracle Compatibility Functions
ERROR: function decode(...) does not exist

Examples

In the following code, decode searches for a value for company_id and returns a
specified value for that company. If company_id not one of the listed values, the
default value Other is returned.

SELECT decode(company_id, 1, 'EMC',
 2, 'Greenplum',
 'Other')

FROM suppliers;

The following code using CASE statements to produce the same result as the example
using decode.

SELECT CASE company_id
 WHEN 1 THEN 'EMC'
 WHEN 2 THEN 'Greenplum'
 ELSE 'Other'
 END
FROM suppliers;

Notes

To assign a range of values to a single return value, either pass an expression for each
value in the range, or pass an expression that evaluates identically for all values in the
range. For example, if a fiscal year begins on August 1, the quarters are shown in the
following table.

Table J.1 Months and Quarters for Fiscal Year Beginning on August 1

Range (Alpha) Range (Numeric) Quarter

August — October 8 — 10 Q1

November — January 11 — 1 Q2

February — April 2 — 4 Q3

May — July 5 — 7 Q4

The table contains a numeric field curr_month that holds the numeric value of a
month, 1 – 12. There are two ways to use decode to get the quarter.

Method 1 - Include 12 values in the decode function
SELECT decode(curr_month, 1, 'Q2',
 2, 'Q3',
 3, 'Q3',
 4, 'Q3',
 5, 'Q4',
 6, 'Q4',
 7, 'Q4',
 8, 'Q1',
Oracle Compatibility Functions 970

Greenplum Database Administrator Guide 4.1– Appendix J: Oracle Compatibility Functions
 9, 'Q1',
 10, 'Q1',
 11, 'Q2',
 12, 'Q2')

FROM suppliers;

Method 2 - Use an expression that defines a unique value to decode
SELECT decode((1+MOD(curr_month+4,12)/3)::int, 1, 'Q1',
 2, 'Q2',
 3, 'Q3',
 4, 'Q4',

FROM suppliers;

Compatibility

This command is compatible with Oracle syntax and is provided for convenience.

See Also

PostgreSQL decode (not compatible with Oracle)
Oracle Compatibility Functions 971

http://www.postgresql.org/docs/8.2/static/functions-binarystring.html

Greenplum Database Administrator Guide 4.1– Appendix J: Oracle Compatibility Functions
nvl
Oracle-compliant function to substitute a specified value when an expression
evaluates to null.

Note: This function is analogous to PostgreSQL coalesce function.

Synopsis
nvl(expression_to_evaluate, null_replacement_value)

Description
This Oracle-compatible function evaluates expression_to_evaluate. If it is null,
the function returns null_replacement_value; otherwise, it returns
expression_to_evaluate.

Parameters

expression_to_evaluate

The expression to evaluate for a null value.

null_replacement_value

The value to return if expression_to_evaluate is null.

Both expression_to_evaluate and null_replacement_value must be the same
data type.

Examples
SELECT nvl(contact_name,’None’)

FROM clients;

SELECT nvl(amount_past_due,0)

FROM txns;

SELECT nvl(nickname, firstname)

FROM contacts;

Compatibility

This command is compatible with Oracle syntax and is provided for convenience.
Oracle Compatibility Functions 972

Greenplum Database Administrator Guide 4.1– Appendix J: Oracle Compatibility Functions
Oracle Compatibility Functions 973

Greenplum Database Administrator Guide 4.1– Appendix K: Character Set Support
K. Character Set Support

The character set support in Greenplum Database allows you to store text in a variety
of character sets, including single-byte character sets such as the ISO 8859 series and
multiple-byte character sets such as EUC (Extended Unix Code), UTF-8, and Mule
internal code. All supported character sets can be used transparently by clients, but a
few are not supported for use within the server (that is, as a server-side encoding). The
default character set is selected while initializing your Greenplum Database array
using gpinitsystem. It can be overridden when you create a database, so you can
have multiple databases each with a different character set.

Table K.1 Greenplum Database Character Sets1

Name Description Language Server? Bytes/Char Aliases

BIG5 Big Five Traditional Chinese No 1-2 WIN950,
Windows950

EUC_CN Extended UNIX Code-CN Simplified Chinese Yes 1-3

EUC_JP Extended UNIX Code-JP Japanese Yes 1-3

EUC_KR Extended UNIX Code-KR Korean Yes 1-3

EUC_TW Extended UNIX Code-TW Traditional Chinese,
Taiwanese

Yes 1-3

GB18030 National Standard Chinese No 1-2

GBK Extended National Standard Simplified Chinese No 1-2 WIN936,
Windows936

ISO_8859_5 ISO 8859-5, ECMA 113 Latin/Cyrillic Yes 1

ISO_8859_6 ISO 8859-6, ECMA 114 Latin/Arabic Yes 1

ISO_8859_7 ISO 8859-7, ECMA 118 Latin/Greek Yes 1

ISO_8859_8 ISO 8859-8, ECMA 121 Latin/Hebrew Yes 1

JOHAB JOHA Korean (Hangul) Yes 1-3

KOI8 KOI8-R(U) Cyrillic Yes 1 KOI8R

LATIN1 ISO 8859-1, ECMA 94 Western European Yes 1 ISO88591

LATIN2 ISO 8859-2, ECMA 94 Central European Yes 1 ISO88592

LATIN3 ISO 8859-3, ECMA 94 South European Yes 1 ISO88593

LATIN4 ISO 8859-4, ECMA 94 North European Yes 1 ISO88594

LATIN5 ISO 8859-9, ECMA 128 Turkish Yes 1 ISO88599

LATIN6 ISO 8859-10, ECMA 144 Nordic Yes 1 ISO885910

LATIN7 ISO 8859-13 Baltic Yes 1 ISO885913

LATIN8 ISO 8859-14 Celtic Yes 1 ISO885914

LATIN9 ISO 8859-15 LATIN1 with Euro
and accents

Yes 1 ISO885915
Character Set Support 974

Greenplum Database Administrator Guide 4.1– Appendix K: Character Set Support
Setting the Character Set
gpinitsystem defines the default character set for a Greenplum Database system by
reading the setting of the ENCODING parameter in the gp_init_config file at
initialization time. The default character set is UNICODE or UTF8.

You can create a database with a different character set besides what is used as the
system-wide default. For example:

=> CREATE DATABASE korean WITH ENCODING 'EUC_KR';

Important: Although you can specify any encoding you want for a database, it is
unwise to choose an encoding that is not what is expected by the locale you have
selected. The LC_COLLATE and LC_CTYPE settings imply a particular encoding, and
locale-dependent operations (such as sorting) are likely to misinterpret data that is in
an incompatible encoding.

LATIN10 ISO 8859-16, ASRO SR 14111 Romanian Yes 1 ISO885916

MULE_INTERNAL Mule internal code Multilingual Emacs Yes 1-4

SJIS Shift JIS Japanese No 1-2 Mskanji, ShiftJIS,
WIN932,
Windows932

SQL_ASCII unspecified2 any No 1

UHC Unified Hangul Code Korean No 1-2 WIN949,
Windows949

UTF8 Unicode, 8-bit all Yes 1-4 Unicode

WIN866 Windows CP866 Cyrillic Yes 1 ALT

WIN874 Windows CP874 Thai Yes 1

WIN1250 Windows CP1250 Central European Yes 1

WIN1251 Windows CP1251 Cyrillic Yes 1 WIN

WIN1252 Windows CP1252 Western European Yes 1

WIN1253 Windows CP1253 Greek Yes 1

WIN1254 Windows CP1254 Turkish Yes 1

WIN1255 Windows CP1255 Hebrew Yes 1

WIN1256 Windows CP1256 Arabic Yes 1

WIN1257 Windows CP1257 Baltic Yes 1

WIN1258 Windows CP1258 Vietnamese Yes 1 ABC, TCVN,
TCVN5712,
VSCII

1. Not all APIs support all the listed character sets. For example, the JDBC driver does not support MULE_INTERNAL, LATIN6,
LATIN8, and LATIN10.

2. The SQL_ASCII setting behaves considerably differently from the other settings. Byte values 0-127 are interpreted according to
the ASCII standard, while byte values 128-255 are taken as uninterpreted characters. If you are working with any non-ASCII
data, it is unwise to use the SQL_ASCII setting as a client encoding. SQL_ASCII is not supported as a server encoding.

Table K.1 Greenplum Database Character Sets1

Name Description Language Server? Bytes/Char Aliases
Character Set Support 975

Greenplum Database Administrator Guide 4.1– Appendix K: Character Set Support
Since these locale settings are frozen by gpinitsystem, the apparent flexibility to
use different encodings in different databases is more theoretical than real.

One way to use multiple encodings safely is to set the locale to C or POSIX during
initialization time, thus disabling any real locale awareness.

Character Set Conversion Between Server and Client
Greenplum Database supports automatic character set conversion between server and
client for certain character set combinations. The conversion information is stored in
the master pg_conversion system catalog table. Greenplum Database comes with
some predefined conversions or you can create a new conversion using the SQL
command CREATE CONVERSION.

Table K.2 Client/Server Character Set Conversions

Server Character Set Available Client Character Sets

BIG5 not supported as a server encoding

EUC_CN EUC_CN, MULE_INTERNAL, UTF8

EUC_JP EUC_JP, MULE_INTERNAL, SJIS, UTF8

EUC_KR EUC_KR, MULE_INTERNAL, UTF8

EUC_TW EUC_TW, BIG5, MULE_INTERNAL, UTF8

GB18030 not supported as a server encoding

GBK not supported as a server encoding

ISO_8859_5 ISO_8859_5, KOI8, MULE_INTERNAL, UTF8, WIN866,
WIN1251

ISO_8859_6 ISO_8859_6, UTF8

ISO_8859_7 ISO_8859_7, UTF8

ISO_8859_8 ISO_8859_8, UTF8

JOHAB JOHAB, UTF8

KOI8 KOI8, ISO_8859_5, MULE_INTERNAL, UTF8, WIN866,
WIN1251

LATIN1 LATIN1, MULE_INTERNAL, UTF8

LATIN2 LATIN2, MULE_INTERNAL, UTF8, WIN1250

LATIN3 LATIN3, MULE_INTERNAL, UTF8

LATIN4 LATIN4, MULE_INTERNAL, UTF8

LATIN5 LATIN5, UTF8

LATIN6 LATIN6, UTF8

LATIN7 LATIN7, UTF8

LATIN8 LATIN8, UTF8

LATIN9 LATIN9, UTF8

LATIN10 LATIN10, UTF8
Character Set Support 976

Greenplum Database Administrator Guide 4.1– Appendix K: Character Set Support
To enable automatic character set conversion, you have to tell Greenplum Database
the character set (encoding) you would like to use in the client. There are several ways
to accomplish this:

• Using the \encoding command in psql, which allows you to change client
encoding on the fly.

• Using SET client_encoding TO. Setting the client encoding can be done with
this SQL command:
=> SET CLIENT_ENCODING TO 'value';

To query the current client encoding:

=> SHOW client_encoding;

To return to the default encoding:

=> RESET client_encoding;

• Using the PGCLIENTENCODING environment variable. When PGCLIENTENCODING
is defined in the client’s environment, that client encoding is automatically
selected when a connection to the server is made. (This can subsequently be
overridden using any of the other methods mentioned above.)

MULE_INTERNAL MULE_INTERNAL, BIG5, EUC_CN, EUC_JP, EUC_KR,
EUC_TW, ISO_8859_5, KOI8, LATIN1 to LATIN4, SJIS,
WIN866, WIN1250, WIN1251

SJIS not supported as a server encoding

SQL_ASCII not supported as a server encoding

UHC not supported as a server encoding

UTF8 all supported encodings

WIN866 WIN866

ISO_8859_5 KOI8, MULE_INTERNAL, UTF8, WIN1251

WIN874 WIN874, UTF8

WIN1250 WIN1250, LATIN2, MULE_INTERNAL, UTF8

WIN1251 WIN1251, ISO_8859_5, KOI8, MULE_INTERNAL, UTF8,
WIN866

WIN1252 WIN1252, UTF8

WIN1253 WIN1253, UTF8

WIN1254 WIN1254, UTF8

WIN1255 WIN1255, UTF8

WIN1256 WIN1256, UTF8

WIN1257 WIN1257, UTF8

WIN1258 WIN1258, UTF8

Table K.2 Client/Server Character Set Conversions

Server Character Set Available Client Character Sets
Character Set Support 977

Greenplum Database Administrator Guide 4.1– Appendix K: Character Set Support
• Setting the configuration parameter client_encoding. If client_encoding is
set in the master postgresql.conf file, that client encoding is automatically
selected when a connection to Greenplum Database is made. (This can
subsequently be overridden using any of the other methods mentioned above.)

If the conversion of a particular character is not possible — suppose you chose
EUC_JP for the server and LATIN1 for the client, then some Japanese characters do not
have a representation in LATIN1 — then an error is reported.

If the client character set is defined as SQL_ASCII, encoding conversion is disabled,
regardless of the server’s character set. The use of SQL_ASCII is unwise unless you
are working with all-ASCII data. SQL_ASCII is not supported as a server encoding.
Character Set Support 978

Greenplum Database Administrator Guide 4.1– Appendix L: SQL 2008 Optional Feature Compliance
L. SQL 2008 Optional Feature Compliance

The following table is list of features described in the 2008 SQL standard. Features
that are supported in Greenplum Database are marked as YES in the ‘Supported’
column, features that are not implemented are marked as NO.

For more information on Greenplum features and SQL compliance, see “Summary of
Greenplum Features” on page 14.

Table L.1 SQL 2008 Optional Feature Compliance Details

ID Feature Supported Comments

B011 Embedded Ada NO

B012 Embedded C NO Due to issues with PostgreSQL
ecpg

B013 Embedded COBOL NO

B014 Embedded Fortran NO

B015 Embedded MUMPS NO

B016 Embedded Pascal NO

B017 Embedded PL/I NO

B021 Direct SQL YES

B031 Basic dynamic SQL NO

B032 Extended dynamic SQL NO

B033 Untyped SQL-invoked function arguments NO

B034 Dynamic specification of cursor attributes NO

B035 Non-extended descriptor names NO

B041 Extensions to embedded SQL exception declarations NO

B051 Enhanced execution rights NO

B111 Module language Ada NO

B112 Module language C NO

B113 Module language COBOL NO

B114 Module language Fortran NO

B115 Module language MUMPS NO

B116 Module language Pascal NO

B117 Module language PL/I NO

B121 Routine language Ada NO

B122 Routine language C NO

B123 Routine language COBOL NO

B124 Routine language Fortran NO
SQL 2008 Optional Feature Compliance 979

Greenplum Database Administrator Guide 4.1– Appendix L: SQL 2008 Optional Feature Compliance
B125 Routine language MUMPS NO

B126 Routine language Pascal NO

B127 Routine language PL/I NO

B128 Routine language SQL NO

E011 Numeric data types YES

E011-01 INTEGER and SMALLINT data types YES

E011-02 DOUBLE PRECISION and FLOAT data types YES

E011-03 DECIMAL and NUMERIC data types YES

E011-04 Arithmetic operators YES

E011-05 Numeric comparison YES

E011-06 Implicit casting among the numeric data types YES

E021 Character data types YES

E021-01 CHARACTER data type YES

E021-02 CHARACTER VARYING data type YES

E021-03 Character literals YES

E021-04 CHARACTER_LENGTH function YES Trims trailing spaces from
CHARACTER values before
counting

E021-05 OCTET_LENGTH function YES

E021-06 SUBSTRING function YES

E021-07 Character concatenation YES

E021-08 UPPER and LOWER functions YES

E021-09 TRIM function YES

E021-10 Implicit casting among the character string types YES

E021-11 POSITION function YES

E021-12 Character comparison YES

E031 Identifiers YES

E031-01 Delimited identifiers YES

E031-02 Lower case identifiers YES

E031-03 Trailing underscore YES

E051 Basic query specification YES

E051-01 SELECT DISTINCT YES

E051-02 GROUP BY clause YES

E051-03 GROUP BY can contain columns not in SELECT list YES

Table L.1 SQL 2008 Optional Feature Compliance Details

ID Feature Supported Comments
SQL 2008 Optional Feature Compliance 980

Greenplum Database Administrator Guide 4.1– Appendix L: SQL 2008 Optional Feature Compliance
E051-04 SELECT list items can be renamed YES

E051-05 HAVING clause YES

E051-06 Qualified * in SELECT list YES

E051-07 Correlation names in the FROM clause YES

E051-08 Rename columns in the FROM clause YES

E061 Basic predicates and search conditions YES

E061-01 Comparison predicate YES

E061-02 BETWEEN predicate YES

E061-03 IN predicate with list of values YES

E061-04 LIKE predicate YES

E061-05 LIKE predicate ESCAPE clause YES

E061-06 NULL predicate YES

E061-07 Quantified comparison predicate YES

E061-08 EXISTS predicate YES Not all uses work in Greenplum

E061-09 Subqueries in comparison predicate YES

E061-11 Subqueries in IN predicate YES

E061-12 Subqueries in quantified comparison predicate YES

E061-13 Correlated subqueries NO

E061-14 Search condition YES

E071 Basic query expressions YES

E071-01 UNION DISTINCT table operator YES

E071-02 UNION ALL table operator YES

E071-03 EXCEPT DISTINCT table operator YES

E071-05 Columns combined via table operators need not have
exactly the same data type

YES

E071-06 Table operators in subqueries YES

E081 Basic Privileges NO Partial sub-feature support

E081-01 SELECT privilege YES

E081-02 DELETE privilege YES

E081-03 INSERT privilege at the table level YES

E081-04 UPDATE privilege at the table level YES

E081-05 UPDATE privilege at the column level NO

E081-06 REFERENCES privilege at the table level NO

E081-07 REFERENCES privilege at the column level NO

Table L.1 SQL 2008 Optional Feature Compliance Details

ID Feature Supported Comments
SQL 2008 Optional Feature Compliance 981

Greenplum Database Administrator Guide 4.1– Appendix L: SQL 2008 Optional Feature Compliance
E081-08 WITH GRANT OPTION YES

E081-09 USAGE privilege YES

E081-10 EXECUTE privilege YES

E091 Set Functions YES

E091-01 AVG YES

E091-02 COUNT YES

E091-03 MAX YES

E091-04 MIN YES

E091-05 SUM YES

E091-06 ALL quantifier YES

E091-07 DISTINCT quantifier YES

E101 Basic data manipulation YES

E101-01 INSERT statement YES

E101-03 Searched UPDATE statement YES

E101-04 Searched DELETE statement YES

E111 Single row SELECT statement YES

E121 Basic cursor support YES

E121-01 DECLARE CURSOR YES

E121-02 ORDER BY columns need not be in select list YES

E121-03 Value expressions in ORDER BY clause YES

E121-04 OPEN statement YES

E121-06 Positioned UPDATE statement NO

E121-07 Positioned DELETE statement NO

E121-08 CLOSE statement YES

E121-10 FETCH statement implicit NEXT YES

E121-17 WITH HOLD cursors YES

E131 Null value support YES

E141 Basic integrity constraints YES

E141-01 NOT NULL constraints YES

E141-02 UNIQUE constraints of NOT NULL columns YES Must be the same as or a
superset of the Greenplum
distribution key

E141-03 PRIMARY KEY constraints YES Must be the same as or a
superset of the Greenplum
distribution key

Table L.1 SQL 2008 Optional Feature Compliance Details

ID Feature Supported Comments
SQL 2008 Optional Feature Compliance 982

Greenplum Database Administrator Guide 4.1– Appendix L: SQL 2008 Optional Feature Compliance
E141-04 Basic FOREIGN KEY constraint with the NO ACTION
default for both referential delete action and
referential update action

NO

E141-06 CHECK constraints YES

E141-07 Column defaults YES

E141-08 NOT NULL inferred on PRIMARY KEY YES

E141-10 Names in a foreign key can be specified in any order YES Foreign keys can be declared but
are not enforced in Greenplum

E151 Transaction support YES

E151-01 COMMIT statement YES

E151-02 ROLLBACK statement YES

E152 Basic SET TRANSACTION statement YES

E152-01 ISOLATION LEVEL SERIALIZABLE clause YES

E152-02 READ ONLY and READ WRITE clauses YES

E153 Updatable queries with subqueries NO

E161 SQL comments using leading double minus YES

E171 SQLSTATE support YES

E182 Module language NO

F021 Basic information schema YES

F021-01 COLUMNS view YES

F021-02 TABLES view YES

F021-03 VIEWS view YES

F021-04 TABLE_CONSTRAINTS view YES

F021-05 REFERENTIAL_CONSTRAINTS view YES

F021-06 CHECK_CONSTRAINTS view YES

F031 Basic schema manipulation YES

F031-01 CREATE TABLE statement to create persistent base
tables

YES

F031-02 CREATE VIEW statement YES

F031-03 GRANT statement YES

F031-04 ALTER TABLE statement: ADD COLUMN clause YES

F031-13 DROP TABLE statement: RESTRICT clause YES

F031-16 DROP VIEW statement: RESTRICT clause YES

F031-19 REVOKE statement: RESTRICT clause YES

F032 CASCADE drop behavior YES

Table L.1 SQL 2008 Optional Feature Compliance Details

ID Feature Supported Comments
SQL 2008 Optional Feature Compliance 983

Greenplum Database Administrator Guide 4.1– Appendix L: SQL 2008 Optional Feature Compliance
F033 ALTER TABLE statement: DROP COLUMN clause YES

F034 Extended REVOKE statement YES

F034-01 REVOKE statement performed by other than the owner
of a schema object

YES

F034-02 REVOKE statement: GRANT OPTION FOR clause YES

F034-03 REVOKE statement to revoke a privilege that the
grantee has WITH GRANT OPTION

YES

F041 Basic joined table YES

F041-01 Inner join (but not necessarily the INNER keyword) YES

F041-02 INNER keyword YES

F041-03 LEFT OUTER JOIN YES

F041-04 RIGHT OUTER JOIN YES

F041-05 Outer joins can be nested YES

F041-07 The inner table in a left or right outer join can also be
used in an inner join

YES

F041-08 All comparison operators are supported (rather than
just =)

YES

F051 Basic date and time YES

F051-01 DATE data type (including support of DATE literal) YES

F051-02 TIME data type (including support of TIME literal) with
fractional seconds precision of at least 0

YES

F051-03 TIMESTAMP data type (including support of
TIMESTAMP literal) with fractional seconds precision
of at least 0 and 6

YES

F051-04 Comparison predicate on DATE, TIME, and
TIMESTAMP data types

YES

F051-05 Explicit CAST between datetime types and character
string types

YES

F051-06 CURRENT_DATE YES

F051-07 LOCALTIME YES

F051-08 LOCALTIMESTAMP YES

F052 Intervals and datetime arithmetic YES

F053 OVERLAPS predicate YES

F081 UNION and EXCEPT in views YES

F111 Isolation levels other than SERIALIZABLE YES

F111-01 READ UNCOMMITTED isolation level NO Can be declared but is treated as
a synonym for READ COMMITTED

Table L.1 SQL 2008 Optional Feature Compliance Details

ID Feature Supported Comments
SQL 2008 Optional Feature Compliance 984

Greenplum Database Administrator Guide 4.1– Appendix L: SQL 2008 Optional Feature Compliance
F111-02 READ COMMITTED isolation level YES

F111-03 REPEATABLE READ isolation level NO Can be declared but is treated as
a synonym for SERIALIZABLE

F121 Basic diagnostics management NO

F122 Enhanced diagnostics management NO

F123 All diagnostics NO

F131- Grouped operations YES

F131-01 WHERE, GROUP BY, and HAVING clauses supported in
queries with grouped views

YES

F131-02 Multiple tables supported in queries with grouped
views

YES

F131-03 Set functions supported in queries with grouped views YES

F131-04 Subqueries with GROUP BY and HAVING clauses and
grouped views

YES

F131-05 Single row SELECT with GROUP BY and HAVING
clauses and grouped views

YES

F171 Multiple schemas per user YES

F181 Multiple module support NO

F191 Referential delete actions NO

F200 TRUNCATE TABLE statement YES

F201 CAST function YES

F202 TRUNCATE TABLE: identity column restart option NO

F221 Explicit defaults YES

F222 INSERT statement: DEFAULT VALUES clause YES

F231 Privilege tables YES

F231-01 TABLE_PRIVILEGES view YES

F231-02 COLUMN_PRIVILEGES view YES

F231-03 USAGE_PRIVILEGES view YES

F251 Domain support

F261 CASE expression YES

F261-01 Simple CASE YES

F261-02 Searched CASE YES

F261-03 NULLIF YES

F261-04 COALESCE YES

F262 Extended CASE expression NO

Table L.1 SQL 2008 Optional Feature Compliance Details

ID Feature Supported Comments
SQL 2008 Optional Feature Compliance 985

Greenplum Database Administrator Guide 4.1– Appendix L: SQL 2008 Optional Feature Compliance
F263 Comma-separated predicates in simple CASE
expression

NO

F271 Compound character literals YES

F281 LIKE enhancements YES

F291 UNIQUE predicate NO

F301 CORRESPONDING in query expressions NO

F302 INTERSECT table operator YES

F302-01 INTERSECT DISTINCT table operator YES

F302-02 INTERSECT ALL table operator YES

F304 EXCEPT ALL table operator

F311 Schema definition statement YES Partial sub-feature support

F311-01 CREATE SCHEMA YES

F311-02 CREATE TABLE for persistent base tables YES

F311-03 CREATE VIEW YES

F311-04 CREATE VIEW: WITH CHECK OPTION NO

F311-05 GRANT statement YES

F312 MERGE statement NO

F313 Enhanced MERGE statement NO

F321 User authorization YES

F341 Usage Tables NO

F361 Subprogram support YES

F381 Extended schema manipulation YES

F381-01 ALTER TABLE statement: ALTER COLUMN clause Some limitations on altering
distribution key columns

F381-02 ALTER TABLE statement: ADD CONSTRAINT clause

F381-03 ALTER TABLE statement: DROP CONSTRAINT
clause

F382 Alter column data type YES Some limitations on altering
distribution key columns

F391 Long identifiers YES

F392 Unicode escapes in identifiers NO

F393 Unicode escapes in literals NO

F394 Optional normal form specification NO

F401 Extended joined table YES

F401-01 NATURAL JOIN YES

Table L.1 SQL 2008 Optional Feature Compliance Details

ID Feature Supported Comments
SQL 2008 Optional Feature Compliance 986

Greenplum Database Administrator Guide 4.1– Appendix L: SQL 2008 Optional Feature Compliance
F401-02 FULL OUTER JOIN YES

F401-04 CROSS JOIN YES

F402 Named column joins for LOBs, arrays, and multisets NO

F403 Partitioned joined tables NO

F411 Time zone specification YES Differences regarding literal
interpretation

F421 National character YES

F431 Read-only scrollable cursors YES Forward scrolling only

01 FETCH with explicit NEXT YES

02 FETCH FIRST NO

03 FETCH LAST YES

04 FETCH PRIOR NO

05 FETCH ABSOLUTE NO

06 FETCH RELATIVE NO

F441 Extended set function support YES

F442 Mixed column references in set functions YES

F451 Character set definition NO

F461 Named character sets NO

F471 Scalar subquery values YES

F481 Expanded NULL predicate YES

F491 Constraint management YES

F501 Features and conformance views YES

F501-01 SQL_FEATURES view YES

F501-02 SQL_SIZING view YES

F501-03 SQL_LANGUAGES view YES

F502 Enhanced documentation tables YES

F502-01 SQL_SIZING_PROFILES view YES

F502-02 SQL_IMPLEMENTATION_INFO view YES

F502-03 SQL_PACKAGES view YES

F521 Assertions NO

F531 Temporary tables YES Non-standard form

F555 Enhanced seconds precision YES

F561 Full value expressions YES

F571 Truth value tests YES

Table L.1 SQL 2008 Optional Feature Compliance Details

ID Feature Supported Comments
SQL 2008 Optional Feature Compliance 987

Greenplum Database Administrator Guide 4.1– Appendix L: SQL 2008 Optional Feature Compliance
F591 Derived tables YES

F611 Indicator data types YES

F641 Row and table constructors NO

F651 Catalog name qualifiers YES

F661 Simple tables NO

F671 Subqueries in CHECK NO Intentionally ommitted

F672 Retrospective check constraints YES

F690 Collation support NO

F692 Enhanced collation support NO

F693 SQL-session and client module collations NO

F695 Translation support NO

F696 Additional translation documentation NO

F701 Referential update actions NO

F711 ALTER domain YES

F721 Deferrable constraints NO

F731 INSERT column privileges NO

F741 Referential MATCH types NO No partial match

F751 View CHECK enhancements NO

F761 Session management YES

F762 CURRENT_CATALOG NO

F763 CURRENT_SCHEMA NO

F771 Connection management YES

F781 Self-referencing operations YES

F791 Insensitive cursors YES

F801 Full set function YES

F812 Basic flagging NO

F813 Extended flagging NO

F831 Full cursor update NO

F841 LIKE_REGEX predicate NO Non-standard syntax for regex

F842 OCCURENCES_REGEX function NO

F843 POSITION_REGEX function NO

F844 SUBSTRING_REGEX function NO

F845 TRANSLATE_REGEX function NO

F846 Octet support in regular expression operators NO

Table L.1 SQL 2008 Optional Feature Compliance Details

ID Feature Supported Comments
SQL 2008 Optional Feature Compliance 988

Greenplum Database Administrator Guide 4.1– Appendix L: SQL 2008 Optional Feature Compliance
F847 Nonconstant regular expressions NO

F850 Top-level ORDER BY clause in query expression YES

F851 Top-level ORDER BY clause in subqueries NO

F852 Top-level ORDER BY clause in views NO

F855 Nested ORDER BY clause in query expression NO

F856 Nested FETCH FIRST clause in query expression NO

F857 Top-level FETCH FIRST clause in query expression NO

F858 FETCH FIRST clause in subqueries NO

F859 Top-level FETCH FIRST clause in views NO

F860 FETCH FIRST ROW count in FETCH FIRST clause NO

F861 Top-level RESULT OFFSET clause in query
expression

NO

F862 RESULT OFFSET clause in subqueries NO

F863 Nested RESULT OFFSET clause in query expression NO

F864 Top-level RESULT OFFSET clause in views NO

F865 OFFSET ROW count in RESULT OFFSET clause NO

S011 Distinct data types NO

S023 Basic structured types NO

S024 Enhanced structured types NO

S025 Final structured types NO

S026 Self-referencing structured types NO

S027 Create method by specific method name NO

S028 Permutable UDT options list NO

S041 Basic reference types NO

S043 Enhanced reference types NO

S051 Create table of type NO

S071 SQL paths in function and type name resolution YES

S091 Basic array support NO Greenplum has arrays, but is
not fully standards compliant

S091-01 Arrays of built-in data types NO Partially compliant

S091-02 Arrays of distinct types NO

S091-03 Array expressions NO

S092 Arrays of user-defined types NO

S094 Arrays of reference types NO

Table L.1 SQL 2008 Optional Feature Compliance Details

ID Feature Supported Comments
SQL 2008 Optional Feature Compliance 989

Greenplum Database Administrator Guide 4.1– Appendix L: SQL 2008 Optional Feature Compliance
S095 Array constructors by query NO

S096 Optional array bounds NO

S097 Array element assignment NO

S098 ARRAY_AGG NO ORDER BY clause not supported

S111 ONLY in query expressions YES

S151 Type predicate NO

S161 Subtype treatment NO

S162 Subtype treatment for references NO

S201 SQL-invoked routines on arrays NO Functions can be passed
Greenplum array types

S202 SQL-invoked routines on multisets NO

S211 User-defined cast functions YES

S231 Structured type locators NO

S232 Array locators NO

S233 Multiset locators NO

S241 Transform functions NO

S242 Alter transform statement NO

S251 User-defined orderings NO

S261 Specific type method NO

S271 Basic multiset support NO

S272 Multisets of user-defined types NO

S274 Multisets of reference types NO

S275 Advanced multiset support NO

S281 Nested collection types NO

S291 Unique constraint on entire row NO

S301 Enhanced UNNEST NO

S401 Distinct types based on array types NO

S402 Distinct types based on distinct types NO

S403 MAX_CARDINALITY NO

S404 TRIM_ARRAY NO

T011 Timestamp in Information Schema NO

T021 BINARY and VARBINARY data types NO

T022 Advanced support for BINARY and VARBINARY data
types

NO

T023 Compound binary literal NO

Table L.1 SQL 2008 Optional Feature Compliance Details

ID Feature Supported Comments
SQL 2008 Optional Feature Compliance 990

Greenplum Database Administrator Guide 4.1– Appendix L: SQL 2008 Optional Feature Compliance
T024 Spaces in binary literals NO

T031 BOOLEAN data type YES

T041 Basic LOB data type support NO

T042 Extended LOB data type support NO

T043 Multiplier T NO

T044 Multiplier P NO

T051 Row types NO

T052 MAX and MIN for row types NO

T053 Explicit aliases for all-fields reference NO

T061 UCS support NO

T071 BIGINT data type YES

T101 Enhanced nullability determiniation NO

T111 Updatable joins, unions, and columns NO

T121 WITH (excluding RECURSIVE) in query expression NO

T122 WITH (excluding RECURSIVE) in subquery NO

T131 Recursive query NO

T132 Recursive query in subquery NO

T141 SIMILAR predicate YES

T151 DISTINCT predicate YES

T152 DISTINCT predicate with negation NO

T171 LIKE clause in table definition YES

T172 AS subquery clause in table definition YES

T173 Extended LIKE clause in table definition YES

T174 Identity columns NO

T175 Generated columns NO

T176 Sequence generator support NO

T177 Sequence generator support: simple restart option NO

T178 Identity columns: simple restart option NO

T191 Referential action RESTRICT NO

T201 Comparable data types for referential constraints NO

T211 Basic trigger capability NO

T211-01 Triggers activated on UPDATE, INSERT, or DELETE of
one base table

NO

T211-02 BEFORE triggers NO

Table L.1 SQL 2008 Optional Feature Compliance Details

ID Feature Supported Comments
SQL 2008 Optional Feature Compliance 991

Greenplum Database Administrator Guide 4.1– Appendix L: SQL 2008 Optional Feature Compliance
T211-03 AFTER triggers NO

T211-04 FOR EACH ROW triggers NO

T211-05 Ability to specify a search condition that must be true
before the trigger is invoked

NO

T211-06 Support for run-time rules for the interaction of
triggers and constraints

NO

T211-07 TRIGGER privilege YES

T211-08 Multiple triggers for the same event are executed in
the order in which they were created in the catalog

NO Intentionally omitted

T212 Enhanced trigger capability NO

T213 INSTEAD OF triggers NO

T231 Sensitive cursors YES

T241 START TRANSACTION statement YES

T251 SET TRANSACTION statement: LOCAL option NO

T261 Chained transactions NO

T271 Savepoints YES

T272 Enhanced savepoint management NO

T281 SELECT privilege with column granularity NO

T285 Enhanced derived column names NO

T301 Functional dependencies NO

T312 OVERLAY function YES

T321 Basic SQL-invoked routines NO Partial support

T321-01 User-defined functions with no overloading YES

T321-02 User-defined stored procedures with no overloading NO

T321-03 Function invocation YES

T321-04 CALL statement NO

T321-05 RETURN statement NO

T321-06 ROUTINES view YES

T321-07 PARAMETERS view YES

T322 Overloading of SQL-invoked functions and
procedures

YES

T323 Explicit security for external routines YES

T324 Explicit security for SQL routines NO

T325 Qualified SQL parameter references NO

T326 Table functions NO

Table L.1 SQL 2008 Optional Feature Compliance Details

ID Feature Supported Comments
SQL 2008 Optional Feature Compliance 992

Greenplum Database Administrator Guide 4.1– Appendix L: SQL 2008 Optional Feature Compliance
T331 Basic roles NO

T332 Extended roles NO

T351 Bracketed SQL comments (/*...*/ comments) YES

T431 Extended grouping capabilities NO

T432 Nested and concatenated GROUPING SETS NO

T433 Multiargument GROUPING function NO

T434 GROUP BY DISTINCT NO

T441 ABS and MOD functions YES

T461 Symmetric BETWEEN predicate YES

T471 Result sets return value NO

T491 LATERAL derived table NO

T501 Enhanced EXISTS predicate NO

T511 Transaction counts NO

T541 Updatable table references NO

T561 Holdable locators NO

T571 Array-returning external SQL-invoked functions NO

T572 Multiset-returning external SQL-invoked functions NO

T581 Regular expression substring function YES

T591 UNIQUE constraints of possibly null columns YES

T601 Local cursor references NO

T611 Elementary OLAP operations YES

T612 Advanced OLAP operations NO Partially supported

T613 Sampling NO

T614 NTILE function YES

T615 LEAD and LAG functions YES

T616 Null treatment option for LEAD and LAG functions NO

T617 FIRST_VALUE and LAST_VALUE function YES

T618 NTH_VALUE NO Function exists in Greenplum but
not all options are supported

T621 Enhanced numeric functions YES

T631 N predicate with one list element NO

T641 Multiple column assignment NO Some syntax variants supported

T651 SQL-schema statements in SQL routines NO

T652 SQL-dynamic statements in SQL routines NO

Table L.1 SQL 2008 Optional Feature Compliance Details

ID Feature Supported Comments
SQL 2008 Optional Feature Compliance 993

Greenplum Database Administrator Guide 4.1– Appendix L: SQL 2008 Optional Feature Compliance
T653 SQL-schema statements in external routines NO

T654 SQL-dynamic statements in external routines NO

T655 Cyclically dependent routines NO

M001 Datalinks NO

M002 Datalinks via SQL/CLI NO

M003 Datalinks via Embedded SQL NO

M004 Foreign data support NO

M005 Foreign schema support NO

M006 GetSQLString routine NO

M007 TransmitRequest NO

M009 GetOpts and GetStatistics routines NO

M010 Foreign data wrapper support NO

M011 Datalinks via Ada NO

M012 Datalinks via C NO

M013 Datalinks via COBOL NO

M014 Datalinks via Fortran NO

M015 Datalinks via M NO

M016 Datalinks via Pascal NO

M017 Datalinks via PL/I NO

M018 Foreign data wrapper interface routines in Ada NO

M019 Foreign data wrapper interface routines in C NO

M020 Foreign data wrapper interface routines in COBOL NO

M021 Foreign data wrapper interface routines in Fortran NO

M022 Foreign data wrapper interface routines in MUMPS NO

M023 Foreign data wrapper interface routines in Pascal NO

M024 Foreign data wrapper interface routines in PL/I NO

M030 SQL-server foreign data support NO

M031 Foreign data wrapper general routines NO

X010 XML type NO

X011 Arrays of XML type NO

X012 Multisets of XML type NO

X013 Distinct types of XML type NO

X014 Attributes of XML type NO

X015 Fields of XML type NO

Table L.1 SQL 2008 Optional Feature Compliance Details

ID Feature Supported Comments
SQL 2008 Optional Feature Compliance 994

Greenplum Database Administrator Guide 4.1– Appendix L: SQL 2008 Optional Feature Compliance
X016 Persistent XML values NO

X020 XMLConcat NO

X025 XMLCast NO

X030 XMLDocument NO

X031 XMLElement NO

X032 XMLForest NO

X034 XMLAgg NO

X035 XMLAgg: ORDER BY option NO

X036 XMLComment NO

X037 XMLPI NO

X038 XMLText NO

X040 Basic table mapping NO

X041 Basic table mapping: nulls absent NO

X042 Basic table mapping: null as nil NO

X043 Basic table mapping: table as forest NO

X044 Basic table mapping: table as element NO

X045 Basic table mapping: with target namespace NO

X046 Basic table mapping: data mapping NO

X047 Basic table mapping: metadata mapping NO

X048 Basic table mapping: base64 encoding of binary
strings

NO

X049 Basic table mapping: hex encoding of binary strings NO

X051 Advanced table mapping: nulls absent NO

X052 Advanced table mapping: null as nil NO

X053 Advanced table mapping: table as forest NO

X054 Advanced table mapping: table as element NO

X055 Advanced table mapping: target namespace NO

X056 Advanced table mapping: data mapping NO

X057 Advanced table mapping: metadata mapping NO

X058 Advanced table mapping: base64 encoding of binary
strings

NO

X059 Advanced table mapping: hex encoding of binary
strings

NO

X060 XMLParse: Character string input and CONTENT
option

NO

Table L.1 SQL 2008 Optional Feature Compliance Details

ID Feature Supported Comments
SQL 2008 Optional Feature Compliance 995

Greenplum Database Administrator Guide 4.1– Appendix L: SQL 2008 Optional Feature Compliance
X061 XMLParse: Character string input and DOCUMENT
option

NO

X065 XMLParse: BLOB input and CONTENT option NO

X066 XMLParse: BLOB input and DOCUMENT option NO

X068 XMLSerialize: BOM NO

X069 XMLSerialize: INDENT NO

X070 XMLSerialize: Character string serialization and
CONTENT option

NO

X071 XMLSerialize: Character string serialization and
DOCUMENT option

NO

X072 XMLSerialize: Character string serialization NO

X073 XMLSerialize: BLOB serialization and CONTENT
option

NO

X074 XMLSerialize: BLOB serialization and DOCUMENT
option

NO

X075 XMLSerialize: BLOB serialization NO

X076 XMLSerialize: VERSION NO

X077 XMLSerialize: explicit ENCODING option NO

X078 XMLSerialize: explicit XML declaration NO

X080 Namespaces in XML publishing NO

X081 Query-level XML namespace declarations NO

X082 XML namespace declarations in DML NO

X083 XML namespace declarations in DDL NO

X084 XML namespace declarations in compound
statements

NO

X085 Predefined namespace prefixes NO

X086 XML namespace declarations in XMLTable NO

X090 XML document predicate NO

X091 XML content predicate NO

X096 XMLExists NO

X100 Host language support for XML: CONTENT option NO

X101 Host language support for XML: DOCUMENT option NO

X110 Host language support for XML: VARCHAR mapping NO

X111 Host language support for XML: CLOB mapping NO

X112 Host language support for XML: BLOB mapping NO

X113 Host language support for XML: STRIP
WHITESPACE option

NO

Table L.1 SQL 2008 Optional Feature Compliance Details

ID Feature Supported Comments
SQL 2008 Optional Feature Compliance 996

Greenplum Database Administrator Guide 4.1– Appendix L: SQL 2008 Optional Feature Compliance
X114 Host language support for XML: PRESERVE
WHITESPACE option

NO

X120 XML parameters in SQL routines NO

X121 XML parameters in external routines NO

X131 Query-level XMLBINARY clause NO

X132 XMLBINARY clause in DML NO

X133 XMLBINARY clause in DDL NO

X134 XMLBINARY clause in compound statements NO

X135 XMLBINARY clause in subqueries NO

X141 IS VALID predicate: data-driven case NO

X142 IS VALID predicate: ACCORDING TO clause NO

X143 IS VALID predicate: ELEMENT clause NO

X144 IS VALID predicate: schema location NO

X145 IS VALID predicate outside check constraints NO

X151 IS VALID predicate with DOCUMENT option NO

X152 IS VALID predicate with CONTENT option NO

X153 IS VALID predicate with SEQUENCE option NO

X155 IS VALID predicate: NAMESPACE without ELEMENT
clause

NO

X157 IS VALID predicate: NO NAMESPACE with
ELEMENT clause

NO

X160 Basic Information Schema for registered XML
Schemas

NO

X161 Advanced Information Schema for registered XML
Schemas

NO

X170 XML null handling options NO

X171 NIL ON NO CONTENT option NO

X181 XML(DOCUMENT(UNTYPED)) type NO

X182 XML(DOCUMENT(ANY)) type NO

X190 XML(SEQUENCE) type NO

X191 XML(DOCUMENT(XMLSCHEMA)) type NO

X192 XML(CONTENT(XMLSCHEMA)) type NO

X200 XMLQuery NO

X201 XMLQuery: RETURNING CONTENT NO

X202 XMLQuery: RETURNING SEQUENCE NO

X203 XMLQuery: passing a context item NO

Table L.1 SQL 2008 Optional Feature Compliance Details

ID Feature Supported Comments
SQL 2008 Optional Feature Compliance 997

Greenplum Database Administrator Guide 4.1– Appendix L: SQL 2008 Optional Feature Compliance
X204 XMLQuery: initializing an XQuery variable NO

X205 XMLQuery: EMPTY ON EMPTY option NO

X206 XMLQuery: NULL ON EMPTY option NO

X211 XML 1.1 support NO

X221 XML passing mechanism BY VALUE NO

X222 XML passing mechanism BY REF NO

X231 XML(CONTENT(UNTYPED)) type NO

X232 XML(CONTENT(ANY)) type NO

X241 RETURNING CONTENT in XML publishing NO

X242 RETURNING SEQUENCE in XML publishing NO

X251 Persistent XML values of
XML(DOCUMENT(UNTYPED)) type

NO

X252 Persistent XML values of XML(DOCUMENT(ANY))
type

NO

X253 Persistent XML values of
XML(CONTENT(UNTYPED)) type

NO

X254 Persistent XML values of XML(CONTENT(ANY)) type NO

X255 Persistent XML values of XML(SEQUENCE) type NO

X256 Persistent XML values of
XML(DOCUMENT(XMLSCHEMA)) type

NO

X257 Persistent XML values of
XML(CONTENT(XMLSCHEMA)) type

NO

X260 XML type: ELEMENT clause NO

X261 XML type: NAMESPACE without ELEMENT clause NO

X263 XML type: NO NAMESPACE with ELEMENT clause NO

X264 XML type: schema location NO

X271 XMLValidate: data-driven case NO

X272 XMLValidate: ACCORDING TO clause NO

X273 XMLValidate: ELEMENT clause NO

X274 XMLValidate: schema location NO

X281 XMLValidate: with DOCUMENT option NO

X282 XMLValidate with CONTENT option NO

X283 XMLValidate with SEQUENCE option NO

X284 XMLValidate NAMESPACE without ELEMENT clause NO

X286 XMLValidate: NO NAMESPACE with ELEMENT
clause

NO

Table L.1 SQL 2008 Optional Feature Compliance Details

ID Feature Supported Comments
SQL 2008 Optional Feature Compliance 998

Greenplum Database Administrator Guide 4.1– Appendix L: SQL 2008 Optional Feature Compliance
X300 XMLTable NO

X301 XMLTable: derived column list option NO

X302 XMLTable: ordinality column option NO

X303 XMLTable: column default option NO

X304 XMLTable: passing a context item NO

X305 XMLTable: initializing an XQuery variable NO

X400 Name and identifier mapping NO

Table L.1 SQL 2008 Optional Feature Compliance Details

ID Feature Supported Comments
SQL 2008 Optional Feature Compliance 999

Greenplum Database Administrator Guide 4.1– Glossary
Glossary

A

append-only tables

An append-only (AO) table is a storage representation that allows only appending
new rows to a table, but does not allow updating or deleting existing rows. This
allows for more compact storage on disk because each row does not need to store the
MVCC transaction visibility info. This saves 20 bytes per row. AO tables can also
be compressed.

array

The set of physical devices (hosts, servers, network switches, etc.) used to house a
Greenplum Database system.

B

bandwidth

Bandwidth is the maximum amount of information that can be transmitted along a
channel, such as a network or I/O channel. This data transfer rate is usually measured
in megabytes per second (MB/s).

C

catalog

See system catalog.

column-oriented table

Greenplum provides a choice of storage orientation models for a table: row or
column. A column-oriented table stores its content on disk by column rather than by
row. This storage model has performance advantages for certain types of queries.
Only append-only tables can be column-oriented; heap tables are always
row-oriented.

correlated subquery

A correlated subquery is a nested SELECT statement that refers to a column from
an outer SELECT statement. For example:
SELECT * FROM product WHERE exists (SELECT * FROM sale WHERE
qty>0 AND pn = product.pn);
append-only tables 1000

Greenplum Database Administrator Guide 4.1– Glossary
D

data directory

The data directory is the file system location on disk where database data is stored.
The master data directory contains the global system catalog only — no user data is
stored on the master. The data directory on the segment instances has user data for
that segment plus a local copy of the system catalog. The data directory contains
several subdirectories, control files, and configuration files as well.

distributed

Certain database objects in Greenplum Database, such as tables and indexes, are
distributed. They are divided into equal parts and spread out among the segment
instances based on a hashing algorithm. To the end-user and client software,
however, a distributed object appears as a conventional database object.

distribution key

In a Greenplum table that uses hash distribution, one or more columns are used as
the distribution key, meaning those columns are used to divide the data among all of
the segments. The distribution key should be the primary key of the table or a unique
column or set of columns.

distribution policy

The distribution policy determines how to divide the rows of a table among the
Greenplum segments. Greenplum Database provides two types of distribution
policy: hash distribution and random distribution.

DDL

Data Definition Language. A subset of SQL commands used for defining the
structure of a database.

DML

Database Manipulation Language. SQL commands that store, manipulate, and
retrieve data from tables. INSERT, UPDATE, DELETE, and SELECT are DML
commands.

G

gang

For each slice of the query plan there is at least one query executor worker process
assigned. During query execution, each segment will have a number of processes
working on the query in parallel. Related processes that are working on the same
portion of the query plan on different segments are referred to as gangs.
data directory 1001

Greenplum Database Administrator Guide 4.1– Glossary
Greenplum Database

Greenplum Database is the industry’s first massively parallel processing (MPP)
database server based on open-source technology. It is explicitly designed to support
business intelligence (BI) applications and large, multi-terabyte data warehouses.
Greenplum Database is based on PostgreSQL.

Greenplum Database system

An associated set of segment instances and a master instance running on an array,
which can be composed of one or more hosts.

Greenplum instance

The process that serves a database. An instance of Greenplum Database is comprised
of a master instance and two or more segment instances, however users and
administrators always connect to the database via the master instance.

GUC

GUC is a PostgreSQL acronym that stands for global user configuration, and is an
obsolete term in Greenplum Database. However, the term GUC may still
occasionally appear in Greenplum Database error messages and other materials. A
GUC is equivalent to a global server configuration parameter. See also,
postgresql.conf.

H

hash distribution

With hash distribution, one or more table columns is used as the distribution key for
the table. The distribution key is used by a hashing algorithm to assign each row to
a particular segment. Keys of the same value will always hash to the same segment.

heap tables

Whenever you create a table without specifying a storage structure, the default is a
heap storage structure. In a heap structure, the table is an unordered collection of
data that allows multiple copies or versions of a row. Heap tables have row-level
versioning information and allow updates and deletes. See also append-only tables
and multiversion concurrency control.

host

A host represents a physical machine or compute node in a Greenplum Database
system. In Greenplum Database, one host is designated as the master. The other
hosts in the system have one or more segments on them.
Greenplum Database 1002

Greenplum Database Administrator Guide 4.1– Glossary
I

interconnect

The interconnect is the networking layer of Greenplum Database. When a user
connects to a database and issues a query, processes are created on each of the
segments to handle the work of that query. The interconnect refers to the
inter-process communication between the segments and master, as well as the
network infrastructure on which this communication relies. The interconnect
typically uses a standard Gigabit Ethernet switching fabric.

I/O

Input/Output (I/O) refers to the transfer of data to and from a system or device using
a communucation channel.

J

JDBC

Java Database Connectivity is an application program interface (API) specification
for connecting programs written in Java to data in a database management system
(DBMS). The application program interface lets you encode access request
statements in SQL that are then passed to the program that manages the database.

M

master

The master is the entry point to a Greenplum Database system. It is the database
listener process (postmaster) that accepts client connections and dispatches the SQL
commands issued by the users of the system.

The master is where the global system catalog resides. However, the master does not
contain any user data. User data resides only on the segments. The master does the
work of authenticating user connections, parsing and planning the incoming SQL
commands, distributing the query plan to the segments for execution, coordinating
the results returned by each of the segments, and presenting the final results to the
user.

master instance

The database process that serves the Greenplum master. See master.

mirror

A mirror is a backup copy of a segment (or master) that is stored on a different host
than the primary copy. Mirrors are useful for maintaining operations if a host in your
Greenplum Database system fails. Mirroring is an optional feature of Greenplum
Database. Mirror segments are evenly distributed among other hosts in the array. If
a host that holds a primary segment fails, Greenplum Database will switch to the
mirror or secondary host.
interconnect 1003

Greenplum Database Administrator Guide 4.1– Glossary
motion node

A motion node is a portion of a query execution plan that indicates data movement
between the various database instances of Greenplum Database (segments and the
master). Some operations, such as joins, require segments to send and receive tuples
to one another in order to satisfy the operation. A motion node can also indicate data
movement from the segments back up to the master.

MPP

Massive Parallel Processing.

multiversion concurrency control

Unlike traditional database systems which use locks for concurrency control,
Greenplum Database (as does PostgreSQL) maintains data consistency by using a
multiversion model (multiversion concurrency control or MVCC). This means that
while querying a database, each transaction sees a snapshot of data which protects
the transaction from viewing inconsistent data that could be caused by (other)
concurrent updates on the same data rows. This provides transaction isolation for
each database session.

MVCC, by eschewing explicit locking methodologies of traditional database
systems, minimizes lock contention in order to allow for reasonable performance in
multiuser environments. The main advantage to using the MVCC model of
concurrency control rather than locking is that in MVCC locks acquired for querying
(reading) data do not conflict with locks acquired for writing data, and so reading
never blocks writing and writing never blocks reading.

MVCC

See multiversion concurrency control.

O

ODBC

Open Database Connectivity, a standard database access method that makes it
possible to access any data from any client application, regardless of which database
management system (DBMS) is handling the data. ODBC manages this by inserting
a middle layer, called a database driver, between a client application and the DBMS.
The purpose of this layer is to translate the application’s data queries into commands
that the DBMS understands.
motion node 1004

Greenplum Database Administrator Guide 4.1– Glossary
OLAP

Online Analytical Processing (OLAP) is a category of technologies for collecting,
managing, processing and presenting multidimensional data for analysis and
management. OLAP leverages existing data from a relational schema or data
warehouse (data source) by placing key performance indicators (measures) into
context (dimensions). As of release 3.1, OLAP functions are supported in
Greenplum Database. In practice, OLAP functions allow application developers to
compose analytic business queries more easily and more efficiently. For example,
moving averages and moving sums can be calculated over various intervals;
aggregations and ranks can be reset as selected column values change; and complex
ratios can be expressed in simple terms.

P

partitioned

Partitioning is a way to logically divide the data in a table for better performance and
easier maintenance. In Greenplum Database, partitioning is a procedure that creates
multiple sub-tables (or child tables) from a single large table (or parent table). The
primary purpose is to improve performance by scanning only the relevant data
needed to satisfy a query. Note that partitioned tables are also distributed.

Perl DBI

Perl Database Interface (DBI) is an API for connecting programs written in Perl to
database management systems (DBMS). Perl DBI (DataBase Interface) is the most
common database interface for the Perl programming language.

PostgreSQL

PostgreSQL is a SQL compliant, open source relational database management
system (RDBMS). Greenplum Database uses a modified version of PostgreSQL as
its underlying database server. For more information on PostgreSQL go to
http://www.postgresql.org.

postgresql.conf

The server configuration file that configures various aspects of the database server.
This configuration file is located in the data directory of the database instance. In
Greenplum Database, the master and each segment instance has its own
postgresql.conf file.

postgres process

The postgres executable is the actual PostgreSQL server process that processes
queries. The database listener postgres process (also known as the postmaster)
creates other postgres subprocesses as needed to handle client connections.

postmaster

The postmaster server program starts the postgres database server listener
process that accepts client connections. In Greenplum Database, a postgres
database listener process runs on the Greenplum master instance and on each
segment instance.
OLAP 1005

http://www.postgresql.org

Greenplum Database Administrator Guide 4.1– Glossary
psql

This is the interactive terminal to PostgreSQL and Greenplum Database. You can
use psql to access a database and issue SQL commands. For more information on
psql, see “psql” on page 764.

Q

QD

See query dispatcher.

QE

See query executor.

query dispatcher

The query dispatcher (QD) is a process that is initiated when users connect to the
master and issue SQL commands. This process represents a user session and is
responsible for sending the query plan to the segments and coordinating the results
it gets back. The query dispatcher process spawns one or more query executor
processes to assist in the execution of SQL commands.

query executor

A query executor process (QE) is associated with a query dispatcher (QD) process
and operates on its behalf. Query executor processes run on the segment instances
and execute their slice of the query plan on a segment.

query plan

A query plan is the set of operations that Greenplum Database will perform to
produce the answer to a given query. Each node or step in the plan represents a
database operation such as a table scan, join, aggregation or sort. Plans are read and
executed from bottom to top. Greenplum Database supports an additional plan node
type called a motion node. See also slice.

R

rack

A type of shelving to which computer components can be attached vertically, one on
top of the other. Components are normally screwed into front-mounted, tapped
metal strips with holes which are spaced so as to accommodate the height of devices
of various U-sizes. Racks usually have their height denominated in U-units.

RAID

Redundant Array of Independent (or Inexpensive) Disks. RAID is a system of using
multiple hard drives for sharing or replicating data among the drives. The benefit of
RAID is increased data integrity, fault-tolerance and/or performance. Multiple hard
drives are grouped and seen by the OS as one logical hard drive.
psql 1006

Greenplum Database Administrator Guide 4.1– Glossary
RAM

Random Access Memory. The main memory of a computer system used for storing
programs and data. RAM provides temporary read/write storage while hard disks
offer semi-permanent storage.

random distribution

With random distribution, table rows are sent to the segments as they come in,
cycling across the segments in a round-robin fashion. Rows with columns having the
same values will not necessarily be located on the same segment. Although a random
distribution ensures even data distribution, there are performance advantages to
choosing a hash distribution policy whenever possible.

S

segment

A segment represents a portion of data in a Greenplum database. User-defined tables
and their indexes are distributed across the available number of segment instances in
the Greenplum Database system. Each segment instance contains a distinct portion
of the user data. A primary segment instance and its mirror both store the same
segment of data.

segment instance

The segment instance is the database server process (postmaster) that serves
segments. Users do not connect to segment instances directly, but through the
master.

slice

In order to achieve maximum parallelism during query execution, Greenplum
divides the work of the query plan into slices. A slice is a portion of the plan that can
be worked on independently at the segment level. A query plan is sliced wherever a
motion node occurs in the plan, one slice on each side of the motion. Plans that do
not require data movement (such as catalog lookups on the master) are known as
single-slice plans.

star schema

A relational database schema often used in data warehousing. The star schema is
organized around a central table (fact table) joined to a few smaller tables
(dimension tables) using foreign key references. The fact table contains raw numeric
items that represent relevant business facts (price, number of units sold, etc.).

system catalog

The system catalogs are the place where a relational database management system
stores schema metadata, such as information about tables and columns, and internal
bookkeeping information. The system catalog in Greenplum Database is the same as
the PostgreSQL catalog with some additional tables to support the distributed nature
of the Greenplum system and databases. In Greenplum Database, the master
contains the global system catalog tables. The segments also maintain their own
local copy of the system catalog.
RAM 1007

Greenplum Database Administrator Guide 4.1– Glossary
T

TPC-H

The Transaction Processing Performance Council (TPC) is a third-party
organization that provides database benchmark tools for the industry. TPC-H is their
ad-hoc, decision support benchmark. This benchmark illustrates decision support
systems that examine large volumes of data, execute queries with a high degree of
complexity, and give answers to critical business questions. The TPC-H toolkit is
used for Greenplum Database functional and performance testing.

tuple

A tuple is another name for a row or record in a relational database table.

W

WAL

Write-Ahead Logging (WAL) is a standard approach to transaction logging. WAL’s
central concept is that changes to data files (where tables and indexes reside) are
logged before they are written to permanent storage. Data pages do not need to be
flushed to disk on every transaction commit. In the event of a crash, data changes not
yet applied to the database can be recovered from the log. A major benefit of using
WAL is a significantly reduced number of disk writes.
TPC-H 1008

http://www.tpc.org/tpch/

Greenplum Database Administrator Guide 4.1 - Index
Index

Symbols
: 950
__gp_masterid: 950
.pgpass: 43

A
ABORT: 293
access and permissions: 30
ACTIVE_STATEMENTS: 56
add_missing_from: 794
administration utilities: 10
aggregate functions: 116

user-defined: 362
ALTER AGGREGATE: 294
ALTER CONVERSION: 296
ALTER DATABASE: 297
ALTER DOMAIN: 299
ALTER EXTERNAL TABLE: 301
ALTER FILESPACE: 304
ALTER FUNCTION: 305
ALTER GROUP: 308
ALTER INDEX: 309
ALTER LANGUAGE: 311
ALTER OPERATOR: 312
ALTER OPERATOR CLASS: 313
ALTER RESOURCE QUEUE: 314
ALTER ROLE: 317
ALTER SCHEMA: 321
ALTER SEQUENCE: 322
ALTER TABLE: 325
ALTER TABLESPACE: 337
ALTER TRIGGER: 338
ALTER TYPE: 339
ALTER USER: 340
ANALYZE: 96, 230, 341
APIs: 47
append-only tables: 75

parameters: 175
application_name: 794
architecture

Greenplum Performance Monitor: 11
Greenplum system: 6

archive host backup: 197
array

configuration parameters: 175
functions: 116
in Greenplum Database: 1000
operators: 116

ARRAY_NAME: 655
array_nulls: 794
Ascential Datastage: 48
attributes

role attributes: 31
attrnums: 858
authentication parameters: 168
authentication_timeout: 794

automatic database backup: 194

B
backslash_quote: 794
backup

database: 190, 192
non-parallel: 191
parallel: 190

backup master: 178
configuring: 181

BEGIN: 343
bigint: 849
bigserial: 849
binary functions: 116
binary operators: 116
bit: 849
bit string functions: 116
bit string operators: 116
bit varying: 849
bitmap: 94
bitmap index: 71
bitmap indexes: 94
block_size: 794
bonjour_name: 794
boolean: 849
box: 849
Business Objects: 48
bytea: 849

C
cast, user-defined: 366
catalog: 1000
char: 849
character: 849
character varying: 849
check constraints: 73, 80
check_function_bodies: 794
CHECK_POINT_SEGMENTS: 657
checking for locks: 241
CHECKPOINT: 345
cidr: 849
circle: 850
classid: 939, 940
client: 41

connection parameters: 174
connections: 41
interfaces: 47
third-party: 48
troubleshooting: 49

client applications: 41
client tools

clusterdb: 727
createdb: 729
createlang: 731
createuser: 733
dropdb: 736
Last Revised: December 15, 2011 4:37 pm 1009

Greenplum Database Administrator Guide 4.1 - Index
droplang: 739
dropuser: 741
ecpg: 743
pg_config: 745
pg_dump: 748
pg_dumpall: 755
pg_restore: 759
psql: 764
reindexdb: 787
vacuumdb: 789

client_encoding: 795
client_min_messages: 795
CLOSE: 346
CLUSTER: 347
clusterdb: 727
Cognos: 48
collecting statistics: 341
column constraints: 73
column-oriented tables: 75
columns

data types: 72
storage by: 75

commands
clusterdb: 727
createdb: 729
createlang: 731
createuser: 733
dropdb: 736
droplang: 739
dropuser: 741
ecpg: 743
gp_dump: 597
gp_restore: 602
gpactivatestandby: 611
gpaddmirrors: 606
gpcheck: 616
gpcheckperf: 618
gpconfig: 622
gpcrondump: 626
gpdbrestore: 631
gpdeletesystem: 634
gpdetective: 636
gpexpandsystem: 639
gpfdist: 643
gpfilespace: 646
gpinitstandby: 649
gpinitsystem: 652
gpload: 659
gplogfilter: 670
gpmapreduce: 673
gprecoverseg: 685
gpscp: 690
gpseginstall: 692
gpsetupsanfailover: 695
gpsnmpd: 697
gpssh: 700
gpssh-exkeys: 702
gpstart: 705

gpstate: 708
gpstop: 712
gpsyncmaster: 575
gpsys1: 715
initdb: 575
ipcclean: 575
pg_config: 745
pg_controldata: 575
pg_ctl: 575
pg_dump: 748
pg_dumpall: 755
pg_resetxlog: 575
pg_restore: 759
postgres: 575
postmaster: 575
psql: 764
reindexdb: 787
vacuumdb: 789

COMMENT: 350
COMMIT: 353
comparison operators: 115
compressed tables: 75
concurrency control: 99

limiting concurrent connections: 38
lock management parameters: 174
lock modes: 99
resource queues: 50

concurrent connections: 808
conditional expressions: 116
configuration: 174

array configuration parameters: 175
connection parameters: 41
environment variables: 41
global parameters: 166
Greenplum Database server: 792
Greenplum system: 165
local parameters: 166
master parameters: 166
parameter categories: 167
viewing mirror configuration: 224
viewing server settings: 167

configuration parameters
server: 792

configuring
mirroring: 180
standby master: 181

connecting: 41
connection parameters: 41, 168
database: 36, 41
ETL and BI tools: 48
limiting concurrent connections: 38
troubleshooting: 49
with psql: 43

connections
utility mode: 163

constraints
check: 73, 80
not-null constraints: 73
Last Revised: December 15, 2011 4:37 pm 1010

Greenplum Database Administrator Guide 4.1 - Index
unique constraints: 73
content: 875
contentid: 875
contention: 238, 241
conversions: 369
COPY: 354

non-parallel data loading: 152
correlated subquery: 1000

supported syntax: 547
cpu_index_tuple_cost: 795
cpu_operator_cost: 795
cpu_tuple_cost: 795
CREATE AGGREGATE: 362
CREATE CAST: 366
CREATE CONVERSION: 369
CREATE DATABASE: 371
CREATE DOMAIN: 373
CREATE EXTERNAL TABLE: 139, 375
CREATE EXTERNAL WEB TABLE: 375
CREATE FUNCTION: 383
CREATE GROUP: 389
CREATE INDEX: 390
CREATE LANGUAGE: 394
CREATE OPERATOR: 398
CREATE OPERATOR CLASS: 403
CREATE RESOURCE QUEUE: 408
CREATE ROLE: 412
CREATE RULE: 417
CREATE SCHEMA: 420
CREATE SEQUENCE: 422
CREATE TABLE: 426
CREATE TABLE AS: 437
CREATE TABLESPACE: 441
CREATE TRIGGER: 443
CREATE TYPE: 446
CREATE USER: 453
CREATE VIEW: 454
createdb: 729
createlang: 731
createuser: 733
creating

databases: 371
filespaces: 67
functions: 383
indexes: 390
resource queues: 56
roles: 412
rules: 417
schemas: 420
sequences: 422
tables: 426

cron: 626, 631
cursor_tuple_fraction: 795
cursors

closing: 346
fetching data from: 499
moving position: 515
opening: 458

custom_variable_classes: 795
customer support: 243

D
data

distribution: 239
redundancy: 177

data directory: 1001
data loading: 354, 375, 659

error isolation mode: 148
from external tables: 148
parallel: 10
performance tips: 152
with COPY: 152
with gpfdist: 10

data types
bigint: 849
bigserial: 849
bit: 849
bit varying: 849
boolean: 849
box: 849
bytea: 849
char: 849
character: 849
character varying: 849
choosing: 72
cidr: 849
circle: 850
date: 850
decimal: 850
double precision: 850
float4: 850
float8: 850
formatting: 116
inet: 850
int, int4: 850
int2: 850
int8: 849
integer: 850
interval: 850
lseg: 850
macaddr: 850
money: 850
numeric: 850
path: 850
point: 850
polygon: 850
real: 850
serial: 850
serial4: 850
serial8: 849
smallint: 850
text: 850
time: 850
timestamp: 850
timestamptz: 850
timetz: 850
user-defined: 446
varbit: 849
Last Revised: December 15, 2011 4:37 pm 1011

Greenplum Database Administrator Guide 4.1 - Index
varchar: 849
DATA_DIRECTORY: 656
database

access and permissions: 30
administration: 65
analyze: 230
backup: 190, 192
backup automatically: 191, 194
client

applications: 41
connections: 36, 41
creating: 371
design, optimizing: 239
log files: 230, 232
maintenance: 80
management: 65
migration: 190
reindex: 230
restore: 190, 191, 195
restore from archive host: 197
schema: 69
statistics: 238
templates: 65
vacuum: 230

Datastage: 48
date: 850
date functions: 116
date operators: 116
date range partitioning: 83
DateStyle: 795
db_user_namespace: 796
dbid: 855, 875
DDL: 1001
deadlock_timeout: 796
DEALLOCATE: 457
debug_assertions: 796
debug_pretty_print: 796
debug_print_parse: 796
debug_print_plan: 796
debug_print_prelim_plan: 796
debug_print_rewritten: 796
debug_print_slice_table: 796
debugging: 243
decimal: 850
DECLARE: 458
default_statistics_target: 796
default_tablespace: 68, 797
default_transaction_isolation: 797
default_transaction_read_only: 797
DELETE: 461
direct dispatch: 802
disk

failure: 237
usage: 224, 237

dispatcher: 1006
distributed: 1001

database system architecture: 12
table skew: 225
tables: 12, 72
tables, altering: 79

tables, distribution policy: 74
tables, optimizing: 239

distribution key: 79, 225
distribution policy: 13

hash: 13
random: 13

DML: 1001
INSERT command: 100
TRUNCATE command: 102
UPDATE command: 101

document
MapReduce: 824

domains: 373
double precision: 850
DROP AGGREGATE: 464
DROP CAST: 465
DROP CONVERSION: 466
DROP DATABASE: 467
DROP DOMAIN: 468
DROP EXTERNAL TABLE: 469
DROP FILESPACE: 470
DROP FUNCTION: 471
DROP GROUP: 473
DROP INDEX: 474
DROP LANGUAGE: 475
DROP OPERATOR: 476
DROP OPERATOR CLASS: 478
DROP OWNED: 480
DROP RESOURCE QUEUE: 482
DROP ROLE: 484
DROP RULE: 485
DROP SCHEMA: 486
DROP SEQUENCE: 487
DROP TABLE: 488
DROP TABLESPACE: 489
DROP TRIGGER: 490
DROP TYPE: 491
DROP USER: 492
DROP VIEW: 493
dropdb: 736
droplang: 739
dropuser: 741
dynamic_library_path: 797

E
ecpg: 743
effective_cache_size: 797
Email Notifications: 222

Testing: 223
enable_bitmapscan: 797
enable_groupagg: 797
enable_hashagg: 798
enable_hashjoin: 798
enable_indexscan: 798
enable_mergejoin: 798
enable_nestloop: 798
enable_seqscan: 798
enable_sort: 798
enable_tidscan: 798
ENCODING: 657
Last Revised: December 15, 2011 4:37 pm 1012

Greenplum Database Administrator Guide 4.1 - Index
encoding conversions: 369
END: 494
environment variables: 41, 846, 849
error isolation mode: 139, 148

with COPY: 152
error reporting and logging parameters: 172
errors: 182

error messages: 242
escape_string_warning: 798
etc/hosts: 49
ETL

with gpfdist: 141
EXECUTE: 495
executor: 1006
EXPLAIN: 496
EXPLAIN ANALYZE: 238
explain_pretty_print: 799
external tables: 375

defining: 139, 148
error isolation mode: 148
parameters: 175

extra_float_digits: 799

F
failover: 8
failures: 179

diagnosing: 182
of master: 187
of segments: 183
recovering from: 183

faults: 179
FETCH: 499
file server, gpfdist: 141
filespace

catalog tables: 69
creating: 67
dropping: 69
pg_system: 69

float4: 850
float8: 850
foreign keys: 74
from_collapse_limit: 799
functions

aggregate: 116
array: 116
binary: 116
bit string: 116
data type formatting: 116
date: 116
geometric: 116
MapReduce: 824
mathematical: 115
network address: 116
sequence: 116
set returning: 116
string: 116
system administration: 117
system information: 117
time: 116

user defined: 115
user-defined: 383

G
gangs: 27
gather motion: 26
geometric functions: 116
geometric operators: 116
GiST indexes: 94, 392
global parameters: 165

setting: 166
global system catalog: 7, 1007
gp_adjust_selectivity_for_outerjoins: 799
gp_analyze_relative_error: 799
gp_autostats_mode: 800
gp_autostats_on_change_threshold: 800
gp_bloat_diag: 951
gp_cached_segworkers_threshold: 800
gp_command_count: 800
gp_configuration: 852, 855
gp_configuration_history: 855
gp_connectemc_mode: 801
gp_connections_per_thread: 801
gp_crondump: 191
gp_db_interfaces: 738
gp_debug_linger: 801
gp_disk_free: 965
gp_distributed_log: 856
gp_distributed_xacts: 857
gp_distribution_policy: 858
gp_dump: 190, 192, 196, 597
gp_email_from: 801
gp_email_smtp_password: 801
gp_email_smtp_server: 801
gp_email_smtp_userid: 801
gp_email_to: 802
gp_enable_adaptive_nestloop: 802
gp_enable_agg_distinct: 802
gp_enable_agg_distinct_pruning: 802
gp_enable_direct_dispatch: 802
gp_enable_fallback_plan: 802
gp_enable_fast_sri: 802
gp_enable_gpperfmon: 803
gp_enable_multiphase_agg: 803
gp_enable_predicate_propagation: 803
gp_enable_preunique: 803
gp_enable_sequential_window_plans: 803
gp_enable_sort_distinct: 803
gp_enable_sort_limit: 804
gp_external_enable_exec: 804
gp_external_grant_privileges: 804
gp_external_max_segs: 804
gp_fastsequence: 859
gp_fault_strategy: 860
gp_fts_probe_threadcount: 804
gp_fts_probe_timeout: 804
gp_global_sequence: 861
gp_gpperfmon_send_interval: 804
gp_hashjoin_tuples_per_bucket: 805
gp_id: 865
gp_interconnect_hash_multiplier: 805
Last Revised: December 15, 2011 4:37 pm 1013

Greenplum Database Administrator Guide 4.1 - Index
gp_interconnect_queue_depth: 805
gp_interconnect_setup_timeout: 805
gp_interconnect_type: 805
gp_interfaces: 866
gp_locks_on_relation: 952
gp_locks_on_resqueue: 952
gp_log_command_timings: 953
gp_log_database: 954
gp_log_format: 805
gp_log_master_concise: 955
gp_log_system: 955
gp_max_csv_line_length: 805
gp_max_databases: 806
gp_max_filespaces: 806
gp_max_local_distributed_cache: 806
gp_max_packet_size: 806
gp_max_tablespaces: 806
gp_motion_cost_per_row: 806
gp_num_contents_in_cluster: 806
gp_param_setting(”param”): 957
gp_param_settings_seg_value_diffs: 957
gp_persistent_database_node: 868
gp_persistent_filespace_node: 869
gp_persistent_relation_node: 870
gp_persistent_tablespace_node: 871
gp_pgdatabase_invalid: 957
gp_reject_percent_threshold: 806
gp_relation_node: 872
gp_reraise_signal: 806
gp_resq_activity: 958
gp_resq_activity_by_queue: 959
gp_resq_priority_statement: 959
gp_resqueue_memory_policy: 806
gp_resqueue_priority: 806
gp_resqueue_priority_cpucores_per_segment:

807
gp_resqueue_priority_sweeper_interval: 807
gp_restore: 195, 602
gp_role: 807
gp_roles_assigned: 961
gp_safefswritesize: 807
gp_san_configuration: 873
gp_segment_configuration: 875
gp_segment_connect_timeout: 807
gp_segments_for_planner: 807
gp_session_id: 808
gp_set_proc_affinity: 808
gp_set_read_only: 808
gp_size_of_all_table_indexes: 962
gp_size_of_database: 962
gp_size_of_index: 962
gp_size_of_partition_and_indexes_disk: 963
gp_size_of_schema_disk: 963
gp_size_of_table_and_indexes_disk: 963
gp_size_of_table_and_indexes_licensing: 964
gp_size_of_table_disk: 964
gp_size_of_table_uncompressed: 964
gp_skew_coefficients: 965
gp_skew_idle_fractions: 966
gp_statistics_pullup_from_child_ partition: 808
gp_statistics_use_fkeys: 808
gp_stats_missing: 951
gp_toolkit: 228

external tables
gp_disk_free: 965

functions
gp_param_setting(”param”): 957

supporting external tables
__gp_local_id: 950
__gp_log_master_ext: 950
__gp_log_segment_ext: 950

supporting functions
__gp_param_local_setting(varchar): 950
__gp_skew_coefficients(): 950
__gp_skew_idle_fractions(): 950
gp_bloat_diag(int, int, boolean): 950
gp_skew_coefficient(oid): 950
gp_skew_details(oid): 950
gp_skew_idle_fraction(oid): 950

supporting views
__gp_fullname: 950
__gp_is_append_only: 950
__gp_number_of_segments: 950
__gp_user_data_tables: 950
__gp_user_data_tables_readbale: 950
__gp_user_namespaces: 950
__gp_user_tables: 950
gp_bloat_expected_pages: 950
gp_table_indexes: 950

views
gp_bloat_diag: 951
gp_locks_on_relation: 952
gp_locks_on_resqueue: 952
gp_log_command_timings: 953
gp_log_database: 954
gp_log_master_concise: 955
gp_log_system: 955
gp_param_settings_seg_value_diffs: 957
gp_pgdatabase_invalid: 957
gp_resq_activity: 958
gp_resq_activity_by_queue: 959
gp_resq_priority_statement: 959
gp_roles_assigned: 961
gp_size_of_all_table_indexes: 962
gp_size_of_database: 962
gp_size_of_index: 962
gp_size_of_partition_and_indexes_disk:

963
gp_size_of_schema_disk: 963
gp_size_of_table_and_indexes_disk: 963
gp_size_of_table_and_indexes_licensing:

964
gp_size_of_table_disk: 964
gp_size_of_table_uncompressed: 964
gp_skew_coefficients: 965
gp_skew_idle_fractions: 966
gp_stats_missing: 951

gp_transaction_log: 877
gp_version_at_initdb: 878
gp_vmem_idle_resource_timeout: 808
Last Revised: December 15, 2011 4:37 pm 1014

Greenplum Database Administrator Guide 4.1 - Index
gp_vmem_protect_limit: 809
gp_vmem_protect_segworker_cache_limit: 809
gp_workfile_checksumming: 809
gp_workfile_compress_algorithm: 809
gpactivatestandby: 611
gpaddmirrors: 606
gpadmin user: 30, 36
gpcheck: 616
gpcheckperf: 241, 618
gpconfig: 622
gpcrondump: 192, 626
gpdbrestore: 192, 197, 631
gpdeletesystem: 634
gpdetective: 243, 636
gpexpand.expansion_progress: 879
gpexpand.status: 862
gpexpand.status_detail: 863
gpexpandsystem: 639
gpfdist: 10, 643

installing: 143
troubleshooting: 143
using: 141

gpfilespace: 646
GPHOME: 846
gpinitstandby: 649
gpinitsystem: 652
gpload: 659
gplogfilter: 670
gpmapreduce: 673
gpperfmon_port: 809
gprecoverseg: 685
gpscp: 690
gpseginstall: 692
gpsetupsanfailover: 695
gpsizecalc: 224
gpskew: 225
gpsnmpd: 697

Installing: 219
Notifications: 222
Overview: 217
Pre-installation Tasks: 218
Prerequisistes: 218

gpssh: 700
gpssh-exkeys: 702
gpstart: 232, 705
gpstate: 216, 241, 708
gpstop: 712
gpsyncmaster: 575
gpsys1: 715
GRANT: 503
Greenplum Database

array: 1000
connecting to: 41
starting: 162
stopping: 163

groups
creating: 32

gzip compression: 75

H
hardware issues: 237
hash distribution: 13
hash key: 12
heap tables: 75
high availability: 9
historical data: 82
host: 1002
host failure: 237

I
idle processes: 800
idle sessions: 808
indexes: 94, 390

btree: 94
examining usage: 96
GiST: 94
managing: 97
operator classes: 403
types: 94
using with Greenplum: 92

inet: 850
Informatica: 48
inheritance: 80
initdb: 575
initialization parameters

ARRAY_NAME: 655
CHECK_POINT_SEGMENTS: 657
DATA_DIRECTORY: 656
ENCODING: 657
MACHINE_LIST_FILE: 655
MASTER_DIRECTORY: 656
MASTER_HOSTNAME: 656
MASTER_PORT: 656
MIRROR_DATA_DIRECTORY: 657
MIRROR_PORT_BASE: 657
MIRROR_REPLICATION_PORT_BASE: 657
PORT_BASE: 656
REPLICATION_PORT_BASE: 657
SEG_PREFIX: 655
TRUSTED_SHELL: 656

INSERT command: 100, 508
int: 850
int2: 850
int4: 850
int8: 849
integer: 850
integer_datetimes: 809
interconnect: 12

about: 7
redundancy: 9

interface
database: 41

interval: 850
IntervalStyle: 810
ipcclean: 575
Last Revised: December 15, 2011 4:37 pm 1015

Greenplum Database Administrator Guide 4.1 - Index
J
JDBC: 41, 47
join order: 239
join_collapse_limit: 810

K
key: 83
krb_caseins_users: 810
krb_server_keyfile: 810
krb_srvname: 810

L
lc_collate: 810
lc_ctype: 810
lc_messages: 811
lc_monetary: 811
lc_numeric: 811
lc_time: 811
LD_LIBRARY_PATH: 846
list partitioning: 81
listen_addresses: 811
loader: 659
loading data: 139, 354, 375

error isolation mode: 148
from external tables: 148
parallel: 10
performance tips: 152
with COPY: 152
with gpfdist: 10, 141

loading partitioned tables: 86
local parameters: 165

setting: 166
local_preload_libraries: 811
localoid: 858
LOCK: 511
lock: 241

management parameters: 174
modes: 99
row-level: 238
table-level: 238

log files
error messages: 242
format of: 227
managing: 232
viewing: 227

log rotation: 232
log_autostats: 811
log_connections: 812
log_disconnections: 812
log_dispatch_stats: 812
log_duration: 812
log_error_verbosity: 812
log_executor_stats: 812
log_hostname: 812
log_min_duration_statement: 812
log_min_error_statement: 813
log_min_messages: 813
log_parser_stats: 813

log_planner_stats: 813
log_rotation_age: 813
log_rotation_size: 813
log_statement: 813
log_statement_stats: 814
log_timezone: 814
log_truncate_on_rotation: 814
logical operators: 115
logs

on segments: 183
parameters: 172
searching: 670

lseg: 850

M
macaddr: 850
MACHINE_LIST_FILE: 655
maintenance: 80, 82, 87, 97
maintenance_work_mem: 814
management scripts

gp_dump: 597
gp_restore: 602
gpactivatestandby: 611
gpaddmirrors: 606
gpcheck: 616
gpcheckperf: 618
gpconfig: 622
gpcrondump: 626
gpdbrestore: 631
gpdeletesystem: 634
gpdetective: 636
gpexpandsystem: 639
gpfdist: 643
gpfilespace: 646
gpinitstandby: 649
gpinitsystem: 652
gpload: 659
gpmapreduce: 673
gprecoverseg: 685
gpscp: 690
gpseginstall: 692
gpsetupsanfailover: 695
gpsnmpd: 697
gpssh: 700
gpssh-exkeys: 702
gpstart: 705
gpstate: 708
gpstop: 712
gpsys1: 715

MapReduce
document format: 824
document schema: 827
interface: 673
specification: 824

master: 12
mirroring: 178
recovery: 187

master instance: 1003
Last Revised: December 15, 2011 4:37 pm 1016

Greenplum Database Administrator Guide 4.1 - Index
master parameters: 165
setting: 166

master port
changing the default: 168

MASTER_DATA_DIRECTORY: 846
MASTER_DIRECTORY: 656
MASTER_HOSTNAME: 656
MASTER_PORT: 656
mathematical functions: 115
mathematical operators: 115
max_appendonly_tables: 814
max_connections: 49, 815
max_connections parameter: 38
MAX_COST: 57
max_files_per_process: 815
max_fsm_pages: 815
max_fsm_relations: 815
max_function_args: 815
max_identifier_length: 815
max_index_keys: 815
max_locks_per_transaction: 816
max_prepared_transactions: 816
max_resource_portals_per_transaction: 816
max_resource_queues: 816
max_stack_depth: 816
max_work_mem: 817
Microsoft SQL Server: 48
Microstrategy: 48
MIN_COST: 58
mirror: 1003
MIRROR_DATA_DIRECTORY: 657
MIRROR_PORT_BASE: 657
MIRROR_REPLICATION_PORT_BASE: 657
mirroring: 8

of data: 177
of master: 178
of segments: 177
setting up: 180
viewing mirror configuration: 224

money: 850
monitor performance: 11
monitoring: 10, 216

disk space usage: 224
skew: 225
system state: 216

motion: 26
gather: 26
redistribute: 26

motion node: 1004
motion, defined: 26
MOVE: 515
MPP: 1004
Multiversion Concurrency Control: 99
MVCC: 99, 230

N
network

address functions: 116
address operators: 116
failure: 237

infrastructure: 7
protocols: 7

network protocol
TCP: 7
UDP: 7

node, query plan: 26
Notifications

Enabling Email: 222
Testing Email: 223

not-null constraints: 73
numeric: 850
numeric range partitioning: 83

O
object privileges: 33
objid: 939, 940
ODBC: 41, 47
operator classes: 403
operators

array: 116
binary: 116
bit string: 116
comparison: 115
date: 116
geometric: 116
logical: 115
mathematical: 115
network address: 116
sequence: 116
string: 116
time: 116

operators, user-defined: 398

P
parameters

append-only table: 175
append-only tables: 175
array configuration: 175
categories: 167
client connection: 174
connection and authentication: 168
connection parameters: 41
error reporting and logging: 172
external table: 175
lock management: 174
master, global and local: 165
query tuning: 170
runtime statistics collection: 173
setting level: 166
system resource and consumption: 169
version compatibility: 175
workload management: 174

partition: 83
by date range: 83
by numeric range: 83
existing table: 85
key: 83
Last Revised: December 15, 2011 4:37 pm 1017

Greenplum Database Administrator Guide 4.1 - Index
list: 81
range: 81
strategy: 81
strategy, verifying: 86
tables: 80
viewing: 87
viewing design: 86

partitioned: 1005
password file: 43
password_encryption: 817
password, default superuser: 655
PATH: 846
path: 850
pattern matching: 116
performance

benchmarks: 235
defining: 234
factors: 234
hardware baseline: 235
issues and causes: 81, 237
troubleshooting: 241

performance metrics: 216
performance monitor: 11

architecture: 11
Perl DBI: 47
permissions: 503

database: 30
pg_appendonly: 885
pg_bitmapindex: 71
pg_catalog: 71
pg_config: 745
pg_controldata: 575
pg_ctl: 575
pg_default: 59, 69
pg_dump: 748
pg_dumpall: 755
pg_filespace: 904
pg_filespace_entry: 905
pg_foreign_data_wrapper: 853
pg_foreign_server: 853
pg_foreign_table: 853
pg_global: 69
pg_hba.conf: 49

editing: 37
fields: 36

pg_max_external_files: 854
pg_partition_columns: 86, 87
pg_partition_templates: 86, 87
pg_partitions: 86, 87
pg_resetxlog: 575
pg_resqueue_attributes: 928
pg_resqueue_status: 929
pg_resqueuecapability: 930
pg_restore: 759
pg_stat_last_operation: 939
pg_stat_last_shoperation: 940
pg_system: 69
pg_user_mapping: 854
PGAPPNAME: 847
PGCLIENTENCODING: 848
PGDATABASE: 847

PGDATESTYLE: 847
PGHOST: 847
PGHOSTADDR: 847
pgjdbc: 47
pgodbc: 47
PGOPTIONS: 847
PGPASSFILE: 847
PGPASSWORD: 847
pgperl: 47
PGPORT: 847
PGTZ: 848
PGUSER: 847
PL/Java: 394

configuration parameters: 817
PL/Perl: 394
PL/Python: 394
PL/R: 395
pljava_classpath: 817
point: 850
polygon: 850
port: 818

master, changing the default: 168
PORT_BASE: 656
postgres: 575
PostgreSQL: 1005
postmaster: 575, 1005
PREPARE: 517
prepared statements: 517
primary key: 13, 73

restrictions on using: 15
privileges: 503

managing object privileges: 33
procedural languages: 394

pljava: 394
plperl: 394
plpython: 394
plr: 395

psql: 41, 764, 1006
public key exchange: 702
pygresql: 47

Q
QD: 1006
QE: 1006
query

cost: 238
dispatcher: 27, 1006
execution plan: 1006
executor: 27, 1006
monitoring active: 11
parsing: 25
planner: 238
status check: 242
troubleshooting: 242
tuning parameters: 170
worker processes example: 27

query plans: 26, 496
about: 26
example: 26
Last Revised: December 15, 2011 4:37 pm 1018

Greenplum Database Administrator Guide 4.1 - Index
parallel: 25
query prioritization

about: 52
configuring: 55
setting on a resource queue: 58

queued statements: 60

R
rack: 1006
RAID: 1006
random distribution: 13
random_page_cost: 818
range partitioning: 81
read uncommitted: 103
read-committed: 102
real: 850
REASSIGN OWNED: 520
recovery: 179

of master: 187
of segments: 183

redistribute motion: 26
redundancy: 8, 177
referential integrity: 74
regex_flavor: 818
REINDEX: 521
reindex: 230
reindexdb: 787
RELEASE SAVEPOINT: 523
repeatable read: 103
REPLICATION_PORT_BASE: 657
RESET: 524
resource contention: 241
resource queues: 50, 408

active statement limit: 56
altering: 60
assigning roles: 59
configuring: 54
creating: 56
default resource queue: 59
evaluated statements: 54
ignoring small queries: 58
limits: 51
monitoring: 60
priority: 52
query cost limit: 57
setting priority: 58
superusers: 59

resource_cleanup_gangs_on_wait: 818
resource_select_only: 54, 818
restarting Greenplum Database: 163
restore database: 190, 191, 195

non-parallel: 192
with different configuration: 197

REVOKE: 525
rewrite rules: 417
roles: 30

adding to a resource queue: 59
creating: 31, 412
creating group membership: 32

list of attributes: 31
resource queues: 50

ROLLBACK: 528
ROLLBACK TO SAVEPOINT: 529
rotating log files: 232
row comparisons: 116
row-level lock: 238
Rows: 101
runtime statistics collection parameters: 173

S
SAS: 48
SAVEPOINT: 531
schema: 420

inheritance: 80
managing: 69
MapReduce YAML document schema: 827
pg_catalog: 71
star: 12, 1007
system-level: 71

scp, group session: 690
search_path: 818
SEG_PREFIX: 655
segment: 12, 1007

about: 7
failures: 182
mirroring: 177
primary per host: 7
recovery: 183

segment instance: 1007
SELECT: 533
SELECT INTO: 549
seq_page_cost: 819
sequence functions: 116
sequence operators: 116
sequences: 422

creating and using: 91
serial: 850
serial4: 850
serial8: 849
serializable: 102
server configuration: 792
server logs: 227
server programs: 575

gpsyncmaster: 575
initdb: 575
ipcclean: 575
pg_controldata: 575
pg_ctl: 575
pg_resettxlog: 575
postgres: 575
postmaster: 575

server_encoding: 819
server_version: 819
server_version_num: 819
sessions: 41
SET: 551
set returning functions: 116
SET ROLE: 553
Last Revised: December 15, 2011 4:37 pm 1019

Greenplum Database Administrator Guide 4.1 - Index
SET SESSION AUTHORIZATION: 555
SET TRANSACTION: 557
shared_buffers: 819
shared_preload_libraries: 819
SHOW: 560
skew: 225

correcting skew: 79
slice: 26
slice, defined: 26
smallint: 850
SNMP

Installing: 219
Notifications: 222
Using with Greenplum Database: 217

ssh: 700
group session: 700
key exchange: 702

ssl: 819
ssl_ciphers: 819
staactionname: 939, 940
standard_conforming_strings: 819
standby master: 178

configuring: 181
star schema: 1007
START TRANSACTION: 561
starting Greenplum Database: 162
stasubtype: 939, 940
stasysid: 939, 940
statement_mem: 820
statement_timeout: 820
statime: 939, 940
statistics: 341

database: 238
stats_queue_level: 820
stausename: 939, 940
stopping Greenplum Database: 163
stored procedures: 383
string functions: 116
string operators: 116
subquery expressions: 116
superuser: 30, 36
superuser password: 655
superuser_reserved_connections: 820
support, customer: 243
system catalog: 1007
system catalogs

global: 7
gp_configuration: 852, 855
gp_configuration_history: 855
gp_db_interfaces: 738
gp_distributed_log: 856
gp_distributed_xacts: 857
gp_distribution_policy: 858
gp_fastsequence: 859
gp_fault_strategy: 860
gp_global_sequence: 861
gp_id: 865
gp_interfaces: 866
gp_persistent_database_node: 868
gp_persistent_filespace_node: 869

gp_persistent_relation_node: 870
gp_persistent_tablespace_node: 871
gp_relation_node: 872
gp_san_configuration: 873
gp_segment_configuration: 875
gp_transaction_log: 877
gp_version_at_initdb: 878
gpexpand.expansion_progress: 879
gpexpand.status: 862
gpexpand.status_detail: 863
pg_appendonly: 885
pg_filespace: 904
pg_filespace_entry: 905
pg_foreign_data_wrapper: 853
pg_foreign_server: 853
pg_foreign_table: 853
pg_resqueue_attributes: 928
pg_resqueue_status: 929
pg_resqueuecapability: 930
pg_stat_last_operation: 939
pg_stat_last_shoperation: 940
pg_user_mapping: 854

system resource and consumption parameters:
169

system resources and performance: 234
system state: 216
system utilization metrics: 11, 216
system-levels schemas: 71

T
tables

append-only: 75
column-oriented: 75
compressed append-only: 75
creating: 426
distribued: 72
distributed: 79
distribution policy: 74
heap type: 75
loading partitioned: 86
locking: 238, 511
maintaining partitioned: 87
partition existing: 85
partition strategy: 81
partitioning: 80
row-oriented: 75
storage model: 75

tablespace
catalog tables: 69
default: 68
dropping: 69
file system locations: 67
pg_default: 69
pg_global: 69
using: 68

tablespaces: 441
TCP: 7
Last Revised: December 15, 2011 4:37 pm 1020

Greenplum Database Administrator Guide 4.1 - Index
tcp_keepalives_count: 820
tcp_keepalives_idle: 820
tcp_keepalives_interval: 820
temp_buffers: 820
templates, database: 65
text: 850
time: 850
time functions: 116
time operators: 116
time with time zone: 850
timestamp: 850
timestamp with time zone: 850
timestamptz: 850
timetz: 850
TimeZone: 821
timezone_abbreviations: 821
TPC-H: 1008
track_activities: 821
track_counts: 821
transaction_isolation: 821
transaction_read_only: 821
transactions

committing: 353
isolation level: 102, 343
management: 238
rolling back: 528
savepoints: 531
starting: 343
working with: 102

transform_null_equals: 821
triggers: 443
troubleshooting: 636

client connections: 49
data loading errors: 148
gpfdist: 143
performance problems: 241

TRUNCATE: 102, 563
trusted hosts

setup: 702
TRUSTED_SHELL: 656
tuple: 1008

U
UDP: 7
unique constraints: 73
unix_socket_directory: 821
unix_socket_group: 821
unix_socket_permissions: 822
UPDATE: 564
UPDATE command: 101
update_process_title: 822
utilities

administration: 10
clusterdb: 727
createdb: 729
createlang: 731
createuser: 733
dropdb: 736
droplang: 739
dropuser: 741

ecpg: 743
gp_dump: 597
gp_restore: 602
gpactivatestandby: 611
gpaddmirrors: 606
gpcheck: 616
gpcheckperf: 618
gpconfig: 622
gpcrondump: 626
gpdbrestore: 631
gpdeletesystem: 634
gpdetective: 636
gpexpandsystem: 639
gpfdist: 643
gpfilespace: 646
gpinitstandby: 649
gpinitsystem: 652
gpload: 659
gplogfilter: 670
gpmapreduce: 673
gprecoverseg: 685
gpscp: 690
gpseginstall: 692
gpsetupsanfailover: 695
gpsnmpd: 697
gpssh: 700
gpssh-exkeys: 702
gpstart: 705
gpstate: 708
gpstop: 712
gpsys1: 715
pg_config: 745
pg_dump: 748
pg_dumpall: 755
pg_restore: 759
psql: 764
reindexdb: 787
vacuumdb: 789

utility mode: 163

V
VACUUM: 568
vacuum: 230
vacuum_cost_delay: 822
vacuum_cost_limit: 822
vacuum_cost_page_dirty: 822
vacuum_cost_page_hit: 822
vacuum_cost_page_miss: 822
vacuum_freeze_min_age: 823
vacuumdb: 789
VALUES: 571
varbit: 849
varchar: 849
version compatibility parameters: 175
viewing

partition design: 86
partitions: 87
Last Revised: December 15, 2011 4:37 pm 1021

Greenplum Database Administrator Guide 4.1 - Index
query plans: 496
views: 454

creating and managing: 97

W
waiting queries: 60
web tables: 375

creating and using: 146, 148
defining command-based: 147, 148
defining URL-based: 147

work_mem: 823
worker processes (query): 27
workload and system performance: 234
workload management: 50, 174, 238, 408

configuring: 54
parameters: 174
Last Revised: December 15, 2011 4:37 pm 1022

	Preface
	About This Guide
	Document Conventions
	Text Conventions
	Command Syntax Conventions

	Getting Support
	Product information
	Technical support

	Section I: Introduction to Greenplum
	1. About the Greenplum Architecture
	About the Greenplum Master
	About the Greenplum Segments
	About the Greenplum Interconnect
	About Redundancy and Failover in Greenplum Database
	About Segment Mirroring
	About Master Mirroring
	About Interconnect Redundancy

	About Parallel Data Loading
	About Management and Monitoring

	2. About Distributed Databases
	Understanding How Data is Stored
	Understanding Greenplum Distribution Policies

	3. Summary of Greenplum Features
	Greenplum SQL Standard Conformance
	Core SQL Conformance
	SQL 1992 Conformance
	SQL 1999 Conformance
	SQL 2003 Conformance
	SQL 2008 Conformance

	Greenplum and PostgreSQL Compatibility

	4. About Greenplum Query Processing
	Understanding Query Planning and Dispatch
	Understanding Greenplum Query Plans
	Understanding Parallel Query Execution

	Section II: Access Control and Security
	5. Managing Roles and Privileges
	Security Best Practices for Roles and Privileges
	Creating New Roles (Users)
	Altering Role Attributes

	Creating Groups (Role Membership)
	Managing Object Privileges
	Simulating Row and Column Level Access Control

	Encrypting Data

	6. Configuring Client Authentication
	Allowing Connections to Greenplum Database
	Editing the pg_hba.conf File

	Limiting Concurrent Connections
	Encrypting Client/Server Connections

	7. Accessing the Database
	Establishing a Database Session
	Supported Client Applications
	Greenplum Database Client Applications
	pgAdmin III for Greenplum Database
	Database Application Interfaces
	Third-Party Client Tools

	Troubleshooting Connection Problems

	8. Managing Workload and Resources
	Overview of Greenplum Workload Management
	How Resource Queues Work in Greenplum Database
	Steps to Enable Workload Management

	Configuring Workload Management
	Creating Resource Queues
	Creating Queues with an Active Query Limit
	Creating Queues with Memory Limits
	Creating Queues with a Query Planner Cost Limits
	Setting Priority Levels

	Assigning Roles (Users) to a Resource Queue
	Removing a Role from a Resource Queue

	Modifying Resource Queues
	Altering a Resource Queue
	Dropping a Resource Queue

	Checking Resource Queue Status
	Viewing Queued Statements and Resource Queue Status
	Viewing Resource Queue Statistics
	Viewing the Roles Assigned to a Resource Queue
	Viewing the Waiting Queries for a Resource Queue
	Clearing a Waiting Statement From a Resource Queue
	Viewing the Priority of Active Statements
	Resetting the Priority of an Active Statement

	Section III: Database Administration
	9. Defining Database Objects
	Creating and Managing Databases
	About Template Databases
	Creating a Database
	Viewing the List of Databases
	Altering a Database
	Dropping a Database

	Creating and Managing Tablespaces
	Creating a Filespace
	Creating a Tablespace
	Using a Tablespace to Store Database Objects
	Viewing Existing Tablespaces and Filespaces
	Dropping Tablespaces and Filespaces

	Creating and Managing Schemas
	The Default ‘Public’ Schema
	Creating a Schema
	Schema Search Paths
	Dropping a Schema
	System Schemas

	Creating and Managing Tables
	Creating a Table
	Altering a Table
	Dropping a Table

	Partitioning Large Tables
	Understanding Table Partitioning in Greenplum Database
	Deciding on a Table Partitioning Strategy
	Creating Partitioned Tables
	Loading Partitioned Tables
	Verifying Your Partition Strategy
	Viewing Your Partition Design
	Maintaining Partitioned Tables

	Creating and Using Sequences
	Creating a Sequence
	Using a Sequence
	Altering a Sequence
	Dropping a Sequence

	Using Indexes in Greenplum Database
	Index Types
	Creating an Index
	Examining Index Usage
	Managing Indexes
	Dropping an Index

	Creating and Managing Views
	Creating Views
	Dropping Views

	10. Managing Data
	About Concurrency Control in Greenplum Database
	Inserting New Rows
	Updating Existing Rows
	Deleting Rows
	Truncating a Table

	Working With Transactions
	Transaction Isolation Levels

	Vacuuming the Database
	Configuring the Free Space Map

	11. Querying Data
	Defining Queries
	SQL Lexicon
	SQL Value Expressions

	Using Functions and Operators
	Using Functions in Greenplum Database
	User-Defined Functions
	Built-in Functions and Operators

	Query Profiling
	Reading EXPLAIN Output
	Reading EXPLAIN ANALYZE Output
	What to Look for in a Query Plan

	12. Loading and Unloading Data
	Greenplum Database Loading Tools Overview
	About External Tables
	About gpload
	About COPY

	Loading Data into Greenplum Database
	Accessing File-Based External Tables

	Defining External Tables - Examples
	Using the Greenplum Parallel File Server (gpfdist)
	Using Hadoop Distributed File System (HDFS) Tables
	Creating and Using Web External Tables
	Loading Data Using an External Table
	Handling Load Errors

	Loading Data from Greenplum Database
	Loading Data with gpload
	Loading Data with the gphdfs Protocol
	Loading Data with COPY
	Data Loading Performance Tips

	Unloading Data from Greenplum Database
	Defining a File-Based Writable External Table
	Defining a Command-Based Writable External Web Table
	Unloading Data Using a Writable External Table
	Unloading Data Using COPY
	Readable External Tables and Query Planner Statistics

	Formatting Data Files
	Formatting Rows
	Formatting Columns
	Representing NULL Values
	Escaping
	Character Encoding

	Section IV: System Administration
	13. Starting and Stopping Greenplum
	Overview
	Starting Greenplum Database
	Restarting Greenplum Database
	Uploading Configuration File Changes Only
	Starting the Master in Maintenance Mode

	Stopping Greenplum Database

	14. Configuring Your Greenplum System
	About Greenplum Master and Local Parameters
	Setting Configuration Parameters
	Setting a Local Configuration Parameter
	Setting a Master Configuration Parameter

	Viewing Settings of Server Configuration Parameters
	Configuration Parameter Categories
	Connection and Authentication Parameters
	System Resource Consumption Parameters
	Query Tuning Parameters
	Error Reporting and Logging Parameters
	System Monitoring Parameters
	Runtime Statistics Collection Parameters
	Automatic Statistics Collection Parameters
	Client Connection Default Parameters
	Lock Management Parameters
	Workoad Management Parameters
	External Table Parameters
	Append-Only Table Parameters
	Database and Tablespace/Filespace Parameters
	Past PostgreSQL Version Compatibility Parameters
	Greenplum Array Configuration Parameters

	15. Enabling High Availability Features
	Overview of High Availability in Greenplum Database
	Overview of Segment Mirroring
	Overview of Master Mirroring
	Overview of Fault Detection and Recovery

	Enabling Mirroring in Greenplum Database
	Enabling Segment Mirroring
	Enabling Master Mirroring

	Knowing When a Segment is Down
	Enabling Alerts and Notifications
	Checking for Failed Segments
	Checking the Log Files

	Recovering a Failed Segment
	Recovering From Segment Failures

	Recovering a Failed Master
	Restoring Master Mirroring After a Recovery

	16. Backing Up and Restoring Databases
	Overview of Backup and Restore Operations
	About Parallel Backups
	About Non-Parallel Backups
	About Parallel Restores
	About Non-Parallel Restores

	Backing Up a Database
	Backing Up a Database with gp_dump
	Automating Parallel Backups with gpcrondump

	Restoring From Parallel Backup Files
	Restoring a Database with gp_restore
	Restoring a Database Using gpdbrestore
	Restoring to a Different Greenplum System Configuration

	17. Expanding a Greenplum System
	Planning Greenplum System Expansion
	System Expansion Overview
	System Expansion Checklist
	Planning New Hardware Platforms
	Planning Initialization of New Segments
	Planning Table Redistribution

	Preparing and Adding Nodes
	Adding New Nodes to the Trusted Host Environment
	Verifying OS Settings
	Validating Disk I/O and Memory Bandwidth
	Integrating New Hardware into the System

	Initializing New Segments
	Creating an Input File for System Expansion
	Running gpexpand to Initialize New Segments
	Rolling Back an Failed Expansion Setup

	Redistributing Tables
	Ranking Tables for Redistribution
	Redistributing Tables Using gpexpand
	Monitoring Table Redistribution

	Removing the Expansion Schema

	18. Monitoring a Greenplum System
	Monitoring Database Activity and Performance
	Monitoring System State
	Enabling System Alerts and Notifications
	Checking System State
	Checking Disk Space Usage
	Checking for Data Distribution Skew
	Viewing Metadata Information about Database Objects

	Viewing the Database Server Log Files
	Log File Format
	Searching the Greenplum Database Server Log Files

	Using gp_toolkit

	19. Routine System Maintenance Tasks
	Routine Vacuum and Analyze
	Transaction ID Management
	System Catalog Maintenance
	Vacuum and Analyze for Query Optimization

	Routine Reindexing
	Managing Greenplum Database Log Files
	Database Server Log Files
	Management Utility Log Files

	Section V: Performance Tuning
	20. Defining Database Performance
	Understanding the Performance Factors
	System Resources
	Workload
	Throughput
	Contention
	Optimization

	Determining Acceptable Performance
	Baseline Hardware Performance
	Performance Benchmarks

	21. Common Causes of Performance Issues
	Identifying Hardware and Segment Failures
	Managing Workload
	Avoiding Contention
	Maintaining Database Statistics
	Identifying Statistics Problems in Query Plans
	Tuning Statistics Collection

	Optimizing Data Distribution
	Optimizing Your Database Design
	Greenplum Database Maximum Limits

	22. Investigating a Performance Problem
	Checking System State
	Checking Database Activity
	Checking for Active Sessions (Workload)
	Checking for Locks (Contention)
	Checking Query Status and System Utilization

	Troubleshooting Problem Queries
	Investigating Error Messages
	Gathering Information for Greenplum Support

	Section VI: Extending Greenplum Database
	23. Using Greenplum MapReduce
	About Greenplum MapReduce
	The Basics of MapReduce
	How Greenplum MapReduce Works

	Programming Greenplum MapReduce
	Defining Inputs
	Defining Map Functions
	Defining Reduce Functions
	Defining Outputs
	Defining Tasks
	Putting Together a Complete MapReduce Specification

	Submitting MapReduce Jobs for Execution
	Troubleshooting Problems with MapReduce Jobs
	Language Does Not Exist
	Generic Python Iterator Error
	Function Defined Using Wrong MODE

	Section VII: References
	A. SQL Command Reference
	SQL Syntax Summary

	B. Management Utility Reference
	Backend Server Programs
	Management Utility Summary
	gp_dump
	Synopsis
	Description
	Options
	Examples
	See Also

	gp_restore
	Synopsis
	Description
	Options
	Examples
	See Also

	gpaddmirrors
	Synopsis
	Description
	Options
	Examples
	See Also

	gpactivatestandby
	Synopsis
	Description
	Options
	Examples
	See Also

	gpbitmapreindex
	Synopsis
	Description
	Options
	Examples
	See Also

	gpcheck
	Synopsis
	Description
	Options
	Examples
	See Also

	gpcheckperf
	Synopsis
	Description
	Options
	Examples
	See Also

	gpconfig
	Synopsis
	Description
	Options
	Examples
	See Also

	gpcrondump
	Synopsis
	Description
	Options
	Examples
	See Also

	gpdbrestore
	Synopsis
	Description
	Options
	Examples
	See Also

	gpdeletesystem
	Synopsis
	Description
	Options
	Examples

	gpdetective
	Synopsis
	Description
	Options
	Examples
	See Also

	gpexpand
	Synopsis
	Prerequisites
	Description
	Options
	Examples
	See Also

	gpfdist
	Synopsis
	Description
	Options
	Examples
	See Also

	gpfilespace
	Synopsis
	Description
	Options
	Examples
	See Also

	gpinitstandby
	Synopsis
	Description
	Options
	Examples

	gpinitsystem
	Synopsis
	Description
	Options
	Initialization Configuration File Format
	Examples
	See Also

	gpload
	Synopsis
	Prerequisites
	Description
	Options
	Control File Format
	Notes
	Log File Format
	Examples
	See Also

	gplogfilter
	Synopsis
	Description
	Options
	Examples
	See Also

	gpmapreduce
	Synopsis
	Prerequisites
	Description
	Options
	Examples
	See Also

	gpmigrator
	Synopsis
	Prerequisites
	Description
	Options
	Examples
	See Also

	gpmigrator_mirror
	Synopsis
	Prerequisites
	Description
	Options
	Examples
	See Also

	gpperfmon_install
	Synopsis
	Description
	Options
	Examples
	See Also

	gprecoverseg
	Synopsis
	Description
	Options
	Examples
	See Also

	gpscp
	Synopsis
	Description
	Options
	Examples

	gpseginstall
	Synopsis
	Description
	Options
	Examples
	See Also

	gpsetupsanfailover
	Synopsis
	Description
	Options
	Examples

	gpsnmpd
	Synopsis
	Description
	Options
	Examples

	gpssh
	Synopsis
	Description
	Options
	Examples

	gpssh-exkeys
	Synopsis
	Description
	Options
	Examples
	See Also

	gpstart
	Synopsis
	Description
	Options
	Examples
	See Also

	gpstate
	Synopsis
	Description
	Options
	Output Field Definitions
	Examples
	See Also

	gpstop
	Synopsis
	Description
	Options
	Examples
	See Also

	gpsys1
	Synopsis
	Description
	Options
	Examples
	See Also

	C. Client Utility Reference
	Client Utility Summary
	clusterdb
	Synopsis
	Description
	Options
	Examples
	See Also
	createdb
	Synopsis
	Description
	Options
	Examples
	See Also
	createlang
	Synopsis
	Description
	Options
	Examples
	See Also
	createuser
	Synopsis
	Description
	Options
	Examples
	See Also
	dropdb
	Synopsis
	Description
	Options
	Examples
	See Also
	droplang
	Synopsis
	Description
	Options
	Examples
	See Also
	dropuser
	Synopsis
	Description
	Options
	Examples
	See Also
	ecpg
	Synopsis
	Description
	Options
	Examples
	pg_config
	Synopsis
	Description
	Options
	Examples
	pg_dump
	Synopsis
	Description
	Options
	Notes
	Examples
	See Also
	pg_dumpall
	Synopsis
	Description
	Options
	Notes
	Examples
	See Also
	pg_restore
	Synopsis
	Description
	Options
	Notes
	Examples
	See Also
	psql
	Synopsis
	Description
	Options
	Exit Status
	Usage
	Meta-Commands
	Patterns
	Advanced Features
	Environment
	Files
	Notes
	Notes for Windows users
	Examples
	reindexdb
	Synopsis
	Description
	Options
	Notes
	Examples
	See Also
	vacuumdb
	Synopsis
	Description
	Options
	Notes
	Examples
	See Also

	D. Server Configuration Parameters
	add_missing_from
	application_name
	array_nulls
	authentication_timeout
	backslash_quote
	block_size
	bonjour_name
	check_function_bodies
	client_encoding
	client_min_messages
	cpu_index_tuple_cost
	cpu_operator_cost
	cpu_tuple_cost
	cursor_tuple_fraction
	custom_variable_classes
	DateStyle
	db_user_namespace
	deadlock_timeout
	debug_assertions
	debug_pretty_print
	debug_print_parse
	debug_print_plan
	debug_print_prelim_plan
	debug_print_rewritten
	debug_print_slice_table
	default_statistics_target
	default_tablespace
	default_transaction_isolation
	default_transaction_read_only
	dynamic_library_path
	effective_cache_size
	enable_bitmapscan
	enable_groupagg
	enable_hashagg
	enable_hashjoin
	enable_indexscan
	enable_mergejoin
	enable_nestloop
	enable_seqscan
	enable_sort
	enable_tidscan
	escape_string_warning
	explain_pretty_print
	extra_float_digits
	from_collapse_limit
	gp_adjust_selectivity_for_oute rjoins
	gp_analyze_relative_error
	gp_autostats_mode
	gp_autostats_on_change_thre shold
	gp_cached_segworkers_thresh old
	gp_command_count
	gp_connectemc_mode
	gp_connections_per_thread
	gp_content
	gp_dbid
	gp_debug_linger
	gp_email_from
	gp_email_smtp_password
	gp_email_smtp_server
	gp_email_smtp_userid
	gp_email_to
	gp_enable_adaptive_nestloop
	gp_enable_agg_distinct
	gp_enable_agg_distinct_pruni ng
	gp_enable_direct_dispatch
	gp_enable_fallback_plan
	gp_enable_fast_sri
	gp_enable_gpperfmon
	gp_enable_groupext_distinct_ gather
	gp_enable_groupext_distinct_ pruning
	gp_enable_multiphase_agg
	gp_enable_predicate_propagat ion
	gp_enable_preunique
	gp_enable_sequential_window _plans
	gp_enable_sort_distinct
	gp_enable_sort_limit
	gp_external_enable_exec
	gp_external_grant_privileges
	gp_external_max_segs
	gp_fts_probe_interval
	gp_fts_probe_threadcount
	gp_fts_probe_timeout
	gp_gpperfmon_send_interval
	gp_hashjoin_tuples_per_bucke t
	gp_interconnect_hash_multipli er
	gp_interconnect_queue_depth
	gp_interconnect_setup_timeou t
	gp_interconnect_type
	gp_log_format
	gp_max_csv_line_length
	gp_max_databases
	gp_max_filespaces
	gp_max_local_distributed_cac he
	gp_max_packet_size
	gp_max_tablespaces
	gp_motion_cost_per_row
	gp_num_contents_in_cluster
	gp_reject_percent_threshold
	gp_reraise_signal
	gp_resqueue_memory_policy
	gp_resqueue_priority
	gp_resqueue_priority_cpucore s_per_segment
	gp_resqueue_priority_sweeper _interval
	gp_role
	gp_safefswritesize
	gp_segment_connect_timeout
	gp_segments_for_planner
	gp_session_id
	gp_set_proc_affinity
	gp_set_read_only
	gp_snmp_community
	gp_snmp_monitor_address
	gp_snmp_use_inform_or_trap
	gp_statistics_pullup_from_chil d_partition
	gp_statistics_use_fkeys
	gp_vmem_idle_resource_time out
	gp_vmem_protect_limit
	gp_vmem_protect_segworker_ cache_limit
	gp_workfile_checksumming
	gp_workfile_compress_algorith m
	gpperfmon_port
	integer_datetimes
	IntervalStyle
	join_collapse_limit
	krb_caseins_users
	krb_server_keyfile
	krb_srvname
	lc_collate
	lc_ctype
	lc_messages
	lc_monetary
	lc_numeric
	lc_time
	listen_addresses
	local_preload_libraries
	log_autostats
	log_connections
	log_disconnections
	log_dispatch_stats
	log_duration
	log_error_verbosity
	log_executor_stats
	log_hostname
	log_min_duration_statement
	log_min_error_statement
	log_min_messages
	log_parser_stats
	log_planner_stats
	log_rotation_age
	log_rotation_size
	log_statement
	log_statement_stats
	log_timezone
	log_truncate_on_rotation
	maintenance_work_mem
	max_appendonly_tables
	max_connections
	max_files_per_process
	max_fsm_pages
	max_fsm_relations
	max_function_args
	max_identifier_length
	max_index_keys
	max_locks_per_transaction
	max_prepared_transactions
	max_resource_portals_per_tra nsaction
	max_resource_queues
	max_stack_depth
	max_statement_mem
	max_work_mem
	password_encryption
	pljava_classpath
	pljava_statement_cache_size
	pljava_release_lingering_save points
	pljava_vmoptions
	port
	random_page_cost
	regex_flavor
	resource_cleanup_gangs_on_ wait
	resource_select_only
	search_path
	seq_page_cost
	server_encoding
	server_version
	server_version_num
	shared_buffers
	shared_preload_libraries
	ssl
	ssl_ciphers
	standard_conforming_strings
	statement_mem
	statement_timeout
	stats_queue_level
	superuser_reserved_connectio ns
	tcp_keepalives_count
	tcp_keepalives_idle
	tcp_keepalives_interval
	temp_buffers
	TimeZone
	timezone_abbreviations
	track_activities
	track_counts
	transaction_isolation
	transaction_read_only
	transform_null_equals
	unix_socket_directory
	unix_socket_group
	unix_socket_permissions
	update_process_title
	vacuum_cost_delay
	vacuum_cost_limit
	vacuum_cost_page_dirty
	vacuum_cost_page_hit
	vacuum_cost_page_miss
	vacuum_freeze_min_age
	work_mem

	E. Greenplum MapReduce Specification
	Greenplum MapReduce Document Format
	Greenplum MapReduce Document Schema
	Example Greenplum MapReduce Document
	MapReduce Flow Diagram

	F. Greenplum Environment Variables
	Required Environment Variables
	Optional Environment Variables

	G. Greenplum Database Data Types
	H. System Catalog Reference
	I. The gp_toolkit Administrative Schema
	Checking for Tables that Need Routine Maintenance
	gp_bloat_diag
	gp_stats_missing

	Checking for Locks
	gp_locks_on_relation
	gp_locks_on_resqueue

	Viewing Greenplum Database Server Log Files
	gp_log_command_timings
	gp_log_database
	gp_log_master_concise
	gp_log_system

	Checking Server Configuration Files
	gp_param_setting('parameter_name')
	gp_param_settings_seg_value_diffs

	Checking for Failed Segments
	gp_pgdatabase_invalid

	Checking Resource Queue Activity and Status
	gp_resq_activity
	gp_resq_activity_by_queue
	gp_resq_priority_statement
	gp_resq_role
	gp_resqueue_status

	Viewing Users and Groups (Roles)
	gp_roles_assigned

	Checking Database Object Sizes and Disk Space
	gp_size_of_all_table_indexes
	gp_size_of_database
	gp_size_of_index
	gp_size_of_partition_and_indexes_disk
	gp_size_of_schema_disk
	gp_size_of_table_and_indexes_disk
	gp_size_of_table_and_indexes_licensing
	gp_size_of_table_disk
	gp_size_of_table_uncompressed
	gp_disk_free

	Checking for Uneven Data Distribution
	gp_skew_coefficients
	gp_skew_idle_fractions

	J. Oracle Compatibility Functions
	Installing Oracle Compatibility Functions
	Oracle and Greenplum Implementation Differences
	Available Oracle Compatibility Functions

	K. Character Set Support
	Setting the Character Set
	Character Set Conversion Between Server and Client

	L. SQL 2008 Optional Feature Compliance
	Glossary

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

