
Dell EMC Avamar
Version 18.1

REST API Getting Started Guide
302-004-675

REV 01

Copyright © 2014-2018 Dell Inc. or its subsidiaries. All rights reserved.

Published July 2018

Dell believes the information in this publication is accurate as of its publication date. The information is subject to change without notice.

THE INFORMATION IN THIS PUBLICATION IS PROVIDED “AS-IS.“ DELL MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND

WITH RESPECT TO THE INFORMATION IN THIS PUBLICATION, AND SPECIFICALLY DISCLAIMS IMPLIED WARRANTIES OF

MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. USE, COPYING, AND DISTRIBUTION OF ANY DELL SOFTWARE DESCRIBED

IN THIS PUBLICATION REQUIRES AN APPLICABLE SOFTWARE LICENSE.

Dell, EMC, and other trademarks are trademarks of Dell Inc. or its subsidiaries. Other trademarks may be the property of their respective owners.

Published in the USA.

Dell EMC
Hopkinton, Massachusetts 01748-9103
1-508-435-1000 In North America 1-866-464-7381
www.DellEMC.com

2 Avamar 18.1 REST API Getting Started Guide

5

7

9

Introduction 13
Description..14

New with Avamar release 18.1.. 14
Purpose...14
Deployment...15
Documentation conventions..15

Installation 17
Requirements..18
Installing the software...18

Testing the installation... 19
Checking the installed version... 20

Upgrading from Avamar release 7.5 Service Pack 1 or earlier......................21
Migrating the Avamar REST API database for Avamar 7.5.0.......... 21

Uninstalling...22
Manually stopping...22
Manually starting..23
Changing the provider credentials.. 23
Changing the Avamar REST API server port numbers................................ 24

Architecture 27
Architecture of the Avamar REST API..28

Concepts 31
Design goal... 32
Core concepts.. 32

Fundamentals 35
Representational state transfer.. 36
Session log in and log out... 36
API call types..38
Client allocation strategy..39

Changing the built-in client allocation strategy..............................40

Advanced API Calls 41
Browse operations..42

Browsing a client... 42

Figures

Tables

Preface

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Chapter 6

CONTENTS

Avamar 18.1 REST API Getting Started Guide 3

Browsing a backup...42
Browse response... 43

Dataset creation...45
Elements in the DatasetItem element.. 48
Creating a dataset... 48
Setting backups to go to a Data Domain storage system...............52

VMware..53
VMware vCenter... 54
VMware virtual machines.. 55
Proxy appliance for VMware..62
On-demand virtual machine backups... 70
Virtual machine browse operations.. 74
Virtual machine restore operations.. 76

Troubleshooting 81
Troubleshooting an Avamar REST API installation test failure.................... 82
Troubleshooting Insufficient Java Heap Storage Space in REST API Server..
82
Troubleshooting a failed request...83

Known Problems and Limitations 85
Replication without policy fails to Avamar server version 7.1.x................... 86
Backup of nonactivated client remains in RUNNING state......................... 86

Checking client activation status... 86

89

Chapter 7

Appendix A

Index

CONTENTS

4 Avamar 18.1 REST API Getting Started Guide

Components of the Avamar REST API architecture..28
Geographically selected resource pools.. 33
Tenant hierarchy.. 34
Resource share flexibility..34

1
2
3
4

FIGURES

Avamar 18.1 REST API Getting Started Guide 5

FIGURES

6 Avamar 18.1 REST API Getting Started Guide

Typographical conventions..10
Variables used in this documentation.. 16
Avamar REST API requirements..18
Descriptions of endpoint to endpoint communication... 28
Avamar REST API object locations... 28
Descriptions of the elements in the DatasetItem element...48
Required elements in a BackupRequest for an individual virtual machine....................70
Elements in a request for an image level restore... 77
Elements in a request for a file level restore... 78

1
2
3
4
5
6
7
8
9

TABLES

Avamar 18.1 REST API Getting Started Guide 7

TABLES

8 Avamar 18.1 REST API Getting Started Guide

Preface

As part of an effort to improve the product lines, revisions of the software and
hardware are periodically released. Therefore, some functions that are described in
this document might not be supported by all versions of the software or hardware
currently in use. The product release notes provide the most up-to-date information
on product features.

Contact the technical support professional when a product does not function correctly
or does not function as described in this document.

Note

This document was accurate at publication time. To find the latest version of this
document, go to Online Support (https://support.EMC.com).

Purpose
This document provides information to use the Avamar REST API.

Audience
This document is intended for system programmers who are responsible for accessing
Avamar system resources through the Avamar REST API.

Revision history
The following table presents the revision history of this document.

Revision Date Description

01 July 7, 2018 GA release of Avamar 18.1

Related documentation
The following publications provide additional information:

l HTML-formatted Avamar REST API API specification

l Avamar Administration Guide

l Avamar Management Console Command Line Interface (MCCLI) Programmer Guide

Avamar 18.1 REST API Getting Started Guide 9

https://support.emc.com/

Special notice conventions used in this document
These conventions are used for special notices.

DANGER

Indicates a hazardous situation which, if not avoided, results in death or serious
injury.

WARNING

Indicates a hazardous situation which, if not avoided, could result in death or
serious injury.

CAUTION

Indicates a hazardous situation which, if not avoided, could result in minor or
moderate injury.

NOTICE

Addresses practices that are not related to personal injury.

Note

Presents information that is important, but not hazard-related.

Typographical conventions
These type style conventions are used in this document.

Table 1 Typographical conventions

Bold Used for names of interface elements, such as names of windows,
dialog boxes, buttons, fields, tab names, key names, and menu paths
(what the user specifically selects or clicks)

Italic Used for full titles of publications that are referenced in text

Monospace Used for:

l System code

l System output, such as an error message or script

l Pathnames, filenames, prompts, and syntax

l Commands and options

Monospace italic Used for variables

Monospace bold Used for user input

[] Square brackets enclose optional values

| Vertical bar indicates alternate selections - the bar means “or”

{ } Braces enclose content that the user must specify, such as x or y or
z

... Ellipses indicate nonessential information that is omitted from the
example

Preface

10 Avamar 18.1 REST API Getting Started Guide

Where to get help
The Avamar support page provides access to licensing information, product
documentation, advisories, and downloads, as well as how-to and troubleshooting
information. This information may resolve a product issue before contacting Customer
Support.

To access the Avamar support page:

1. Go to https://support.EMC.com/products.

2. Type a product name in the Find a Product by Name box.

3. Select the product from the list that appears.

4. Click the arrow next to the Find a Product by Name box.

5. (Optional) Add the product to the My Products list by clicking Add to My Saved
Products in the upper right corner of the Support by Product page.

Documentation
The Avamar product documentation provides a comprehensive set of feature
overview, operational task, and technical reference information. To supplement the
information in product administration and user guides, review the following
documents:

l Release notes provide an overview of new features and known limitations for a
release.

l Technical notes provide technical details about specific product features, including
step-by-step tasks, where necessary.

l White papers provide an in-depth technical perspective of a product or products
as applied to critical business issues or requirements.

Knowledgebase
The Knowledgebase contains applicable solutions that you can search for either by
solution number (for example, esgxxxxxx) or by keyword.

To search the Knowledgebase:

1. Click Search at the top of the page.

2. Type either the solution number or keywords in the search box.

3. (Optional) Limit the search to specific products by typing a product name in the
Scope by product box and then selecting the product from the list that appears.

4. Select Knowledgebase from the Scope by resource list.

5. (Optional) Specify advanced options by clicking Advanced options and specifying
values in the available fields.

6. Click Search.

Online communities
Go to Community Network at http://community.EMC.com for peer contacts,
conversations, and content on product support and solutions. Interactively engage
online with customers, partners, and certified professionals for all products.

Live chat
To engage Customer Support by using live interactive chat, click Join Live Chat on
the Service Center panel of the Avamar support page.

Service Requests
For in-depth help from Customer Support, submit a service request by clicking Create
Service Requests on the Service Center panel of the Avamar support page.

Preface

Avamar 18.1 REST API Getting Started Guide 11

https://support.emc.com/products
HTTP://COMMUNITY.EMC.COM/

Note

To open a service request, you must have a valid support agreement. Contact a sales
representative for details about obtaining a valid support agreement or with questions
about an account.

To review an open service request, click the Service Center link on the Service
Center panel, and then click View and manage service requests.

Enhancing support
It is recommended to enable ConnectEMC and Email Home on all Avamar systems:

l ConnectEMC automatically generates service requests for high priority events.

l Email Home sends configuration, capacity, and general system information to
Customer Support.

Comments and suggestions
Comments and suggestions help to continue to improve the accuracy, organization,
and overall quality of the user publications. Send comments and suggestions about
this document to DPAD.Doc.Feedback@emc.com.

Please include the following information:

l Product name and version

l Document name, part number, and revision (for example, 01)

l Page numbers

l Other details to help address documentation issues

Preface

12 Avamar 18.1 REST API Getting Started Guide

mailto:DPAD.Doc.Feedback@emc.com

CHAPTER 1

Introduction

This chapter includes the following topics:

l Description... 14
l Purpose.. 14
l Deployment.. 15
l Documentation conventions... 15

Introduction 13

Description
The Avamar REST API provides an API to develop applications and tools that interact
with Avamar systems. The Avamar REST API uses client/server communication which
is based on the representational state transfer (REST) API architecture model.

Programming interface
When using the Avamar REST API, write the code that can manage multiple Avamar
systems simply and efficiently. The Avamar REST API abstracts Avamar systems and
domains into logical entities. By performing this step, the Avamar REST API enhances
the ability to write code that manages the Avamar systems and customer's
requirements.

While the Avamar REST API handles management tasks through Avamar
Administrator and the Avamar MCCLI, the Avamar REST API is not intended to
replace those tools. Instead the Avamar REST API contributes a different perspective
and a unique model for Avamar system management.

REST architecture
The Avamar REST API uses the representational state transfer (REST) architectural
style. The REST architectural style permits the Avamar REST API to provide a
platform independent and language independent interface for managing multiple
Avamar systems.

New with Avamar release 18.1
With Avamar release 18.1, the Avamar REST API is provided as a stand-alone server
that can be deployed on either a physical or virtual SLES 12, RHEL 7.4, or RHEL 7.5
server with JRE 1.8 installed, or an Avamar utility node.

Purpose
The Avamar REST API simplifies the creation of custom web portals for customers
who deliver data protection services to end users. The Avamar REST API provides a
granular and responsive interface that can be easily integrated with modern web
applications. The Avamar REST API also provides a new and less-complex model for
managing multiple Avamar systems as a single logical entity.

Custom web portals
The Avamar REST API expands and improves on the available methods for providing
Avamar data protection features as a service. By using the Avamar REST API, create
the custom web portals to interact with the Avamar systems through a REST
programming interface.

Simplified management of multiple Avamar systems
The Avamar REST API is designed to simplify the task of managing multiple Avamar
systems from a central location. The Avamar REST API provides methods to Avamar
systems into logical entities which allow you to perform operations on them in parallel.
This step reduces the complexity that is required to manage multiple Avamar systems.

The Avamar REST API is designed to solve the issues on capacity management in large
Avamar environments. The Avamar REST API has built in intelligence to determine the
best Avamar system to add new clients to optimize storage capacity.

Introduction

14 Avamar 18.1 REST API Getting Started Guide

Deployment
Avamar REST API is provided in an RPM Package Manager (RPM) file that is separate
from the Avamar server software.

RPM file
Obtain Avamar REST API through a sales representative. Receive an RPM file that
contains:

l Avamar REST API server

l Avamar REST API documentation

Install the Avamar REST API on a SLES 12, RHEL 7.4, or RHEL 7.5 server with JRE 1.8
installed, or an Avamar utility node.

After installing the Avamar REST API, access the HTML-formatted API specification
at:

http://RESTAPISERVER:8580/rest-api-doc/

where RESTAPISERVER is the IP address, or resolvable hostname of the computer
that hosts the Avamar REST API server.

Documentation conventions
The documentation uses several conventions to increase the readability of the
descriptions and examples. The conventions consist of an abbreviated URL and a set
of standard variable names.

Abbreviated URL
In the Avamar REST API, the URL that is the target of a GET, POST, PUT, or DELETE
request method is often lengthy. Since there is a common segment to every URL used
with the Avamar REST API, the segment is presumed in the URL references that
appears in this documentation. For example, consider the following GET and URL
description:
GET https://RESTAPISERVER:8543/rest-api/client/4702406e-d989-4058-
a57b-c66ece0c4f37/detail/job

This GET and URL description appears as the following abbreviated description in this
documentation:
GET /client/4702406e-d989-4058-a57b-c66ece0c4f37/detail/job

From this example, the URL segment https://RESTAPISERVER:8543/rest-api
is presumed and removed. This abbreviation convention minimizes the instances of the
URL inelegantly which wraps to a new line. This URL abbreviation convention is also
the same as the abbreviation convention used for the URL designations. The
designations are found in the HTML-formatted API specification that is provided with
the Avamar REST API software.

The examples where the full text is set out do not use this abbreviation convention.
The full URL appears on those examples.

Standard variable names
To minimize the repetition of variable definitions in this documentation, the following
variables are defined here and used in accord with the listed definition throughout this
documentation.

Introduction

Deployment 15

Table 2 Variables used in this documentation

Variable name Definition

FULL_PATH Full path to a location in a file system or
backup.

BACKUP_URI Uniform resource identifier that is assigned to
a backup.

CLIENT_URI Uniform resource identifier that is assigned to
a client computer.

FOLDER_URI Uniform resource identifier that is assigned to
a folder.

HVM_URI Uniform resource identifier that is assigned to
a hypervisor manager, such as a VMware
vCenter.

PLUG-IN_URI Uniform resource identifier that is assigned to
a plug-in.

PLUG-IN_URL Uniform resource locator that is used by the
Avamar REST API server to reference a plug-
in.

POLICY_URI Uniform resource identifier that is assigned to
a policy.

PROVIDER _URI Uniform resource identifier that is assigned to
the provider.

PROXY_NAME Fully qualified domain name of a proxy
appliance for VMware.

PROXY_URL Uniform resource locator that is used by the
Avamar REST API server to reference a proxy
appliance.

RESTAPISERVER IP address or resolvable hostname of the
computer that hosts the Avamar REST API
server.

RETENTION_URI Uniform resource identifier that is assigned to
a retention policy.

TASK_URI Uniform resource identifier that is assigned to
a task.

TENANT_URI Uniform resource identifier that is assigned to
a tenant.

USERNAME Username for an account that has permission
to su to root.

The definition for any variable that is not defined in this table is provided where the
variable occurs in the documentation.

Introduction

16 Avamar 18.1 REST API Getting Started Guide

CHAPTER 2

Installation

This chapter includes the following topics:

l Requirements... 18
l Installing the software.. 18
l Upgrading from Avamar release 7.5 Service Pack 1 or earlier............................. 21
l Uninstalling.. 22
l Manually stopping.. 22
l Manually starting..23
l Changing the provider credentials..23
l Changing the Avamar REST API server port numbers..24

Installation 17

Requirements
The following table lists the requirements for the Avamar REST API.

Table 3 Avamar REST API requirements

Category Requirement

Installation host Either of the following:

l A SLES 12 server (physical or virtual) with
JRE 1.8 installed

l A RHEL 7.4 or 7.5 server (physical or
virtual) with JRE 1.8 installed

l An Avamar utility node

If performing the following operations on a
virtual machine:

l Configuration

l Backup operations

l Restore operations

All managed Avamar systems must be running
Avamar server version 7.1 or later

If performing replication destination
configuration

All managed Avamar systems must be running
Avamar server version 7.1 or later

Installing the software
Procedure

1. Log into the target computer.

2. To switch to root, type the following command:

su -
3. Copy the RPM package containing the Avamar REST API software to a

temporary location on the target computer.

4. Change the working directory to the temporary location of the RPM package.

5. To expand and install the Avamar REST API software, type the following
command:

rpm -ivh REST_API_VERSION.rpm

where REST_API_VERSION.rpm is the name of the RPM package containing
the Avamar REST API software.

The installer does the following:

l Installs the software

l Creates the Avamar REST API database and properties file

l Requests a new, non-default, provider password

6. Create a provider password.

To change the username and password, complete the task that is described in
Changing the provider credentials on page 23.

Installation

18 Avamar 18.1 REST API Getting Started Guide

7. The Avamar REST API server runs on the default (8580/8543) ports.

To change the default ports, complete the task that is described in Changing
the Avamar REST API server port numbers on page 24.

8. Type the following:

On SLES 12, RHEL 7.4, or RHEL 7.5: systemctl start concerto.service
On Avamar utility node: service concerto start

Jetty starts and the Avamar REST API server starts.

Note

When the Avamar REST API server starts for the first time, it may take up to 10
minutes to initialize and configure the system and its database. Subsequent
restarts of the Avamar REST API server take less time.

Results

After Jetty starts and initializes the Avamar REST API server, the installation is
complete.

After you finish

Use the curl tool to test the installation.

Testing the installation
Use a curl command to test the software installation.

Before you begin

Do the following:

l Install the Avamar REST API software on a target computer.

l Find a computer that has the curl tool and has access to the target computer.

Avamar server software includes the curl tool. The tool is also included with most
Linux installations. This test can also be run from the command line on the target
computer.

Procedure

1. Log in to an Avamar utility node, or to another computer that has the curl tool.

The computer running curl must have network access to the target computer.

2. Type the following command:

curl -k -D- -X GET https://TARGETCOMPUTER:8543/rest-api/versions

This step performs a simple test to verify that the Avamar REST API is running.

3. Next, test logging into the system by typing the following command:

curl -k -D- --user USERNAME:PASSWORD -X POST https://
TARGETCOMPUTER:8543/rest-api/login

where:

l USERNAME and PASSWORD are the provider credentials for the Avamar
REST API software on a target computer. The default values are:
admin:changeme.

Installation

Testing the installation 19

l TARGETCOMPUTER is the resolvable hostname or IP address of the target
computer.

The Avamar REST API software on a target computer sends back a 201
Created HTTP response header and a session object.

Example 1 Testing the login to the Avamar REST API software

In the following example, the admin user on an Avamar server with the hostname of
lava7120 uses the default provider credentials to test an installation on a computer
with the hostname of test.example.com.

admin@lava7120:~/>: curl -k -D- --user admin:changeme -X POST https://
test.example.com:8543/rest-api/login
HTTP/1.1 201 Created
X-Concerto-Authorization:
OTQwMGE1MDYtNzIyOC00OTYxLWI4OGMtYjliNWEwNzVmNGE2
Date: Wed, 29 Jul 2015 14:08:02 GMT
Content-Type: application/xml; version=1.0
Transfer-Encoding: chunked
Connection: close
Server: Avamar

<?xml version="1.0" encoding="UTF-8" standalone="yes"?><Session
xmlns="http://www.example.com/concerto/v1.0" href="https://
test.example.com:8543/rest-api/session" type="application/
xml,application/json"><User name="admin"/><AccessPoint href="https://
test.example.com:8543/rest-api/admin/provider/6c86013b-
ae5a-49b5-913f-23ab737cb7a4" id="6c86013b-
ae5a-49b5-913f-23ab737cb7a4" name="Root"/></
Session>admin@lava7120:~/>:

After you finish

If the 201 Created HTTP response header does not appear, refer to
Troubleshooting on page 81.

Checking the installed version
Use an RPM command to determine the installed version of the Avamar REST API
software.

Before you begin

Select a target computer that has the Avamar REST API software installed.

Procedure

1. Log into the target computer.

2. To switch to root, type the following command:

su -

3. Type the following command to display the version of Avamar REST API
software that is installed on the target computer:

rpm -q rest-api

Results

The installed version number appears.

Installation

20 Avamar 18.1 REST API Getting Started Guide

Upgrading from Avamar release 7.5 Service Pack 1 or earlier
To upgrade the Avamar REST API software from release Avamar 7.5 Service Pack 1 or
earlier, install the Avamar REST API software on a host that meets the requirements
of the Avamar REST API.

Note

You can upgrade from 7.5.1 or earlier versions, however migration is only needed if
upgrading from 7.5.0 or earlier. Avamar REST API server 7.5.1 and 18.1 share the same
database, therefore the database migration process is not required.

For Avamar 7.5.0, after migrating existing Avamar REST API data to the new version
of the Avamar REST API, all existing behaviors, such as existing APIs and data types,
remain completely compatible with previous versions. No change or rewrite is required
for existing applications.

Migrating the Avamar REST API database for Avamar 7.5.0
During upgrade of the Avamar REST API software from Avamar release 7.5.0 or
earlier, data must be migrated from the Avamar REST API database.

Before you begin

Install the Avamar REST API software on a host that meets the requirements that are
listed in Requirements on page 18.

In this procedure, the Avamar server that is runningAvamar REST API Avamar release
7.5.0 or earlier is referred to as the migration source. The host that is running the new
version of the Avamar REST API software is referred to as the migration target.

Procedure

1. Copy the export script, /opt/concerto/bin/export-restapi-db.sh,
from the migration target to a temporary location on the migration source.

2. Log into the migration source.

3. To switch to root, type the following command:

su -

4. Change the working directory to the temporary location of the export script.

5. To run the export script, type the following command:

./export-restapi-db.sh

The script creates an export file on the migration source. The export file is
named VERSION-HOSTNAME-DBDUMP.gz, where VERSION is the version of
the Avamar software and HOSTNAME is the hostname of the migration source.
When the script has completed, it lists file's name and location.

6. Copy the export file from on the original host to a temporary location on the
migration target.

7. Log into the migration target.

8. To switch to root, type the following command:

su -

9. Type the following command to run the import script:

Installation

Upgrading from Avamar release 7.5 Service Pack 1 or earlier 21

/opt/concerto/bin/import-restapi-db.sh /TEMP_LOCATION/VERSION-
hostname-DBDUMP.gz

Results

After the import script has completed, the Avamar REST API server restarts
automatically.

Uninstalling
Use the RPM erase command to remove the Avamar REST API software and
associated data.

Before you begin

Select a target computer that has the Avamar REST API software installed.

To stop using Avamar REST API on the computer, remove the Avamar REST API
software and associated data, or to prepare for a clean install of the Avamar REST API
software.

Procedure

1. Log into the target computer.

2. To switch to root, type the following command:

su -

3. Type the following RPM query command:

rpm -qa | grep rest-api

The system displays the package name of the installed version of the Avamar
REST API software.

4. Type the following RPM erase command:

rpm -e RESTAPI_RPM_PACKAGE

where RESTAPI_RPM_PACKAGE is the package name of the installed version
of the Avamar REST API software.

The RPM erase command removes the Avamar REST API software.

5. Type the following:

rm –rf /opt/concerto/

The recursive rm commands remove the Avamar REST API files and folders
from the computer.

Results

The commands in this task remove the Avamar REST API software and associated
data.

Manually stopping
Shutdown the Avamar REST API server from the command line.

The Avamar REST API installer configures the Avamar REST API server to stop and
start automatically when the host computer stops and starts. Complete this task to
stop the Avamar REST API server manually.

Installation

22 Avamar 18.1 REST API Getting Started Guide

Procedure

1. Log into the target computer.

2. To switch to root, type the following command:

su -

3. Type the following command to stop the REST API server:

On a SLES 12, RHEL 7.4, or RHEL 7.5 server: systemctl stop
concerto.service
On Avamar utility node: service concerto stop

Results

The Avamar REST API server shuts down.

Manually starting
Start the Avamar REST API server from the command line.

The Avamar REST API installer configures the Avamar REST API server to stop and
start automatically when the host computer stops and starts. Complete this task to
start the Avamar REST API server manually.

Procedure

1. Log into the target computer.

2. To switch to root, type the following command:

su -

3. Type the following command to start the REST API server:

On a SLES 12, RHEL 7.4, or RHEL 7.5 server: systemctl start
concerto.service
On Avamar utility node: service concerto start

Results

The Avamar REST API server starts.

Changing the provider credentials
Change the provider username and password that are required to start a session with
the Avamar REST API server.

When changing an Avamar REST API default property, change the value in the custom
system properties file.

The custom system properties file is: /opt/concerto/config/
restserver.properties
Procedure

1. Log into the target computer.

2. To switch to root, type the following command:

su -

Installation

Manually starting 23

3. Type the following command to stop the REST API server:

On a SLES 12, RHEL 7.4, or RHEL 7.5 server: systemctl stop
concerto.service
On Avamar utility node: service concerto stop

4. Find the following property in the custom system properties file:

provider.user=admin
5. Change the property's value, as shown here:

provider.user=CUSTOM_USERNAME
where CUSTOM_USERNAME is the custom username.

6. Find the following property in the custom system properties file:

provider.password
7. Replace the encrypted value of property with a plain-text password.

The encrypted value consists of all the characters after the equal sign.

NOTICE

Do not encode or encrypt the new password value. When you restart the
Avamar REST API server, the Avamar REST API server automatically encodes
and encrypts the new password value.

For example, in the key/value pair
provider.password=ENC(ZTfFCpttmkSeS/yoTv4bXZlYkFUXQc1F),
replace ENC(ZTfFCpttmkSeS/yoTv4bXZlYkFUXQc1F) with a plain-text
password.

8. Save and close the file.

9. Type the following command to start the REST API server:

On a SLES 12, RHEL 7.4, or RHEL 7.5 server: systemctl start
concerto.service
On Avamar utility node: service concerto start

Results

The Avamar REST API server requires the custom credentials when starting new
sessions.

Changing the Avamar REST API server port numbers
The Avamar REST API server exposes two service endpoints (default ports 8543, the
main REST API service port, and 8580, the REST API online documentation port).
These default port numbers can be changed.

When changing an Avamar REST API default property, change the value in the custom
system properties file.

The custom system properties file is: /opt/concerto/config/
restserver.properties

Installation

24 Avamar 18.1 REST API Getting Started Guide

Procedure

1. Log into the target computer.

2. To switch to root, type the following command:

su -

3. Type the following command to stop the REST API server:

On a SLES 12, RHEL 7.4, or RHEL 7.5 server: systemctl stop
concerto.service
On Avamar utility node: service concerto stop

4. Find the following properties in the custom system properties file:

server.https.port=8543
server.http.port=8580

5. Change the values for port numbers.

6. Save and close the file.

7. Type the following command to start the REST API server:

On SLES 12 server: systemctl start concerto.service
On Avamar utility node: service concerto start

NOTICE

Your firewall needs to be reconfigured to allow incoming traffic through the new
port numbers and, if necessary, block the old port numbers.

Results

The port numbers are changed and clients are expected to communicate using the
new port numbers.

Installation

Changing the Avamar REST API server port numbers 25

Installation

26 Avamar 18.1 REST API Getting Started Guide

CHAPTER 3

Architecture

This chapter includes the following topics:

l Architecture of the Avamar REST API... 28

Architecture 27

Architecture of the Avamar REST API
The following figure represents the architecture of a standard deployment of the
Avamar REST API server.

Figure 1 Components of the Avamar REST API architecture

The following table describes the lines of communication between the components.

Table 4 Descriptions of endpoint to endpoint communication

Endpoint Endpoint Description

Avamar REST API client Jetty All communications use
Hypertext Transfer Protocol
Secure (HTTPS). The Jetty
web server listens on port
8543. The Jetty web server
also serves the online API
specifications using HTTP on
port 8580.

Avamar REST API server HSQLDB database HSQLDBis an embedded
database running within the
Avamar REST API server.

Avamar REST API server MCS on each Avamar server The Avamar REST API uses
MCSDK calls to communicate
with the MCS on each
Avamar server. MCS listens
on port 9443.

The Avamar REST API installer places objects in the locations that are shown in the
following table.

Table 5 Avamar REST API object locations

Avamar REST API object Location

API specification /opt/concerto/app/restapi-doc.jar

Server log file /opt/concerto/logs/restserver.log

Jetty log file /opt/concerto/logs/jetty.log

Architecture

28 Avamar 18.1 REST API Getting Started Guide

Table 5 Avamar REST API object locations (continued)

Avamar REST API object Location

Custom system properties file /opt/concerto/config/restserver.properties

Scripts and utilities /opt/concerto/bin/

NOTICE

Do not change the default system properties file. To change the system values that
are set by default, change the custom system properties file.

The custom system properties file
All system default properties are kept within the software, while the custom system
properties file, /opt/concerto/config/restserver.properites, allows you
to customize and override system default property values. Please refer to online
documentation at http://RESTAPISERVER:8580/rest-api-doc/ for details.

To change a particular system property value, type a name value pair in /opt/
concerto/config/restserver.properties. Some properties are dynamic, so
their new values take effect without having to restart the Avamar REST API server.
Others values are not dynamic, which require that the server is restarted for the new
properties values to take effect.

Architecture

Architecture of the Avamar REST API 29

Architecture

30 Avamar 18.1 REST API Getting Started Guide

CHAPTER 4

Concepts

This chapter includes the following topics:

l Design goal...32
l Core concepts..32

Concepts 31

Design goal
The primary goal of the Avamar REST API is to simplify the management of large
numbers of Avamar systems. To achieve this goal the Avamar REST API focuses on
the consumers of the data protection resources instead of focusing on the data
protection infrastructure.

Infrastructure variations
In a typical service provider environment, the service provider dedicates some of the
physical infrastructure to individual customers and shares some of the infrastructure
between many customers. Avamar REST API simplifies the management of these
infrastructure sharing variations.

The Avamar REST API does not require to work directly with each Avamar system.
Instead, abstract the systems into groups that can meet the business requirements
and write code that addresses these logical abstractions of the systems.

The following examples determine the impact of achieving this design goal.

Example: On-demand backup
As a service provider you might have one customer, or tenant, who has 10,000 clients
that are backed up to 10 Avamar systems. If the tenant wants to perform an on-
demand backup of one of those clients, it is not required to know the Avamar system
on which the client is backed up. Launch the backup with a simple Avamar REST API
call:
POST /client/CLIENT_URI/action/backup

The Avamar REST API server determines the Avamar system which is responsible for
the client and directs the backup operation to that system.

Example: All activities
If the same tenant wants a list of all of the backup jobs for the clients over the past 24
hours, a single Avamar REST API call provides the basis for that list:
GET /tenant/TENANT_URI/job

This single call replaces the need to individually query each of the 10 Avamar systems.

Example: Retention policy change
The same tenant wants to modify a retention policy being applied to thousands of
clients that are spread over all 10 of the Avamar systems. A single Avamar REST API
request changes the retention policy to the parameters contained in the request's
payload. The Avamar REST API server automatically propagates the retention policy
change to all relevant Avamar systems. The following Avamar REST API call initiates
this action:
PUT /retention/RETENTION_URI

This simple PUT request replaces the requirement of individually changing the
retention policy on each of the relevant Avamar systems.

Core concepts
Understanding several core concepts helps in working with the Avamar REST API.

Data protection resource
The Avamar REST API uses the term "data protection resource" to refer to an Avamar
system. When configuring the Avamar REST API server, provide information about the

Concepts

32 Avamar 18.1 REST API Getting Started Guide

Avamar systems that the Avamar REST API server manages as data protection
resources.

When defining a data protection resource, specify user credentials for an account with
administrative access to that Avamar system. As a recommended best practice, create
a dedicated administrative account on each Avamar system, such as rest-api. Use
that account when configuring the Avamar system as a data protection resource.
Identifying the account makes it simple to determine the Avamar system on which
operations originated.

Resource pool
The term "resource pool" refers to a logical entity that represents a group of one or
more data protection resources. A data protection resource is only available to use
with the Avamar REST API after it is assigned to a resource pool. When the Avamar
REST API server is configured, specify the data protection resources that should be in
each of the resource pools.

One method of assigning data protection resources to a resource pool is to use the
geographical location of the Avamar systems.

For example, consider a provider that has one Avamar system at a Perth data center,
two Avamar systems at a Sydney data center, and three Avamar systems at a
Melbourne data center. The provider might create three resource pools as shown
here.

Figure 2 Geographically selected resource pools

Perth
Resource Pool

Sydney Melbourne
Resource Pool Resource Pool

Tenant
A "tenant" represents a consumer of the data protection resources. A tenant folder is
the top level container for the tenant. The tenant folder has metadata for the tenant,
such as the tenant's account name, and also contains the resource shares and folders
that are assigned to the tenant.

A service provider deployment usually has a separate tenant that is defined for each of
the provider's customers and makes resource assignments that are based on the
business requirements of each customer. In contrast, an enterprise deployment might
allow a single tenant to have access to all the provider's data protection resources.

The Avamar REST API allows a tenant to have subtenants. A tenant with subtenants
can create a tenant hierarchy and a service provider can have tenants who are
resellers of the provider's resources. Those resellers can, in turn, manage their own
customers as tenants. An example of this hierarchy appears in the following diagram.

Concepts

Core concepts 33

Figure 3 Tenant hierarchy

Tenant B

Tenant A

Tenant C Tenant D Tenant E

Reseller 1 Reseller 2

Service Provider

Resource share
A "resource share" is a logical entity that associates a tenant with data protection
resources in a resource pool. The resource share can be associated with as few as one
data protection resource in the resource pool or as many as all the data protection
resources in the resource pool.

Through resource shares, assign several tenants to share a resource pool. A single
tenant can also dedicate to a resource pool. Tenants can be assigned multiple resource
shares to meet their business requirements.

The following diagram depicts an example of the flexibility that is provided by resource
shares for the customers: A, B, C, and D.

Figure 4 Resource share flexibility

Perth
Resource Pool

Sydney Melbourne
Resource Pool Resource Pool

Customer A Customer B

Customer B

Customer C

Customer D

When creating a resource share, specify the capacity of the resource pool that is
available to the tenant. The capacity setting is not a hard quota. It is a measure that
you can use to quantify the tenant's usage across multiple Avamar systems.

Folder
A "folder" is assigned to a resource share and provides a mapping between the tenant,
the resource share, and a domain on each Avamar system in the resource share. A
folder can only have one resource share assigned.

When creating a folder the Avamar REST API server creates a domain of the same
name on each of the Avamar systems in the associated resource share.

Create folders within folders that meet business requirements. These child folders can
be associated with a separate resource share. Child folders that are not directly
associated with a resource share inherit the resource share of the parent folder.

Concepts

34 Avamar 18.1 REST API Getting Started Guide

CHAPTER 5

Fundamentals

This chapter includes the following topics:

l Representational state transfer..36
l Session log in and log out...36
l API call types... 38
l Client allocation strategy... 39

Fundamentals 35

Representational state transfer
Avamar REST API uses the representational state transfer (REST) architectural style.
REST is a stateless, client-server, API design model.

Client code interacts with the Avamar REST API server through standard HTTP
request methods:

l GET
Obtain information about an object,

l POST
Create a new object.

l PUT
Update an object.

l DELETE
Delete an object.

To perform an operation, client code directs a request method at a URL and, for most
API calls, sends a message body containing data that is associated with the request.

Every object on the Avamar REST API server is identified with a uniform resource
identifier (URI), which is a unique ID for the object. In most cases, the URL used by a
request includes an object's URI.

For example, for a client object with the following URI:
4702406e-d989-4058-a57b-c66ece0c4f37

You can get more information about the backup jobs that ran on the client where the
client object represents by issuing the following request:
GET /client/4702406e-d989-4058-a57b-c66ece0c4f37/detail/job

The Avamar REST API server responds with an HTTP status code and, in most cases,
with a payload that contains a detailed response to the request.

The HTTP status codes that are sent by the Avamar REST API server comply with
HTTP/1.1 (RFC 2616, section 6, and section 10).

The Avamar REST API server supports sending the request body and the response
body in either XML format or JSON format. The client making the request controls the
body format.

Session log in and log out
To begin using the Avamar REST API your code starts a session with the Avamar
REST API server. The session starts when your code logs into the Avamar REST API
server and concludes when your code logs out.

Secure connection
Your code starts the session authentication process by initiating a SSL/TLS
connection on port 8543 between the computer hosting your code and the Avamar
REST API server. When SSL/TLS negotiation is finished and trust is established, your
code's host computer and the Avamar REST API server share an encrypted channel
for the session.

Log in
To start a session, your code uses the POST request method to send an HTTP
authorization request to the Avamar REST API server at a fixed entry point. When the

Fundamentals

36 Avamar 18.1 REST API Getting Started Guide

authorization request is successful, the Avamar REST API server sends back a custom
HTTP response header and a session object.

Entry point
Your code sends the initial POST to a fixed entry point. The entry point URL is:

https://RESTAPISERVER:8543/rest-api/login

Where RESTAPISERVER is the IP address, or resolvable hostname, of the Avamar
REST API server.

Request headers
The HTTP request headers your code sends to start a session are:

l Accept
l Authorization
The Accept header specifies a format to use for the response body. Your code can
specify either XML or JSON, as follows:

l Accept: application/xml
l Accept: application/json

The Authorization header provides the authentication information for the session.
To create the authentication information take the base64 encoded value of the
concatenation of the user ID, a colon character, and the associated password. For
example, the base64 encoded value of admin:changeme is
YWRtaW46Y2hhbmdlbWU= and your code sends the following HTTP request header:

Authorization: Basic YWRtaW46Y2hhbmdlbWU=

X-Concerto-Authorization response header
The Avamar REST API server responds with the custom HTTP header X-Concerto-
Authorization that contains the session's authentication token. Your code must
include X-Concerto-Authorization and the token in every request that is sent
during the session. The following is an example of this header:

X-Concerto-Authorization:
NzE2NjkzMDYtYjA2Yi00Y2IxLWI4MTMtMDIzNzQxMjM0OWZk

Session object
The Avamar REST API server sends a response payload that consists of a session
object. The Avamar REST API server formats the payload as either XML or JSON,
depending on the value of the Accept request header. The session object contains a
user name and an access point.

The following is an example of a session object in XML format:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<Session xmlns="http://www.example.com/concerto/v1.0"
href="https://lava7120:8543/rest-api/session" type="application/
xml,application/json">
<User name="admin"/>
<AccessPoint href="https://lava7120:8543/rest-api/admin/provider/
67c6200b-7fd2-48c2-ba64-5c5c92f21bb6"
id="67c6200b-7fd2-48c2-ba64-5c5c92f21bb6" name="Root"/>
</Session>

The following is an example of a session object in JSON format:

{
 "accessPoint" : [{
 "href" : "https://lava7120:8543/rest-api/admin/provider/
67c6200b-7fd2-48c2-ba64-5c5c92f21bb6",
 "id" : "67c6200b-7fd2-48c2-ba64-5c5c92f21bb6",
 "name" : "Root"
 }],

Fundamentals

Session log in and log out 37

 "href" : "https://lava7120:8543/rest-api/session",
 "type" : "application/xml,application/json",
 "user" : {
 "name" : "admin"
 }
}

Log out
To end the session, your code sends a POST request to the log out URL, using the
following format:

POST: https://RESTAPISERVER:8543/rest-api/logout
X-Concerto-Authorization: SESSIONTOKEN

Where:

l RESTAPISERVER is the IP address or resolvable hostname of the Avamar REST
API host computer.

l SESSIONTOKEN is the session's authentication token.

The Avamar REST API server sends back the following response and closes the
session:

HTTP 204 No Content
Connection: close

API call types
The Avamar REST API uses two types of API calls: synchronous and asynchronous.
The Avamar REST API determines the type of API call used for an operation which is
based on the nature of that operation.

Synchronous API calls
A synchronous API call blocks further code execution until the operation that the API
call started completes. The Avamar REST API uses synchronous API calls for
operations that are quick to perform. For example, the Avamar REST API uses a
synchronous API call to add a policy to a data protection resource.

For a synchronous API call, the Avamar REST API server returns the result of the
requested operation in the HTTP response. The HTTP response that the Avamar
REST API server sends includes a response code that indicates the operation's final
status. When an operation fails, the Avamar REST API server's response includes a
response body with a message element. The message element describes the reason
for the operation's failure.

Asynchronous API calls
The Avamar REST API server uses asynchronous API calls for operations that normally
take longer to run. By using these calls the Avamar REST API avoids blocking the
requestor from performing other tasks while the operation is in process.

For example, the Avamar REST API uses an asynchronous API call to initiate a client
backup because a backup can take a significant amount of time. Instead of forcing the
requestor to wait while the backup runs, the Avamar REST API uses an asynchronous
API call. This permits the requestor to perform other tasks and to intermittently check
on the status of the backup task.

The response to an asynchronous API call is almost immediate. The Avamar REST API
server responds with a task element. For example, in response to an asynchronous
API call to create a client, the Avamar REST API server might send the following
JSON-formatted task element in the response body:

{
 "cancelable" : false,

Fundamentals

38 Avamar 18.1 REST API Getting Started Guide

 "cancelled" : false,
 "href" : "https://localhost:8543/rest-api/task/13fba299-150e-4d61-
a2ff-2bd7e926cf39",
 "id" : "13fba299-150e-4d61-a2ff-2bd7e926cf39",
 "name" : "task",
 "operation" : "Creating client under a user folder",
 "progress" : 0,
 "queueTime" : "2014-05-09T14:30:05.802Z",
 "startTime" : "2014-05-09T14:30:05.802Z",
 "state" : "QUEUED",
 "type" : "application/xml,application/json"
}

The task element includes an href element. The value of the href element is the
URL that the requestor can use to reference the task.

Normally, the initial response that is sent by the Avamar REST API server includes a
state element with the value of QUEUED. This indicates that the Avamar REST API
server has the operation in the queue and that processing of the operation is pending.

A requestor can check the status of an asynchronous API call by performing the
following API call:

GET /task/TASK_URI

The Avamar REST API server sends a response that is similar to the initial response. In
subsequent responses, the state element of the response body moves through the
following states:

l QUEUED
l RUNNING
l SUCCESS, ERROR, CANCELED, or ABORTED

Client allocation strategy
The Avamar REST API server automatically allocates new clients to Avamar systems
which are based on the client allocation strategy you select. To suit your business
requirements, select a built-in strategy.

The Avamar REST API provides the following built-in allocation strategies:

l BALANCED

l FREE_SPACE

The default allocation strategy is BALANCED. You can change the configuration to use
the FREE_SPACE strategy.

BALANCED client allocation strategy
When configured to use the BALANCED client allocation strategy, the Avamar REST
API server adds new clients to the Avamar system that has the least amount of client
data. The strategy seeks to balance the amount of client data across all Avamar
systems in a resource pool. You might select this strategy when the resource pools
contain Avamar systems with similar capacities.

FREE_SPACE client allocation strategy
When configured to use the FREE_SPACE client allocation strategy, the Avamar
REST API server adds new clients to the Avamar system that has the most free space.
The strategy seeks to balance the amount of free space across all Avamar systems in
a resource pool. You might select this strategy when the resource pools contain
Avamar systems with different capacities.

Fundamentals

Client allocation strategy 39

Changing the built-in client allocation strategy
Change the client allocation strategy from the default built-in strategy to the
alternative built-in strategy. The default built-in strategy is the BALANCED strategy.
The alternative built-in strategy is the FREE_SPACE strategy.

When changing an Avamar REST API default property, change the value in the custom
system properties file.

The custom system properties file is: /opt/concerto/config/
restserver.properties
Procedure

1. Log into the target computer.

2. To switch to root, type the following command:

su -

3. Type the following command to stop the REST API server:

On a SLES 12, RHEL 7.4, or RHEL 7.5 server: systemctl stop
concerto.service
On Avamar utility node: service concerto stop

4. Find the following property in the custom system properties file:

internalClientPlacement.strategy=BALANCED
5. Change the property's value, as shown here:

internalClientPlacement.strategy=FREE_SPACE
6. Save and close the file.

7. Type the following command to start the REST API server:

On a SLES 12, RHEL 7.4, or RHEL 7.5 server: systemctl start
concerto.service
On Avamar utility node: service concerto start

Results

The Avamar REST API server uses the FREE_SPACE strategy to allocate new clients
to the Avamar systems.

Fundamentals

40 Avamar 18.1 REST API Getting Started Guide

CHAPTER 6

Advanced API Calls

This chapter includes the following topics:

l Browse operations... 42
l Dataset creation...45
l VMware... 53

Advanced API Calls 41

Browse operations
The Avamar REST API provides two browse operations: client browse and backup
browse.

When the Avamar REST API server receives either a client browse request or a
backup browse request, the Avamar REST API server sends a response that includes a
BrowseContent element in the response body. This element contains information
about one or more objects on the browse target. The objects can be files, directories,
or custom objects.

Browsing a client
The Avamar REST API provides the ability to browse file systems or applications on a
backup client. Browse the client to view available data and make data protection
decisions.

Before you begin

Select a client and obtain the client's URI.

Browsing a client causes the associated Avamar system to set up a connection with
the client and return information about the client's current state.

Procedure

1. Obtain a list of plug-ins by running the following API call:

GET /admin/provider/PROVIDER_URI/plugin

The Avamar REST API server responds with a list of all plug-ins.

2. From the list of plug-ins, obtain the URI of a plug-in that is used with the client.

3. Browse the client by running the following API call and including a
ClientBrowseRequest object:

POST /client/CLIENT_URI/action/browse
<ClientBrowseRequest xmlns="http://www.example.com/concerto/
v1.0">
<Plugin href="https://RESTAPISERVER:8543/rest-api/plugin/PLUG-
IN_URI"/>
<Path>/FULL_PATH</Path>
</ClientBrowseRequest>

The plugin element and the path element are required.

Results

The Avamar REST API server sends a browse response that includes a
BrowseContent element in the response body.

After you finish

Process the browse response.

Browsing a backup
The Avamar REST API provides the ability to browse the contents of the backups that
any of the managed Avamar systems take on.

Before you begin

Select a client and obtain the client's URI.

Advanced API Calls

42 Avamar 18.1 REST API Getting Started Guide

Procedure

1. Obtain a list of the client's backups by running the following API call:

GET /client/CLIENT_URI/backup

The Avamar REST API server returns a list of available backups for the client.

2. From the list of available backups, select the URI of a backup.

3. Browse the backup by using one of the following methods:

l Browse the top-level of a regular backup
POST /backup/BACKUP_URI/action/browse

l Browse a specific path in the backup
POST /backup/BACKUP_URI/action/browse
<BackupBrowseRequest xmlns="http://www.example.com/concerto/
v1.0">
<Path>/FULL_PATH</Path>
</BackupBrowseRequest>

Results

The Avamar REST API server sends a browse response that includes a
BrowseContent element in the response body.

After you finish

Process the browse response.

Browse response
In response to a browse request, the client sends a browse request or the Avamar
REST API server sends a browse response. The browse response includes a
BrowseContent element in the response body.

The browse response includes the requested browse details in the BrowseContent
element. In the BrowseContent element, the bulk of the requested information is
contained in the Metadata element.

Metadata element
The Metadata element consists of a kv array. Each element in the kv array
represents a file, a directory, or a custom object. Each element contains a series of
key/value pairs containing information about the object that the element represents.

The contents of the Metadata element that the Avamar REST API server sends
depend on the client, file system, and application being browsed. Browsing a file
system returns different metadata from browsing a database. Browsing a Windows file
system returns different metadata from browsing a Linux file system.

The following example shows a portion of a kv array showing a single element
representing one file. Note the name element that contains the name of the file and
the metadatatype element that provides the type of object that this kv array
element represents.

"metadata" : [{
 "kv" : [{
 "k" : "links",
 "v" : {
 "value" : "1",
 "vtype" : "number"
 }
 }, {
 "k" : "inode",
 "v" : {

Advanced API Calls

Browse response 43

 "value" : "251",
 "vtype" : "number"
 }
 }, {
 "k" : "internal",
 "v" : {
 "value" : "0",
 "vtype" : "number"
 }
 }, {
 "k" : "date",
 "v" : {
 "value" : "2014-04-23 18:21:57",
 "vtype" : "dateTime"
 }
 }, {
 "k" : "size",
 "v" : {
 "value" : "100182",
 "vtype" : "number"
 }
 }, {
 "k" : "group",
 "v" : {
 "value" : "root",
 "vtype" : "string"
 }
 }, {
 "k" : "fstype",
 "v" : {
 "value" : "ext3",
 "vtype" : "string"
 }
 }, {
 "k" : "protection",
 "v" : {
 "value" : "-rwxr-xr-x",
 "vtype" : "string"
 }
 }, {
 "k" : "user",
 "v" : {
 "value" : "root",
 "vtype" : "string"
 }
 }],
 "metadataType" : "file",
 "name" : "myfile"
 }

Headers element
The BrowseContent element also contains a Headers element. The Headers
element maps extended labels to the key names found in kv array elements. This
mapping is particularly useful when browsing applications with complex metadata.

The following example shows the contents of the Headers element after browsing a
Linux file system.

metadataType : The type of object being described e.g. ‘file’
name: Name of file
user: The user who owns this file e.g. root
group: The group that owns this file
protection: The unix permissions on this file e.g. -rwxr-xr-x
date: The date the file was created
size: The size of the file
links: The number of links to this file
inode: The inode number of this file
date: The date the file was created

Advanced API Calls

44 Avamar 18.1 REST API Getting Started Guide

size: The size of the file
fstype: The filesystem type

Dataset creation
In the Avamar REST API, a dataset provides the information that is required to back
up data, replicate data, or validate data. Create datasets to access the data you want
to protect and to meet the business requirements.

Create a dataset by running the following API call:

POST /folder/FOLDER_URI/dataset

The POST must include a request body with a Dataset element. The Dataset
element contains a Mode element and at least one DatasetItem element.

The dataset is created in the folder that FOLDER_URI identifies.

Example 2 Dataset request body with one DatasetItem element

The following example shows a dataset request body with one DatasetItem
element. The DatasetItem element references the "Windows File System" plug-in
and a DatasetTarget value of C:\.

In XML format:

<Dataset xmlns="http://www.example.com/concerto/v1.0" name="TestDS">
 <Description></Description>
 <DatasetItem name ="Windows File System">
 <Plugin href="https://localhost:8543/rest-api/plugin/960cf388-
c775-4521-918f-5d9f11f49171"/>
 <DatasetTarget name="target"><Value>C:\</Value></
DatasetTarget>
 </DatasetItem>
 <Mode>backup</Mode>
</Dataset>

In JSON format:

{
 "name": "TestDS",
 "Description": null,
 "DatasetItem": {
 "name": "Windows File System",
 "Plugin": {
 "href": "https://localhost:8543/rest-api/plugin/960cf388-
c775-4521-918f-5d9f11f49171"
 },
 "DatasetTarget": {
 "name": "target",
 "Value": "C:\\"
 }
 },
 "Mode": "backup"
}

Mode element
The value of the Mode element determines the dataset's purpose. The Mode element
must have one of the following values:

l Backup

l Replication

Advanced API Calls

Dataset creation 45

l Validation

DatasetItem element
Specify a DatasetItem element for every plug-in that the dataset handles. For
example, to create a dataset that protects both Linux clients and Windows clients,
include in the Dataset element a DatasetItem element for the "Linux File System"
plug-in and a DatasetItem element for the "Windows File System" plug-in.

The DatasetItem element includes a required element and optional elements. The
Plugin element is required.

Example 3 Dataset request body with two DatasetItem elements

The following example shows a dataset request body with two DatasetItem
elements. The first DatasetItem element references the "Windows File System"
plug-in and a DatasetTarget value of C:\.

The second DatasetItem element references the "Linux File System" plug-in and a
DatasetTarget value of All.

When specifying All as the DatasetTarget value, the DatasetItem element
targets all of the data in the file system.

In XML format:

<Dataset xmlns="http://www.example.com/concerto/v1.0" name="My New
Dataset">
 <Description></Description>
 <DatasetItem name ="Windows File System">
 <Plugin href="https://localhost:8543/rest-api/plugin/
03ffdd6d-6353-4246-8e4f-228ea7f62917"/>
 <DatasetTarget name="target"><Value>C:\</Value></
DatasetTarget>
 </DatasetItem>
 <DatasetItem name ="Linux File System">
 <Plugin href="https://localhost:8543/rest-api/plugin/87f7c7df-
fe00-4d62-87a7-8be7e5993ca3"/>
 <DatasetTarget name="target"><Value>ALL</Value></
DatasetTarget>
 </DatasetItem>
 <Mode>backup</Mode>
</Dataset>

In JSON format:

{
 "name": "My New Dataset",
 "Description": null,
 "DatasetItem": [
 {
 "name": "Windows File System",
 "Plugin": {
 "href": "https://localhost:8543/rest-api/plugin/
03ffdd6d-6353-4246-8e4f-228ea7f62917"
 },
 "DatasetTarget": {
 "name": "target",
 "Value": "C:\\"
 }
 },
 {
 "name": "Linux File System",
 "Plugin": {
 "href": "https://localhost:8543/rest-api/plugin/87f7c7df-

Advanced API Calls

46 Avamar 18.1 REST API Getting Started Guide

Example 3 Dataset request body with two DatasetItem elements (continued)

fe00-4d62-87a7-8be7e5993ca3"
 },
 "DatasetTarget": {
 "name": "target",
 "Value": "ALL"
 }
 }
],
 "Mode": "backup"
}

DatasetOption element
Optionally, use the DatasetOption elements within the DatasetItem element to
specify options for the identified plug-in. Specify an option by including the unique
PluginOptionName value for that option.

Obtain a list of the options for a plug-in, with the associated PluginOptionName
values, by running the following API call:

GET /plugin/PLUG-IN_URI

Example 4 Dataset request body with DatasetOption elements

The following example shows a dataset request body with one DatasetItem
element. The DatasetItem element references the "Windows File System" plug-in
and a DatasetTarget value of All.

Notice that the DatasetItem element uses the name MYDSITEMNAME instead of
Windows File System. You can use any text string for the name of the
DatasetItem element as long as it is only used for one DatasetItem in the
Dataset element. The Plugin element reference determines the associated plug-in.

In the example, two DatasetOption elements appear. The first DatasetOption
element sets the verbose flag to true. The second DatasetOption element sets
the backup label to mylabel.

In XML format:

<Dataset xmlns="http://www.example.com/concerto/v1.0" name="My
Dataset">
 <Description></Description>
 <DatasetItem name ="MYDSITEMNAME">
 <Plugin href="https://localhost:8543/rest-api/plugin/
03ffdd6d-6353-4246-8e4f-228ea7f62917"/>
 <DatasetTarget name="target"><Value>ALL</Value></
DatasetTarget>
 <DatasetOption name="verbose"><Value>true</Value></
DatasetOption>
 <DatasetOption name="label"><Value>mylabel</Value></
DatasetOption>
 </DatasetItem>
 <Mode>backup</Mode>
</Dataset>

In JSON format:

{
 "name": "My Dataset",
 "Description": null,
 "DatasetItem": {

Advanced API Calls

Dataset creation 47

Example 4 Dataset request body with DatasetOption elements (continued)

 "name": "MYDSITEMNAME",
 "Plugin": {
 "href": "https://localhost:8543/rest-api/plugin/
03ffdd6d-6353-4246-8e4f-228ea7f62917"
 },
 "DatasetTarget": {
 "name": "target",
 "Value": "ALL"
 },
 "DatasetOption": [
 {
 "name": "verbose",
 "Value": "true"
 },
 {
 "name": "label",
 "Value": "mylabel"
 }
]
 },
 "Mode": "backup"
}

Elements in the DatasetItem element
The DatasetItem element includes one required element and several optional
elements.

Table 6 Descriptions of the elements in the DatasetItem element

Element Required Description

Plugin Yes URL reference to the
associated plug-in.

DatasetTarget No Data that the DatasetItem
element targets on. Use All
to include all data on the file
system.

DatasetExclude No List of paths and files to
exclude from the dataset.

DatasetInclude No List of paths and files which
the values identify in the
DatasetExclude element

but are not excluded.

DatasetOption No Plug-in specific set of options
that control how the dataset
behaves for that plug-in.

Creating a dataset
Create a dataset to specify the data to backup, replicate or validate. Include in the
dataset any options for handling the backed up data.

This task shows the addition of one DatasetItem element. Add additional
DatasetItem elements to the Dataset element using the same method.

Advanced API Calls

48 Avamar 18.1 REST API Getting Started Guide

Procedure

1. Draft a skeleton Dataset element in XML format or in JSON format.

In XML format:

<Dataset xmlns="http://www.example.com/concerto/v1.0"
name="MYDATASET">
</Dataset>

In JSON format:

{
 "name": "MYDATASET"
}

where MYDATASET is the name you assign to the dataset.

2. Add the Description element.

The description element can be empty. Here it is "My dataset test."

In XML format:

<Dataset xmlns="http://www.example.com/concerto/v1.0"
name="MYDATASET">
 <Description>My dataset test.</Description>
</Dataset>

In JSON format:

{
 "name": "MYDATASET",
 "Description": "My dataset test."
}

3. Add the Mode element.

The value of the Mode element must be backup, replication, or
validation.

In XML format:

<Dataset xmlns="http://www.example.com/concerto/v1.0"
name="MYDATASET">
 <Description>My dataset test.</Description>
 <Mode>backup</Mode>
</Dataset>

In JSON format:

{
 "name": "MYDATASET",
 "Description": "My dataset test."
 "Mode": "backup"
}

4. Add a skeleton DatasetItem element.

The name of the DatasetItem element must be unique among all
DatasetItem elements in the Dataset element. Here it is MYDSITEMNAME.

In XML format:

<Dataset xmlns="http://www.example.com/concerto/v1.0"
name="MYDATASET">
 <Description>My dataset test.</Description>
 <DatasetItem name ="MYDSITEMNAME">
 </DatasetItem>
 <Mode>backup</Mode>
</Dataset>

In JSON format:

Advanced API Calls

Creating a dataset 49

{
 "name": "MYDATASET",
 "Description": "My dataset test.",
 "DatasetItem": {
 "name": "MYDSITEMNAME"
 },
 "Mode": "backup"
}

5. Add a Plugin element.

The Plugin element is a reference to a plug-in using a URL that includes the
plug-in's URI.

In XML format:

<Dataset xmlns="http://www.example.com/concerto/v1.0"
name="MYDATASET">
 <Description>My dataset test.</Description>
 <DatasetItem name ="MYDSITEMNAME">
 <Plugin href="https://localhost:8543/rest-api/plugin/
PLUG-IN_URI"/>
 </DatasetItem>
 <Mode>backup</Mode>
</Dataset>

In JSON format:

{
 "name": "MYDATASET",
 "Description": "My dataset test.",
 "DatasetItem": {
 "name": "MYDSITEMNAME",
 "Plugin": {
 "href": "https://localhost:8543/rest-api/plugin/PLUG-
IN_URI"
 }
 },
 "Mode": "backup"
}

6. Add a DatasetTarget element.

The DatasetTarget element is the full path to a directory to protect.
Alternatively, the value can be All to protect the entire file system.

Within the DatasetItem element, you can add additional DatasetTarget
elements to protect additional directories with the associated plug-in.

The DatasetTarget element's name value must be unique in the Dataset
element.

In XML format:

<Dataset xmlns="http://www.example.com/concerto/v1.0"
name="MYDATASET">
 <Description>My dataset test.</Description>
 <DatasetItem name ="MYDSITEMNAME">
 <Plugin href="https://localhost:8543/rest-api/plugin/
PLUG-IN_URI"/>
 <DatasetTarget name="mytarget1"><Value>/usr/local/</
Value></DatasetTarget>
 <DatasetTarget name="mytarget2"><Value>/home/user/</
Value></DatasetTarget>
 </DatasetItem>
 <Mode>backup</Mode>
</Dataset>

In JSON format:

{
 "name": "MYDATASET",

Advanced API Calls

50 Avamar 18.1 REST API Getting Started Guide

 "Description": "My dataset test.",
 "DatasetItem": {
 "name": "MYDSITEMNAME",
 "Plugin": {
 "href": "https://localhost:8543/rest-api/plugin/PLUG-
IN_URI"
 },
 "DatasetTarget": [
 {
 "name": "mytarget1",
 "Value": "/usr/local/"
 },
 {
 "name": "mytarget2",
 "Value": "/home/user/"
 }
]
 },
 "Mode": "backup"
}

7. (Optional) Add one or more of the DatasetOption elements that are
supported by the plug-in.

Use the PluginOptionName value when referencing an option.

In XML format:

<Dataset xmlns="http://www.example.com/concerto/v1.0"
name="MYDATASET">
 <Description>My dataset test.</Description>
 <DatasetItem name ="MYDSITEMNAME">
 <Plugin href="https://localhost:8543/rest-api/plugin/
PLUG-IN_URI"/>
 <DatasetTarget name="mytarget1"><Value>/usr/local/</
Value></DatasetTarget>
 <DatasetTarget name="mytarget2"><Value>/home/user/</
Value></DatasetTarget>
 <DatasetOption name="verbose"><Value>true</Value></
DatasetOption>
 <DatasetOption name="label"><Value>mylabel</Value></
DatasetOption>
 </DatasetItem>
 <Mode>backup</Mode>
</Dataset>

In JSON format:

{
 "name": "MYDATASET",
 "Description": "My dataset test.",
 "DatasetItem": {
 "name": "MYDSITEMNAME",
 "Plugin": {
 "href": "https://localhost:8543/rest-api/plugin/PLUG-
IN_URI"
 },
 "DatasetTarget": [
 {
 "name": "mytarget1",
 "Value": "/usr/local/"
 },
 {
 "name": "mytarget2",
 "Value": "/home/user/"
 }
],
 "DatasetOption": [
 {
 "name": "verbose",
 "Value": "true"

Advanced API Calls

Creating a dataset 51

 },
 {
 "name": "label",
 "Value": "mylabel"
 }
]
 },
 "Mode": "backup"
}

8. (Optional) Add additional DatasetItem elements.

9. Save the dataset locally.

10. Create a dataset by running the following API call with the Dataset element in
the request body:

POST /folder/FOLDER_URI/dataset

Results

The Avamar REST API server creates the dataset in the specified folder.

Setting backups to go to a Data Domain storage system
Configure backups to browse on a Data Domain storage system by setting
DatasetOption elements in a dataset at the DatasetItem level.

Before you begin

Perform the following:

l Determine the PLUG-IN_URI for each plug-in that stores data on a Data Domain
storage system.

l Obtain the plug-in specific list of DatasetOption elements for each plug-in.

l Select only plug-ins that include the ddr option and the ddr-index option in the
plug-in's list of DatasetOption elements.

Use the ddr option and the ddr-index option to direct backed up data to a Data
Domain storage system.

Procedure

1. Draft a Dataset element that includes a DatasetItem element for each of
the plug-ins that store backed up data on a Data Domain storage system.

2. In the DatasetItem element for each of the selected plug-ins, include the
following DatasetOption element:

<DatasetOption name="ddr"><Value>true</Value></DatasetOption>

3. In the DatasetItem element for each of the selected plug-ins, include the
following DatasetOption element:

<DatasetOption name="ddr-index"><Value>n</Value></DatasetOption>

where n is the index number that is assigned to a Data Domain storage system.

4. Save the Dataset element locally.

5. Run the following API call and include the Dataset element in the request body
of the call:

POST /folder/FOLDER_URI/dataset

Advanced API Calls

52 Avamar 18.1 REST API Getting Started Guide

Results

The Avamar REST API server creates the dataset in the specified folder. For backups
using the dataset, the Avamar REST API server directs data from the selected plug-
ins to the Data Domain storage system.

Example 5 Backup a Windows file system to a Data Domain storage system

In the following example, the dataset TestDS has the DatasetItem element named
MYDSITEMNAME. This DatasetItem element uses the Windows File System plug-in,
backs up all data in the file system, and stores all backed up data on the index 1 Data
Domain storage system.

In XML format:

<Dataset xmlns="http://www.example.com/concerto/v1.0" name="TestDS">
 <Description></Description>
 <DatasetItem name ="MYDSITEMNAME">
 <Plugin href="https://localhost:8543/rest-api/plugin/
03ffdd6d-6353-4246-8e4f-228ea7f62917"/>
 <DatasetTarget name="target"><Value>ALL</Value></
DatasetTarget>
 <DatasetOption name="ddr"><Value>true</Value></DatasetOption>
 <DatasetOption name="ddr-index"><Value>1</Value></
DatasetOption>
 </DatasetItem>
 <Mode>backup</Mode>
</Dataset>

In JSON format:

{
 "name": "TestDS",
 "Description": null,
 "DatasetItem": {
 "name": "MYDSITEMNAME",
 "Plugin": {
 "href": "https://localhost:8543/rest-api/plugin/
03ffdd6d-6353-4246-8e4f-228ea7f62917"
 },
 "DatasetTarget": {
 "name": "target",
 "Value": "ALL"
 },
 "DatasetOption": [
 {
 "name": "ddr",
 "Value": "true"
 },
 {
 "name": "ddr-index",
 "Value": "1"
 }
]
 },
 "Mode": "backup"
}

VMware
To manage VMware resources through the Avamar REST API, first add the resources
to the Avamar REST API server by providing the required information. Once added,

Advanced API Calls

VMware 53

use the VMware-specific actions that are provided by the Avamar REST API to
manage the VMware resources.

Resources
Add the following VMware resources through the Avamar REST API:

l VMware vCenters

l VMware virtual machines

l Avamar proxy appliance for VMware

Actions
After adding VMware resources, manage them with the following actions:

l Add datastores to proxy appliances

l Remove datastores from proxy appliances

l Add proxy appliances to backup policies

l Perform on-demand backups of virtual machines

l Perform on-demand backups through proxy appliance policy associations

l Browse VMware backups at the image level

l Browse VMware backups at the file level

l Restore virtual machine data at the image level

l Restore virtual machine data at the file level

VMware vCenter
Add a VMware vCenter to the Avamar REST API server by providing information
about the vCenter and including the URI of a folder. The vCenter is added to the
referenced folder.

Add a vCenter
Add a vCenter by running the following API call:

POST /folder/FOLDER_URI/hypervisorManager

The POST must include a request body with a HypervisorManager element that
includes the following elements:

l Hostname
The hostname of the vCenter.

l Username
A username for an administrator's account on the vCenter.

l Password
The associated password for the administrator's account.

l HypervisorManagerType
The hypervisor type. For VMware vCenter, use vCenter.

Optionally, other elements may be included.

Example 6 Request body used to add a VMware vCenter

The following example shows the request body that is used to add a vCenter with
hostname vccc.asl.lab.example.com, administrator's account administrator, and
password changeme. Two optional elements are also shown: Port and Description.
The Port element provides the port that the vCenter listens on. Here port 443 (the

Advanced API Calls

54 Avamar 18.1 REST API Getting Started Guide

Example 6 Request body used to add a VMware vCenter (continued)

default) is shown. The Description element provides identifying information for the
entry. Here that element is empty.

In XML format:

<HypervisorManager xmlns="http://www.example.com/concerto/v1.0"
name="vccc.asl.lab.example.com">
 <Description></Description>
 <Hostname>vccc.asl.lab.example.com</Hostname>
 <Port>443</Port>
 <Username>administrator</Username>
 <Password>changeme</Password>
 <HypervisorManagerType>vCenter</HypervisorManagerType>
</HypervisorManager>

In JSON format:

{
 "name": "vccc.asl.lab.example.com",
 "Description": null,
 "Hostname": "vccc.asl.lab.example.com",
 "Port": "443",
 "Username": "administrator",
 "Password": "changeme",
 "HypervisorManagerType": "vCenter"
}

Asynchronous API call
The Avamar REST API server handles the POST request as an asynchronous API call.
In response, the Avamar REST API server provides a reference to the task element
used to track the operation. Periodically check the status of the task element until
the operation succeeds.

Successful operation
After successfully adding the vCenter to the specified folder, the folder includes the
following two subfolders:

l Container Clients

l Virtual Machines

This result is identical to the result obtained by adding a vCenter to an Avamar system
through Avamar Administrator.

Information about the vCenter
After successfully adding a vCenter, use the following API call to get all of information
that the Avamar REST API server has for the vCenter:

GET /hypervisorManager/HVM_URI

In response to this API call, the Avamar REST API server provides all available
elements that are contained in the HypervisorManager element for the vCenter.
These elements include the VmDatastore element, which contains a list of the
datastores available in the vCenter.

VMware virtual machines
Add VMware virtual machines by using the same API call that is used to add other
clients. When adding a virtual machine, use additional elements to provide the required

Advanced API Calls

VMware virtual machines 55

information about the virtual machine. Add a virtual machine to the Virtual
Machines folder within the associated vCenter's folder.

The Avamar REST API server manages virtual machines as Clients. Enable this option
by using additional elements to provide the extra information that the Avamar REST
API server requires.

API call
Add a virtual machine by running the following API call:

POST /folder/FOLDER_URI/client

FOLDER_URI references the Virtual Machines folder that was created when the
vCenter associated with the virtual machine was added to the Avamar REST API
server.

The POST must include a request body with a Client element that includes the
following elements:

l ClientExtensionType
For virtual machines, use the value VmClient.

l VmClientExt
Identify the virtual machine by specifying the DataCenter and VmFolder
elements, or specifying the VmUUID element. This element can also optionally
include the ChangedBlockTracking element.

Example 7 A Client element that identifies a virtual machine by datacenter and folder

This example shows a Client element that could be used to add a virtual machine
named "MyVM" to the Avamar REST API server. The virtual machine is located in the
vCenter's "/Client DataCenter" datacenter and the "MyVMs" folder. Changed block
tracking is enabled for the virtual machine client.

In XML format:

<Client xmlns="http://www.example.com/concerto/v1.0" name="MyVM">
 <Description></Description>
 <Contact></Contact>
 <Phone></Phone>
 <Email></Email>
 <Location></Location>
 <ClientExtensionType>VmClient</ClientExtensionType>
 <VmClientExt>
 <DataCenter>/Client DataCenter</DataCenter>
 <VmFolder>MyVMs</VmFolder>
 <ChangedBlockTracking>true</ChangedBlockTracking>
 </VmClientExt>
</Client>

In JSON format:

{
 "name": "MyVM",
 "Description": null,
 "Contact": null,
 "Phone": null,
 "Email": null,
 "Location": null,
 "ClientExtensionType": "VmClient",
 "VmClientExt": {
 "DataCenter": "/Client DataCenter",
 "VmFolder": "MyVMs",
 "ChangedBlockTracking": "true"

Advanced API Calls

56 Avamar 18.1 REST API Getting Started Guide

Example 7 A Client element that identifies a virtual machine by datacenter and
folder (continued)

 }
}

ClientExtensionType
Use the ClientExtensionType element to specify that the client is a virtual
machine (VmClient) or to specify that the client is a proxy appliance for VMware
(VmProxyClient). When adding a virtual machine, use VmClient.

VmClientExt
Because a vCenter does not require virtual machine names to be unique, a virtual
machine's name by itself is not enough for the Avamar REST API server to identify the
virtual machine. Instead, provide additional identifying information by using the
VmClientExt element.

In a VmClientExt element, use the vCenter's UUID for the virtual machine to
identify the virtual machine by providing the UUID in a VmUUID element.

Alternatively, in a VmClientExt element use the DataCenter element and the
VmFolder element to provide the vCenter's data center and folder for the virtual
machine. The Avamar REST API server uses this information with the Client
element's name attribute to identify the virtual machine. The value that is provided in
the name attribute must exactly match the vCenter's name for the virtual machine.

The VmClientExt element can also include the optional ChangedBlockTracking
element. Use the ChangedBlockTracking element with the value true to optimize
backup performance by enabling changed block tracking on the virtual machine client.

Asynchronous API call
The Avamar REST API server handles the POST request as an asynchronous API call.
In response, the Avamar REST API server provides a reference to the task element
used to track the operation's status. Periodically check the status of the task
element until the operation succeeds.

Adding a virtual machine by using the UUID
To add the virtual machine to the Avamar REST API server, use the vCenter UUID of a
virtual machine.

Before you begin

Do the following:

l Add the vCenter that is associated with the virtual machine to the Avamar REST
API server.

l Retain the URI of the vCenter's folder.

l Obtain the UUID used by the vCenter for the virtual machine.

Procedure

1. Draft a skeleton Client element.

In XML format:

<Client xmlns="http://www.example.com/concerto/v1.0" name="">
</Client>

In JSON format:

Advanced API Calls

VMware virtual machines 57

{
 "name": ""
}

2. Add a value to the name attribute.

In XML format:

<Client xmlns="http://www.example.com/concerto/v1.0"
name="VM_NAME">
</Client>

In JSON format:

{
 "name": "VM_NAME"
}

where VM_NAME is the exact name for the virtual machine in vCenter.

3. Add a ClientExtensionType element with the value set to VmClient.

In XML format:

<Client xmlns="http://www.example.com/concerto/v1.0"
name="VM_NAME">
 <ClientExtensionType>VmClient</ClientExtensionType>
</Client>

In JSON format:

{
 "name": "VM_NAME",
 "ClientExtensionType": "VmClient"
}

4. Add a VmClientExt element with a VmUUID element that includes the virtual
machine's UUID.

In XML format:

<Client xmlns="http://www.example.com/concerto/v1.0"
name="VM_NAME">
 <ClientExtensionType>VmClient</ClientExtensionType>
 <VmClientExt>
 <VmUUID>00 11 22 33 44 55 66 77-88 99 aa bb cc dd ee
ff</VmUUID>
 </VmClientExt>
</Client>

In JSON format:

{
 "name": "VM_NAME",
 "ClientExtensionType": "VmClient",
 "VmClientExt": {
 "VmUUID": "00 11 22 33 44 55 66 77-88 99 aa bb cc dd ee
ff"
 }
}

where 00 11 22 33 44 55 66 77-88 99 aa bb cc dd ee ff is a correctly formatted
vCenter UUID.

5. (Optional) Add a ChangedBlockTracking element with the value true to
turn on changed block tracking for the virtual machine client.

In XML format:

<Client xmlns="http://www.example.com/concerto/v1.0"
name="VM_NAME">

Advanced API Calls

58 Avamar 18.1 REST API Getting Started Guide

 <ClientExtensionType>VmClient</ClientExtensionType>
 <VmClientExt>
 <VmUUID>00 11 22 33 44 55 66 77-88 99 aa bb cc dd ee
ff</VmUUID>
 <ChangedBlockTracking>true</
ChangedBlockTracking>
 </VmClientExt>
</Client>

In JSON format:

{
 "name": "VM_NAME",
 "ClientExtensionType": "VmClient",
 "VmClientExt": {
 "VmUUID": "00 11 22 33 44 55 66 77-88 99 aa bb cc dd ee
ff",
 "ChangedBlockTracking": "true"
 }
}

6. (Optional) Add other optional elements to the Client element.

7. Save the Client element locally.

8. Obtain the URI of the vCenter's Virtual Machines folder by running the
following API call:

GET /folder/FOLDER_URI/folders

where FOLDER_URI is the URI of the folder in which the vCenter was added.

The Avamar REST API server returns a list of the folders in the vCenter's folder,
including the Virtual Machines folder.

9. Add the virtual machine by running the following API call with the Client
element in the request body:

POST /folder/FOLDER_URI/client

where FOLDER_URI is the URI of the Virtual Machines folder.

Results

The Avamar REST API server adds the virtual machine to the specified folder.

Adding a virtual machine by using the datacenter and folder
Use the vCenter's datacenter and folder for a virtual machine to add the virtual
machine to the Avamar REST API server.

Before you begin

Do the following:

l Add the vCenter that is associated with the virtual machine to the Avamar REST
API server.

l Retain the URI of the vCenter's folder.

l Obtain the vCenter's datacenter and folder for the virtual machine.

Procedure

1. Draft a skeleton Client element.

In XML format:

<Client xmlns="http://www.example.com/concerto/v1.0" name="">
</Client>

Advanced API Calls

VMware virtual machines 59

In JSON format:

{
 "name": ""
}

2. Add a value to the name attribute.

In XML format:

<Client xmlns="http://www.example.com/concerto/v1.0"
name="VM_NAME">
</Client>

In JSON format:

{
 "name": "VM_NAME"
}

where VM_NAME is the exact name for the virtual machine in vCenter.

3. Add a ClientExtensionType element with the value set to VmClient.

In XML format:

<Client xmlns="http://www.example.com/concerto/v1.0"
name="VM_NAME">
 <ClientExtensionType>VmClient</ClientExtensionType>
</Client>

In JSON format:

{
 "name": "VM_NAME",
 "ClientExtensionType": "VmClient"
}

4. Add a VmClientExt element with a DataCenter element that includes the
datacenter of the virtual machine.

In XML format:

<Client xmlns="http://www.example.com/concerto/v1.0"
name="VM_NAME">
 <ClientExtensionType>VmClient</ClientExtensionType>
 <VmClientExt>
 <DataCenter>/DataCenter</DataCenter>
 </VmClientExt>
</Client>

In JSON format:

{
 "name": "VM_NAME",
 "ClientExtensionType": "VmClient",
 "VmClientExt": {
 "DataCenter": "/DataCenter"
 }
}

where /DataCenter is the full path to the vCenter's datacenter that contains
the virtual machine.

5. Add to the VmClientExt element the VmFolder element with the name of
the vCenter folder that contains the virtual machine.

In XML format:

<Client xmlns="http://www.exampe.com/concerto/v1.0"
name="VM_NAME">
 <ClientExtensionType>VmClient</ClientExtensionType>

Advanced API Calls

60 Avamar 18.1 REST API Getting Started Guide

 <VmClientExt>
 <DataCenter>/DataCenter</DataCenter>
 <VmFolder>folder</VmFolder>
 </VmClientExt>
</Client>

In JSON format:

{
 "name": "VM_NAME",
 "ClientExtensionType": "VmClient",
 "VmClientExt": {
 "DataCenter": "/DataCenter",
 "VmFolder": "folder"
 }
}

where folder is the vCenter folder that contains the virtual machine.

6. (Optional) Add a ChangedBlockTracking element with the value true to
turn on changed block tracking for the virtual machine client.

In XML format:

<Client xmlns="http://www.example.com/concerto/v1.0"
name="VM_NAME">
 <ClientExtensionType>VmClient</ClientExtensionType>
 <VmClientExt>
 <DataCenter>/DataCenter</DataCenter>
 <VmFolder>folder</VmFolder>
 <ChangedBlockTracking>true</
ChangedBlockTracking>
 </VmClientExt>
</Client>

In JSON format:

{
 "name": "VM_NAME",
 "ClientExtensionType": "VmClient",
 "VmClientExt": {
 "DataCenter": "/DataCenter",
 "VmFolder": "folder",
 "ChangedBlockTracking": "true"
 }
}

7. (Optional) Add other optional elements to the Client element.

8. Save the Client element locally.

9. Obtain the URI of the vCenter's Virtual Machines folder by running the
following API call:

GET /folder/FOLDER_URI/folders

where FOLDER_URI is the URI of the folder in which the vCenter was added.

The Avamar REST API server returns a list of the folders in the vCenter's folder,
including the Virtual Machines folder.

10. Add the virtual machine by running the following API call with the Client
element in the request body:

POST /folder/FOLDER_URI/client

where FOLDER_URI is the URI of the Virtual Machines folder.

Advanced API Calls

VMware virtual machines 61

Results

The Avamar REST API server adds the virtual machine to the specified folder.

Proxy appliance for VMware
Add proxy appliances for VMware by using the same API call that is used to add other
clients. When adding a proxy appliance, use additional elements to provide the
required information about the proxy appliance.

The Avamar REST API server manages proxy appliances as clients. Enable this option
by using additional elements to provide the extra information that the Avamar REST
API server requires. Proxy appliances cannot be added to a vCenter's folder. Instead,
add proxy appliances to a folder that is hierarchically higher than the associated
vCenter's folder.

API call
Add a proxy appliance by running the following API call:

POST /folder/FOLDER_URI/client

Where FOLDER_URI references a folder that is hierarchically higher than the folder
that contains the associated vCenter.

The POST must include a request body with a Client element that includes the
ClientExtensionType element with the value VmProxyClient.

NOTICE

After a proxy appliance is added to the Avamar REST API server, register and activate
the proxy appliance with one of the managed Avamar systems. The proxy appliance
cannot be configured to perform virtual machine backups until it is registered and
activated with an Avamar system. In vCenter, open a console session on the proxy
appliance to register and activate the proxy appliance with an Avamar system.

Identifying a proxy appliance
The Avamar REST API server identifies a proxy appliance by the name attribute of the
Client element that is used to add the proxy appliance. The value of this attribute is
the fully qualified domain name of the proxy appliance.

ClientExtensionType
Use the ClientExtensionType element to specify that the client is a virtual
machine (VmClient) or to specify that the client is a proxy appliance for VMware
(VmProxyClient). When adding a proxy appliance, use VmProxyClient.

Example 8 A Client element for a proxy appliance

This example shows a Client element for a proxy appliance named
myproxy.mycompany.com.

In XML format:

<Client xmlns="http://www.example.com/concerto/v1.0"
name="myproxy.mycompany.com">
 <Description></Description>
 <Contact></Contact>
 <Phone></Phone>
 <Email></Email>
 <Location></Location>

Advanced API Calls

62 Avamar 18.1 REST API Getting Started Guide

Example 8 A Client element for a proxy appliance (continued)

 <ClientExtensionType>VmProxyClient</ClientExtensionType>
</Client>

In JSON format:

{
 "name": "myproxy.mycompany.com",
 "Description": null,
 "Contact": null,
 "Phone": null,
 "Email": null,
 "Location": null,
 "ClientExtensionType": "VmProxyClient",
}

Asynchronous API call
The Avamar REST API server handles the POST request as an asynchronous API call.
In response, the Avamar REST API server provides a reference to the task element
used to track the operation's status. Periodically check the status of the task
element until the operation succeeds.

Information about the proxy appliance
After successfully adding a proxy appliance, use the following API call to get all of
information that the Avamar REST API server has for the proxy appliance:

GET /client/CLIENT_URI

In response to this API call, the Avamar REST API server provides all available
elements that are contained in the Client element for the proxy appliance. These
elements include the proxy appliance's mapped datastores and groups.

Adding datastores to a proxy appliance
To prepare to backup a virtual machine through a proxy appliance, add the datastore
that is associated with the virtual machine to the proxy appliance's list of protected
datastores. An Avamar system only transfers a virtual machine's backup to a proxy
appliance when the proxy appliance is configured to protect the datastore that is
associated with the virtual machine.

Before you begin

Complete the following:

l Add the proxy appliance to the Avamar REST API server.

l Register and activate the proxy appliance with one of the managed Avamar
systems.

Procedure

1. Use GET to get a list of the datastores managed by a vCenter.

GET /hypervisorManager/HVM_URI

The reply includes the vCenter's vmDatastore list with the URL for each
managed datastore.

2. Draft a skeleton VmDatastoreList element.

In XML format:

<VmDatastoreList xmlns="http://www.example.com/concerto/v1.0">
</VmDatastoreList>

Advanced API Calls

Proxy appliance for VMware 63

In JSON format:

{}

3. Add a VmDatastore element containing a Url element.

In XML format:

<VmDatastoreList xmlns="http://www.example.com/concerto/v1.0">
 <VmDatastore>
 <Url></Url>
 </VmDatastore>
</VmDatastoreList>

In JSON format:

{
 "VmDatastore": {
 "Url": null
 }
}

4. In the Url element, add the URL of a datastore that is being added.

In XML format:

<VmDatastoreList xmlns="http://www.example.com/concerto/v1.0">
 <VmDatastore>
 <Url>DS_URL</Url>
 </VmDatastore>
</VmDatastoreList>

In JSON format:

{

 "VmDatastore": {

 "Url": "DS_URL"

 }

}

where DS_URL is the vCenter's URL for the datastore, which is the value that
is returned in the url element of the vCenter's vmDatastore list.

5. Add another VmDatastore element and Url element for every datastore being
added.

In XML format:

<VmDatastoreList xmlns="http://www.example.com/concerto/v1.0">
 <VmDatastore>
 <Url>DS_URL</Url>
 </VmDatastore>
 <VmDatastore>
 <Url>DS_URL</Url>
 </VmDatastore>
</VmDatastoreList>

In JSON format:

{
 "VmDatastore": [
 {
 "Url": "DS_URL"
 },
 {
 "Url": "DS_URL"
 }

Advanced API Calls

64 Avamar 18.1 REST API Getting Started Guide

]
}

Note that the JSON format uses an array of Url elements.

6. (Optional) Save the VmDatastoreList element locally.

7. Run the following API call and include the VmDatastoreList element:

PUT /client/CLIENT_URI/hypervisorManager/HVM_URI/action/
addDatastore

where:

l CLIENT_URI is the URI of the proxy appliance.

l HVM_URI is the URI of the vCenter associated with the datastores being
added.

Results

The Avamar REST API server adds the datastores to the proxy appliance's list of
protected datastores. The API call is synchronous. The Avamar REST API server
responds with the proxy appliance's configuration, including a list of protected
datastores.

Example 9 VmDatastoreList element to add two datastores to a proxy appliance

The following example shows a VmDatastoreList element that adds two datastores
to a proxy appliance's list of protected datastores.

In XML format:

<VmDatastoreList xmlns="http://www.example.com/concerto/v1.0">
 <VmDatastore>
 <Url>ds:///vmfs/volumes/4e010b4b-e4b3547d-da84-001ec9b2b08b/</
Url>
 </VmDatastore>
 <VmDatastore>
 <Url>ds:///vmfs/volumes/4e010b4b-e4b3547d-da84-001ec9b2b3df/</
Url>
 </VmDatastore>
</VmDatastoreList>

In JSON format:

{
 "VmDatastore": [
 {
 "Url": "ds:///vmfs/volumes/4e010b4b-e4b3547d-
da84-001ec9b2b08b/"
 },
 {
 "Url": "ds:///vmfs/volumes/4e010b4b-e4b3547d-
da84-001ec9b2b3df/"
 }
]
}

Advanced API Calls

Proxy appliance for VMware 65

Removing datastores from a proxy appliance
When a proxy appliance is no longer required to protect a datastore, remove the
datastore from the proxy appliance's list of protected datastores.

Before you begin

Complete the following:

l Add the proxy appliance to the Avamar REST API server.

l Register and activate the proxy appliance with one of the managed Avamar
systems.

Procedure

1. Use GET to get a list of the datastores managed by a vCenter.

GET /hypervisorManager/HVM_URI

The reply includes the vCenter's vmDatastore list with the URL for each
managed datastore.

2. Draft a skeleton VmDatastoreList element.

In XML format:

<VmDatastoreList xmlns="http://www.example.com/concerto/v1.0">
</VmDatastoreList>

In JSON format:

{}

3. Add a VmDatastore element containing a Url element.

In XML format:

<VmDatastoreList xmlns="http://www.example.com/concerto/v1.0">
 <VmDatastore>
 <Url></Url>
 </VmDatastore>
</VmDatastoreList>

In JSON format:

{
 "VmDatastore": {
 "Url": null
 }
}

4. In the Url element, add the URL of a datastore that is being removed.

In XML format:

<VmDatastoreList xmlns="http://www.example.com/concerto/v1.0">
 <VmDatastore>
 <Url>DS_URL</Url>
 </VmDatastore>
</VmDatastoreList>

In JSON format:

{

 "VmDatastore": {

 "Url": "DS_URL"

 }

Advanced API Calls

66 Avamar 18.1 REST API Getting Started Guide

}

where DS_URL is the vCenter's URL for the datastore, which is the value that
is returned in the url element of the vCenter's vmDatastore list.

5. Add another VmDatastore element and Url element for every datastore being
removed.

In XML format:

<VmDatastoreList xmlns="http://www.example.com/concerto/v1.0">
 <VmDatastore>
 <Url>DS_URL</Url>
 </VmDatastore>
 <VmDatastore>
 <Url>DS_URL</Url>
 </VmDatastore>
</VmDatastoreList>

In JSON format:

{
 "VmDatastore": [
 {
 "Url": "DS_URL"
 },
 {
 "Url": "DS_URL"
 }
]
}

Note that the JSON format uses an array of Url elements.

6. (Optional) Save the VmDatastoreList element locally.

7. Run the following API call and include the VmDatastoreList element.

PUT /client/CLIENT_URI/hypervisorManager/HVM_URI/action/
removeDatastore

where CLIENT_URI is the URI of the proxy appliance and HVM_URI is the URI
of the vCenter associated with the datastores being removed.

Results

The Avamar REST API server removes the datastores from the proxy appliance's list
of protected datastores. The API call is synchronous. The Avamar REST API server
responds with the proxy appliance's configuration, including a list of protected
datastores.

Adding proxy appliances to a backup policy
To use a proxy appliance with a backup policy, add the proxy appliance to the backup
policy's list of available proxy appliances.

Before you begin

Do the following:

l Obtain the URI of a backup policy.

l Obtain the URL for each proxy appliance being added.

Running a backup of virtual machines through a backup policy requires that the
backup policy lists at least one proxy appliance. Otherwise, the backup fails with a
message that no proxy can be found.

Advanced API Calls

Proxy appliance for VMware 67

Procedure

1. Draft a skeleton ReferenceList element.

In XML format:

<ReferenceList xmlns="http://www.example.com/concerto/v1.0">
 <Reference />
</ReferenceList>

In JSON format:

{
 "Reference": null
}

2. Add a URL for each proxy appliance being added.

In XML format:

<ReferenceList xmlns="http://www.example.com/concerto/v1.0">
 <Reference href="PROXY_URL" />
 <Reference href="PROXY_URL" />
</ReferenceList>

In JSON format:

{
 "Reference": [
 {
 "href": "PROXY_URL"
 },
 {
 "href": "PROXY_URL"
 }
]
}

Note that the JSON format uses an array of Reference elements.

3. (Optional) Save the ReferenceList element locally.

4. Run the following API call and include the ReferenceList element.

PUT /policy/POLICY_URI/action/addVmProxy

Results

The Avamar REST API server adds the proxy appliances to the backup policy. The API
call is synchronous. The Avamar REST API server responds with the backup policy's
configuration, including a list of associated proxy appliances.

Example 10 ReferenceList element to add two proxy appliances to a backup policy

In the following example, the ReferenceList element is drafted to add proxy
appliances with the following reference URLs:

l https://localhost:8543/rest-api/client/09fad7f7-3f74-4cc7-9bf8-201f7275c4bf

l https://localhost:8543/rest-api/client/09fad7f7-3f74-4cc7-9bf8-201f7275cd2g

In XML format:

<ReferenceList xmlns="http://www.example.com/concerto/v1.0">
 <Reference href="https://localhost:8543/rest-api/client/
09fad7f7-3f74-4cc7-9bf8-201f7275c4bf" />
 <Reference href="https://localhost:8543/rest-api/client/

Advanced API Calls

68 Avamar 18.1 REST API Getting Started Guide

Example 10 ReferenceList element to add two proxy appliances to a backup policy (continued)

09fad7f7-3f74-4cc7-9bf8-201f7275cd2g" />
</ReferenceList>

In JSON format:

{
 "Reference": [
 {
 "href": "https://localhost:8543/rest-api/client/
09fad7f7-3f74-4cc7-9bf8-201f7275c4bf"
 },
 {
 "href": "https://localhost:8543/rest-api/client/
09fad7f7-3f74-4cc7-9bf8-201f7275cd2g"
 }
]
}

Removing proxy appliances from a backup policy
Remove proxy appliances from a backup policy's list of available proxy appliances.

Before you begin

Do the following:

l Obtain the URI of a backup policy.

l Obtain the URL for each proxy appliance being removed.

Procedure

1. Draft a skeleton ReferenceList element.

In XML format:

<ReferenceList xmlns="http://www.example.com/concerto/v1.0">
 <Reference />
</ReferenceList>

In JSON format:

{
 "Reference": null
}

2. Add a URL for each proxy appliance being removed.

In XML format:

<ReferenceList xmlns="http://www.example.com/concerto/v1.0">
 <Reference href="PROXY_URL" />
 <Reference href="PROXY_URL" />
</ReferenceList>

In JSON format:

{
 "Reference": [
 {
 "href": "PROXY_URL"
 },
 {
 "href": "PROXY_URL"
 }
]
}

Advanced API Calls

Proxy appliance for VMware 69

Note that the JSON format uses an array of Reference elements.

3. (Optional) Save the ReferenceList element locally.

4. Run the following API call and include the ReferenceList element.

PUT /policy/POLICY_URI/action/removeVmProxy

Results

The Avamar REST API server removes the proxy appliances from the backup policy.
The API call is synchronous. The Avamar REST API server responds with the backup
policy's configuration, including a list of associated proxy appliances.

On-demand virtual machine backups
Use the Avamar REST API to perform on-demand backups of an individual virtual
machine and to perform on-demand backups of groups of virtual machines through a
backup policy.

On-demand backups of an individual virtual machine
Use the following API call to perform an on-demand backup of an individual virtual
machine:

POST /client/CLIENT_URI/action/backup

where CLIENT_URI is the URI of a virtual machine client.

The POST request must include a BackupRequest element that contains the specific
elements in the following table.

Table 7 Required elements in a BackupRequest for an individual virtual machine

Element Description

Plugin Reference to the plug-in to use in the backup.
This element is one of the following for a
VMware virtual machine:

l Windows VMware Image

l Linux VMware Image

Retention Reference to the retention object that defines
how long the backed up data is retained.

Datasource Describes the data to backup. For a full
VMware image backup, set the value to All.

Example 11 BackupRequest element for backing up an individual virtual machine

In this example, the Datasource element has the value All, indicating a full VMware
image backup.

In XML format:

<BackupRequest xmlns="http://www.example.com/concerto/v1.0" >
 <DataSource><Source>All</Source></DataSource>
 <Plugin href="https://localhost:8543/rest-api/plugin/960cf388-
c775-4521-918f-5d9f11f49171" />
 <Retention href="https://localhost:8543/rest-api/retention/

Advanced API Calls

70 Avamar 18.1 REST API Getting Started Guide

Example 11 BackupRequest element for backing up an individual virtual machine (continued)

a416939d-ce8d-4873-abfa-4bd2e8b22624" />
</BackupRequest>

In JSON format:

{
 "DataSource": {
 "Source": "All"
 },
 "Plugin": {
 "href": "https://localhost:8543/rest-api/plugin/960cf388-
c775-4521-918f-5d9f11f49171"
 },
 "Retention": {
 "href": "https://localhost:8543/rest-api/retention/a416939d-
ce8d-4873-abfa-4bd2e8b22624"
 }
}

On-demand backups through a backup policy
An on-demand backup through a backup policy requires a correctly configured backup
policy. Add all relevant proxy appliances to the backup policy before using the policy
to perform backup.

Use the following API call to initiate a backup which is based on a backup policy:

POST /policy/POLICY_URI/action/backup

where POLICY_URI is the URI of the backup policy.

This API call does not require a request body.

Asynchronous API call
The Avamar REST API server handles an on-demand backup POST request as an
asynchronous API call. In response, the Avamar REST API server provides a reference
to the task element used to track the operation's status. Periodically check the
status of the task element until the operation succeeds.

When the task element's status changes to RUNNING, the backup has started.

Continue to track the backup through the task element, or use one of the backup
monitoring calls available through the Avamar REST API.

Running an on-demand backup of a virtual machine
To run an on-demand backup of a virtual machine, use an API call with a
BackupRequest element in the request body.

Before you begin

Do the following:

l Obtain the reference URL for the plug-in being used for the backup.

l Obtain the reference URL for the retention object being used for the backup.

l Obtain the URI of the virtual machine client.

Procedure

1. Draft a skeleton BackupRequest element.

In XML format:

<BackupRequest xmlns="http://www.example.com/concerto/v1.0" >
 <DataSource><Source></Source></DataSource>

Advanced API Calls

On-demand virtual machine backups 71

 <Plugin href="" />
 <Retention href="" />
</BackupRequest>

In JSON format:

{
 "DataSource": {
 "Source": null
 },
 "Plugin": {
 "href": ""
 },
 "Retention": {
 "href": ""
 }
}

2. Add a value to the Datasource element.

For a full VMware image backup, use All.

In XML format:

<BackupRequest xmlns="http://www.example.com/concerto/v1.0" >
 <DataSource><Source>ALL</Source></DataSource>
 <Plugin href="" />
 <Retention href="" />
</BackupRequest>

In JSON format:

{
 "DataSource": {
 "Source": "All"
 },
 "Plugin": {
 "href": ""
 },
 "Retention": {
 "href": ""
 }
}

3. Add a plug-in reference.

In XML format:

<BackupRequest xmlns="http://www.example.com/concerto/v1.0" >
 <DataSource><Source>All</Source></DataSource>
 <Plugin href="PLUG-IN_URL" />
 <Retention href="" />
</BackupRequest>

In JSON format:

{
 "DataSource": {
 "Source": "All"
 },
 "Plugin": {
 "href": "PLUG-IN_URL"
 },
 "Retention": {
 "href": ""
 }
}

4. Add a retention object reference.

In XML format:

Advanced API Calls

72 Avamar 18.1 REST API Getting Started Guide

<BackupRequest xmlns="http://www.example.com/concerto/v1.0" >
 <DataSource><Source>All</Source></DataSource>
 <Plugin href="PLUG-IN_URL" />
 <Retention href="RETENTION_URL" />
</BackupRequest>

In JSON format:

{
 "DataSource": {
 "Source": "All"
 },
 "Plugin": {
 "href": "PLUG-IN_URL"
 },
 "Retention": {
 "href": "RETENTION_URL"
 }
}

5. (Optional) Add other elements to the BackupRequest element.

6. (Optional) Save the BackupRequest element locally.

7. Run the following API call and include the BackupRequest element.

POST /client/CLIENT_URI/action/backup

Results

The Avamar REST API server handles the POST request as an asynchronous API call.
In response, the Avamar REST API server provides a reference to the task element
used to track the operation. Periodically check the status of the task element until
the operation succeeds.

Running an on-demand backup of virtual machines through a policy
To run a backup of the virtual machines, use an API call with the URI of a virtual
machine backup policy.

Before you begin

Correctly configure a backup policy for virtual machines, including adding all relevant
proxy appliances.

Procedure

1. Use one of the Avamar REST API calls to obtain the URI of the policy being
used.

For example, to obtain a list of the policies available for a folder, run the
following API call:

GET /folder/FOLDER_URI/detail/policy

2. Run the following API call to run the policy-based backup:

POST /policy/POLICY_URI/action/backup

Results

The Avamar REST API server handles the POST request as an asynchronous API call.
In response, the Avamar REST API server provides a reference to the task element
used to track the operation. Periodically check the status of the task element until
the operation succeeds.

Advanced API Calls

On-demand virtual machine backups 73

Virtual machine browse operations
The Avamar REST API browse action can be used to view information about the
contents of virtual machine backups. Depending on the content of the request body,
the browse action can be used to perform the following steps:

l To view information about the virtual disk images in a backup.

l To view information about the individual files in a backup.

Virtual machine backup browse operations use the same API call and same top level
request body element as the backup browse operations for other clients. However, the
content of the Avamar REST API server's response is determined by the nature of the
virtual machine client and the elements that are contained in the request body
element.

In all cases, use the following API call to browse a virtual machine backup:

POST /backup/BACKUP_URI/action/browse

Include in the request a BackupBrowseRequest element.

The elements in the BackupBrowseRequest element determine whether the
Avamar REST API server responds with information about the virtual disk images in a
backup or responds with information about the individual files in a backup.

Browse virtual machine images
View information about the virtual disks that are contained in virtual machine backups.
Obtain information about the virtual machine images in a backup that can be used
when restoring virtual machine images.

API call
Use the following API call to view information about the virtual disk images in a virtual
machine backup:

POST /backup/BACKUP_URI/action/browse

Include the following BackupBrowseRequest element in the request. No additional
elements are required.

In XML format:

<BackupBrowseRequest xmlns="http://www.example.com/concerto/v1.0">
</BackupBrowseRequest>

In JSON format:

{}

The Avamar REST API server responds with a browse response that includes
metadata elements that contain information about the virtual disk images in the
backup.

Example 12 Excerpt from image level browse response

The following example is an excerpt of a JSON-formatted browse response that
shows one of the metadata elements that are contained in the Avamar REST API
server's response to an image browse request.

"metadata" : [{
 "metadataType" : "VMDISK",
 "name" : "Hard disk 1 - [datastore1] vm-clicore-109_ New NetWorker
Server/vm-clicore-109_ New NetWorker Server.vmdk"

Advanced API Calls

74 Avamar 18.1 REST API Getting Started Guide

Example 12 Excerpt from image level browse response (continued)

}],
"

Browse virtual machine files
View information about the files and directories that are contained in a virtual machine
backup. Obtain information about the file system that can be used when restoring a
virtual machine's files.

API call
Use the following API call to view information about individual files in a virtual machine
backup:

POST /backup/BACKUP_URI/action/browse

Include a BackupBrowseRequest element that contains a GranularBrowse
element. The value of the GranularBrowse element determines the file system
information that the Avamar REST API server provides in the response.

Top level browse information
To obtain top level browse information set the value of the GranularBrowse
element to true, as shown here.

In XML format:

<BackupBrowseRequest xmlns="http://www.example.com/concerto/v1.0">
 <GranularBrowse>true</GranularBrowse>
</BackupBrowseRequest>

In JSON format:

{
 "GranularBrowse": "true"
}

The Avamar REST API server responds with the top-level browse information for the
backup. For a virtual machine with a Windows guest operating system, the top level
response is a logical reference to the disk, as shown in JSON format here:

"metadataType" : "dir",
 "name" : "[Disk#1]"

File level browse information
To obtain file level browse information for an individual disk in the backup, include a
Path element and set the value to the path of a directory on that disk. Include in the
path statement the disk name that is provided by a top level browse request.

In XML format:

<BackupBrowseRequest xmlns="http://www.example.com/concerto/v1.0">
 <Path>DISK_NAME/FULL_PATH</Path>
 <GranularBrowse>true</GranularBrowse>
</BackupBrowseRequest>

In JSON format:

{
 "Path": "DISK_NAME/FULL_PATH",
 "GranularBrowse": "true"
}

whereDISK_NAME is the value of the name element that is contained in the top level
browse information of the virtual machine image.

Advanced API Calls

Virtual machine browse operations 75

Example 13 File level browse request for a Windows guest operating system

The following example provides the BackupBrowseRequest element to request file
level browse information for the \Users folder on a Windows guest operating system
on Disk#1.

In XML format:

<BackupBrowseRequest xmlns="http://www.example.com/concerto/v1.0">
 <Path>[Disk#1]\Users</Path>
 <GranularBrowse>true</GranularBrowse>
</BackupBrowseRequest>

In JSON format:

{
 "Path": "[Disk#1]\\Users",
 "GranularBrowse": "true"
}

Virtual machine restore operations
The Avamar REST API restore action can be used to restore data to a virtual machine
at the image level or at the file level. Both operations use the same API call. The
difference is in the content of the request body that is sent with the API call.

Identifying a backup
Use the following API call to get a list of the available backups for a client:

POST /client/CLIENT_URI/detail/backup

The Avamar REST API server responds with a list of the available backups, and lists a
URI for each backup. Use the listed URI to identify a backup for a restore operation.

API call
Use the following API call to initiate an image level or file level restore:

POST /backup/BACKUP_URI/action/restore

The API call must include the RestoreRequest element in the request body.

Request body
The API call that initiates a virtual machine restore operation includes a
RestoreRequest element that defines the restore request. The RestoreRequest
element always includes the elements that are shown here.

In XML format:

<RestoreRequest xmlns="http://www.example.com/concerto/v1.0" >
 <Plugin href="PLUG-IN_URL"/>
 <DestClient>
 </DestClient>
</RestoreRequest>

In JSON format:

{
 "Plugin": {
 "href": "PLUG-IN_URL"
 },
 "DestClient": {}
}

Advanced API Calls

76 Avamar 18.1 REST API Getting Started Guide

The elements within the DestClient element and additional elements that are
provided in the RestoreRequest element determine the nature of the restore
operation request.

Elements in a virtual machine RestoreRequest

Image level restore
The following table provides descriptions of the elements of a virtual machine restore
request for an image level restore action.

Table 8 Elements in a request for an image level restore

Element Description

Plugin Reference to the plug-in to use for the
restore. For a virtual machine restore
operation, this plug-in option is one of the
following:

l Windows VMware Image

l Linux VMware Image

DestClient Element containing elements that provide
information about the restore target.

VmIdentification Element containing elements that provide
information about an image level restore
target.

Name Name of the target virtual machine.

HypervisorManager Reference to the vCenter associated with the
restore target.

Datacenter vCenter path for the datacenter that is
associated with the restore target.

EsxHost Name of the ESX host that is associated with
the restore target.

Datastore Name of the datastore that is associated with
the restore target.

ChangedBlockTracking Determines whether the full image is restored,
or just the blocks that have changed since the
last backup. The default is false, which

specifies a full image restore. Set to true to

restore just the changed blocks.

Example 14 RestoreRequest element for an image level restore

The following example contains a RestoreRequest element to include in the request
body of an image level restore request.

In XML format:

<RestoreRequest xmlns="http://www.example.com/concerto/v1.0" >
 <Plugin href="https://localhost:8543/rest-api/plugin/960cf388-
c775-4521-918f-5d9f11f49171"/>
 <DestClient>

Advanced API Calls

Virtual machine restore operations 77

Example 14 RestoreRequest element for an image level restore (continued)

 <VmIdentification>
 <Name>TestRestore2</Name>
 <HypervisorManager href="https://localhost:8543/rest-api/
hypervisorManager/4a402115-c7f9-4522-a71e-0d272b7ae38f"/>
 <Datacenter>/Client DataCenter</Datacenter>
 <EsxHost>esx-cc27.asl.lab.example.com</EsxHost>
 <Datastore>datastore1(2)</Datastore>
 <ChangedBlockTracking>True</ChangedBlockTracking>
 </VmIdentification>
 </DestClient>
</RestoreRequest>

In JSON format:

{
 "Plugin": {
 "href": "https://localhost:8543/rest-api/plugin/960cf388-
c775-4521-918f-5d9f11f49171"
 },
 "DestClient": {
 "VmIdentification": {
 "Name": "TestRestore2",
 "HypervisorManager": {
 "href": "https://localhost:8543/rest-api/
hypervisorManager/4a402115-c7f9-4522-a71e-0d272b7ae38f"
 },
 "Datacenter": "/Client DataCenter",
 "EsxHost": "esx-cc27.asl.lab.example.com",
 "Datastore": "datastore1(2)",
 "ChangedBlockTracking": "True"
 }
 }
}

File level restore
The following table provides descriptions of the elements of a virtual machine restore
request for a file level restore action.

Table 9 Elements in a request for a file level restore

Element Description

Plugin Reference to the plug-in to use for the
restore. For a virtual machine restore
operation, this plug-in is one of the following:

l Windows VMware Image

l Linux VMware Image

BackupSource Full path in the backup for the file that is
being restored. The path statement must
include the name of the disk.

DestinationPath Full path on the target virtual machine.

DestClient Element that contains the Client element that
references the target virtual machine.

Client Reference for the target virtual machine.

Advanced API Calls

78 Avamar 18.1 REST API Getting Started Guide

Table 9 Elements in a request for a file level restore (continued)

Element Description

FileLevelRestore Determines whether the Avamar REST API
server performs a file level restore. To enable
a file level restore, set the value to true.

Username Username for an account with authorization
to restore files to the target location.

Password Password for the account with authorization
to restore files to the target location.

Example 15 RestoreRequest element for a file level restore

The following example contains a RestoreRequest element to include in the request
body of a file level restore request.

In XML format:

<RestoreRequest xmlns="http://www.example.com/concerto/v1.0" >
 <Plugin href="https://localhost:8543/rest-api/plugin/960cf388-
c775-4521-918f-5d9f11f49171"/>
 <BackupSource>[Disk#1]\Program Files\Program Files\avs\bin
\avtar.exe </BackupSource>
 <DestinationPath>C:\temp</DestinationPath>
 <DestClient>
 <Client href="https://localhost:8543/rest-api/client/
983bc30e-5f7f-45da-b846-1733419f7c8d" />
 </DestClient>
 <FileLevelRestore>true</FileLevelRestore>
 <Username>administrator</Username>
 <Password>changeme</Password>
</RestoreRequest>

In JSON format:

{
 "Plugin": {
 "href": "https://localhost:8543/rest-api/plugin/960cf388-
c775-4521-918f-5d9f11f49171"
 },
 "BackupSource": "[Disk#1]\\Program Files\\Program Files\\avs\\bin\
\avtar.exe",
 "DestinationPath": "C:\\temp",
 "DestClient": {
 "Client": {
 "href": "https://localhost:8543/rest-api/client/
983bc30e-5f7f-45da-b846-1733419f7c8d"
 }
 },
 "FileLevelRestore": "true",
 "Username": "administrator",
 "Password": "changeme"
}

Advanced API Calls

Virtual machine restore operations 79

Advanced API Calls

80 Avamar 18.1 REST API Getting Started Guide

CHAPTER 7

Troubleshooting

This chapter includes the following topics:

l Troubleshooting an Avamar REST API installation test failure............................82
l Troubleshooting Insufficient Java Heap Storage Space in REST API Server...... 82
l Troubleshooting a failed request.. 83

Troubleshooting 81

Troubleshooting an Avamar REST API installation test
failure

Find and fix a problem that is encountered when testing the Avamar REST API
software installation.

Before you begin

Complete the installation of the Avamar REST API software without any RPM error
messages.

SYMPTOM:

In testing the installation of the Avamar REST API software, follow the
recommendation on using a curl command. The curl tool does not display a 201
Created HTTP response header and a session object.

Procedure

1. Log into the target computer.

2. To switch to root, type the following command:

su -

3. Determine if the problem is with Jetty by checking the log.

View the current log located in /opt/concerto/logs/jetty.log.

4. Determine if the problem is with the Avamar REST API by checking the log.

View the current log located in /opt/concerto/logs/restserver.log.

5. Restart the Avamar REST API server by doing one of the following:

On a SLES 12, RHEL 7.4, or RHEL 7.5 server, type the following command:
systemctl restart concerto.service
On an Avamar utility node, type the command: service concerto stop. Once
the server is stopped, type the command: service concerto start.

Troubleshooting Insufficient Java Heap Storage Space in
REST API Server

In large environments, you may encounter instances where heap space of Java
application becomes insufficient when the Avamar REST API is launched in a stand-
alone system or in an Avamar utility node. You may want to increase the heap space to
perform the procedures seamlessly.

SYMPTOM:

While launching REST API, you are getting repeated
java.lang.OutOfMemoryError: Java heap space error messages.

Procedure

1. Stop the Avamar REST API server by typing the following commands:

On a SLES 12, RHEL 7.4, or RHEL 7.5 server: systemctl stop
concerto.service

On Avamar utility node: service concerto stop

Troubleshooting

82 Avamar 18.1 REST API Getting Started Guide

2. Open the following file in a text editor:

/opt/concerto/bin/concertoserver.sh
3. Find the following line:

$JAVA_OPTS = " –Xms1028m –Xmx2056m "

Note

In this line, the Java heap size is 2GB.

4. Replace the "1028" and "2056" values in the above line with the new heap size
and save the text editor.

5. Restart the Avamar REST API server by typing the following commands:

On a SLES 12, RHEL 7.4, or RHEL 7.5 server: systemctl start
concerto.service

On Avamar utility node: service concerto start

Troubleshooting a failed request
As you develop a code to work with the Avamar REST API you may encounter
instances where the code fails to receive the expected response. To determine what
causes the failure, review the HTTP response code and examine the Avamar REST API
log.

Before you begin

Perform the following:

l Complete the installation of the Avamar REST API software without any errors.

l Confirm that the installation is correct by successfully using the curl tool.

SYMPTOM:

You are testing the new code by sending an Avamar REST API request to the Avamar
REST API server. The request fails.

Procedure

1. Examine the HTTP status code that you receive from the Avamar REST API
server.

The HTTP status code provides an indication of how the Avamar REST API
server handled the code's request.

The status code sufficiently identified the problems in the code. If not, continue
to the next step.

2. Examine the Avamar REST API log at: /opt/concerto/logs/
restserver.log.

Change the code to correct any errors that are found in the Avamar REST API
log.

Troubleshooting

Troubleshooting a failed request 83

Troubleshooting

84 Avamar 18.1 REST API Getting Started Guide

APPENDIX A

Known Problems and Limitations

This appendix includes the following topics:

l Replication without policy fails to Avamar server version 7.1.x........................... 86
l Backup of nonactivated client remains in RUNNING state................................. 86

Known Problems and Limitations 85

Replication without policy fails to Avamar server version
7.1.x

Trying to replicate data from a client to an Avamar server running versions 7.1.x
without using a policy fails with an HTTP status code 200.

The Avamar systems that are running Avamar server version 7.1.x only accept
replication data as part of a replication policy. A task that uses the Avamar REST API
to replicate the data for a single client to an Avamar server version 7.1.x fails.

The tasks that use the Avamar REST API to replicate the data for single clients to
Avamar systems that are running Avamar server version 7.2 and newer are not subject
to this restriction. Those systems accept replication data for individual clients and for
policy-based replications.

Backup of nonactivated client remains in RUNNING state
Starting a backup task for an inactive client results in the task entering, and remaining
in the RUNNING state.

A backup task that is initiated through the Avamar REST API stops responding in the
RUNNING state when each of the following is true:

l The Avamar REST API server adds the client to a folder on an Avamar system that
is running Avamar server version 7.0 or earlier

l The backup client is registered, but not activated with the Avamar system

Under these circumstances, the task remains in the RUNNING state.

When the Avamar system is running Avamar server version 7.1 or later, the backup
task returns an error.

To avoid these problems, always check the activation status of a client before
initiating a backup.

Checking client activation status
Before starting a client backup, check the activation status of the client. By
performing this step, avoid the error that occurs when a backup is started for an
inactive client.

Procedure

1. Request the Client object for the client:

GET /client/CLIENT_URI

The Avamar REST API server responds with the identified Client object.

2. To determine the value of the activated element, examine the Client
object.

3. Based on the value of the activated element, choose whether to run or to not
run the client backup.

Value Action

true Run the backup

Known Problems and Limitations

86 Avamar 18.1 REST API Getting Started Guide

Value Action

false Do not run the backup

Example 16 Client object showing activated element for nonactivated client

In XML format:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?><Client
xmlns="http://www.example.com/concerto/v1.0"
name="clientsystem.widgets.com" id="7bf2c9c1-3eec-4f3c-
b366-84a9cc76a495"
statusCode="INSYNC" statusMessage="In sync with DPR's" href="https://
lava7120:8543/rest-api/client/7bf2c9c1-3eec-4f3c-b366-84a9cc76a495"
type="application/xml,application/json">
<Description></Description><DataProtectionResource href="https://
lava7120:8543/rest-api/admin/dataProtectionResource/d85dd297-
c931-43e1-b89d-9e712b16b769"
id="d85dd297-c931-43e1-b89d-9e712b16b769" name="DPR01"/><Folder
href="https://lava7120:8543/rest-api/folder/9ac64baf-2009-4f98-91d0-
c9167a1abbd1"
id="9ac64baf-2009-4f98-91d0-c9167a1abbd1" name="Widgets"/><Contact></
Contact><Phone></Phone><Email></Email><Location></
Location><Activated>false</
Activated><ActivationTS>1969-12-31T17:00:00.000-07:00</ActivationTS>
<InitializationTS>2014-04-25T11:50:43.817-06:00</
InitializationTS><LastBackupTS>1969-12-31T17:00:00.000-07:00</
LastBackupTS><LastCheckinTS>1969-12-31T17:00:00.000-07:00</
LastCheckinTS>
<ClientOS>N/A</ClientOS></Client>

In JSON format:

{
 "activated" : false,
 "activationTS" : "1969-12-31T17:00:00.000-07:00",
 "clientOS" : "N/A",
 "dataProtectionResource" : {
 "href" : "https://lava7120:8543/rest-api/admin/
dataProtectionResource/d85dd297-c931-43e1-b89d-9e712b16b769",
 "id" : "d85dd297-c931-43e1-b89d-9e712b16b769",
 "name" : "DPR01"
 },
 "folder" : {
 "href" : "https://lava7120:8543/rest-api/folder/
9ac64baf-2009-4f98-91d0-c9167a1abbd1",
 "id" : "9ac64baf-2009-4f98-91d0-c9167a1abbd1",
 "name" : "Widgets"
 },
 "href" : "https://lava7120:8543/rest-api/client/7bf2c9c1-3eec-4f3c-
b366-84a9cc76a495",
 "id" : "7bf2c9c1-3eec-4f3c-b366-84a9cc76a495",
 "initializationTS" : "2014-04-25T11:50:43.817-06:00",
 "lastBackupTS" : "1969-12-31T17:00:00.000-07:00",
 "lastCheckinTS" : "1969-12-31T17:00:00.000-07:00",
 "name" : "clientsystem.widgets.com",
 "statusCode" : "INSYNC",
 "statusMessage" : "In sync with DPR's",
 "type" : "application/xml,application/json"
}

Known Problems and Limitations

Checking client activation status 87

Known Problems and Limitations

88 Avamar 18.1 REST API Getting Started Guide

INDEX

A
activation status 86
allocation 39, 40

built-in strategy 40
API calls 38
architecture 28
asynchronous 38
Avamar 18
Avamar server 18
Avamar system

proxy appliance 62

B
backup 42, 43, 48, 52, 70, 71, 73, 76, 86

browse response 43
check activation 86
Data Domain storage system 52
dataset 48
on-demand 70, 71, 73
policy 70, 73
unresponsive 86
virtual machine 71, 73

backup policy
proxy appliance 67, 69

BackupBrowseRequest 74, 75
BackupRequest 70, 71
BALANCED allocation 40
browse 42, 43, 74, 75

backup 42
client 42
response 43
virtual machine files 74, 75
virtual machine images 74

browse backup 42
browse client 42
browse operations 42

C
ChangedBlockTracking 55, 57, 59
changing server port numbers 24
changing username 23
client 39, 40, 42, 43, 86

activation status 86
allocation 39, 40
browse response 43

ClientExtensionType 57, 59
code

troubleshooting 83
core concepts 32

D
Data Domain storage system 52
data protection resource 32

datacenter 59
DataCenter 55
dataset 45
Dataset 48
DatasetExclude 48
DatasetInclude 48
DatasetItem 45, 48, 52

DatasetExclude 48
DatasetInclude 48
DatasetOption 48
DatasetTarget 48
elements 48
Plugin 48

DatasetOption 45, 48, 52
DatasetTarget 45, 48
deployment method 15
description 14
design 32
DestClient 76, 77
documentation 15

F
file paths 28
folder 54, 59
FREE_SPACE allocation 40

H
hypervisorManager 54

I
image backup 71
install 18, 19

testing 19

L
login 36, 82

troubleshooting 82

M
Mode 45

O
objects 28

P
path 15
Plugin 48
policy 67, 69, 70, 73

backup 73
proxy appliance 67, 69

ports 28

Avamar 18.1 REST API Getting Started Guide 89

product description 14
proxy appliance 62, 63, 66, 67, 69
purpose 14

R
ReferenceList 67, 69
resource pool 32
resource share 32
REST 36
restore 76, 77
RestoreRequest 76, 77

S
server port numbers, changing 24
session 36
starting 23
stopping 22
synchronous 38

T
tenant 32
testing 19
troubleshoot

code issues 83
login 82

U
username, changing 23
UUID 57

V
variable 15
vCenter 54, 55

virtual machine 55
version 18, 20
virtual machine 55, 57, 59, 71, 73, 76, 77

adding 57, 59
backup 71, 73
datacenter and folder 59
file level restore 76, 77
image level restore 76, 77
policy 73
restore request 76, 77
UUID 57

VmClient 55
VmClientExt 57, 59
VmDatastoreList 63, 66
VmFolder 55
VMware

proxy appliance 62, 63, 66, 67, 69
resources 53
tasks 53

VMware vCenter 54, 55
virtual machine 55

Index

90 Avamar 18.1 REST API Getting Started Guide

	Contents
	Figures
	Tables
	Preface
	Introduction
	Description
	New with Avamar release 18.1

	Purpose
	Deployment
	Documentation conventions

	Installation
	Requirements
	Installing the software
	Testing the installation
	Checking the installed version

	Upgrading from Avamar release 7.5 Service Pack 1 or earlier
	Migrating the Avamar REST API database for Avamar 7.5.0

	Uninstalling
	Manually stopping
	Manually starting
	Changing the provider credentials
	Changing the Avamar REST API server port numbers

	Architecture
	Architecture of the Avamar REST API

	Concepts
	Design goal
	Core concepts

	Fundamentals
	Representational state transfer
	Session log in and log out
	API call types
	Client allocation strategy
	Changing the built-in client allocation strategy

	Advanced API Calls
	Browse operations
	Browsing a client
	Browsing a backup
	Browse response

	Dataset creation
	Elements in the DatasetItem element
	Creating a dataset
	Setting backups to go to a Data Domain storage system

	VMware
	VMware vCenter
	VMware virtual machines
	Proxy appliance for VMware
	On-demand virtual machine backups
	Virtual machine browse operations
	Virtual machine restore operations

	Troubleshooting
	Troubleshooting an Avamar REST API installation test failure
	Troubleshooting Insufficient Java Heap Storage Space in REST API Server
	Troubleshooting a failed request

	Known Problems and Limitations
	Replication without policy fails to Avamar server version 7.1.x
	Backup of nonactivated client remains in RUNNING state
	Checking client activation status

	Index

