The Architectural Advantages of Dell SC Series Automated Tiered Storage

Dell Engineering
January 2016
Revisions

<table>
<thead>
<tr>
<th>Date</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>February 2011</td>
<td>Initial release</td>
</tr>
<tr>
<td>January 2016</td>
<td>Minor updates</td>
</tr>
</tbody>
</table>

THIS WHITE PAPER IS FOR INFORMATIONAL PURPOSES ONLY, AND MAY CONTAIN TYPOGRAPHICAL ERRORS AND TECHNICAL INACCURACIES. THE CONTENT IS PROVIDED AS IS, WITHOUT EXPRESS OR IMPLIED WARRANTIES OF ANY KIND.

© 2011–2016 Dell Inc. All rights reserved. Dell, the DELL logo, and the DELL badge are trademarks of Dell Inc. Other trademarks and trade names may be used in this document to refer to either the entities claiming the marks and names or their products. Dell disclaims any proprietary interest in the marks and names of others.
Table of contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Revisions</td>
<td>2</td>
</tr>
<tr>
<td>Executive summary</td>
<td>4</td>
</tr>
<tr>
<td>1 Built-in virtualization provides the foundation for automated tiering</td>
<td>5</td>
</tr>
<tr>
<td>2 Granular data management optimizes migration</td>
<td>6</td>
</tr>
<tr>
<td>3 Real-time intelligence facilitates precise data movement</td>
<td>7</td>
</tr>
<tr>
<td>4 True automation simplifies tiering administration</td>
<td>9</td>
</tr>
<tr>
<td>5 Snapshot integration delivers write and read performance</td>
<td>11</td>
</tr>
<tr>
<td>6 Integration with enterprise features maximizes tiering</td>
<td>13</td>
</tr>
<tr>
<td>6.1 Thin provisioning</td>
<td>13</td>
</tr>
<tr>
<td>6.2 Fast Track</td>
<td>14</td>
</tr>
<tr>
<td>6.3 Enterprise Manager</td>
<td>14</td>
</tr>
<tr>
<td>7 Platform independence facilitates scalability</td>
<td>16</td>
</tr>
<tr>
<td>8 Conclusion</td>
<td>17</td>
</tr>
</tbody>
</table>
Executive summary

With the profusion of tiered storage solutions into the enterprise storage market, organizations are increasingly adopting tiering strategies to accommodate rapid data growth while controlling costs. Almost all major offerings leverage multiple types of drives, with varying capacities and performance levels, and attempt to match data with the optimal drive type based on storage profiles. Typically, mission-critical data is stored on high-performance drives, while less-critical data is moved to high-capacity drives.

Despite these capabilities, many solutions fail to maximize the potential benefits of tiered storage. Poor integration of tiering into the storage platform; a lack of granular, real-time system intelligence; labor-intensive, inefficient data movement schemes; and limited scalability keep many solutions from meeting real-world business needs. Applications are tacked onto existing storage infrastructures. Data is migrated as large, all-or-nothing pages, often according to outdated information. The tiering profiles are limited in scope, generally requiring manual intervention. Data must be reformatted from a disk group to a pooled configuration. And solution licensing is restricted to a particular hardware platform. Such limitations completely offset the cost- and time-saving benefits of truly virtualized storage.

Unlike many competitors in the storage tiering market, Dell Storage engineered its architecture from the ground up, integrating automated tiered storage into the Fluid Data™ architecture of Dell™ SC Series storage. This approach enables organizations to move data dynamically, intelligently, and efficiently among multiple storage tiers and RAID levels. All write transactions and frequently accessed data are placed on high-performance drives with performance-optimized RAID levels, while less frequently accessed data cascades to more cost-effective drives and lower-overhead RAID levels.

SC Series automated tiered storage, called Data Progression, is built right into the virtualized storage platform, so it does not require additional hardware or server-side agents to operate. Automated tiered storage also integrates seamlessly with the full range of other Dell SC Series technologies to maximize storage performance, efficiency, flexibility, reliability, and manageability. In addition, because automated tiered storage is not tied to just one storage system model or platform, organizations can take advantage of the functionality on systems in production without downtime or a costly forklift upgrade, and continue to benefit as they scale the solution in line with changing business conditions.

To realize the full potential of automated tiered storage, organizations need a solution that:

- Is built into a virtualized storage platform, not added as a separate agent
- Manages and migrates data as highly granular 512 KB, 2 MB, or 4 MB blocks
- Utilizes in-flight use characteristics for ongoing, real-time intelligence
- Provides hands-free management through policy-based automation
- Integrates seamlessly with snapshots, delivering high write and read performance
- Leverages other enterprise functionality to maximize tiering benefits
- Offers platform independence and scales on demand
1. Built-in virtualization provides the foundation for automated tiering

A virtualized (or pooled) storage environment provides an ideal foundation for tiered storage. With a truly virtualized environment, there are no constraints on where data can reside because it is not confined to conventional disk groups. Data can be moved without limitation to a tier with a particular drive type or performance level, or to a particular RAID level within a storage tier, depending on organizational needs.

While other storage architectures offer virtualization, they often fall short of true storage virtualization. Those solutions pool only a subset of the storage environment by stretching a volume or LUN across a particular set of drives. Administrators are required to predefine the ratio for each storage tier or drive type within each pool. The pool is confined to that set of drives, leaving little flexibility to optimize storage later.

These solutions often require more administration overhead as well. To take advantage of sub-LUN tiering, administrators must provision virtual volumes within a distinct pool of disks upfront or convert existing volumes to virtual volumes, which are then pooled across specific disks in the storage environment. That conversion process creates downtime as volumes are reformatted and temporary volumes are created, and it requires twice the existing storage capacity for the migration to the pooled configuration.

Unlike static storage architectures, Dell SC Series Fluid Data storage is architected to provide truly virtualized storage that spans all disks in the storage environment. SC Series storage virtualizes storage at the disk level, creating a dynamic, shared pool of storage resources available to all servers, all the time. All storage types and RAID levels are pooled by default. Administrators can keep the entire array virtualized as a single pool of high-performance storage (the most common approach) as well as configure particular subsets of the array as individual pools, as desired according to enterprise needs.

Summary:

With SC Series storage, sub-LUN tiering is not confined to a distinct set of drives with predefined storage ratios for each tier.
2 Granular data management optimizes migration

Fluid Data architecture is what enables true storage virtualization and facilitates a highly granular approach to storage tiering. Dell SC Series storage divides data into pages — preformatted collections of allocated and unallocated disk blocks. The pages are 2 MB by default, though administrators have the option to manage storage as 512 KB or 4 MB pages, and details about each block are captured in action. This system intelligence is collected at the 512 byte level, the smallest addressable data block available. These tiny blocks are what make up the pages.

This granular approach optimizes tiering. Using real-time system intelligence, the Dell SC Series SAN identifies very small data blocks that are eligible for movement based on frequency of access and then moves just the small pages that include those blocks to the appropriate tier or RAID level, creating a finely tuned, tiered storage environment. Using small pages also increases the efficiency of data movement since it is more efficient to read, write, and migrate small pages than larger ones.

Static storage architectures are limited to much larger blocks of data, ranging from 16 MB to 1 GB. Even if a very small quantity of data in the block changes, making it eligible for migration, the system has to move the entire, larger block. The efficiency of the Dell SC Series architecture can move and place data with a greater level of precision within the tiered environment.

Summary: A Fluid Data architecture allows data to be migrated in small 512 KB, 2 MB, or 4 MB blocks, not large 16 MB to 1 GB blocks like other tiering solutions.
Real-time intelligence facilitates precise data movement

In contrast to the ground-up approach of SC Series storage, many tiered storage solutions have been produced by tacking software onto an existing storage platform. They employ a new application (or agent) to determine whether data should be moved. The agent, which requires a distinct server, is run periodically or on demand. It assesses the state of data and identifies old data (for example), and then moves that data to a lower tier of storage. Because the agent collects data only periodically, the information it collects is often outdated by the time the migration process is ready to run. In addition, data is moved in large blocks, although much of the data constituting those blocks may not be eligible for migration.

Dell SC Series storage maintains continual awareness about small data blocks and captures real-time use characteristics about each block. Collected transparently while in flight, these use characteristics include information on when blocks were created, which drives hold the blocks, the associated virtual volume, how frequently the blocks are accessed or changed, and whether the blocks represent actual data or virtual pointers to data. This information provides the intelligence to determine whether and when blocks of data should be moved from one storage tier or one RAID level to another. Because Dell SC Series architecture operates at such a granular level, this block-level intelligence requires negligible system overhead to ensure data always stays in tune with application needs.

When it is time to migrate data (typically once per day), pages eligible for movement are automatically transitioned to either a new storage tier or a new RAID level within the existing tier. Moving data to a new storage tier (from one type of drive to another) frees up capacity in the high-performance tier. Moving
data to a new RAID level in the same tier helps sustain read performance while reclaiming capacity. Typical storage architectures limit which blocks can migrate for the optimum balance of performance and cost because they can move data between tiers, but they do not offer more than one RAID level within each tier.

Other storage architectures can require pre-determined tiering allocations. For example, an administrator might have to set a rule that only ten percent of a volume can reside on solid-state drives while the rest must reside on Fibre Channel or SATA drives. With Dell SC Series Fluid Data architecture, there are no predefined restrictions on how much data can reside on a certain type of storage. This gives organizations flexibility to optimize their environments as needs change, and helps reduce administration time spent managing performance and capacity issues.

| Summary: | Use characteristics about each block are captured in flight to ensure precise data movement using the most current information. |
True automation simplifies tiering administration

Dell SC Series automated tiered storage provides fully automated, hands-free, sub-LUN tiering. Administrators use policy-based profiles to drive placement and movement of data. Users can choose predefined storage profiles (based on years of automated tiering experience at Dell), or define their own. Profiles can be applied to a single LUN, a group of LUNs, or multiple LUNs within a group, and can be fine-tuned by application. The profiles can specify the storage tiers to be utilized and also the various disk types, rotational speeds, and RAID levels within each tier. Profile settings may be changed at any time without downtime or disruption to the production environment.

Figure 3 A built-in migration engine provides hands-free management through policy-based tiering profiles for each volume or group of volumes

Migration occurs automatically at a set time defined by the user, or on demand, while the system is still online. The migration process runs in the background and does not affect data availability or application performance. There is no need to bring down an application, pause I/O, or wait for a minimum I/O requirement. If a read request comes into a page that is being moved, the request is satisfied from the original placement of the page. The page is then moved after the read is complete. If a write request comes in, it will not interfere with the migration process, as new information is always written to tier 1, RAID 10 and is not eligible for migration. Overwriting a block of protected information also occurs on tier 1, RAID 10, and moving a block of data receiving writes simply will not occur. There is never a situation when application I/O is denied — application requests always receive priority.

When it comes to volume expansion, many solutions do not provide adequate flexibility. Without easily expandable volumes, administrators might need to apply compression as LUNs fill up. They would then need to apply decompression if data becomes active again, which may delay data access. Even if compression is used, LUNs will ultimately run out of room and require data migration to a new LUN. And
since read and write requests hit the same blocks, new writes will incur the I/O and latency performance penalties inherent to lower tier, high-capacity disks with RAID 5 or 6 protection.

With Dell SC Series storage, administrators can easily expand LUNs on the fly or add capacity online to accommodate changes without system disruption or downtime. When drives are added to any tier, the system automatically restripes all data across appropriate RAID levels within that tier.

Summary: Storage profiles specify the tiers to be used for each volume and also the disk types, rotational speeds, and RAID levels within each tier.
5 Snapshot integration delivers write and read performance

Dell SC Series Data Instant Replay technology plays a key role in delivering outstanding performance in an automated tiered storage environment. Data Instant Replay protects data without wasting capacity. Administrators can create space-efficient snapshots (Replays) of changes in data for continuous protection from loss or corruption. Replays use minimal storage space because the array captures only data that was written to the volume since the previous Replay was taken.

In SC Series architecture, new data is written by default to tier 1, RAID 10 storage to provide the best write performance. Replays cause the newly written data to be converted to RAID 5 or 6 protection within the same tier. Then, during the subsequent migration cycles and according to the tiering profile, infrequently accessed blocks of data move to a lower storage tier and RAID level. Converting this read-only data from RAID 10 to RAID 5 within the same tier enables administrators to maintain the same read performance. Whether data is moved to a new tier or RAID level, the migration frees up space on the higher tier or RAID level.

When new data needs to be written to an existing block that has since been converted to read-only and migrated to a lower tier, those writes are redirected to the tier 1, RAID 10 storage. A new writable block is automatically allocated to provide the highest transaction performance. Virtual pointers utilize the use characteristics of those blocks to maintain data continuity.

Figure 4 All data is written to tier 1, yet snapshots move to the lower tier available within 24 hours for the highest write and read performance possible; virtual pointers retain continuity between all associated blocks.
For many organizations, data exhibits only a three- to ten-percent rate of change. Consequently, most data is read-only data that can be migrated to lower tiers. Organizations often can reclaim 20 to 40 percent of tier 1 capacity simply by migrating read-only data.

Tiered storage solutions within traditional storage architectures cannot deliver the same level of write performance. In those solutions, data is written to a particular block and kept in that block. If the block is migrated to tier 3 and a new write comes in for that volume, the write will occur on tier 3. With SC Series storage, there is no write penalty for migrating data to lower tiers.

Data Instant Replay also helps sustain outstanding performance even as snapshots are taken. With static architectures, preparing storage volumes requires administrators to carve out storage space for the volume plus a distinct cache for volume-specific snapshot data. When new data is written, the storage controller determines whether that volume is protected by snapshots. If the answer is yes, the system reads the existing active production data, writes changes to the snapshot cache, and then writes over the volume block with the new data. That sequence requires numerous I/O processes. In addition, other systems store snapshots inside the original volume alongside the active production data. Consequently, there is a finite amount of space available for the snapshots — only a certain number of snapshots can be taken.

The SC Series system does not require administrators to reserve space for snapshot data or write data. Furthermore, SC Series snapshots do not reside within the volume with production data — they sit outside the production volume in pages within the general virtual storage pool. With the SC Series system, administrators can take frequent snapshots while conserving capacity and maintaining excellent performance.

Summary: Users do not need to reserve space for snapshots or new writes, and there is no write penalty for migrating data to lower tiers.
Integration with enterprise features maximizes tiering

Because Dell SC Series storage was engineered with automated sub-LUN tiering in mind, other critical storage features are tightly integrated with Data Progression. Similar to Data Instant Replay, these technologies help to enable and maximize the benefits of automated tiered storage, delivering the efficiency, performance, and ease of management that organizations require.

6.1 Thin provisioning

Dell SC Series thin provisioning, called Dynamic Capacity, helps optimize disk utilization within the virtualized storage environment. Thin provisioning helps create the flexible, efficient virtualized environment with the pooled storage resources required for effective tiering.

Other solutions can require administrators to predefine RAID sets ahead of time and later format additional space to accommodate LUN expansion. To make changes with those solutions, administrators have to free up additional storage capacity and migrate data. However, with SC Series thin provisioning, free blocks are preformatted during the provisioning process, yet no zeroes are written to set aside volume space. This allows administrators to expand or shrink volumes on demand without being bound to RAID set capacity or performance limitations.

Figure 5 Dynamic Capacity (thin provisioning) helps to create the flexible pool of storage required for efficient and effective tiering

Some other vendors offer a version of thin provisioning, but the capability applies only to storage contained within a newly created virtualized storage pool. These vendors often recommend against using thin provisioning to support enterprise database or e-mail environments because activating thin provisioning could degrade write performance and produce latency as the controller prepares the storage environment. With Dell SC Series storage, thin provisioning is a core component of the virtualized storage platform and is always ready to go — using it has no performance impact.
6.2 Fast Track

Dell SC Series Fast Track augments automated tiered storage by delivering optimal placement of data on each spinning disk. Fast Track uses the intelligence continuously collected by the Dell SC Series system to identify the most active, frequently accessed blocks of data on each spindle. It then places those data blocks together on the outer tracks of each drive. Keeping the head focused on that one area of the disk, where the active data resides, delivers better performance than if the head were forced to move all over the disk.

![Fast Track Diagram](image)

Figure 6 Fast Track groups the most active data blocks and places them together on the outer tracks of each spinning drive to improve performance

Fast Track works on every spindle-based drive type within the system. Data movement happens automatically and on a daily basis without any manual intervention. With Fast Track, organizations optimize performance of each platter based on actual usage patterns, reducing seek times for the most active blocks of data. Fast Track also helps reduce long-term storage costs by maximizing performance on cost-effective drives.

6.3 Enterprise Manager

Many solutions that add tiering functionality to an existing storage platform do not offer integrated management, and administrators are required to use a separate tool to manage the tiering process. Integration with other virtualization features is limited as well.

With SC Series storage, Dell Enterprise Manager provides an integrated storage-management interface that helps simplify administration of automated tiered storage. It provides a comprehensive view of the entire Dell SC Series storage environment, including real-time tiering statistics. Administrators can use the interface to monitor system performance and capacity, such as the percentage of data in each tier and RAID level by LUN. Alternately, users can opt to simply receive regular tiering reports by e-mail.

With Enterprise Manager, administrators can interact with the system to the desired degree. Following initial setup, no staff interaction is required — all tiering functionality is fully automated to provide hands-free management. However, administrators who prefer more direct involvement can take advantage of full
configuration access and control — from augmenting the storage profiles and policies that drive the tiering algorithm for each volume to changing Replay schedules, all of which can be performed without disruption.

Summary: Administrators can expand or shrink volumes on demand without being bound to RAID set capacity or performance limitations.
7 Platform independence facilitates scalability

SC Series automated tiered storage functionality is not tied to any particular storage system model or platform. Organizations can scale up and out without downtime. Incorporating automated tiered storage functionality into an existing SC Series system is as easy as activating that particular built-in software module. Activating the tiering functionality requires a module-specific license, but perpetual licensing ensures that organizations only incur additional licensing expenses when adding more capacity to an existing system. In contrast to other solutions, SC Series storage allows upgrading to a new controller with the latest technologies without requiring a new software license.

With other solutions, a tiering license might be tied to a particular storage system model. To take advantage of tiering with those solutions, organizations may need to update to a new platform. If a forklift upgrade is required, it could cause downtime for data migration. Administrators would have to migrate all existing volumes from the current RAID group configuration to a pooled configuration for automated tiering to work. To complete the process, administrators would need twice the capacity as the original volume during migration to the new platform.

Making that upgrade would also change the software license and service agreements. These agreements are typically tied to the storage controller. As soon as an organization upgrades a controller, it needs to upgrade the license and service agreements. The same is true if the organization moves from one platform to another. However, with Dell SC Series Fluid Data storage, organizations can avoid these issues.

Summary: Sub-LUN tiering is not tied to a particular model or platform, so taking advantage of it does not require a costly upgrade.
Conclusion

As organizations continue to implement sub-LUN tiering solutions to cost-effectively address explosive data growth, IT management must understand the architectural limitations inherent to many solutions. Without a truly virtualized storage platform engineered specifically with automated tiered storage, even more sophisticated, policy-based tiering solutions fall short. Such solutions lack the integration, granularity, intelligence, and automation needed to ensure data remains in tune with application needs.

With its Fluid Data architecture, Dell SC Series storage brings proven efficiency, automation, and scalability to sub-LUN tiering. Automated tiered storage has been an integral feature of SC Series storage since 2005, and Dell Storage has continued to enhance this functionality, based on pragmatic knowledge of how to utilize it with particular applications and storage configurations for optimum performance and capacity utilization.

Continuously aware of each granular block of data spanning the entire storage system, automated tiered storage enables organizations to strike a constant balance between performance and cost. Administrators do not need to replace or add hardware, reformat existing volumes, or install server-side agents to take advantage of dynamic tiering. The functionality is built right into the storage architecture, allowing it to integrate with and leverage a full range of enterprise features to drive efficiency, performance, and manageability.

With Dell Storage, data is managed based on actual use between storage tiers and also on RAID levels within each tier, and it is placed together on the fastest tracks of every spinning drive. Sophisticated tiering profiles provide hands-free management, while allowing full administrative control as needed depending on business needs. Finally, organizations can scale the solution on demand to better meet those business needs.