Dell EMC PowerScale vs. NetApp ONTAP Arrays

Supports file system up to 60PB1

Single flat namespace, globally addressable by all nodes in the cluster.

Globally shared DRAM cache; cache size up to 94.5TB²

Global cache is directly accessible to every node in the cluster.

Massively scalable

Namespace can scale across up to 252 nodes; throughput scales up to 945GB/s per cluster.³

Multi-controller high availability architecture

Multiple nodes sustain running workloads and can effect data rebuilds following failure of up to 4 nodes.

Cluster-wide data deduplication

Global variable-length data deduplication across entire cluster (up to 60PB).¹

Policy-based self-optimization

Automated performance optimization, workload balancing across cluster nodes and data lifecycle management within and across clusters and out to the cloud.

Supports file system up to 100TB

Namespace consists of a hierarchy of Aggregates and FlexVols, addressable by a single controller.

Shared-nothing controller cache; cache size up to 128GB

Controller based cache directly accessible to only a single controller in the cluster.

Less scalable

Namespace can scale across up to 10 nodes only; throughput scales up to only 300GB/s per cluster.

Dual-controller high availability architecture

Single node sustains running workloads and can effect data rebuild following failure of 1 node.

Aggregate-wide data deduplication

Size-restricted fixed-block data deduplication at aggregate level (up to 640TB).

Manual optimization

Manual, volume-by-volume workload balancing between controllers; no data lifecycle management within and across clusters.