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2. Introduction 

2.1 Vector Database 
Unstructured data is transformed into a machine-understandable format through a 
computationally intensive process of converting the unstructured data into vectors — 
high-dimensional mathematical representations. These vectors capture not only the raw 
text but also the context and semantic meaning of the content. Metadata can also be 
extracted from raw data and stored alongside the transformed data. 

The importance of vector databases lies in their ability to efficiently store, manage, and 
index massive quantities of high-dimensional vector data. Unlike traditional relational 
databases, which organize data in rows and columns, vector databases represent data as 
vectors. These vectors are clustered based on similarity, enabling low-latency queries for 
Associated Nearest Neighbors (ANN)—a crucial feature for AI-driven applications. 

Vectors are essential because they serve as numerical representations for complex 
objects, such as words, images, and audio. For instance: 

• Text: Chatbots rely on vectors to understand natural language. Words, paragraphs, 
and entire documents are converted into vectors using machine learning 
algorithms. 

• Images: Image pixels can be described numerically and combined into high-
dimensional vectors. 

• Speech/Audio: Sound waves can also be represented as vectors, enabling 
applications like voice recognition. 

As organizations handle ever-growing volumes of unstructured data for AI, vector 
embeddings and vector databases become increasingly important. Vector embeddings 
represent vectors in a continuous, multi-dimensional space.  

Representing unstructured data as a vector embedding  allows for similarity searches that 
traditional databases and data types cannot support, as they require an exact match on 
the value. In a vector format, not only can we achieve hits for data that is similar or close 
enough, but there are also various types of calculations that enable different ways of 
comparing the vectorized data during search time. 



 

Vector databases are crucial in real-time recommendation systems for e-commerce and 
streaming services, enabling personalized recommendations with low latency. In financial 
institutions, they aid in fraud detection by analyzing transaction patterns and identifying 
anomalies in real-time. For platforms relying on visual content, vector databases facilitate 
efficient image and video searches based on visual features. In natural language 
processing applications like chatbots, they support semantic search, sentiment analysis, 
and language translation. In healthcare, they manage and analyze complex medical data, 
aiding in diagnostics and personalized treatment plans. Lastly, in IoT applications, vector 
databases handle continuous sensor data influx, supporting real-time data ingestion, 
processing, and querying for effective device monitoring and control. 

Vector databases  play a key role in advanced data processing techniques like Retrieval-
Augmented Generation (RAG). RAG leverages the strengths of both retrieval-based and 
generation-based models to enhance the accuracy and relevance of generated responses. 
In the following section, we will delve into how vector databases underpin the functionality 
of RAG systems, enabling real-time data retrieval and processing across various 
applications. 

 

2.2 RAG (Retrieval-Augmented Generation) 
Generative AI (GenAI) is revolutionizing business operations by automating tasks, 
enhancing customer service, and improving decision-making processes. The high cost 
associated with training foundational models and the need to maintain data privacy, 
especially for sensitive business information, present significant challenges in delivering 
GenAI use cases. Retrieval-Augmented Generation (RAG) workflows provide a practical 
solution for delivery GenAI outcomes in production with high accuracy. 

In the realm of machine learning, the RAG methodology offers a dynamic approach to 
achieving high quality results based on custom and specialized data. Instead of the 
traditional route of training a tailored model from scratch, RAG enables a foundational 
model which may have been fine-tuned, to process and understand new, business-
specific, and up-to-date data, prior to generating results at inference time. This 
methodology enhances the quality of the generated output by aligning it closer to the most 
pertinent, precise, and relevant business data unavailable during the initial training phase. 
By retrieving and using custom data from authoritative sources at inference time, the 
output generated reflects the unique characteristics of the custom business data beyond 
the general knowledge used during training. It also avoids the need to frequently re-train 
the model using a fine-tuning process. 



 

It is essential that correct and accurate data is found with minimal latency within the RAG 
workflow. A granular representation of the proprietary and unstructured data is key to 
RAG’s success. An accurate and granular representation of data can be achieved when the 
data is meticulously organized and indexed, allowing for efficient retrieval and processing. 

Vector databases are crucial in this process by offering robust data retrieval capabilities. 
They enable businesses to leverage pretrained and sometimes fine-tuned GenAI models, 
which are primarily large language models (LLMs), while ensuring that the responses and 
outputs are grounded in their proprietary data. This approach reduces the costs 
associated with GenAI implementation in production and enhances data security by 
keeping sensitive information on-premises. 

Vector databases are essential for the effective implementation of RAG workflows. They 
provide the necessary infrastructure to ensure accurate, efficient, and secure data 
retrieval, enhancing the performance and applicability of GenAI in business operations. 

 

2.3 Vector Database in RAG Workflow 
Vector databases are essential for generative AI use cases, grounding foundation models 
with relevant business data, and supporting workflows in the era of GenAI. 

Consider the following streamlined workflow which ensures efficient handling of high-
dimensional data, enabling accurate retrieval and context-aware responses. 



 

 

Figure 1: Vector database in a RAG workflow 

Figure1 RAG Workflow Steps 

1. Data Set Chunking (step1): 

o Objective: Break down pre-processed or cleansed large datasets into 
smaller, manageable pieces (chunks). 

o Process: Split copy of datasets documents, text, or other data types into 
chunks based on predefined criteria (e.g., paragraphs, sentences, or fixed-
size tokens). Original dataset (that is the blue box in Figure 1) is untouched 
during this process. 

o Outcome: Each chunk represents a segment of the original data, making it 
easier to process and analyze. Depending on the chunking strategy, the total 
size of the chunks may differ from the original data; it could be smaller, 
equal, or larger. 

o  

2. Creating Embeddings (Step 3): 

o Objective: Convert each data chunk into a high-dimensional vector 
representation (embedding). 

                                                                                                                                   

                         

       

        
                  

        

                  
                           

           

      

        

        

          

           

      

              

                                 

 
  
 
  

 
  
 
  

                

      

                            
                  

             

                             
                  

      
             
           

 
  
 
  

       
                 

   

      

       
             
             
          

        
          

      
            
          

                 
                

 
  
 
  

           
           

                      

           
               

        

                 
          



 

o Process: Use machine learning models, such as pretrained language 
models, to generate embeddings that capture the semantic meaning and 
context of each chunk. 

o Outcome: Each chunk is now represented as a vector, which can be used for 
similarity searches and other analysis. The vector size depends on the 
number of dimensions in the embedding and is independent of the chunk 
size. 

3. Persisting Chunks and Embeddings in Vector Database (Step 2, optional Step, 
and Step 4): 

o Objective: Store the chunks and their corresponding embeddings in a vector 
database. 

o Process: Save each chunk along with its embedding in the database, 
ensuring efficient storage and retrieval. 

o Outcome: The vector database now contains a structured representation of 
the original unstructured data, ready for querying. 

4. Prompt Conversion to Embedding (Step 5): 

o Objective: Convert a user query or prompt into an embedding. 

o Process: Use the same machine learning model to generate an embedding 
for the prompt, ensuring consistency with the embeddings of the data 
chunks. 

o Outcome: The prompt is now represented as a vector, which can be 
compared to the stored embeddings. 

5. Retrieving Chunks through Query of Vector Database (Step 6, Step 7a, and Step 
7b): 

o Objective: Find the most relevant data chunks based on the prompt 
embedding. 

o Process: Query the vector database using the prompt embedding to retrieve 
chunks with similar embeddings (i.e., those that are semantically close to 
the prompt). 

o Outcome: The retrieved chunks are the most relevant pieces of data, 
providing contextually appropriate responses or information based on the 
original query. 



 

Summary: This workflow ensures that the generated output is closely aligned with 
the most pertinent and up-to-date business data, enhancing the quality and 
relevance of the results. 

 

3. Vector Database Architecture Overview  
Vector databases play a critical role in AI workflows by enabling efficient data 
retrieval and scalability. To meet the performance requirements of AI 
applications, vector databases must seamlessly scale for data ingestion and 
query processing. 

Key considerations for designing vector database architectures are: 

 

Figure 2:  Vector database architecture. 

1) Fast Data Retrieval: 
• Semantics Search: Retrieving relevant data quickly is essential for AI 

applications. Vector databases should excel at semantic-based 
searches.  

• Low Latency: Performant ingestion, indexing, and searching 
implementations minimize latency. 

2) Modular Architecture: 
• Resource Allocation: Unique features may require varying resources 

during the data lifecycle. Modular architecture allows independent 
scaling of specific feature modules as needed. 

                                                                      

                       

         

 

    

         

              
              

         

 

             

               

            

          

               

    
      

               

            

          

         
              

          

         
              

               

        

      

                                                        

                                                                                



 

• Efficient leverage of modules: In a modular architecture, prioritize use of 
more resource efficient modules while minimizing dependency on 
resource-intensive modules. This approach streamlines performance, 
optimizes resource utilizations, and reduces overhead. 

3) Common Modules: 
• Load Balancer: Redirect I/O efficiently across nodes. 
• High Availability (HA): Monitor and manage different nodes to ensure 

system reliability. 
• Query Planner: Optimize query execution plans. 
• Worker Nodes: Perform specific functionality (e.g., data ingestion, 

indexing, similarity search, and query execution). 
4) Compute Utilization: 

• Indexing Module: GPUs accelerate high-dimensional vector operations. 
Leverage GPUs for efficient indexing.  

• Data Loading Module: CPU suffices for data (embeddings) loading; GPUs 
are unnecessary. Creation of embeddings is outside of vector database 
construct. 

• Query Module: Use GPUs for fast similarity search during query 
execution. 

5) Storage Options: 
• Shared Nothing Architecture: Each module has isolated dedicated 

storage. This architecture minimizes contention for storage resources. 
• Shared Architecture: Modules share storage resources. Optimization is 

based on I/O latency requirements and throughput. 

Summary: Vector databases must strike a balance between performance, scalability, 
availability, and resource utilization.  

 

4. Vector Database Key Infrastructure 
Deployments for vector databases are quite broad: 

• Embedded – Smaller vector databases that can be packaged with an 
application. Examples: SQLite with sqlite-vss extension; Qdrant vector 
database.  



 

• In-Memory – Small, ephemeral databases that leverage host memory and focus 
on near-real time analytics. Examples: Redis and SingleStore are in-memory 
databases with vector data support. 

• Monolithic – Databases that operate as a single unified system, often on a single 
server.  They are useful for small to medium-sized databases.  They are often 
traditional single system scale-up architectures and are deployed closer to the 
source of data generation.  Increased performance demand requires scaling-up 
server resources to meet the increased performance demands.  Edge is an 
increasingly common use case for this type of vector database. Example: 
PostgreSQL with pgvector extension supporting vector data. 

• Microservices/Distributed– Databases that are part of a distributed system.  
They are often designed as scale-out architecture to scale horizontally and 
operate as part of an enterprise microservices architecture. Useful for Medium 
to extremely large databases. Example: Milvus: Milvus pure vector database and 
Elasticsearch.  

• Cloud: Databases that are cloud-based offer scalability and flexibility, 
integrating with various cloud services and infrastructure. Example: Amazon 
OpenSearch and Google Cloud SQL with pgvector.  

Vector databases have key infrastructure characteristics on which they run; 
Compute, network, and storage infrastructure are crucial for performance, 
scalability, high availability (HA), and recovery. 

Server Infrastructure: 

• Processing Power: High-dimensional vector data requires substantial 
computational resources. Modern servers with multicore processors and 
large memory capacity are optimal for efficient vector operations, such as 
similarity searches and clustering. 

• Parallelization: The CPU intensive operations for Index and Query are mostly 
data independent. This allows Vector databases to benefit from parallel 
processing.  Servers with multiple cores can handle concurrent queries, 
improving response times. 

• GPU Utilization: GPUs can significantly assist with additional computation, 
memory, and parallelization resources. These additional resources can 
enhance the performance of vector databases. 

• Fast Local Storage: When the size of vector data exceeds system RAM, 
abundant local disk is key for performance. 



 

Network: 

• Latency: Low-latency communication between servers and clients is critical. 
Vector databases often serve low-latency applications (e.g., 
recommendation engines), where delays impact user experience. 

• Bandwidth: High-dimensional vectors can be large. Adequate network 
bandwidth ensures smooth data transfer between clients and servers. 

• Distributed Systems: Vector database processing may be distributed across 
multiple servers. A robust network facilitates seamless communication 
between nodes. 

Storage: 

• Scalability: Vector databases handle massive amounts of data. Scalable 
storage solutions (e.g., distributed file systems, object storage) 
accommodate growth. 

• I/O Performance: High-speed storage (SSDs or NVMe drives) reduces 
read/write latency. Efficient I/O operations are crucial for vector retrieval. 

• Compression: Storing high-dimensional vectors efficiently requires 
specialized compression techniques like quantization which reduce the 
precision of the vector. Balancing storage size and retrieval speed is 
essential. 

Summary: Optimizing server performance, network responsiveness, and storage 
scalability is required for vector databases to handle high-dimensional data effectively and 
support AI workflows and Gen AI applications. 

Dell Technologies provides a versatile infrastructure for various vector database 
architectures, combining high-performance compute, memory, storage, and networking 
resources. This infrastructure supports scalable and efficient data processing, enabling 
seamless integration with modern data platforms and AI workloads. Dell’s solutions are 
designed to handle diverse data types and workloads, ensuring optimal performance and 
flexibility across on-premises, cloud, and hybrid environments. 

4.1 Server Infrastructure 
Vector Database workloads impact all areas of a server resources: RAM, CPU, GPU 
acceleration, and local storage.  
 
The foundational infrastructure topics are: 
 



 

1. Memory/CPU 
The baseline system configuration for a Vector Database is (largely) in-memory with 
CPU processing. This is the standard server architecture for Vector Database 
processing unless there is a need for more costly parallel acceleration (i.e., 
GPU, ...GPUs). 
 
In addition to classic memory utilization techniques such as caching, compression, 
pooling, garbage collection, and smart swapping, vector databases will use 
memory optimized structures (quantization, sparse vectors) and indexes optimized 
for in-RAM searching. 
 

2. High Speed Local Disks 
As in-memory resources are exhausted vector databases take advantage of disk 
optimizations for large-scale datasets. These are designed to work efficiently with 
large-scale datasets by leveraging secondary storage, such as SSDs, or hard drives 
while maintaining high query performance. 
 
The common components of this architecture are persistence, data logs, backup, 
and configuration storage as well as a sophisticated hybrid storage algorithms that 
maximize storage of frequently accessed data in memory while keeping the rest on 
disk, aiming for efficient use of memory and storage resources. 
 

3. GPU 
Some vector databases allow GPU acceleration*. This is achieved by offloading 
aspects of vector search and indexing to GPUs for increased performance.  GPU 
offloading allows computational parallelism, additional memory, increased 
memory bandwidth, matrix operations, tensor calculations, and optimized floating-
point operations.  For exceptionally large implementations, multiple GPUs may be 
utilized independently and/or aggregated together. 
 

Dell's PowerEdge server portfolio is well-suited for vector database computational 
workflow due to:  robust performance, scalability, and reliability. Equipped with the latest 
Intel® Xeon® processors and high-capacity DDR4 memory, these servers handle the 
intensive computational demands of vector databases efficiently, ensuring fast data 
processing and query handling. 

 
For multimode configuration, the following table illustrates the progression of a vector 
database system as it scales from a single node setup to a multi-node cluster. 



 

 
 

Configuration Single Node Single Node + GPU Multi-node Cluster 
Server Model PowerEdge XS PowerEdge XA PowerEdge XS(s), 

PowerEdge XA(s) 
Database Type Standalone VDB Standalone VDB Scalable Cluster 

VDB 
Storage Dell Storage Dell Storage Dell Storage 

 
 
*Note: It is worth highlighting that many other subjects on the periphery of vector databases that 
benefit from GPU acceleration are excluded from this discussion.  Example: creation of Embeddings 
benefits from GPU but this is not covered in the document; embedding generation happens outside 
of and independently of the VDB.   

 

4.2 Storage Infrastructure 
During the data ingestion phase, achieving fast client response time is essential. 
Traditional data persistence architectures face challenges related to network latency, 
storage requirements, and data protection.  

 
                                                                 Figure 3 Vector Database Storage architecture. 

 
Challenges 
1. Local Storage and Network Latency 

• Issue: Leveraging local storage minimizes network latency during data 
ingestion. This approach demands significant storage per node. 

                                                                      

                              

                      

                      

                

                       

                            

   

                            

                       

                              

             

                             

                           

                               

                               

                        

                        

        

                                

                       

    

                                

                           

                          

                                     

                                  

         

                         

                  

            

                   

              

  

         

  

   

        

         

   

  

      

   

   

               

         

 

    

         

         

 

             

      

      
         

  



 

• Solution: To scale storage independently of computational resources, we 
introduce tiered storage, where low-access data (cold data) resides in 
network-attached storage (NAS) or S3 storage. 

2. Data Resilience  
• Issue: Ensuring data protection requires replication which exacerbates 

storage demands. 
• Solution: By tiering data, we reduce the reliance on local storage, mitigating 

the impact of replication. 
3. Tiered Storage Approach 

a. Cold Data Tier 
• Definition: Cold data refers to infrequently accessed data. 
• Storage Location: Store cold data in network storage (NAS or S3). 
• Benefits: 

o Efficiently manage large volumes of data without overwhelming 
local storage. 

o Scale storage independently of computational resources. 
o Reduce the need for extensive replication. 

b. Warm Data Caching 
• Definition: Warm data includes frequently accessed data during query 

and indexing. 
• Caching Strategy 

o Pre-fetch warm data from network storage to local storage. 
o Cache frequently accessed vectors for faster retrieval. 
o Evict or update cached entries based on access patterns. 

4. Impact on Application Response 
a. Latency Reduction 

• Query Time: Fetching data from network storage introduces latency. 
• Optimization: Caching warm data locally minimizes query time latency. 

b. Indexing Efficiency 
• Index Creation: Indexing benefits from local storage. 
• Trade-off: Balancing storage requirements with indexing performance. 

 
 

Note: Limited RAM requires usage of high speed-local disk.  Limited local disk 
requires usage of external storage.   Larger databases/datasets require efficient 
storage at all resource levels. 



 

Dell’s Power family of storage solutions is designed to meet the requirements of vector 
databases, ensuring optimal performance, scalability, and reliability. 

• Dell PowerStore is designed to handle high-performance transactional workloads 
efficiently. It offers advanced data reduction capabilities, intelligent automation, 
and scalable architecture. 

• Dell PowerScale provides a robust solution for scale-out workloads, particularly 
those involving substantial amounts of unstructured data. It supports both file and 
object storage interfaces, making it suitable for applications like Milvus that require 
scalable and flexible storage solutions. 

• Dell PowerFlex is a comprehensive software-defined infrastructure platform that 
provides independent scaling of compute and storage. It offers flexibility in 
deployment, extensive automation, and scalable architecture to meet the demands 
of modern workloads. PowerFlex delivers high performance with sub-millisecond 
latency, linear scalability, and guaranteed data reduction capabilities. 

5. Vector Database Scaling, Indexing, and Querying 

5.1 Data Partitioning and Sharding 
Sharding is a technique used in database management systems to partition data across 
multiple servers or nodes. This approach is particularly useful for improving scalability and 
performance by distributing the workload and storage requirements. 
 
Milvus uses sharding to handle large-scale datasets efficiently. Milvus employs sharding to 
divide embeddings (vector data) across multiple nodes, where each node is responsible 
for storing and processing a subset of the vectors. This allows for horizontal scaling of data 
ingestion even with large amounts of data and for high-dimensional vectors.  The 
separation of data further allows horizontal scaling of downstream Index and Query 
processing. 
 
PostgreSQL uses sharding to partition tables and distribute them across multiple physical 
or logical nodes. Each shard in PostgreSQL can be managed independently, allowing for 
better distribution of read and write operations. This scalability enhancement is crucial for 
applications that require handling large volumes of data without sacrificing ACID 
compliance and while maintaining low-latency access and high availability. 
 



 

5.2 Indexing 
Creating indexes on the ingested data facilitates fast retrieval. Optimizations include 
choosing an appropriate index type based on the dataset size and query requirements, and 
tuning index parameters to balance accuracy and performance. 

Vector database indexing methods include IVFFLAT, HNSW, DiskANN, GPU_CAGRA, and 
GPU_IVF_FLAT.  

1. IVFFLAT uses the Inverted File technique and the FLAT library for approximate 
nearest neighbor searches, balancing search accuracy with computational 
efficiency.  

2. HNSW is designed for efficient nearest neighbor search in high-dimensional 
spaces, known for its fast and scalable retrieval of similar vectors.  

3. DiskANN is optimized for scenarios where data resides on disk rather than in 
memory, making it suitable for datasets larger than available memory. While slower 
than in-memory indexing, it is necessary for large datasets.  The lower memory 
requirements can potentially be a lower cost alternative to high-memory systems.  

4. GPU_CAGRA is a graph-based index optimized for GPUs, using inference-grade 
GPUs for cost-effective performance. It is based on CAGRA, RAFT’s new state-of-
the-art ANN index. It is a high-performance, GPU-accelerated, graph-based method 
that has been specifically optimized for small-batch cases, where each lookup 
contains only one or a few query vectors. 

5. GPU_IVF_FLAT is like IVF_FLAT, where vector data is divided into ‘nlist’ cluster units. 
Vector comparison is made between the target input vector and the centroid of 
each cluster; optimized for GPU acceleration. 

The type of computational method used affects indexing performance and cost.  

1. CPU-based indexing is generally slower than GPU-based indexing, especially for 
large-scale datasets, with CPU-based Indexing generally having  a lower initial cost. 
It is suitable for smaller datasets or applications where real-time performance is 
not critical.  

2. GPU-based indexing is significantly faster due to the parallel processing capabilities 
of GPUs, making it ideal for handling large-scale and high-dimensional data. 
Although it has a higher initial cost due to expensive GPU hardware, it can be more 
cost-effective overall for applications requiring high performance.  

Overall, the choice of indexing method and computational resource type significantly 
impacts the performance and cost of vector databases. CPU-based methods are cost-



 

effective for smaller datasets, while GPU-based methods offer superior performance for 
larger scale applications.  

5.3 Query Process 
This stage involves processing the query to retrieve relevant vectors from the database. 
Several optimizations can be applied to improve performance: 

• Parallel Query Execution: Running multiple queries in parallel to utilize available 
computational resources effectively. This can significantly reduce query response 
times. 

• Query Caching: Storing the results of frequently executed queries in a cache. This 
allows for quick retrieval of results without re-executing the entire query, reducing 
computation time. 

• Load Balancing: Distributing query loads across multiple nodes or servers to 
prevent bottlenecks and ensure consistent performance. This helps in handling high 
query volumes and maintaining system stability. 

Optimizing query processing involves selecting appropriate techniques and compute 
resources to balance performance, accuracy, and cost. By fine-tuning each stage of query 
processing, vector databases can deliver fast and accurate query results, even for large 
and complex datasets. CPU-based methods are cost-effective for smaller datasets, while 
GPU-based methods offer superior performance for large-scale and real-time 
applications. Disk-based indexing is essential for handling datasets that cannot fit in 
memory. 

 

6. Vector database Storage Optimizations 
Vector databases often use compression techniques to reduce the memory footprint and 
improve the efficiency of vector similarity searches. These techniques typically involve 
reducing the precision of vector elements or transforming the data into a more compact 
representation. 
 
 List of some of Compression Techniques 

1. Quantization 
• Binary Quantization (BQ): Converts vectors into binary codes to reduce 

storage requirements. 



 

• Product Quantization (PQ): Divides vectors into smaller sub-vectors and 
quantizes each sub-vector separately. 

• Scalar Quantization (SQ): Reduces the precision of each vector element, 
often by converting floating-point numbers to integers. 

2. Dimensionality Reduction 
• Principal Component Analysis (PCA): Reduces the number of dimensions by 

transforming the data into a new coordinate system where the greatest 
variances are captured in the first few dimensions. 

• t-Distributed Stochastic Neighbor Embedding (t-SNE): Reduces dimensions 
while preserving the local structure of the data. 

3. Vector Quantization 
• Codebook Generation: Creates a set of representative vectors (codebook) 

and encodes the original vectors using these representatives. 
• Feature Engineering: Transforms the original vectors into a lower-

dimensional space using engineered features. 
 
These techniques help manage the large size and high dimensionality of vector data, 
making vector databases more efficient and scalable. 
 

7. Workloads and Benchmarks 

7.1 Vector database Workloads  
Low latency is critical for achieving Return on Investment (ROI) in RAG-based 
applications. Having the appropriate computational power for various operations is 
essential for achieving the required performance at the solution level.  

In this paper's context, the focus of vector databases in the RAG pipeline may be 
divided into three distinct stages: Data Ingest, Query Processing, and Response 
Generation.  Vector databases serve as the fundamental component for the Ingest 
and Query stages. 

1. Data Ingest involves the initial input of unstructured data into the vector 
database. Robust computational power is required to handle large volumes of 
data efficiently, and to ensure the data is ingested quickly and accurately. 

2. Query Processing focuses on retrieving and processing data based on user 
queries. It demands high performance and low latency to ensure that queries 
are executed swiftly to provide timely and relevant results. 



 

3. Response Generation is not directly handled by the vector database. This stage 
involves generating responses based on the processed queries. The efficiency of 
the vector database in the ingest and query processing stages directly impacts 
the speed and accuracy of response generation. 

For optimized design and sizing of your vector database infrastructure, consider the 
following factors: 

1. Data Size: The total amount of unstructured data. 
2. Data complexity and Dimensionality: How complex the data content is and 

how dense the vector embedding will be. Larger dimensionality of vector 
data will require more resources. Another factor is whether the vector 
embeddings are dense or sparse. Another complexity is how specific the 
system’s response should be. The more specific a required outcome on 
complex data, the more computational resources will be required.  

3. Data Updates: Frequency and volume of data changes. Distinguishing 
between incremental additions and modifications to existing data helps 
estimate the reindexing load on the database. 

4. Data Currency Requirements: Consider the expected speed at which new 
data must be available for query processing. A vector database must 
efficiently manage simultaneous data ingestion, re-indexing a, and query 
processing in use cases where frequent data updates and rapid query 
responsiveness is essential. 

While not exhaustive, the above metrics collectively determine the throughput 
demands for the data retrieval component of the solution and guide the allocation 
of computational resources across operational stages. 

Workloads can be categorized based on data set size: 

1. Small Data Sets: For instance, 500K vectors with 1,536 dimensions. 

Data Ingest: For smaller data sets, the ingest workload is relatively light. This 
requires less computational power, less storage capacity, and all vector 
data is in-memory. The focus is on efficiently handling incremental additions 
and modifications. 

Query Processing: Query processing for small data sets is typically faster 
and requires fewer resources. The system can quickly retrieve and process 
data, ensuring low latency responses. 

2. Medium Data Sets: For instance, 10 M vectors with 768 dimensions. 



 

Data Ingest: Medium-sized data sets require more robust computational 
resources to manage the increased volume of data. All vector data is in-
memory, requiring sufficient RAM for large monolithic systems, or sufficient 
nodes for distributed system. Efficient data ingestion and indexing are 
critical to maintain performance. 

Query Processing: With medium data sets, query processing becomes more 
complex and resource intensive. The system needs to balance speed and 
accuracy to provide timely responses. 

3. Large Data Sets: For instance, 100 M vectors with 768 dimensions 

Data Ingest: Ingesting large data sets demands significant computational 
power and storage capacity. All vector data cannot reside in memory for 
monolithic systems. Distributed systems may (or may not) scale to 
accommodate the vector data processing in-memory. The system must 
handle high data velocity and ensure that new data is quickly available to 
query nodes. 

Query Processing: Query processing for large data sets is highly resource 
intensive. The system must efficiently manage large-scale data retrieval and 
processing to maintain low latency and high performance. 

These categories help in understanding the varying computational and storage 
requirements based on the size of the data set, ensuring that the vector database 
infrastructure is optimized for different workloads. 

7.2 Vector database – pgvector and Milvus. 
Two notable solutions in this space are pgvector and Milvus, each offering unique 
capabilities to address the challenges of vector similarity search and storage. 

7.2.1 pgvector 

pgvector is an open-source extension for PostgreSQL that allows storing and searching 
vector data alongside traditional structured data. This makes it a valuable tool for 
applications requiring efficient vector similarity searches within a relational database 
environment. 

Here are some key aspects of pgvector: 

• Integration with PostgreSQL: pgvector is built as an extension to PostgreSQL, 
leveraging its robust database capabilities. 



 

• Vector Storage: It enables the storage of vector data, which is useful for 
applications like machine learning and similarity searches.  

• Search Capabilities: Supports both exact and approximate nearest neighbor 
searches using algorithms like l2_distance, cosine-distance, and vector-negative-
inner-product. 

• Indexing: Implements HNSW and IVFFlat indexing methods to optimize search 
performance. 

• PostgreSQL Features: Inherits PostgreSQL's features like Write-Ahead Logging 
(WAL), replication, and point-in-time recovery, ensuring data integrity and reliability. 

• Memory Requirements: Search performance depends on the frequently accessed 
data/index fitting in memory, but not all queried table indexes need to be in 
memory. 

Summary: pgvector enhances PostgreSQL by adding advanced vector search capabilities, 
making it a powerful tool for modern data applications.  

7.2.2 Milvus 

Milvus is an open-source vector database designed for high-performance similarity search 
on large-scale datasets. It supports various deployment options, including standalone, 
distributed, and cloud-based solutions. Milvus is a valuable tool for applications 

requiring efficient vector similarity searches within a pure vector database environment. 

Here are some key aspects of Milvus: 

• Purpose: Milvus is built to store, index, and manage massive embedding vectors 
generated by machine learning models.  

• Scalability: It supports horizontal scaling, allowing it to handle billions of vectors 
efficiently. 

• Performance: Milvus uses advanced indexing techniques and a distributed 
architecture to ensure fast and accurate similarity searches. 

• Deployment Options: Offers various deployment models, including standalone, 
distributed, and cloud-native options, making it flexible for different use cases. 

• Integration: Works well with AI and machine learning tools, making it a powerful 
choice for applications like recommendation systems, image retrieval, and more. 

Summary: Milvus is designed to make unstructured data search more accessible and 
efficient, providing a consistent user experience across different environments. 

 



 

7.3 Benchmark Tools 

The open-source tool VectorDBBench was selected to compare performance of 
different vector databases due to its broad support for modern Vector Database 
platforms and associated index types. 

VectorDBBench reports four key performance metrics for each test run: 

1. Load Duration: Time (in seconds) for data ingestion from the benchmark test driver 
to the vector database, including post-insert optimization and indexing. 

2. Query / Sec (QPS): Average total rate of vector retrieval during the query test phase, 
with client instances querying the database for 30 seconds at scale (1, 5, 10, 15, 20, 
25, 30, 35 clients). 

3. Latency p99: The 99th percentile latency (ms) of the query requests. 
4. Recall (%): Ratio of relevant items retrieved by a query to the total number of 

relevant items that could have been retrieved, indicating the system’s ability to 
retrieve all relevant items from a dataset. 

Performance evaluation was conducted using five index types to organize the vector 
embeddings: 

1. IVFFLAT: Utilizes the Inverted File technique and the FLAT library for approximate 
nearest neighbor searches in large-scale vector datasets. Default parameters: 1024 
nlist (number of partitions), 64 nprobe (how many partitions to search for ANN). 

2. HNSW (Hierarchical Navigable Small World): Designed for efficient nearest 
neighbor search in high-dimensional spaces. Default parameters: 30 M (the number 
of neighbors in the core graph), 360 efConstruction (how many candidate neighbors 
are considered when adding a new node), 100 ef (size of the dynamic candidate 
search list). 

3. DiskANN (Disk-Accelerated Nearest Neighbor): Optimized for scenarios where 
data resides on disk rather than in memory. Default parameter: 100 searches_list 
(number of lists/partitions examined during search). 

4. GPU_CAGRA: A graph-based index optimized for GPUs, using inference-grade 
GPUs for cost-effective performance. 

5. GPU_IVF_FLAT: Similar to IVF_FLAT optimized for GPU. 

The following performance tests were conducted: 



 

1. Search Performance Test (500K Dataset, 1536 Dimensions): Tested search 
performance with a medium 500K dataset (OpenAI 500K vectors, 1536 dimensions) 
at varying parallel levels. 

2. Search Performance Test (10M Dataset, 768 Dimensions): Tested search 
performance with a large 10M dataset (LAION 10M vectors, 768 dimensions) at 
varying parallel levels. 

 

8. Results 
A vector database benchmark measures the unique efficiency of the database in 

utilizing compute, memory, and storage resources for vector query processing. It also 

assesses the scalability of the database from a single node to a multi-node deployment. 

Additionally, the benchmark provides insights into network and storage configuration 

impacts during distinct stages of vector data loading, indexing, and querying. 

 The measured performance results are an indication of this basic principle: The greater 
amount of computational resources (CPU,  GPU) or memory, the better the overall 
performance. 

 

8.1 Standalone Milvus – Compute 
Standalone configuration focuses on a bare-metal installation and the difference between 
CPU and GPU computational resources. The accelerations used in this test are 
GPU_CAGRA, GPU_IVF_FLAT which leverages Nvidia rapids raft cuVS CAGRA GPU 
acceleration algorithm.  

Configuration details in Setup Info section. 

Note: During the test runs, data is loaded the same way so that the performance 
measurements relate to the computation of selected indexing scheme. 



 

 

 

If we try to analyze the combined data, we can make the following general observations: 

- Simple flat is the quickest load time as there is no index creation.  All vector 
embeddings are searched for all queries.  

- Conversely DiskANN has the largest load time.  This suggests it is one of the 
algorithmically hardest indexes and requires highest CPU processing without any 
GPU assist. 
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From above results the following can be concluded: 

- FLAT - Flat indexing involves comparing the query vector to every single vector in the 
database. Slow!! 

- HNSW – This is an optimized fully in-memory index which performs best among the 
non-GPU accelerated indexing schemes. 

- DiskANN Optimized for disk access, DiskANN will not be as performant for smaller 
datasets that are entirely in-memory.  The reverse would be true for datasets that do 
not fit into RAM. This highlights the need to map the appropriate index type to the 
available resources to maximize performance.   

- GPU(s) – No surprise:  More GPUs improve query performance. The interesting 
insight is that FLAT maps well and is performant on the GPU parallel architecture.  

 

8.2 Single-node pgvector – VM Hosted 
For the most used index mechanism HNSW, the load duration increases with the size of 
the dataset. As pgvector does data insert and index building in sequence in this test setup, 
we can break down “load-duration” into Insert processing and Index creation sections. 
Results indicate insert duration is a bit constant and index building varies with data set 
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size. Index building time can be optimized by tuning maintenance_work_mem and 
max_parallel_workers parameters of PostgreSQL. 

pgvector does not support DiskANN vector indexing method. 
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                                             Figure 8 single node pgvector VMstats during vectorDBBench test run - Memory. 

As graph in Figure 8 indicates, memory usage increases during index building. All the 
HNSW indexes stay in-memory, and this in-memory index data is used during query 
execution. 
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                                          Figure 10 single node pgvector VMstats during vectorDBBench test run - CPU. 

Compute resource usage is high during the index building and query stages. 

HNSW offers faster query performance, providing quicker responses, which is ideal for 
high-throughput systems. 
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IVFFlat is slower in search speed compared to HNSW, but it is ideal for fast index creation 
and efficient memory usage. 

 

 

HNSW is more memory-intensive but delivers superior accuracy and recall.  
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8.3 Three-node Milvus – K8S Hosted 
Comparing Milvus performance shows the expected increase in index creation time based 
on the complexity of the index. 

The larger data set shows the advantage of the Milvus distributed architecture. 
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The index query performance for the Milvus platform has predictable results. The more 
complex HNSW index performs very well against the more brute force IVFFLAT. As the size 
of data increased so did the performance delta between them. DiskANN is specifically 
designed for efficiency in configurations whose data size is greater than available memory. 
It relies on optimized SSD access in place of all in-memory implementations. The 
requirement of disk access is seen in lower performance scores.  
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                               Figure 15 Three-node Milvus vectorDBBench test run - Latency. 



 

As expected, latency relates to the amount of the index that can be loaded into memory. 
The more disk accesses during processing, the higher the latency. 

 

 

The recall rates show no surprises between the various setups. 

 

To understand the system resource usage collected VMstats during the test run. Below 
graph Figure 17 HNSW memory usage increases as index is built and resides in memory 
and stays consistent during the query operations.  
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                                                    Figure 17 Three-node Milvus VMStats during vectorDBBench test run - Memory. 



 

 

 

Below graph figure Compute resource of usage is high during the index building and query 
stage as these are the most computational operation intensive stages. 

 

 

 

 

                               Figure 18 Three-node Milvus VMStats during vectorDBBench test run - CPU. 



 

9. Backup 
Given the critical nature of the data stored, robust backup and recovery mechanisms are 
essential to protect against data loss due to hardware failures, software glitches, or human 
errors.  

The following sections provide high-level summary and references to PostgreSQL backup 
and restore supported by Dell portfolio and Milvus database backup and restore features. 

9.1 Dell PowerProtect Data Manager (PPDM) – PostgreSQL Database  
This involves several key steps to ensure application consistent, data integrity and 
availability. Here is a summary: 

Setup and Configuration: 

• Install PPDM: Ensure that Dell PowerProtect Data Manager is properly installed 
and configured in your environment1. 

• Configure PostgreSQL: Enable Write-Ahead Logging (WAL) and set up archive 
logging in the postgresql.conf file to ensure continuous data protection. 

Backup Process: 

• Full Backups: Schedule regular full backups of the PostgreSQL database using 
PPDM. This involves creating a complete copy of the database at a specific point 
in time. 

• Incremental Backups: Configure incremental backups to capture only the 
changes made since the last full backup. This helps in reducing storage 
requirements and backup time. Except K8s deployment, where CSI only 
supports full snapshot and hence will always be full backup. 

• Application consistency: Full and incremental backup process requires the 
application to ensure all the application data is flushed to storage. This is 
advantageous for fast application recovery and data consistency. 

Snapshot Management: 

• Snapshot Initiation: 
o Based on the defined policies, PPDM initiates the creation of snapshots. 

This can be done manually or automatically according to the schedule 
set in the policy. 

• Snapshot Creation: 



 

o PPDM interacts with the underlying storage infrastructure like 
PowerStore to create snapshots. This process captures the data's state 
at a specific point in time without disrupting ongoing operations. 

• Snapshot Management: 
o PPDM manages the lifecycle of snapshots, including retention and 

deletion. Policies ensure that snapshots are retained for the required 
duration and are deleted when they are no longer needed. 

Dell PowerProtect Data Manager (PPDM) integrates with PostgreSQL’s pg_backup_start 
and pg_backup_stop functions to ensure consistent and reliable backups. 

Recovery Process: 

• Restore from Snapshots: In case of data loss or corruption, application admin 
can restore the database from the most recent snapshot using PPDM. Ensure 
that the WAL logs are also restored to maintain data consistency. 

• Verify Data Integrity: After restoration, verify the integrity of the restored data to 
ensure that the database is fully operational and consistent. 

Monitoring and Maintenance: 

• Regular Monitoring: Continuously monitor the backup and recovery processes 
to ensure they are running smoothly. Use PPDM’s monitoring tools to track 
backup status and performance. 

• Maintenance: With PPDM there is no need for regular maintenance tasks such 
as cleaning up old backups and optimizing storage usage to ensure efficient 
backup operations. 

For Additional references:  

• Dell Technologies White Paper: https://www.delltechnologies.com/asset/en-
us/products/storage/industry-market/h18564-powerprotect-data-manager-
deployment-best-practice-wp.pdf  

• How to Integrate PowerStore with PowerProtect Data Domain for Data Backup | 
Dell US 

• For Kubernetes application consistency with PowerProtect Data Manager: 
https://dl.dell.com/content/manual45442344-powerprotect-data-manager-19-
17-kubernetes-user-guide.pdf?language=en-us  

• PPDM app consistency blog - https://infohub.delltechnologies.com/en-
us/p/kubernetes-application-consistency-with-powerprotect-data-manager/ 

• Deploying PostgreSQL on Dell PowerFlex | Dell Technologies Info Hub 

https://www.delltechnologies.com/asset/en-us/products/storage/industry-market/h18564-powerprotect-data-manager-deployment-best-practice-wp.pdf
https://www.delltechnologies.com/asset/en-us/products/storage/industry-market/h18564-powerprotect-data-manager-deployment-best-practice-wp.pdf
https://www.delltechnologies.com/asset/en-us/products/storage/industry-market/h18564-powerprotect-data-manager-deployment-best-practice-wp.pdf
https://www.dell.com/support/kbdoc/en-us/000215639/how-to-integrate-powerstore-with-powerprotect-data-domain-for-data-backup
https://www.dell.com/support/kbdoc/en-us/000215639/how-to-integrate-powerstore-with-powerprotect-data-domain-for-data-backup
https://dl.dell.com/content/manual45442344-powerprotect-data-manager-19-17-kubernetes-user-guide.pdf?language=en-us
https://dl.dell.com/content/manual45442344-powerprotect-data-manager-19-17-kubernetes-user-guide.pdf?language=en-us
https://infohub.delltechnologies.com/en-us/p/kubernetes-application-consistency-with-powerprotect-data-manager/
https://infohub.delltechnologies.com/en-us/p/kubernetes-application-consistency-with-powerprotect-data-manager/
https://infohub.delltechnologies.com/en-us/t/deploying-postgresql-on-dell-powerflex/


 

9.2 Backup and Restore – Milvus Database 
Milvus provides robust backup and restore features to ensure data integrity and 
availability. 

Backup Process: 

• Metadata and Segments: Milvus Backup reads collection metadata and 
segments from the source Milvus instance to create a backup. 

• Data Copying: It copies collection data from the root path of the source instance 
and saves it into the backup root path. 

Restore Process: 

• Step1: New Collection Creation: To restore from a backup, Milvus Backup 
creates a new collection in the target instance based on the collection metadata 
and segment information in the backup. 

• Step2: Data Restoration: It then copies the backup data from the backup root 
path to the root path of the target instance. 

Interfaces: 

• CLI, API, and gRPC: Milvus Backup provides northbound interfaces such as CLI, 
API, and a gRPC-based Go module for flexible manipulation of the backup and 
restore processes. 

• Minimal Performance Impact: The backup and restore processes have negligible 
impact on the performance of the Milvus cluster, allowing it to operate normally 
during these operations. 

Usage: 

• Command Line and API Server: The tool can be utilized through the command 
line or an API server, providing flexibility in how backups are managed. 

 

For more detailed information, you can refer to the  

• Milvus Backup Documentation: 
https://milvus.io/docs/milvus_backup_overview.md 

• GitHub repository: https://github.com/zilliztech/milvus-backup 

https://milvus.io/docs/milvus_backup_overview.md
https://github.com/zilliztech/milvus-backup


 

10. Conclusion  
 
Robust server and storage components are critical for vector databases for several 
reasons: they ensure high performance by processing large volumes of high-dimensional 
data quickly and efficiently, they support seamless scalability to accommodate growing 
data and query load, and they provide high availability and fault tolerance to keep the 
database operational even during hardware failures. Additionally, they offer significant 
storage capacity to manage extensive datasets efficiently, they ensure data integrity and 
consistency with features like RAID, and they include advanced security measures to 
protect sensitive data from unauthorized access and breaches. In summary, robust server 
and storage components are the backbone of vector databases, ensuring they can handle 
large-scale, high-performance, and reliable data processing and storage needs. 
 

10.1 Dell PowerEdge server for Vector Database 
 
Dell's PowerEdge server portfolio is well-suited for vector database computing due to its 
robust performance, scalability, and reliability. Equipped with the latest Intel® Xeon® 
processors and high-capacity DDR4 memory, these servers handle the intensive 
computational demands of vector databases efficiently, ensuring fast data processing and 
query handling. The portfolio offers a range of configurations, including rack, tower, and 
modular infrastructure servers, allowing businesses to scale their infrastructure as their 
data needs grow. Additionally, features like RAID for data protection, high availability, and 
fault tolerance ensure continuous operation and data integrity, which are vital for 
maintaining the performance and availability of vector databases. 
 
Furthermore, Dell servers support various in-server storage options, including all-flash 
configurations and hybrid tiered solutions, which is ideal for the large storage 
requirements of vector databases. Advanced management through the Dell OpenManage 
systems management portfolio simplifies server management with automation and 
remote access capabilities, reducing administrative overhead and ensuring optimal server 
performance. Dell’s innovative cooling technologies, such as Fresh Air 2.0, allow servers to 
operate at higher ambient temperatures, reducing cooling costs and improving energy 
efficiency. This combination of performance, scalability, reliability, and efficient storage 
makes Dell PowerEdge servers a strong choice for businesses looking to implement or 
upgrade their vector database infrastructure. 
 



 

Some of the PowerEdge servers support unique optimizations to better match specific 
vector database requirements: 
• The “xa” model is optimized for AI/ML environments. It delivers larger power supplies, 

high-performance cooling, and support for many GPUs to deliver the highest 
performance levels.  

• The “standard” models are flexible enough to deliver enhanced virtualization support 
(with software-defined storage) or database performance (“in-memory” or traditional 
database) with the addition of high storage performance, large memory expansion, and 
increased core counts. 

• The “xs” models deliver right-sized configurations for the most popular workloads, 
providing a balance of lower power consumption, a range of upgrade options, memory 
capacity, and performance as well as high-performance NVMe storage for demanding 
virtualization environments. 

• The “xd2” model is designed for maximum storage capacity using large-form-factor 
spinning hard drives to deliver critical storage capacity for demanding environments 
such as video surveillance and object-based storage. 

 

10.2 Dell Storage Solutions for Vector Database 
Dell’s Power family of storage solutions is designed to meet the requirements of vector 
databases, ensuring optimal performance, scalability, and reliability. 
 
PowerStore for transactional workloads like pgvector/PostgreSQL: 
Dell PowerStore is designed to handle high-performance transactional workloads 
efficiently. It offers advanced data reduction capabilities, intelligent automation, and a 
scalable architecture. . This makes it ideal for databases like pgvector/PostgreSQL. 
PowerStore's ability to deliver consistent low-latency performance ensures that 
transactional operations are processed quickly and reliably. 
 
PowerScale for scale-out workloads using file and S3 like Milvus: 
Dell PowerScale provides a robust solution for scale-out workloads, particularly those 
involving substantial amounts of unstructured data. It supports both file and object 
storage interfaces, making it suitable for applications like Milvus that require scalable and 
flexible storage solutions. PowerScale's architecture allows for seamless scaling of 
capacity and performance, ensuring that large datasets can be managed efficiently. 
 



 

11. Benchmark test setup Information. 

11.1 Compute configuration information.  
• HW Configuration 

o PE760xa, Dual CPUs (64 total cores), 768G ram, and 4 x Nvidia L40S 
o 2x 447GB nvme SSD in boss RAID1 configuration 
o 4x 446GB SATA SSD in perc RAID0 configuration 

• Linux Install 
o Give Linux boot/application Raid1 virtual disk. 

▪ High reliability and read performance. 
▪ Linux system partition, root, and boot 

o Give Linux data to Raid0 virtual disk. 
▪ NVIDIA-SMI 550.78, Driver Version: 550.78, CUDA Version: 12.4  

o Applications 
▪ Give Docker all the system resources it wants. 

• No limit on ram and change the default storage directory to home 
(i.e., nvme) 

▪ Python 3.12.3 
▪ Milvus Standalone 2.4.4 (with and w/o GPU) running in docker. 

11.2 Vector Database and Storage configuration information. 
• pgvector/PostgreSQL 

PostgreSQL was installed as standalone deployment in a VM in Vcenter/ESX environment.  
▪ PostgreSQL Version used: 15.6-1.pgdg22.04+1 
▪ One node standalone deployment in Ubuntu 22.o4TLS VM 
▪ VM configuration 

o 8 CPU 
o 24 GB RAM 

Leveraged PowerStore for VMWare Datastore store. 
▪ Model: PowerStore 1000T 

 
• Milvus 

Milvus was installed on the Kubernetes cluster using the Operator and the default Cluster 
(etcd, Pulsar) and three nodes for each of Data, Index, and Query Nodes. Setup for Milvus 
is on a three node Kubernetes cluster hosted as virtual machines: 

Kubernetes Server VM (x1) 
▪ 16 CPU 



 

▪ 32 GB RAM 
Kubernetes Worker VM (x3) 

▪ 32 CPU 
▪ 32 GB RAM 

 
Dell PowerScale F900 (OneFS v9.8.0.1) used for Milvus Storage for three node cluster, 
using the S3 interface. 

 
The following is the Milvus cluster definition file: 

# This is a sample to deploy a milvus cluster in milvus-operator's default 
configurations. 
apiVersion: milvus.io/v1beta1 
kind: Milvus 
metadata: 
  name: milvus-s3 
  labels: 
    app: milvus 
spec: 
  mode: cluster 
  dependencies: {} 
  components: {} 
  config: 
    minio: 
      bucketName: milvus-s3 
      useSSL: false 
  dependencies: 
    storage: 
      external: true 
      type: S3    # MinIO | S3 
      endpoint: ioflash-s3:9020 
      secretRef: "milvus-s3-secret" 
  components: 
    dataNode: 
      replicas: 3 
    indexNode: 
      replicas: 3 
    queryNode: 
      replicas: 3 

  



 

 

12. Vector Database Use Cases 
Vector databases have several use-cases that go beyond RAG: 

1. Real-Time Recommendation Systems: In applications like e-commerce or streaming 
services, low latency is crucial for providing personalized recommendations. Vector 
databases can efficiently handle large volumes of user requests, process queries quickly, 
and generate relevant recommendations in real-time. 

2. Fraud Detection: Financial institutions can use vector databases to analyze transaction 
patterns and detect anomalies. The ability to process high-dimensional data quickly helps 
in identifying fraudulent activities in real-time, ensuring timely intervention. 

3. Image and Video Search: For platforms that rely on visual content, such as social media 
or digital asset management systems, vector databases can manage and query large 
datasets of images and videos. This enables efficient similarity searches and content 
retrieval based on visual features. 

4. Natural Language Processing (NLP): In applications like chatbots or virtual assistants, 
vector databases can store and query large volumes of text data. It supports tasks such as 
semantic search, sentiment analysis, and language translation, providing accurate and 
timely responses. 

5. Healthcare Data Analysis: Vector databases can be used to manage and analyze 
complex medical data, including patient records, imaging data, and genomic information. 
This facilitates advanced diagnostics, personalized treatment plans, and medical 
research. 

6. IoT Data Management: In IoT applications, vector databases can handle the continuous 
influx of sensor data. They support real-time data ingestion, processing, and querying, 
which is essential for monitoring and controlling IoT devices.  
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