

H15785.4

Technical White Paper

ECS with HAProxy Load Balancer

Abstract
This document provides a technical deployment reference of the Dell EMC™

ECS™ with HAProxy load balancer.

April 2021

Revisions

2 ECS with HAProxy Load Balancer | H15785.4

Revisions

Date Description

January 2017 Initial release

November 2017 Modified based on input from HAProxy

April 2021 Update for HAProxy 2.1 with http head in Chapter 5.3.1

Acknowledgments

Author: Zhu, Jarvis

Support: Kraft, Chris

The information in this publication is provided “as is.” Dell Inc. makes no representations or warranties of any kind with respect to the information in this

publication, and specifically disclaims implied warranties of merchantability or fitness for a particular purpose.

Use, copying, and distribution of any software described in this publication requires an applicable software license.

Copyright ©2017-2021. Dell Inc. or its subsidiaries. All Rights Reserved. Dell, EMC, and other trademarks are trademarks of Dell Inc. or its subsidiaries.

Other trademarks may be the property of their respective owners. Published in the USA [4/28/2021] [Document Type] [H15785.4]

Dell believes the information in this document is accurate as of its publication date. The information is subject to change without notice.

This document may contain language from third party content that is not under Dell's control and is not consistent with Dell's current guidelines for Dell's

own content. When such third-party content is updated by the relevant third parties, this document will be revised accordingly.

mailto:jarvis_zhu@dell.com
mailto:Chris.Kraft@dell.com

Table of contents

3 ECS with HAProxy Load Balancer | H15785.4

Table of contents

Revisions... 2

Acknowledgements ... 2

Table of contents .. 3

Executive summary ... 4

1 Introduction ... 5

1.1 Audience ... 5

1.2 Scope .. 5

2 ECS Overview .. 6

3 HAProxy Overview ... 7

4 ECS with HAProxy Deployments ... 8

4.1 Single .. 8

4.2 Highly Available (Redundancy) .. 8

4.3 Global Load Balancing ... 9

5 Example Deployments of ECS with HAProxy setup .. 11

5.1 Installation ... 11

5.1.1 Server ... 11

5.1.2 HAProxy .. 12

5.2 Domain Name System (DNS) ... 12

5.3 HAProxy Configuration for Single Setup .. 14

5.3.1 HTTP .. 14

5.3.2 HTTPS .. 21

5.3.3 NFS ... 29

5.3.4 Monitoring ... 33

5.4 Example of ECS with Redundant HAProxy Setup ... 34

5.4.1 Virtual IP ... 34

5.4.2 Keepalived .. 35

5.4.3 Redundant HAProxy and DNS ... 37

5.4.4 Validation .. 38

6 Best Practices... 39

7 Conclusion .. 40

A Other Configuration Examples ... 41

A.1 HTTP/HTTPS Configuration Definitions ... 41

A.2 NFS Configuration Definitions .. 43

Executive summary

4 ECS with HAProxy Load Balancer | H15785.4

Executive summary

ECS is the third generation object platform from Dell EMC. It is designed for traditional and next-generation

applications. It is known for its flexible deployment, resiliency and simplicity. ECS is a consortium of software,

hardware nodes with disks and switches seamlessly working together to provide access to object storage

data. In an optimal configuration, a load balancer is recommended to distribute the load across the nodes

within ECS and ECS clusters in different locations. ECS has not specific requirement for a particular load

balancer. HAProxy provides one choice and is an open source; reliable and free load balancing software

solution. It provides a low-cost option for customers who desire to utilize a load balancer with ECS.

Introduction

5 ECS with HAProxy Load Balancer | H15785.4

1 Introduction
This white paper is a reference guide into deploying HA Proxy load balancer with ECS. It provides example

configurations and highlights best practices when utilizing HAProxy load balancer with ECS.

1.1 Audience
This document is targeted for customers and Dell EMC personnel interested in a reference deployment of

ECS with HAProxy load balancer.

1.2 Scope
This whitepaper is meant to be a reference deployment guide for customers who would like to use HAProxy

with their ECS deployment. Its intent is to provide a “reference” or an example for customers to deploy ECS

with HAProxy. Load balancing is optional and not part of ECS except for CAS. A quick overview of ECS

object access will be covered in this whitepaper. For a more in-depth overview of ECS Architecture and

description of how ECS handles and processes object and file access, refer to ECS Architecture and

Overview whitepaper.

http://www.emc.com/collateral/white-papers/h14071-ecs-architectural-guide-wp.pdf
http://www.emc.com/collateral/white-papers/h14071-ecs-architectural-guide-wp.pdf

ECS Overview

6 ECS with HAProxy Load Balancer | H15785.4

2 ECS Overview
ECS provides object and file storage. Object access via S3, Atmos, and Swift on ECS storage platform is

achieved via REST APIs. Objects are written, retrieved, updated and deleted via HTTP or HTTPS calls of

GET, POST, PUT, DELETE, and HEAD. For file access, ECS provides NFS version 3 natively. Each of the

protocols supported communicate to ECS via specified ports as highlighted in Table 1. ECS also supports

CAS protocol; however, a load balancer is not required since the Centera SDK has a built-in load balancer.

Table 1 Ports assignments per ECS protocol.

ECS

Protocol

Transport Protocol

or Daemon Service
Port

S3
HTTP 9020

HTTPS 9021

Atmos
HTTP 9022

HTTPS 9023

Swift
HTTP 9024

HTTPS 9025

NFS

mountd,nfsd 2049

portmap 111

lockd 10000

These ports are important when configuring ECS with HAProxy. In order to access objects using the above

protocols, certain firewall ports need to be opened. For more information on ECS ports refer to the ECS

Security Configuration Guide.

mailto:https://dl.dell.com/content/docu103065_ecs-3-6-1-security-configuration-guide.pdf?language=en_us
mailto:https://dl.dell.com/content/docu103065_ecs-3-6-1-security-configuration-guide.pdf?language=en_us

HAProxy Overview

7 ECS with HAProxy Load Balancer | H15785.4

3 HAProxy Overview
HAProxy, an open source TCP/HTTP load balancer software, is available for free and source can be

downloaded from the HA Proxy site (http://www.haproxy.org). It runs on most Unix platforms such as Linux,

Solaris, FreeBSD, OpenBSD and AIX. What makes HAProxy desirable is that it is free, easy to install, setup

and maintain.

HAProxy supports both Layer 4 (tcp) and Layer 7 (http) load balancing modes. Layer 4 allows all data traffic

to be forwarded directly to backend servers streamlining user requests. In Layer 7 mode, HAProxy can

evaluate the HTTP headers and forward to backend servers based on content of user request. Support of

both modes makes HAProxy a good low cost option for customers.

In addition to Layer 4 and 7 load balancing modes, HAProxy has support for the following:

• Access Control List (ACL) – allows forwarding traffic based on a certain pattern in content of user

request

• Load Balancing Algorithms – options available include:

o Round-Robin – default algorithm which selects servers in a rotating basis.

o Least Connect – selects servers based on the least number of connections

o Source – selects servers based on a hash of the source IP such as the user IP address to

ensure request goes to the same server until something changes in the hash (i.e. one

backend server goes down) .

o Sticky Sessions – enables persistence in order for applications to connect to same backend

server to process requests.

• Health Check – used to check if a backend is available and if not, then it is automatically removed

from the rotation to process requests until it is restored or becomes healthy.

• Monitoring –statistics relating to HAProxy can be monitored and viewed through a web interface.

For further information on HAProxy, refer to the HAProxy site. Also available from this site is a community

forum to ask questions and documentation that can provide further details specific to HAProxy.

http://www.haproxy.org/

ECS with HAProxy Deployments

8 ECS with HAProxy Load Balancer | H15785.4

4 ECS with HAProxy Deployments
There are various ways to deploy ECS with HAProxy such as single, highly available or global. In all

deployments, HAProxy defines in its configuration file a “frontend” indicating how requests should be

forwarded to a pool of servers or ECS nodes defined as the “backend”. If the frontend is defined to be in http

mode, the HTTP headers are analyzed and forwarded based on the content of request. If in “tcp” mode,

HTTP headers will not be evaluated and requests are forwarded directly to pool of backend nodes for

handling. A load balancing algorithm would define how incoming requests is distributed among the ECS

nodes. As previously mentioned, HAProxy provides round-robin, least connect and source load balancing

algorithms. Either a domain name system (DNS) addresses or virtual IPs of HAProxy load balancer are

presented to clients.

The example images of HAProxy with ECS in this section only highlight object access. For NFS, it is

recommended that a load balancer be used for high availability purposes only and not for balancing load

across the ECS nodes. More detailed information on how to employ HAProxy with ECS when using NFS is

described in a later section of this whitepaper.

4.1 Single
In a single HAProxy deployment, the frontend points to the IP address of the HAProxy endpoints and the

backend points to the IP addresses of the ECS nodes at specified ports depending on object protocol. Figure

1 illustrates an example of a single deployment. This is the simplest of configurations; however, the single

load balancer is also a single point of failure and not recommended in production environments.

Figure 1 ECS with a single HAProxy

4.2 Highly Available (Redundancy)
In order to not have a single point of failure, it is best practice to setup HAProxy in a “highly available”

configuration by setting up two HAProxy load balancers. This provides redundancy such that in case of

failure another load balancer is available to handle requests. A mechanism such as Linux’s “keepalived”

utility can do health checks between the load balancers to inform HAProxy when one of the load balancers is

not available. In a highly available setup, there are two ways to configure the redundant HAProxy load

balancers:

ECS with HAProxy Deployments

9 ECS with HAProxy Load Balancer | H15785.4

• Active/Passive – one HAProxy load balancer act as a primary and the other will only be activated

when the primary load balancer fails or is unresponsive.

• Active/Active – both HAProxy load balancers are active and either one can process client requests.

As long as one of the load balancers is up and available, requests will be handled.

There are advantages and disadvantages of each method that should be considered. Since both load

balancers are available for use in the active/active setup, the performance level will be higher than in an

active/passive setup. However, in an active/passive, there is a consistent performance level when one fails

whereas in active/active when one fails, performance level will drop by half as perceived by clients. If certain

“levels of service” are expected, then consistency is an important criterion to consider. Upsizing the servers

hosting the HAProxy in an active/passive setup can improve performance; however, it may not be as cost-

effective. Understanding the tradeoffs and requirements is important in developing a deployment best suited

for your needs. Figure 2 provides an example of redundant HAProxy load balancers in front of a pool of ECS

Nodes with a virtual IP presented to clients.

Figure 2 ECS with redundant HAProxy load balancers for high availability

4.3 Global Load Balancing
When there are two or more geographically dispersed ECS sites supporting the same namespace(s), a

mechanism to load balance across the nodes between sites is recommended especially in three or more sites

where it becomes key for taking advantage of ECS storage efficiency achieved via ECS XOR feature.

Another advantage is when one site is unavailable; requests will automatically be forwarded to surviving

site(s) providing disaster recovery and high availability. Global load balancing can be achieved by either

using DNS, network routing (i.e. OSPF: Open Shortest Path First, BGP: Border Gateway Protocol, etc), a

global server load balancer (GLSB) or combination of these techniques. Figure 3 provides an example of

client requests being sent to a Domain Name System (DNS) which have an entry for a global load balancing

mechanism or HAProxy load balancer which also can be setup to be redundant. The global load balancing

techniques used would forward requests to a pool of HAProxy load balancers that will forward requests to a

pool of ECS nodes within a replication group.

ECS with HAProxy Deployments

10 ECS with HAProxy Load Balancer | H15785.4

Figure 3 Global load balancing with HAProxy in a geo-replicated ECS deployment

When considering a global load balancing mechanism, it is important to understand that ECS reads check the

owner of the object to validate if it has the latest copy locally. If data is not local in the site cache or the site is

not the owner of object, then it would need to retrieve the data from site that owns the object. Thus when

architecting a global load balancing solution, it is advised to send or direct the read requests to the owning

site if possible. This may depend on the workflow and application.

Example Deployments of ECS with HAProxy setup

11 ECS with HAProxy Load Balancer | H15785.4

5 Example Deployments of ECS with HAProxy setup
An example of how to setup ECS with HAProxy is detailed in the following sections. Although the different

ways to deploy ECS with HAProxy described previously will not be fully covered in this whitepaper, it does

provide a base in which the reader can enhance the deployment to implement further. In this example,

information on how to configure HAProxy for load balancing object access and NFS access in a single

deployment are described. For object access, “http mode” is used and for NFS “tcp mode” is used. Virtual

machines running Mint version 17.1, an Ubuntu variant, was used as the server to host HAProxy. DNS

installed on a Windows Server was used to map the HAProxy IP addresses to various names.

5.1 Installation
Components configured in this example to employ ECS with HAProxy include a server to host HAProxy

running a Linux Operating system, HAProxy software package, Domain Name System (DNS) and an ECS

U300 appliance with ECS 3.6.1 installed. Linux and Windows client servers were used to validate the

HAProxy with ECS deployment for both object and file access. S3 Browser and Cyberduck was used to

validate the setup of ECS with HAProxy and a regular Linux mount command was used to test NFS. Figure 4

illustrates the components in this example.

Figure 4 Single HAProxy

5.1.1 Server
A physical server (bare metal) or a virtual machine can be used to install HAProxy. The server should be

sized (CPU, memory, network cards, etc.) based upon the following criteria:

• Workload or amount of traffic expected

• If using physical server or virtual machines

• Deploying multiple instances of HAProxy in active/passive or active/active mode.

• Expected service level agreements

A Unix operating system would also need to be installed on the server or virtual machine. Refer to the

HAProxy site to get minimum server requirements and supported operating system.

http://s3browser.com/download.aspx
http://sourceforge.net/projects/cyberduck/

Example Deployments of ECS with HAProxy setup

12 ECS with HAProxy Load Balancer | H15785.4

5.1.2 HAProxy
The HAProxy load balancer software package (source) and documentation are available from HAProxy site:

http://www.haproxy.org. HAProxy pre-built packages can also be found on the web in the form of Personal

Package Archives (PPA) such as the one for Ubuntu or Debian at site http://haproxy.debian.net. An example

of how to download and install HAProxy 1.7 on Ubuntu is described below and shown in Figure 5. In the

example, the following are conducted:

1. Get and install “software-properties-common” which contains the binaries, manual pages, and

libraries to add a repository and other commands.

2. Add to repository Personal Package Archive (PPA) “vbernat/haproxy1-7”

3. Get updates

4. Get and install HAProxy

Depending on the Unix operating system installed, the commands above will differ. If pre-built packages are

not available for the operating system or server being used, the source can be downloaded from HAProxy site

and compiled accordingly.

5.2 Domain Name System (DNS)
In this example a DNS is setup on a Windows server and accessible from the server hosting HAProxy. Table

2 shows the DNS entries created. Adding DNS entries allows mapping of “names” to IP addresses. In this

example, DNS is used as a mechanism for translating the object protocol (S3, Atmos, or Swift) the client is

using and allows HAProxy to direct request to the appropriate pool of ECS nodes based on protocol name.

The advantage of this approach is that HAProxy runs all three protocols on the standard HTTP port 80. The

names associated with each object protocol will be mapped to one IP address associated with the HAProxy

and translate it to a pool of ECS nodes. An “A-record “ is created in DNS which maps a name to the IP

address of HAProxy and CNAME provides an alias for each protocol.

apt-get install software-properties-common

add-apt-repository ppa:vbernat/haproxy-1.7

apt-get update

apt-get install haproxy

Figure 5 HAProxy 1.7 install on mint version 17.1 (Ubuntu)

http://www.haproxy.org/
http://haproxy.debian.net/

Example Deployments of ECS with HAProxy setup

13 ECS with HAProxy Load Balancer | H15785.4

Table 2 DNS Entries Example

DNS Record Record Type Record Data Comments

os.ecstme.org

A

10.246.150.199

HAProxy external IP Address and also used for

S3 protocol access (os=object store)

*.os.ecstme.org CNAME os.ecstme.org
Used for S3 virtually hosted buckets, i.e.

mybucket.os.ecstme.org

atmos.ecstme.org CNAME os.ecstme.org Endpoint for clients using the Atmos

swift.ecstme.org CNAME os.ecstme.org Endpoint for clients using the Swift protocol

From the Windows Server, start up the DNS Manager and add DNS entries of “New Host” for A-Record and

“New Alias” in your domain zone as described in above table. Sample screenshots of this are shown in Figure

6 and Figure 7,

Figure 6 A-Record screenshot

Example Deployments of ECS with HAProxy setup

14 ECS with HAProxy Load Balancer | H15785.4

Figure 7 - DNS Alias (CNAME) screenshot

5.3 HAProxy Configuration for Single Setup
A configuration file is used to define how HAProxy should be configured to proxy requests to a pool of

servers. The HAProxy configuration file haproxy.cfg located in /etc/haproxy directory is modified to define the

following:

• Frontend – consists of a set of IP addresses and port used by clients to access HAProxy server, the

mode (tcp or http), ACLs (optional), and backend rules based on ACL conditions.

• Backend – specifies options for load balancer algorithm to use, a list of ECS nodes and ports, the

mode (tcp or http), and whether to perform health checks.

Frontend and backend definitions are explained in this section for http, https and NFS in addition to definitions

to enable web monitoring. There are default global values defined in haproxy.cfg such as timeout for client

and server, error files for different types of errors, stats timeout, mode, etc. These values are not modified in

this example; however some of the parameters such as mode and log are overridden in the frontend and

backend definitions for NFS.

5.3.1 HTTP
The sample or default /etc/haproxy.cfg file contains some parameters for global and defaults. The “global”

section contains definitions that applies to the entire HAProxy process such as logging, default ciphers, etc.

For this example, no additional changes will be needed in this section. In the “defaults” section as shown in

Figure 8, the mode, timeouts, type of balance, options, etc can be added or modified. In this example the

defaults labeled HTTP, the default timeouts are modified and additional parameters are added such as

balance, to specify the load balancer algorithm type to “leastconn” and option for forwardfor to set the X-

Example Deployments of ECS with HAProxy setup

15 ECS with HAProxy Load Balancer | H15785.4

Forwarded-For header with the source IP. By Using “leastconn” as the load balancer algorithm forwards

requests to ECS nodes that has the least amount of active connections.

Next append the frontend block shown in Figure 9 to /etc/haproxy/haproxy.cfg file. In defaults section, the

mode is http so a mode is not specifically added in the frontend block shown in Figure 9. The first line in the

frontend block “http-in” tells HAProxy to listen for requests on port 80 on all interfaces. It also defines ACLS

named “host_s3”, “host_atmos”, and “host_swift” such that it extracts the HTTP header “host” and if the path

of the user header request matches “os.ecstme.org, atmos.ecstme.org, or swift.ecstme.org” it will re-direct the

request to appropriate protocol backend defined by the “use_backend” line. The “-i” flag ignores case during

matching, and “-m dom” indicates domain matching such that the input string delimited with dots matches the

specified pattern in this case os.ecstme.org, atmos.ecstme.org, and swift.ecstme.org.

frontend http-in

 bind *:80

 # Define the hostnames

 acl host_s3 hdr(host) -i -m dom os.ecstme.org

 acl host_atmos hdr(host) -i -m dom atmos.ecstme.org

 acl host_swift hdr(host) -i -m dom swift.ecstme.org

 # Route to backend

 use_backend swift_backend if host_swift

 use_backend atmos_backend if host_atmos

 use_backend s3_backend if host_s3

Figure 9 Frontend definitions

defaults HTTP

 log global

 mode http

 option httplog

 option dontlognull

 timeout connect 5s

 timeout client 50s

 timeout server 50s

 timeout http-request 10s

 timeout http-keepalive 10s

 option forwardfor

 balance leastconn

Figure 8 Defaults defintions

Example Deployments of ECS with HAProxy setup

16 ECS with HAProxy Load Balancer | H15785.4

Further append the haproxy.cfg file with the backend definitions of “os.ecstme.org”, “swift.ecstme.org”, and

“atmos.ecstme.org” specified in the frontend as shown in Figure 10. Each object protocol goes thru a certain

port thus all S3 requests for http go thru port 9020, Atmos, thru port 9022, and Swift thru 9024. So for each

protocol backend, a list of ECS nodes IP addresses and ports are specified in “server” line. For the

s3_backend and swift_backend, “check” is added at the end of the line to perform health checks on ECS

services on each node using “S3 ping” or “Swift healthcheck” as specified in “option httpchk”. The “check”

specified for atmos_backend will only check if the ECS node is down since this protocol does not yet have

support for the “ping operation” to check the ECS services.

Figure 10 Backend definitions

backend os.ecstme.org

 # Use the s3 Ping extension to make sure ECS services on node

 # are alive.

 option httpchk GET /?ping "HTTP/1.1\r\nHost: haproxy"

 # List of data nodes. S3 runs on port 9020.

 server hop-u300-12-01 10.246.150.131:9020 check

 server hop-u300-12-02 10.246.150.132:9020 check

 server hop-u300-12-03 10.246.150.133:9020 check

 server hop-u300-12-04 10.246.150.134:9020 check

backend atmos_backend

 # List of data nodes. Atmos runs on port 9022

 server hop-u300-12-01 10.246.150.131:9022 check

 server hop-u300-12-02 10.246.150.132:9022 check

 server hop-u300-12-03 10.246.150.133:9022 check

 server hop-u300-12-04 10.246.150.134:9022 check

backend swift_backend

 # Use the Swift healthcheck to check the ECS services on node.

 option httpchk HEAD /healthcheck HTTP/1.0

 # List of data nodes. Swift runs on port 9024

 server hop-u300-12-01 10.246.150.131:9024 check

 server hop-u300-12-02 10.246.150.132:9024 check

 server hop-u300-12-03 10.246.150.133:9024 check

 server hop-u300-12-04 10.246.150.134:9024 check

Example Deployments of ECS with HAProxy setup

17 ECS with HAProxy Load Balancer | H15785.4

For another example of how to implement the frontend and backend is of this example is described in

Appendix A of this whitepaper.

After the haproxy.cfg has been modified, check the validity of the configuration file. If configuration file is

valid, then restart haproxy to put in effect the load balancing directives in haproxy.cfg. Figure 11 exhibits how

to check and restart HAProxy.

To have HAProxy automatically start after a reboot, edit /etc/default/haproxy file and add ENABLED=1 as

shown in Figure 12.

1.

haproxy -f haproxy.cfg -c

Configuration file is valid

service haproxy restart

Figure 11 Command to restart HAProxy.

Defaults file for HAProxy

This is sourced by both, the initscript and the systemd unit

file, so do not

treat it as a shell script fragment.

ENABLED=1

Figure 12 Set ENABLED=1 in /etc/default/haproxy

Example Deployments of ECS with HAProxy setup

18 ECS with HAProxy Load Balancer | H15785.4

To validate your HAProxy configuration, install S3 Browser or Cyberduck and set the IP or name of HAProxy.

Figure 13 provides an example of the settings for S3 Browser. Since http is being tested, verify that the S3

Browser has the “Use secure transfer (SSL/TLS)” box unchecked.

Figure 13 S3 Browser Settings Example Using HAProxy

http://s3browser.com/download.aspx
http://sourceforge.net/projects/cyberduck/

Example Deployments of ECS with HAProxy setup

19 ECS with HAProxy Load Balancer | H15785.4

Cyberduck can also be utilized to test both S3 and Swift. In this example, ECS Swift (HTTP) profile provided

in the ECS community page https://community.emc.com/docs/DOC-27683 was used. From Cyberduck, open

a new connection specifying “swift.ecstme.org” and port 80 for the server settings and providing the Swift

credentials (e.g. namespace:user and password set for Swift user) as shown in Figure 14.

Figure 14 Cyberduck with swift settings

To validate S3 virtually hosted style addressing scheme, a base URL (i.e. os.ecstme.org) would need to be

specified in ECS via the ECS portal and S3curl utility can be used as a check. Figure 15 shows an example

of how to install S3curl onto a Linux machine which requires retrieving the utility from github and unzipping the

bundle. The unzip will create an s3curl directory which contains the files needed to use the utility.

wget https://github.com/rtdp/s3curl/archive/master.zip

unzip master.zip

service haproxy restart

Figure 15 Install of S3Curl utility on Linux

https://community.emc.com/docs/DOC-27683
https://github.com/rtdp/s3curl/archive/master.zip

Example Deployments of ECS with HAProxy setup

20 ECS with HAProxy Load Balancer | H15785.4

Create an “.s3curl” configuration file in the home directory which contains the ECS user id, secret keys, and

ECS endpoints. After editing the file as shown in Figure 16, modify the permissions of the “.s3curl”

configuration file to 600.

Execute the s3curl command located in s3curl directory with the virtual host style addressing as illustrated in

Figure 17. In this example, the bucket name is prepended to the base URL of os.ecstme.org.

A snippet output after running this command is pictured in Figure 18 and shows a bucket listing of a bucket

named “testb”

cd s3curl-master

./s3curl.pl --id ecsid -- http://testb.os.ecstme.org | xmllint --format -

%awsSecretAccessKeys = (

 # ECS account

 ecsid => {

 id => 'user1',

 key => 'xaHTZWMPlvNFeMeKdQhH+FZJ8eLB8+qFC/W0dhzk',

},

@endpoints = ('10.246.150.179',

'10.246.150.180',

'10.246.150.181',

'10.246.150.182',

'os.ecstme.org',)

);

Figure 16 S3curl configuration file

Figure 17 S3curl command

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<ListBucketResult xmlns="http://s3.amazonaws.com/doc/2006-03-01/">

 <Name>testb</Name>

 <Prefix/>

 <Marker/>

 <MaxKeys>1000</MaxKeys>

 <IsTruncated>false</IsTruncated>

 <ServerSideEncryptionEnabled>false</ServerSideEncryptionEnabled>

 <Contents>

 <Key>foo1M_0</Key>

 <LastModified>2017-05-31T16:59:33.898Z</LastModified>

 <ETag>"1d0bc7dd91164422eb8961e58f4c458b"</ETag>

 <Size>1048576</Size>

 ...

 Figure 18 Snippet output of running s3curl.pl

Example Deployments of ECS with HAProxy setup

21 ECS with HAProxy Load Balancer | H15785.4

HAProxy starting from 2.1 will forward http headers in small capital letter (etag) to be more compliant with

http/2 protocol, this was not the same in 1.x versions (ETag) which will cause issue with using with Isilion

cloud pool. It is needed to change the configure file like “h1-case-adjust & option h1-case-adjust-bogus-client”

in the new version.

global

…

 h1-case-adjust etag ETag

defaults HTTP

…

 option h1-case-adjust-bogus-client

5.3.2 HTTPS
Developing trust between two entities is established via Secure Socket Layer (SSL) and SSL certificates. The

purpose of SSL and certificates is encryption and identification to ensure that communication exchange

between two parties is secure and trustworthy. For identification of who to trust, a certificate would need to be

generated and installed on HAProxy or ECS nodes. Certificates usually will contain information about the

owner of the certificate (i.e. company, organization, city, state, email address of owner), duration of validity,

resource location (i.e. Fully Qualified Domain Name or common name), public key, and hash. The certificate

generated can be signed by either:

• Certificate Authority (CA) – trusted organizations that can verify the identity and validity of the entity

requesting the certificate.

• Self-signed - authenticated by the system where the certificate resides.

As a best practice, using a Certificate Authority to sign certificate is preferred over issuing self-signed

certificates. Almost all client systems come with a list of trusted root CA certificates that will automatically

validate your CA-signed certificate. If you opt to use a self-signed certificate, that certificate will need to be

installed on all client systems as a “trusted” certificate. If your organization has an internal Certificate

Authority, you can use that CA to sign your certificates; just make sure that any client systems have your CA’s

root certificate installed. Also, utilizing HAPrxoy to offload and terminate SSL is a best practice in order to not

add extra load on ECS nodes to establish SSL sessions. Thus, the certificate generated in this example is to

be installed on HAProxy load balancer. Some organizations have security policies that specify that the

connection to ECS must be encrypted all the way to ECS. In those cases you will need to terminate SSL on

the ECS appliance itself. If SSL termination is required on ECS nodes, then use Layer 4 (tcp) load balancing

mode to pass through the SSL traffic to ECS nodes for handling. In this scenario, the certificates would need

to be installed on ECS. For information on how to generate certificates for ECS Nodes, refer to ECS System

and Administration Guide.

5.3.2.1 Certificate Generation for HAProxy Load Balancer Example
OpenSSL is used in this example to generate the certificates. Note that you do not need to generate the

certificates on ECS; any system with suitable tools like OpenSSL can generate certificates. By default,

OpenSSL is installed on most Linux releases. General steps to create a certificate for HAProxy using

OpenSSL include:

1. Generate a private key.

2. Modify configuration file to add Subject Alternative Names (SANs).

3. Create a certificate request to submit to CA or generate a self-signed certificate.

4. Combine the private key and certificate and place in HAProxy directory.

https://support.emc.com/products/37254_ECS-Appliance-/Documentation/
https://support.emc.com/products/37254_ECS-Appliance-/Documentation/

Example Deployments of ECS with HAProxy setup

22 ECS with HAProxy Load Balancer | H15785.4

When generating certificates, the hostname of where the certificate will be used needs to be specified. For

compatibility with the S3 protocol, the Common Name (CN) on the certificate should point to the wildcard DNS

entry used by S3 since S3 is the only protocol that utilizes virtually hosted-style URL buckets where the

bucket name is in the hostname. There can only be one wildcard entry on an SSL certificate and it must be

under the CN. If specifying IP Addresses or other DNS entries for Atmos and Swift protocols, Subject

Alternative Names (SANs) should be registered on the certificate. Some organizations do not allow the use of

wildcard certificates. In this case, you will need to make sure that all of your S3 applications use “path-style”

access so they can use the base hostname of S3 (e.g. os.ecstme.org) instead of the default method of adding

the bucket to the hostname (e.g. bucket.os.ecstme.org).

Step 1: Generate a Private Key

A private key is required for self-signed and CA requests certificates. This key will be combined with the

certificate generated. An example of how to generate the private key is shown in Figure 19. Permissions are

also changed on the key generated to safeguard from accidentally modification or deletion.

Step 2: Modify the Configuration File with SANs

OpenSSL does not allow passing of SANs through the command line so a configuration file is created to

define them. A sample configuration file for openssl can be used as a reference and is located in

/usr/lib/ssl/openssl.cnf. Copy the openssl.cnf file to a temporary directory where certificates will be generated

and placed as pictured in Figure 20.

cp /usr/lib/ssl/openssl.cnf request.conf

Figure 20 Copying of openssl configuration file

openssl genrsa -des3 -out server.key 2048

Generating RSA private key, 2048 bit long modulus

..+++

.......+++

e is 65537 (0x10001)

Enter pass phrase for server.key: <enter a password>

Verifying - Enter pass phrase for server.key: <enter a password>

chmod 0400 server.key

Figure 19 Create private key using OpenSSL

Example Deployments of ECS with HAProxy setup

23 ECS with HAProxy Load Balancer | H15785.4

Edit the request.conf file to include the SAN by adding the IP addresses or DNS entries mapping of the

HAProxy server. Figure 21 is an example of the SAN setting for both DNS entries and IP addresses.

In the [req] section, add the following lines if not present in the configuration file as shown in Figure 22.

In the [v3_ca] section, add the following lines as shown in Figure 23. This indicates that there are alternate

names provided.

Also in [v3_ca] section, if creating a certificate signing request, comment out “authorityKeyIdentifier” as

illustrated in Figure 24. No need to comment out for self-signed certificates.

Finally in section [CA_default], uncomment or add the copy_extension line as pictured in Figure 25.

[v3_ca]

subjectAltName = @alternate_names

basicConstraints = CA:FALSE

keyUsage = nonRepudiation, digitalSignature, keyEncipherment

extendedKeyUsage = serverAuth

x509_extensions = v3_ca # The extentions to add to the self-signed

cert

req_extensions = v3_ca # For cert signing req

[alternate_names]

DNS.1 = os.ecstme.org

DNS.2 = atmos.ecstme.org

DNS.3 = swift.ecstme.org

IP.1 = 10.246.150.199

Figure 21 SANs setting in configuration file

Figure 22 Indicate parameter(s) for extensions

Figure 23 Specify [v3_ca] parameters for SAN

#authorityKeyIdentifier=keyid:always,issuer

copy_extension=copy

Figure 24 comment out authorityKeyIdentifier paramteter in [v3_ca]

Figure 25 Parameter to add at [CA_default] section

Example Deployments of ECS with HAProxy setup

24 ECS with HAProxy Load Balancer | H15785.4

Step 3a: Creation of a Certificate Signing Request for CA Submission

Figure 26 provides an example openssl command of how to create a certificate signing request. The

command requires the private key, “server.key” created in Step 1, and the modified configuration file,

request.conf containing the subject alternate names as described in Step 2. Several user inputs are expected

such as location and organization information, email address and Common Name. As previously mentioned,

the Common Name should be set to the wildcard DNS entry used by S3 which is “*.os.ecstme.org” in this

example.

openssl req -new -key server.key -config request.conf -out server.csr

Enter pass phrase for server.key: <your passprhase from above>

You are about to be asked to enter information that will be

incorporated into your certificate request. What you are about to enter

is what is called a Distinguished Name or a DN. There are quite a few

fields but you can leave some blank

For some fields there will be a default value,

If you enter '.', the field will be left blank.

Country Name (2 letter code) [AU]: <Enter value>

State or Province Name (full name) [Some-State]: <Enter value>

Locality Name (eg, city) []: <Enter value>

Organization Name (eg, company) [Internet Widgits Pty Ltd]: <Enter

value>

Organizational Unit Name (eg, section) []: <Enter value>

Common Name (e.g. server FQDN or YOUR name) []: *.os.ecstme.org

Email Address []: <admin email>

Please enter the following 'extra' attributes

to be sent with your certificate request

A challenge password []: <optional>

An optional company name []: <optional>

Figure 26 Command to generate a certificate signing request

Example Deployments of ECS with HAProxy setup

25 ECS with HAProxy Load Balancer | H15785.4

Step 3b: Creation of a Self-Signed Certificate

The command to create self-signed certificates is similar to certificate request except for “-x509” option

added. Figure 27 provides an example command to generate the self-signed certificate. Also, the Common

Name is set to “*.os.ecstme.org” for the S3 wildcard DNS entry. The validity of this certificate by default is

one month, if more days are desired, specify command with “-days <# of days> (i.e.” –days 366”).

openssl req -x509 -new -key server.key -config request.conf -out

server.crt

Enter pass phrase for server.key: <your passprhase from above>

You are about to be asked to enter information that will be

incorporated into your certificate request. What you are about to

enter is what is called a Distinguished Name or a DN. There are quite

a few fields but you can leave some blank

For some fields there will be a default value,

If you enter '.', the field will be left blank.

Country Name (2 letter code) [AU]: <Enter value>

State or Province Name (full name) [Some-State]: <Enter value>

Locality Name (eg, city) []: <Enter value>

Organization Name (eg, company) [Internet Widgits Pty Ltd]: <Enter

value>

Organizational Unit Name (eg, section) []: <Enter value>

Common Name (e.g. server FQDN or YOUR name) []: *.os.ecstme.org

Email Address []: <admin email>

Please enter the following 'extra' attributes

to be sent with your certificate request

A challenge password []: <optional>

An optional company name []: <optional>

Figure 27 Command for creation of self-signed certificate

Example Deployments of ECS with HAProxy setup

26 ECS with HAProxy Load Balancer | H15785.4

Step 3c: Validation of SANs in Certificate Request and Self Signed Certificate

In either certificate generation, user inputs and the Subject Alternate Names provided are included in the

certificate. An openssl command to output certificate in text format is highlighted in Figure 28 and Figure 29

for each type of certificates.

Figure 28 Text Output of certificate request

openssl req -in server.csr -text -noout

Certificate Request:

 Data:

 Version: 0 (0x0)

 Subject: C=US, ST=CA, L=SJ, O=Dell, OU=TME,

CN=*.os.ecstme.org/emailAddress=example@dell.com

 Subject Public Key Info:

 Public Key Algorithm: rsaEncryption

 Public-Key: (2048 bit)

 Modulus:

 00:ca:02:a9:4f:88:eb:9b:bf:07:b5:e7:a5:03:c7:

 59:2d:e1:53:1e:df:fa:9d:6b:cd:4a:22:10:01:ed:

 ca:92:66:28:f3:dc:b3:1c:8f:dd:1c:7c:b2:f0:4c:

 18:63:ff:0e:47:00:35:6f:f8:ae:9b:19:88:2d:f3:

 f7:de:ed:7b:bc:20:41:ff:d8:c2:28:00:65:a1:38:

 71:66:10:f1:3f:39:23:f7:40:65:9d:f5:3f:85:33:

 b0:d3:b3:6a:32:2f:cc:48:50:2e:57:ec:28:19:f2:

 85:01:d1:32:9c:51:df:2d:5f:0c:93:97:ad:cd:48:

 1d:fe:50:5d:cc:44:03:15:48:20:cb:cf:b6:77:a4:

 8c:11:71:57:68:34:9c:b8:3b:30:2e:0e:17:3e:78:

 34:f4:66:bc:1c:99:9c:bb:ae:50:7f:89:53:f4:1f:

 b2:7b:21:9c:34:42:01:66:eb:42:47:9d:af:ab:91:

 6e:16:49:3c:cc:d4:51:14:96:1e:98:cc:c0:08:d1:

 a8:71:a4:ab:aa:c6:a5:c4:b7:91:74:20:de:bf:e2:

 71:b8:65:23:3e:3f:f5:21:c7:10:c3:d5:21:0a:52:

 c6:a6:89:c7:ec:6e:ee:0f:78:58:3f:28:1a:92:b0:

 40:a9:a8:a2:84:74:e0:72:b4:3e:c4:19:0c:d4:31:

 6d:37

 Exponent: 65537 (0x10001)

 Attributes:

 Requested Extensions:

 X509v3 Subject Alternative Name:

 DNS:os.ecstme.org, DNS:atmos.ecstme.org,

DNS:swift.ecstme.org, IP Address:10.246.150.199

 X509v3 Key Usage:

 Digital Signature, Non Repudiation, Key Encipherment

 X509v3 Extended Key Usage:

 TLS Web Server Authentication

 X509v3 Subject Key Identifier:

Example Deployments of ECS with HAProxy setup

27 ECS with HAProxy Load Balancer | H15785.4

Figure 29 Self-signed certificate output after generation

openssl x509 -in server.crt -noout -text

Certificate:

 Data:

 Version: 3 (0x2)

 Serial Number: 12752130309296882435 (0xb0f8aaf3df220303)

 Signature Algorithm: sha256WithRSAEncryption

 Issuer: C=US, ST=CA, L=SJ, O=Dell, OU=TME,

CN=*.os.ecstme.org/emailAddress=example@dell.com

 Validity

 Not Before: Dec 22 00:37:35 2016 GMT

 Not After : Jan 21 00:37:35 2017 GMT

 Subject: C=US, ST=CA, L=SJ, O=Dell, OU=TME,

CN=*.os.ecstme.org/emailAddress=example@dell.com

 Subject Public Key Info:

 Public Key Algorithm: rsaEncryption

 Public-Key: (2048 bit)

 Modulus:

 00:ca:02:a9:4f:88:eb:9b:bf:07:b5:e7:a5:03:c7:

 59:2d:e1:53:1e:df:fa:9d:6b:cd:4a:22:10:01:ed:

 ca:92:66:28:f3:dc:b3:1c:8f:dd:1c:7c:b2:f0:4c:

 18:63:ff:0e:47:00:35:6f:f8:ae:9b:19:88:2d:f3:

 f7:de:ed:7b:bc:20:41:ff:d8:c2:28:00:65:a1:38:

 71:66:10:f1:3f:39:23:f7:40:65:9d:f5:3f:85:33:

 b0:d3:b3:6a:32:2f:cc:48:50:2e:57:ec:28:19:f2:

..

..

 Exponent: 65537 (0x10001)

 X509v3 extensions:

 X509v3 Subject Alternative Name:

 DNS:os.ecstme.org, DNS:atmos.ecstme.org,

DNS:swift.ecstme.org, IP Address:10.246.150.199

 X509v3 Key Usage:

 Digital Signature, Non Repudiation, Key

Encipherment

 X509v3 Extended Key Usage:

 TLS Web Server Authentication

 X509v3 Subject Key Identifier:

A6:60:1C:05:50:ED:09:7D:BB:6D:1A:87:1D:43:C0:A9:B2:D3:79:7B

 X509v3 Authority Key Identifier:

keyid:A6:60:1C:05:50:ED:09:7D:BB:6D:1A:87:1D:43:C0:A9:B2:D3:79:7B

Example Deployments of ECS with HAProxy setup

28 ECS with HAProxy Load Balancer | H15785.4

Step 4: Combining the Private Key with Certificate File

After the certificate files have been created, HAProxy requires the private key to be combined with the

certificate file. If your certificate was signed by a CA, the intermediate CA files and certificate chain file would

need to also be appended to the certificate signing request prior to combining with the private key. Figure 30

illustrates how to extract the private key by removing the password, concatenate it with a self-signed

certificate file to generate a combined file and then placing the combined file in HAProxy directory.

Once the certificate generation has been completed, the frontend definition in HAProxy configuration file,

“haproxy.cfg”, for https can be defined. Figure 31 provides an example of a frontend for handling https

request. In this example the, SSL is terminated at the HAProxy load balancer and thus certificates will not

need to be created for the ECS nodes and the same backend using the non-SSL ports of the ECS nodes will

be used as previously defined in the http section. Check the validity of the configuration file and restart

haproxy service to put in effect the load balancing directives defined for “https-in”.

frontend https-in

 bind *:443 ssl crt /etc/haproxy/combined.pem

 reqadd X-Forwarded-Proto:\ https

 # Define the hostnames

 acl host_s3 hdr(host) -i -m dom os.ecstme.org

 acl host_atmos hdr(host) -i -m dom atmos.ecstme.org

 acl host_swift hdr(host) -i -m dom swift.ecstme.org

 acl host_s3_ip hdr(host) -i -m dom 10.246.150.199

 # Route to backend

 use_backend swift_backend if host_swift

 use_backend atmos_backend if host_atmos

 use_backend s3_backend if host_s3

 use_backend s3_backend if host_s3_ip

Figure 31 Frontend definitions for HTTPS

openssl rsa -in server.key -out server_unsec.key

Enter pass phrase for server.key: <your passprhase from above>

cat server.crt server_unsec.key > combined.pem

rm server_unsec.key

chown root:root combined.pem

cp combined.pem /etc/haproxy/

Figure 30 commands for combining the private key with certificate

Example Deployments of ECS with HAProxy setup

29 ECS with HAProxy Load Balancer | H15785.4

S3Browser can be used to validate that “https” traffic and SSL certificates are going thru HAProxy. For S3

Browser, edit the account and place a checkmark in “Use secure transfer (SSL/TLS) box as pictured in Figure

32.

Figure 32 S3 Browser Options to Enable HTTPS

5.3.3 NFS
ECS NFS implementation utilizes server-side metadata caching and the cache exists locally on each node.

Thus, it is important that NFS requests are handled by the same backend ECS node and a load balancer is

used predominately for high availability purposes for NFS. If one of the ECS nodes currently serving NFS

request fails, then HAProxy will redirect requests to another ECS node.

The Linux server that is hosting HAProxy should not be running “rpcbind” otherwise there will be a conflict

when setting up HAProxy to forward NFS requests to ECS. If “rpcbind” is installed by default in the operating

system, disable or remove.

Similar to the HTTP default definitions, there will be a set of defaults specifically for NFS requests as shown in

Figure 33. The defaults will apply to all sections defined below the defaults NFS section. Thus in the

defaults section, the mode, timeouts and balance algorithm for NFS are defined. For NFS, tcp mode or Layer

4 is used such that traffic is directly passed thru to the ECS Nodes for handling. Also, the load balance

algorithm “source” is used. With load balance of source, backend server is selected based on a hash of the

Example Deployments of ECS with HAProxy setup

30 ECS with HAProxy Load Balancer | H15785.4

source IP such as the user IP address to ensure request goes to the same server until something changes in

the hash (ie. one backend server goes down).

HAProxy will listen for requests on ports 2049, 111, and 10000 where NFS service and daemons such as

nfsd, mountd, nlockmgr and portmapper are listening to on the ECS nodes. As shown in the example

directives in Figure 34, there is a frontend and backend handler defined for each port. The backend defines

the list of ECS nodes with the appropriate port. It is assumed that ECS has been configured to support file

and the exports and user and group mappings have been configured appropriately for NFS. The HAProxy IP

or hostname should be added to the exports hosts in ECS. Each backend server definitions has a check to

conduct availability checks on each backend server. If the server check fails, then requests will be forwarded

to another backend server on the list.

frontend nfs-in1

 bind *:2049

 use_backend nfs_backend1

frontend nfs-in2

 bind *:111

 use_backend nfs_backend2

frontend nfs-in3

 bind *:10000

 use_backend nfs_backend3

backend nfs_backend1

 server hop-u300-12-01 10.246.150.131:2049 check

 server hop-u300-12-02 10.246.150.132:2049 check

 server hop-u300-12-03 10.246.150.133:2049 check

 server hop-u300-12-04 10.246.150.134:2049 check

backend nfs_backend2

 server hop-u300-12-01 10.246.150.131:111 check

 server hop-u300-12-02 10.246.150.132:111 check

 server hop-u300-12-03 10.246.150.133:111 check

 server hop-u300-12-04 10.246.150.134:111 check

backend nfs_backend3

 server hop-u300-12-01 10.246.150.131:10000 check

 server hop-u300-12-02 10.246.150.132:10000 check

 server hop-u300-12-03 10.246.150.133:10000 check

 server hop-u300-12-04 10.246.150.134:10000 check

Figure 34 Frontend and backend definitions for NFS

defaults NFS

 mode tcp

 log global

 option tcplog

 timeout client 1m

 timeout server 1m

 timeout connect 4s

 balance source

Figure 33 Defaults for NFS requests

Example Deployments of ECS with HAProxy setup

31 ECS with HAProxy Load Balancer | H15785.4

The configuration file should be checked using the “haproxy –f haproxcy.cfg –c” command and the HAProxy

service would need to be restarted using command “service haproxy restart” to pick up the changes to the

haproxy.cfg. If using HAProxy version 1.7.10 or later, refer to Appendix A for another example that simplifies

the frontend and backend definitions to handle NFS requests and provides an approach that improves this

example by implementing stick tables.

As mentioned previously, ECS should have the File exports and user mappings configured prior to mount as

pictured in Figure 35 and Figure 36 respectively. Then from an NFS client, another server different from

HAProxy server, issue a mount command specifying the IP or name of HAProxy, port 2049 and NFS version

3. Figure 37 shows the example “mount” command and output of “df” command to illustrate the success of

the mount. There should be an equivalent user in the Linux client with the same userid (506, in this example)

specified as in ECS to access data as shown in Figure 38.

Figure 35 Example of File Export Settings in ECS

Example Deployments of ECS with HAProxy setup

32 ECS with HAProxy Load Balancer | H15785.4

Figure 36 Example of User Mapping Settings in ECS

c1-vm ~ # mount -o user,vers=3,proto=tcp,port=2049 os.ecstme.org:/u300-12-

ns/b1 /mnt

c1-vm ~ # df

Filesystem 1K-blocks Used Available Use%

Mounted on

udev 2008548 4 2008544 1% /dev

tmpfs 404824 1212 403612 1% /run

/dev/sda1 98952796 5615160 88288088 6% /

none 4 0 4 0%

/sys/fs/cgroup

none 5120 0 5120 0%

/run/lock

none 2024116 856 2023260 1%

/run/shm

none 102400 16 102384 1%

/run/user

os.ecstme.org:/u300-12-ns/b1 351063244800 275818496 350787426304 1% /mnt

user1@c1-vm:~$ id

uid=506(user1) gid=1002(user1) groups=1002(user1)

user1@c1-vm:~$ ls /mnt

ECS_-_Beauty_FL.jpg foo1 foo10000 foo1_11 foo1_442 foo1_8 foo2

perfMon1BytesSentRec.gif report-267335281_overview.pdf

foo foo1_0 foo1_10 foo1_4 foo1_7 foo1_933

haproxy.cfg report-266278156_10K_1000.pdf treport1.csv

user1@c1-vm:~$

Figure 37 "Mount" and "df" command

Figure 38 Output of user ID on linux

Example Deployments of ECS with HAProxy setup

33 ECS with HAProxy Load Balancer | H15785.4

5.3.4 Monitoring
HAProxy provides a web monitoring capability that shows how much bandwidth is used, which backend ECS

nodes are up or down, how many clients are connected, the number of bytes in and out, errors, warnings and

much more. Monitoring information is also available to be exported in comma separated value (CSV) format.

Tools can take advantage of this feature to provide a more enhanced experience such as adding graphs,

charts and trending views. To set this up, the following lines shown in Figure 39 would need to be added to

end of the haproxy.cfg file.

An example of HAProxy web monitoring page is pictured in Figure 40 below. When accessing the Web

Monitoring page, the username and password is indicated by the “stats auth” line which in this example is

“stats:password”.

Figure 40 HAProxy web monitoring page

Web monitoring

listen HAProxy_Stats

 bind 10.246.150.199:1936

 mode http

 stats enable

 stats uri /

 stats hide-version

 stats auth stats:password

Figure 39 HAProxy definitions for eeb monitoring.

Example Deployments of ECS with HAProxy setup

34 ECS with HAProxy Load Balancer | H15785.4

5.4 Example of ECS with Redundant HAProxy Setup
The ECS with single HAProxy example in previous section can be extended to add another HAProxy to

create a redundant HAProxy setup. In this example, another virtual machine with Mint operating system and

HAProxy load balancer was configured. The “keepalived” utility was installed on both HAProxy servers to do

health checks between the two HAProxy load balancers. The redundant HAProxy load balancers were

configured in an active/passive mode. A virtual IP initially maps to a primary HAProxy and if the primary load

balancer fails, then the virtual IP will point to the IP of secondary load balancer until the primary load balancer

comes up again. Figure 41 illustrates the setup for the redundant HAProxy load balancers environment

described in this example.

Figure 41 ECS with Redundant HAProxy Setup Example

5.4.1 Virtual IP
On each of the load balancer servers which is hosted on a virtual machine with Mint installed, modify the

“net.ipv4.ip_nonlocal_bind” to 1 in the kernel file /etc/sysctl.conf to allow HAProxy to bind to a shared IP

address which is 10.246.150.151 in this example. With an editor, such as “vi”, add the line shown in Figure

42.

net.ipv4.ip_nonlocal_bind=1

Figure 42 Add to "/etc/sysctl.conf"

Example Deployments of ECS with HAProxy setup

35 ECS with HAProxy Load Balancer | H15785.4

Run “sysctl –p” command to have this setting take into effect without the need to reboot as shown in Figure

43.

5.4.2 Keepalived
The keepalived utility is a routing software package available on Linux. It is written in C and its main purpose

is to provide health checks between systems. Install the keepalived utility on both load balancers. Figure 44

provides the commands to install keepalived.

In both load balancers, edit or create a keepalived.conf file in “/etc/keepalived” directory with entries as shown

in Figure 45 and Figure 46. The difference between the two files is the priority value, where 101 represent the

primary and 100 is secondary. Also note that eth0 is set to the virtual IP. For more information on keepalived,

refer to the Keepalived website: http://www.keepalived.org/

sysctl -p

Figure 43 Command to enable the setting modified

apt-get update

apt-get install keepalived

vrrp_script ckhaproxy { # Use version keepalived-1.1.13 or

higher

 script "killall -0 haproxy" # Check if process exists

 interval 2 # Does checks every two seconds

 weight 2 # Add two points of prio if OK

}

vrrp_instance vi1 {

 virtual_router_id 51

 state MASTER

 priority 101 # 101 is primary and 100 is

secondary

 interface eth0

 virtual_ipaddress {

 10.246.150.151 # Virtual IP

 }

 track_script {

 ckhaproxy

 }

} Figure 45 Keepalived.conf for primary load balancer

Figure 44 Command to install keepalived

http://www.keepalived.org/

Example Deployments of ECS with HAProxy setup

36 ECS with HAProxy Load Balancer | H15785.4

Prior to starting the service, it is recommended as a best practice to validate that the virtual_router_id is not

already being used on the same network. Running tcpdump command (i.e. tcpdump -i eth0 host 224.0.0.18)

on primary and secondary HAProxy hosts can provide information on whether the identifier is being used. To

further secure your virtual IP from being taken over by a primary router or prevent devices to use the same

identifier, setting a virtual router redundancy protocol (vrrp) password is another option.

Afterwards, start the keepalived service on each load balancer server as illustrated in Figure 47.

vrrp_script ckhaproxy { # Use version keepalived-

1.1.13 or higher

 script "killall -0 haproxy" # Check if process exists

 interval 2 # Does checks every two

seconds

 weight 2 # Add two points of prio if

OK

}

vrrp_instance vi1 {

 virtual_router_id 51

 state MASTER

 priority 100 # 101 is primary and 100 is

secondary

 interface eth0

 virtual_ipaddress {

 10.246.150.151 # Virtual IP

 }

 track_script {

 ckhaproxy

 }

}

Figure 46 Keepalived.conf for secondary load balancer

service keepalived start

Figure 47 Command to start keepalived

Example Deployments of ECS with HAProxy setup

37 ECS with HAProxy Load Balancer | H15785.4

Then, check that the virtual IP is on the primary load balancer server as highlighted in Figure 48.

5.4.3 Redundant HAProxy and DNS
On the redundant HAProxy load balancer server, copy the haproxy.cfg file and the SSL certificate created on

the other HAProxy load balancer described in the previous example and place in the /etc/haproxy directory

and start the haproxy service. For the SSL certificates, DNS names in the SANs should be used as opposed

to IP addresses so the same certificate file can be used on both systems. Then modify the DNS as pictured in

Figure 49 to point the os.ecstme.org A-record to the virtual IP defined in the keepalived.conf file,

10.246.150.151 in this example.

Figure 49 Virtual IP Set in DNS

ip addr show eth0

2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc mq state UP group

default qlen 1000

 link/ether 00:0c:29:37:17:49 brd ff:ff:ff:ff:ff:ff

 inet 10.246.150.150/24 brd 10.246.150.255 scope global eth0

 valid_lft forever preferred_lft forever

 inet 10.246.150.151/32 scope global eth0

 valid_lft forever preferred_lft forever

 inet6 fe80::20c:29ff:fe37:1749/64 scope link

 valid_lft forever preferred_lft forever

Figure 48 Virtual IP on primary load balancer Server

Example Deployments of ECS with HAProxy setup

38 ECS with HAProxy Load Balancer | H15785.4

5.4.4 Validation
Start the S3 Browser to validate the setup. Since the S3 browser is utilizing the DNS entry name,

“os.ecstme.org”, no additional modifications are needed. Afterwards, shutdown the primary HAProxy load

balancer to validate the redundant setup. Once the secondary HAProxy load balancer recognizes that the

primary is down, the secondary will pick up the Virtual IP as exemplified in Figure 50. Access to the objects on

ECS should still be available via S3 Browser since the secondary HAProxy load balancer is handling the

requests.

Similarly with the NFS client, the mount point should not be affected when the primary load balancer goes

down.

2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc mq state UP group

default qlen 1000

 link/ether 00:0c:29:b1:d6:a3 brd ff:ff:ff:ff:ff:ff

 inet 10.246.150.199/24 brd 10.246.150.255 scope global eth0

 valid_lft forever preferred_lft forever

 inet 10.246.150.151/32 scope global eth0

 valid_lft forever preferred_lft forever

 inet6 fe80::20c:29ff:feb1:d6a3/64 scope link

 valid_lft forever preferred_lft forever

Figure 50 Virtual IP on secondary load balancer server

Best Practices

39 ECS with HAProxy Load Balancer | H15785.4

6 Best Practices
Utilizing a load balancer with ECS is highly recommended. Highlights of some the best practices when

deploying with ECS include:

• Do not use a load balancer for CAS traffic since the Centera SDK has a built-in load balancer in

software and cannot function without direct access to all nodes.

• Load balancer is best for data traffic.

• Use the load balancer to terminate SSL connections to reduce the load on the ECS Nodes

• If SSL termination is required on ECS nodes itself, then use Layer 4 (tcp) to pass through the SSL

traffic to ECS nodes for handling. The certificates would need to be installed on the ECS nodes and

not on the load balancer.

• Use redundant load balancers to prevent single point of failure.

• For NFS, use only the high available functionality of the load balancer.

• Enable web monitoring for HAProxy to monitor traffic.

• When deploying 3 or more ECS sites, employ a global load balancing mechanism to distribute load

across sites to take advantage of ECS XOR storage efficiency. Also important to optimize the local

object read hit rate in a global deployment.

Conclusion

40 ECS with HAProxy Load Balancer | H15785.4

7 Conclusion
HAProxy load balancer provides a low-cost option for customers desiring to utilize a load balancer with ECS.

It offers both Layer 4 and Layer 7 load balancing that is sufficient to support client requests for both object

and file access on ECS. An example and best practices were described in this whitepaper to provide

guidance and a reference to architects interested in deploying HAProxy with ECS.

Other Configuration Examples

41 ECS with HAProxy Load Balancer | H15785.4

A Other Configuration Examples

This section discusses recommendations provided by HAProxy engineer, Baptiste Assmann

(bassmann@haproxy.com). The sample configuration files in this section simplifies and improves upon the

configuration files defined in the previous examples for HTTP and NFS.

A.1 HTTP/HTTPS Configuration Definitions

In the previous example for handling HTTP requests described in Section 5.3.1, the frontend defined three

different rules to handle the different ECS protocols (object, atmos and swift). Also there was a separate

frontend to handle HTTPS type of requests described in Section 5.3.2. In the example shown in Figure 51,

there is a single frontend to handle both http and https type of traffic and a single rule. In order to handle

virtual host style addressing (i.e. prepending bucket name to ECS base URL), a separate map file called

host2backen.map is defined. This file contains two entries, the host header it needs to match and the

destination backend name that will handle the request with the matching host header as illustrated in Figure

50.

After the globals and defaults section of the configuration file in /etc/haproxy/haproxy.cfg, append the frontend

block shown in Figure 50. The first line in the frontend block “http-in” tells HAProxy to listen for requests on

port 80 for http requests and port 443 for https requests on all interfaces. It also specifies a single

use_backend rule to route the traffic to the backend having the same name as the host header defined in the

host2backend.map file. For instance, if the path of the user header request contains “os.ecstme.org,

atmos.ecstme.org, or swift.ecstme.org” it will re-direct the request to appropriate named protocol backend

such as os, atmos, and swift.

frontend http-in

 bind *:80 name http

 bind *:443 name https ssl crt /etc/haproxy/lbhai.pem

 # Define the hostnames

 http-request add-header X-Forwarded-Proto https if { ssl_fc }

 use_backend

%[req.hdr(Host),lower,word(1,:),map_reg(/etc/haproxy/host2backend.map)]

Figure 52 Frontend definitions for object access

#regex_matching_host_header destination_backend_name

os.ecstme.org os

atmos.ecstme.org atmos

swift.ecstme.org swift

Figure 51 Map file for HAProxy

mailto:bassmann@haproxy.com

Other Configuration Examples

42 ECS with HAProxy Load Balancer | H15785.4

Further append the haproxy.cfg file with the backend definitions of “os”, “swift”, and “atmos” specified as the

named backend in host2backend.map file as shown in Figure 52. Each object protocol goes through a certain

port thus all S3 requests for http go thru port 9020, Atmos, thru port 9022, and Swift thru 9024. So for each

protocol backend, a list of ECS nodes IP addresses and ports are specified in “server” line. Similar the

previous example described in Section 5, the s3_backend and swift_backend, “check” is added at the end of

the line to perform health checks on ECS services on each node using “S3 ping” or “Swift healthcheck” as

specified in “option httpchk”. The “check” specified for atmos_backend will only check if the ECS node is

reachable since this protocol does not yet have support for the “ping operation” to check the ECS services.

This example provides a more manageable solution especially if the HAProxy server is forwarding different

types of requests to numerous backend servers. Thus, a single frontend rule is able to handle other types of

requests by adding another entry in the host2backend.map file which defines the host header to match and

the name of backend handler in the configuration file.

backend os

 # Use the s3 Ping ViPR extension to make sure node

 # is alive

 option httpchk GET /?ping "HTTP/1.1\r\nHost: haproxy"

 # List of data nodes. S3 runs on port 9020.

 server hop-u300-12-01 10.246.150.179:9020 check

 server hop-u300-12-02 10.246.150.180:9020 check

 server hop-u300-12-03 10.246.150.181:9020 check

 server hop-u300-12-04 10.246.150.182:9020 check

backend atmos

 # List of data nodes. Atmos runs on port 9022

 server hop-u300-12-01 10.246.150.179:9022 check

 server hop-u300-12-02 10.246.150.180:9022 check

 server hop-u300-12-03 10.246.150.181:9022 check

 server hop-u300-12-04 10.246.150.182:9022 check

backend swift

 option httpchk HEAD /healthcheck HTTP/1.0

 # List of data nodes. Swift runs on port 9024

 server hop-u300-12-01 10.246.150.179:9024 check

 server hop-u300-12-02 10.246.150.180:9024 check

 server hop-u300-12-03 10.246.150.181:9024 check

 server hop-u300-12-04 10.246.150.182:9024 check

Figure 53 Backend definitions using map

Other Configuration Examples

43 ECS with HAProxy Load Balancer | H15785.4

A.2 NFS Configuration Definitions

Note: The definitions in this section to handle NFS requests will only work with HAProxy version 1.7.10 or

later.

The HAProxy definitions for NFS discussed in Section 5.3.3 has been further simplified by combining all

frontend and backend definitions for each port into a single handler section as shown in Figure 54. In this

example, it is not required for the port to be specified in the server line. If there is no port defined on the

server line, HAProxy will automatically forward the traffic to the same port that the request came in. Also,

stick tables are implemented in this example. By using stick tables, a client is “sticked” to a server such that

requests are redirected to the same backend server , unless the server is down or the entry expires in the

stick table. For NFS requests, this stickiness is important since ECS utilizes server-side metadata caching

and the cache exists locally on each node. Stick tables stores the source IP address in memory. In this

example, the size of this table is 10k.

.

peers haproxy

 peer glb 10.246.150.150:1023

defaults NFS

 mode tcp

 log global

 option tcplog

 timeout client 1m

 timeout server 1m

 timeout connect 4s

 balance source

Only works on HAProxy version 1.8 or later

frontend nfs-in

 bind *:2049

 bind *:111

 bind *:10000

 mode tcp

 use_backend nfs_backend

backend nfs_backend

 mode tcp

 option tcp-check

 tcp-check connect port 111

 tcp-check connect port 2049

 tcp-check connect port 10000

 stick-table type ip size 10k expire 24h peers haproxy

 stick on src

 server hop-u300-12-01 10.246.150.179 check

 server hop-u300-12-02 10.246.150.180 check

 server hop-u300-12-03 10.246.150.181 check

 server hop-u300-12-04 10.246.150.182 check

Figure 54 simplified frontend and backend for ECS NFS

Other Configuration Examples

44 ECS with HAProxy Load Balancer | H15785.4

For redundancy and reload safe purposes, a “peers” section is defined to synchronize the content of the stick

table between multiple HAProxy instances. In this example only one HAProxy instance is being used where

the IP address is the IP of the HAProxy host and the peer name is actual hostname of server running

HAProxy instance which is “glb”. The port of the peer can be any number as long as firewalls are open for

this port.

For more information on stick tables, refer to this blog by Baptiste, https://www.haproxy.com/blog/client-ip-

persistence-or-source-ip-hash-load-balancing/

https://www.haproxy.com/blog/client-ip-persistence-or-source-ip-hash-load-balancing/
https://www.haproxy.com/blog/client-ip-persistence-or-source-ip-hash-load-balancing/

