

Oracle in Docker Containers Managed by
Kubernetes

Software Development Use Cases using Dell EMC Infrastructure

October 2020

H18132.2

White Paper

Abstract

This white paper demonstrates the advantages of using Oracle with
Docker containers managed by Kubernetes for an application
development and testing environment that is hosted on a Dell EMC
platform.

Dell Technologies Solutions

Copyright

2 Oracle with Docker Containers Managed by Kubernetes
Software Development Use Cases using Dell EMC Infrastructure
White Paper

The information in this publication is provided as is. Dell Inc. makes no representations or warranties of any kind with respect
to the information in this publication, and specifically disclaims implied warranties of merchantability or fitness for a particular
purpose.

Use, copying, and distribution of any software described in this publication requires an applicable software license.

Copyright © 2020 Dell Inc. or its subsidiaries. All Rights Reserved. Dell Technologies, Dell, EMC, Dell EMC and other
trademarks are trademarks of Dell Inc. or its subsidiaries. Intel, the Intel logo, the Intel Inside logo and Xeon are trademarks
of Intel Corporation in the U.S. and/or other countries. Other trademarks may be trademarks of their respective owners.
Published in the USA July 2020 White Paper H18132.1.

Dell Inc. believes the information in this document is accurate as of its publication date. The information is subject to change
without notice.

 Contents

3 Oracle with Docker Containers Managed by Kubernetes
Software Development Use Cases using Dell EMC Infrastructure

White Paper

Contents

Chapter 1 Executive Summary 5

Business challenge ... 6

Solution overview .. 6

Document purpose .. 6

Audience ... 7

We value your feedback .. 7

Chapter 2 Use Case Overview 8

Introduction to use cases .. 9

Recommended platforms and components ... 10

Use Case 1 overview .. 11

Use Case 2 overview .. 12

Use case comparison summary .. 12

Chapter 3 Supporting Software Technology 13

Container-based virtualization ... 14

Docker containers ... 15

Benefits of virtualization with containers .. 15

Kubernetes ... 16

Kubernetes storage classes .. 19

Oracle and Docker containers on Linux ... 20

Chapter 4 Dell EMC Flex Nodes and Storage 23

PowerEdge servers ... 24

Dell Technologies hyperconverged infrastructure - PowerFlex Family overview .. 24

Chapter 5 Manual Provisioning 29

Use Case 1: Manual provisioning of a containerized development and testing
environment .. 30

Step 1: Install Docker .. 31

Step 2: Activate the Docker Enterprise Edition license .. 31

Step 3: Run the Oracle 12c container on Docker .. 32

Step 4: Build and run the Oracle 19c container on Docker 34

Step 5: Import sample schemas from GitHub .. 35

Step 6: Install Oracle SQL Developer and query tables from the container 35

Use Case 1 review .. 36

Contents

4 Oracle with Docker Containers Managed by Kubernetes
Software Development Use Cases using Dell EMC Infrastructure
White Paper

Chapter 6 Automated Provisioning 39

Use Case 2: Automated provisioning of a containerized development and testing
environment .. 40

Step 1: Set up the Kubernetes cluster ... 42

Step 2: Set up the Kubernetes dashboard ... 46

Step 3: Set up the Kubernetes load-balancer .. 47

Step 4: Configure the CSI driver for Dell EMC PowerFlex 48

Step 5: Create Persistent Volume Claim (PVC) and Oracle Pods on PowerFlex . 53

Step 6: Create snapshots and restore persistent volume 55

Step 7: Verify data persistency and restore snapshot .. 56

Use Case 2 review .. 58

CSI plug-ins: Additional Dell EMC options ... 59

Chapter 7 Conclusion 60

Summary statement .. 61

Chapter 8 References 62

Dell Technologies documentation ... 63

Kubernetes documentation ... 63

Docker documentation .. 63

Oracle documentation ... 63

VMware documentation .. 63

Appendix A Solution Architecture and Component Specifications 64

Architecture diagram ... 65

Server layer... 66

Network layer .. 67

CSI Plug-in for Dell EMC PowerFlex ... 68

Software components ... 69

Appendix B Scaling Up the Database Analytic Workload 70

Scaling up DB analytic workloads using Intel Optane DC Persistent Memory 71

 Chapter 1: Executive Summary

5 Oracle with Docker Containers Managed by Kubernetes
Software Development Use Cases using Dell EMC Infrastructure

White Paper

Chapter 1 Executive Summary

This chapter presents the following topics:

Business challenge ... 6

Solution overview ... 6

Document purpose ... 6

Audience .. 7

We value your feedback ... 7

Chapter 1: Executive Summary

6 Oracle with Docker Containers Managed by Kubernetes
Software Development Use Cases using Dell EMC Infrastructure
White Paper

Business challenge

Implementing reliable transaction processing for large-scale systems is beyond the

capability of many software developers. However, commercial relational database

management system (RDBMS) products enable developers to create many applications

that they otherwise could not. Although using an RDBMS solves many software

development problems, one long-standing issue persists—how to ensure code and data

consistency between the RDBMS and the application during the software development

and testing life cycle.

In the past, integration between containerized applications and database services like

Oracle Database Server was challenging. Software developers often had to wait for

Oracle DBAs, who were busy troubleshooting in the production database systems, to

create production copies. This delay caused an interruption in the Agile development

process.

Container technology enables development teams to quickly provision isolated

applications without the traditional complexities. For many companies, to boost

productivity and time to value, the use of containers starts with the departments that are

focused on software development. The journey typically starts with installing,

implementing, and using containers for applications that are based on the microservice

architecture.

Solution overview

This solution shows how the use of Oracle Database in containers, Kubernetes, and the

Container Storage Interface (CSI) Driver for the Dell EMC PowerFlex family (previously

known as Dell EMC VxFlex family) transforms the development process. Using

orchestration and automation, developers can self-provision an Oracle database, thereby

increasing flexibility and productivity while saving substantial time in creating a production

copy for development and testing environments.

We are focusing on the software development and testing use cases because many

analysts agree that this market represents the most immediate opportunity to solve

significant business challenges using Oracle databases on Docker containers. The current

method for developing Oracle-powered applications consists of various platforms and

tools. The process is overly complex and prone to creating schedule delays and cost

overruns. Any path that has advantages for IT professionals and provides a more

heterogeneous and familiar environment for software developers will likely gain significant

adoption with minimal friction or risk.

Document purpose

In this paper, we expand on information that is available from an Oracle Database

ecosystem. We provide two use cases that highlight the development and testing benefits

that Oracle databases running on Docker containers enable. Also, we explore the

intersection of Oracle databases, Docker containers, the Kubernetes implementation of

the CSI specification, and Dell Technologies products and services. Using the CSI Driver

for Dell EMC PowerFlex enables comprehensive automation and orchestration from

Kubernetes through PowerFlex storage. Using the CSI Driver, customers can automate

 Chapter 1: Executive Summary

7 Oracle with Docker Containers Managed by Kubernetes
Software Development Use Cases using Dell EMC Infrastructure

White Paper

storage provisioning of PowerFlex using Kubernetes to gain management

efficiencies. The use cases that we present are designed to show how developers and

others can easily use Oracle on Docker containers with the PowerFlex family of storage

products.

Audience

This white paper is for IT professionals who are interested in learning about the benefits of

implementing Oracle in Docker containers in a development and testing environment.

We value your feedback

Dell Technologies and the authors of this document welcome your feedback on the

solution and the solution documentation. Contact the Dell Technologies Solutions team by

email or provide your comments by completing our documentation survey.

Author: Indranil Chakrabarti

Contributors: Anurag A C, Ramamohan Reddy K, Phani MV, Robert Percy, Reed Tucker

Note: For links to additional documentation for this solution, see the Dell Technologies Solutions

Info Hub for Oracle.

mailto:EMC.Solution.Feedback@emc.com?subject=Oracle%20Containers%20on%20Docker%20White%20Paper%20H18132
https://www.surveymonkey.com/r/SolutionsSurveyExt
https://infohub.delltechnologies.com/t/oracle/
https://infohub.delltechnologies.com/t/oracle/

Chapter 2: Use Case Overview

8 Oracle with Docker Containers Managed by Kubernetes
Software Development Use Cases using Dell EMC Infrastructure
White Paper

Chapter 2 Use Case Overview

This chapter presents the following topics:

Introduction to use cases ... 9

Recommended platforms and components .. 10

Use Case 1 overview ... 11

Use Case 2 overview ... 12

Use case comparison summary ... 12

 Chapter 2: Use Case Overview

9 Oracle with Docker Containers Managed by Kubernetes
Software Development Use Cases using Dell EMC Infrastructure

White Paper

Introduction to use cases

Our use cases demonstrate the advantages of using Oracle containers for an application

development and testing environment that is hosted on a Dell EMC platform. The test

environment for both use cases consisted of four Dell EMC PowerEdge R640 servers,

which are an integral part of Dell EMC VxFlex Ready Nodes, and a CSI Driver for Dell

EMC PowerFlex that were hosted in our Dell EMC labs. For an architecture diagram and

details about the solution configuration, see Appendix A: Solution architecture and

component specifications.

The use cases demonstrate how Docker, Kubernetes, and the CSI Driver for PowerFlex

accelerate the applications development life cycle. With this solution, developers can

provision Oracle databases in containers without the complexities that are associated with

installing the database and provisioning storage.

Containers are a lightweight, stand-alone, executable package of software that includes

everything that is needed to run an application: code, runtime, system tools, system

libraries, and settings. A container isolates software from its environment and ensures that

it works uniformly despite any differences between development and staging. Containers

share the machine’s operating system kernel and do not require an operating system per

application, driving higher server efficiencies and reducing server and licensing costs.

The following figure outlines some typical use cases of Docker containers:

Figure 1. Docker containers – use cases

https://www.delltechnologies.com/en-in/solutions/software-defined/vxflex-ready-nodes.htm#scroll=off
https://github.com/dell/csi-vxflexos
https://github.com/dell/csi-vxflexos

Chapter 2: Use Case Overview

10 Oracle with Docker Containers Managed by Kubernetes
Software Development Use Cases using Dell EMC Infrastructure
White Paper

Recommended platforms and components

The following table lists the components that are required to build a virtualized container

infrastructure for the two use cases that are described in this solution:

Table 1. Component specifications of VxFlex Ready Nodes

Component Details

Compute hosts

4 Dell EMC PowerEdge R640 servers

Processor 2 Intel Xeon Platinum 8268 CPU @ 2.70 GHz
24/48 Cores - 96 Logical Processors (HT)

Memory DRAM: 384 GB

Storage 6 1788.5 GB SSDs

Network Server1: 10.230.79.120

Server2: 10.230.79.122

Server3: 10.230.79.124

Server4: 10.230.79.126

VMs (guests) Server1: PowerFlex, an SDS

Server2: PowerFlex, an SDS

Server3: PowerFlex, an SDS

Server4: PowerFlex, an SDS

Hypervisor ESXi 6.7

The following table lists the software components:

Table 2. Software components

Name Version/product

HCI PowerFlex 3.0.x

VMware vCenter 6.7

Operating system Oracle Linux 7.6

Docker 19.03.2

Kubernetes 1.14.9

Oracle Oracle 12c, 19c

CNI Plugin Flannel/Calico

CSI Plugin PowerFlex CSI plug-in, version 1.0

The following are PowerFlex recommendations:

• At least four physical servers are required in a protection domain.

• The Meta Data Manager (MDM) and Storage Data Server (SDS) components are

installed on a dedicated Storage Virtual Machine (SVM); the Storage Data Client

(SDC) is installed directly on the ESXi host.

https://www.delltechnologies.com/en-in/solutions/software-defined/vxflex-ready-nodes.htm#scroll=off

 Chapter 2: Use Case Overview

11 Oracle with Docker Containers Managed by Kubernetes
Software Development Use Cases using Dell EMC Infrastructure

White Paper

The following table defines some of the terms that are used in this white paper:

Table 3. Terms and definitions

Term Description

Container A software-defined form of virtualization that packages together an
application and its dependencies. Docker is a widely used container format
and is based on Linux container technology. Because Docker containers
are a widely accepted standard, many prebuilt container images are
available for deployment on systems that support the Docker format.

Kubernetes
cluster

A highly available instance of an open-source container-orchestration
system for automating application deployment, scaling, and management
Some possible abstractions of a Kubernetes cluster are applications, data
plane, control plane, cluster infrastructure, and cluster operations. A
Kubernetes cluster consists of a set of machines that are known as nodes.

Kubernetes
cluster node

A physical machine or a virtual machine (VM) that runs containerized
applications. A Kubernetes cluster can contain a mixture of physical
machine and VM nodes. One node of the cluster is designated as the
master node, which is used to control the cluster. The remaining nodes are
worker nodes. The Kubernetes master is responsible for distributing work

among the workers and for monitoring the health of the cluster.

Kubernetes
pod

One or more containers that are guaranteed to be co-located on a worker
node and can share resources. The basic scheduling unit and the minimum
deployment unit of Kubernetes is a pod. Kubernetes pods are assigned a
unique IP address in the cluster, enabling applications in the pod to use
ports without the risk of conflict. The Kubernetes master automatically
assigns pods to nodes in the cluster.

For more information about these and other PowerFlex networking elements, see Dell

EMC PowerFlex Networking Best Practices and Design Considerations White Paper.

The following table lists the VMware components of the use case architecture for Oracle

in Docker containers:

Table 4. VMware components of use case architecture for Oracle in Docker containers

VMware component Version

vCPU/VM 32

Memory/VM 320 GB

Operating system Oracle Linux 7.6

Docker 19.03.2

Kubernetes 1.14.9

Use Case 1 overview

In the first use case, we start the way many companies begin to work with containers—by

installing Docker and establishing a functioning development environment. Our goal is to

quickly provision an Oracle database in containers and then attach a copy of a sample

database schema, using VxFlex Ready Nodes. With the Oracle 12c and 19c databases

running in containers, we show how to access the database using an Oracle SQL

https://www.dellemc.com/en-ie/collaterals/unauth/white-papers/products/ready-solutions/h17332_dellemc_vxflex_os_networking_best_practices.pdf
https://www.dellemc.com/en-ie/collaterals/unauth/white-papers/products/ready-solutions/h17332_dellemc_vxflex_os_networking_best_practices.pdf

Chapter 2: Use Case Overview

12 Oracle with Docker Containers Managed by Kubernetes
Software Development Use Cases using Dell EMC Infrastructure
White Paper

Developer web interface to simulate a typical enterprise web application. Then, we

remove the container and clean up the environment to free resources for the next sprint.

Use Case 2 overview

The second use case continues the containerized application journey by using the CSI

Driver for Dell EMC PowerFlex for Kubernetes to achieve a greater level of automation

and ease of management for development and testing environments. We move beyond

manual provisioning of storage to automated provisioning. Using Kubernetes, our

developer controls the provisioning of the Oracle database and containers from a local

private registry and the database storage from the Dell EMC PowerFlex storage system.

After pulling the Oracle database schema application from the Github site, the developer

protects the updated state of the database code and data by using Kubernetes to take a

snapshot persistent volume container (PVC) of the database. After a round of destructive

testing, the developer then restores the database to the preserved state by using

Kubernetes and snapshot PVC. A technical writer provisions the modified database to

document the code changes, and the developer removes the containers and cleans up

the environment.

Use case comparison summary

The following table provides a high-level comparison of the two use cases:

Table 5. Use-case comparison

Action Use Case 1: Docker only
Use Case 2: Kubernetes and CSI
Driver for Dell EMC PowerFlex

Provisioning a container Manual, using script Self-service (full automation)

Provisioning an Oracle Schema application
from Github.

Storage and operating system
administrator tasks

Removing the container and persistent
storage

Manual, using script

https://github.com/oracle/db-sample-schemas.git
https://github.com/oracle/db-sample-schemas.git

 Chapter 3: Supporting Software Technology

13 Oracle with Docker Containers Managed by Kubernetes
Software Development Use Cases using Dell EMC Infrastructure

White Paper

Chapter 3 Supporting Software Technology

This chapter presents the following topics:

Container-based virtualization ... 14

Docker containers ... 15

Benefits of virtualization with containers .. 15

Kubernetes .. 16

Kubernetes storage classes ... 19

Oracle and Docker containers on Linux .. 20

Chapter 3: Supporting Software Technology

14 Oracle with Docker Containers Managed by Kubernetes
Software Development Use Cases using Dell EMC Infrastructure
White Paper

Container-based virtualization

Two primary methods for enabling software applications to run on virtual hardware are:

• Using virtual machines (VMs) and a hypervisor

• Using container-based virtualization—also known as operating system virtualization

or containerization

The older and more pervasive virtualization method, first developed by Burroughs

Corporation in the 1950s, is the use of VMs and a hypervisor. This method was replicated

with the commercialization of IBM mainframes in the early 1960s. The primary

virtualization method that is used by platforms such as IBM VM/CMS, VMware ESXi, and

Microsoft Hyper-V starts with a hypervisor layer that abstracts the physical components of

the computer. This abstraction enables sharing of the components by multiple VMs, each

running a guest operating system. A more recent development is container-based

virtualization, in which a single host operating system supports multiple processes that are

running as virtual applications.

The following figure contrasts VM-based virtualization with container-based virtualization.

In container-based virtualization, the combination of the guest operating system

components and any isolated software applications constitutes a container running on the

host server, as indicated by the App 1, App 2, and App 3 boxes.

Figure 2. Primary virtualization methods

Both types of virtualization were developed to increase the efficiency of computer

hardware investments by supporting multiple users and applications in parallel.

Containerization further improves the productivity of IT operations by simplifying

application portability. Application developers most often work outside the server

environments in which their programs run. To minimize conflicts in library versions,

dependencies, and configuration settings, developers must re-create the production

environment multiple times for development, testing, and preproduction integration. IT

professionals have found containers easier to deploy consistently across multiple

environments because the core operating system can be configured independently of the

application container.

 Chapter 3: Supporting Software Technology

15 Oracle with Docker Containers Managed by Kubernetes
Software Development Use Cases using Dell EMC Infrastructure

White Paper

Docker containers

The Docker ecosystem consists of the container runtime environment and the tools to

define and build application containers. It also includes managing the interactions

between the runtime environment and the host operating system.

Two Docker runtime environments—the Community Edition and the Enterprise Edition—

are available. The Community Edition is free and comes with best-effort community

support. For our use-case testing, we used the Enterprise Edition because it is more

appropriate for use in production or business-critical situations. The Enterprise Edition

requires purchasing a license that is based on the number of cores in the environment.

Organizations likely have licensed and nonlicensed Docker runtimes and must implement

safeguards to ensure that the correct version is deployed in environments where support

is critical.

A Docker registry is supporting technology that is used for storing and delivering Docker

images from a central repository. Registries can be public, such as Docker Hub, or

private. Docker users install a local registry by downloading a compressed image from

Docker Hub. The compressed image contains all the necessary container components

that are specific to the guest operating system and application. Depending on Internet

connection speed and availability, a local registry can mitigate many of the challenges that

are associated with using a public registry, such as high latency during image downloads.

Docker Hub does provide the option for users to upload private images to a public

registry. However, a local private registry might offer both better security and less latency

for deployment.

Private registries can reside in the cloud or in the local data center. Provisioning speed

and provisioning frequency are two factors to consider when determining where to locate

a private registry. Private registries that are hosted in the data center where they will be

used benefit from the speed and reliability of the LAN, which means images can be

provisioned quickly in most cases. For our use cases, we implemented a local private

registry to enable fast provisioning without the complexities and cost of hosting in the

cloud.

Benefits of virtualization with containers

For data center architects who have standardized on VMware virtualization, a logical

question is whether benefits can be gained from hosting containers on virtual machines.

Our answer is yes—hosting containers on VMware vSphere VMs increases security and

isolation, and it enables the use of multiple host operating systems on one server.

The VxFlex Ready Node infrastructure that we used for this testing hosted two parallel

projects. The projects ran on the same software-defined storage but required isolation

from each other. In our testing, we employed VMware vSphere VM security to prevent

accidental access to resources by anyone outside the respective project teams.

Another key benefit of using VM virtualization for containers is the capability to use

multiple host operating systems on the same server. A bare-metal implementation with

one host operating system would have forced both projects to use the same stack:

operating system, Docker, Kubernetes, and the PowerFlex CSI plug-in. Alternatively, the

projects would use separate physical servers to isolate different container software stacks.

https://hub.docker.com/search?q=restsql&type=image
https://github.com/dell/csi-vxflexos/blob/master/CSI%20Driver%20for%20VxFlex%20OS%20Product%20Guide.pdf

Chapter 3: Supporting Software Technology

16 Oracle with Docker Containers Managed by Kubernetes
Software Development Use Cases using Dell EMC Infrastructure
White Paper

Using VMware for our projects gave us the isolation and consolidation benefits of running

multiple container stacks within VMs on the same VxFlex Ready Node infrastructure.

Performance testing was not part of this project, but testing performance for any

production systems, including virtualized container infrastructure, is essential.

Virtualization adds another layer to the application stack. Both the container and the VM

must be optimized to gain the best performance. For example, the VM configuration

(vCPU, vMem, and storage) must be aligned to the performance requirements of the

containerized application. For more information, see Best Practices for Storage Container

Provisioning in the VMware documents web site.

Note that this solution works on bare metal without the VMware virtualization

layer/environment that is described in this section.

Kubernetes

Modern applications—primarily microservices that are bundled with their dependencies

and configurations—are increasingly being built using container technology. Kubernetes,

also known as K8s, is an open-source platform for deploying and managing containerized

applications at scale. Google open-sourced the Kubernetes container orchestration

system in 2014.

The following figure shows the Kubernetes architecture:

Figure 3. Kubernetes architecture

For additional information about Kubernetes components and concepts, see Kubernetes

Components.

Kubernetes features for container orchestration at scale include:

• Autoscaling, replication, and recovery of containers

• Intracontainer communication, such as IP sharing

• A single entity—a pod—for creating and managing multiple containers

• A container resource usage and performance analysis agent, Container Advisor

(cAdvisor). cAdvisor provides container users an understanding of the resource

usage and performance characteristics of their running containers. It is a daemon

https://docs.vmware.com/en/VMware-vSphere/6.5/com.vmware.vsphere.storage.doc/GUID-5241FE91-B275-4315-8870-0A989779B5B3.html
https://docs.vmware.com/en/VMware-vSphere/6.5/com.vmware.vsphere.storage.doc/GUID-5241FE91-B275-4315-8870-0A989779B5B3.html
https://kubernetes.io/docs/concepts/overview/components/
https://kubernetes.io/docs/concepts/overview/components/

 Chapter 3: Supporting Software Technology

17 Oracle with Docker Containers Managed by Kubernetes
Software Development Use Cases using Dell EMC Infrastructure

White Paper

that collects, aggregates, processes, and exports information about running

containers.

• Network pluggable architecture

• Load balancing

• Health check service

In a simulated development and testing scenario in Use Case 2, we used the Kubernetes

container orchestration system to deploy two Docker containers in a pod.

A Kubernetes cluster consists of at least one cluster master and multiple worker machines

called nodes. These master and node machines run the Kubernetes orchestration system.

A cluster is the foundation of the Kubernetes objects including the containerized Oracle

database application, all running within a cluster (Figure 12). The Kubernetes cluster has

the following components:

• Load balancer—One NGINX load balancer runs on a dedicated Red Hat

Enterprise Linux VM (along with a Docker registry), with VMware Fault Tolerance

(VMware FT) enabled for the VM.

• Local Docker registry—One Docker registry container is deployed on the load

balancer VM for simplicity. For better control and security, deploy the local Docker

registry on its own dedicated VM or VMs that are configured with HA.

• Kubernetes master node—One dedicated Oracle Red Hat Enterprise Linux VM

provides HA for Kubernetes master nodes if there is a failure. The etcd is deployed

on the master node. You can also deploy separate etcd cluster nodes in their own

dedicated VM. Figure 12 depicts the architecture.

• Kubernetes worker nodes—One dedicated Oracle Linux VM works as workload

driver nodes. We put the databases and the customer Data Cluster pods on these

VMs. Figure 10 depicts the details.

The Kubernetes CSI plug-in implements the Container Storage Interface protocol, which

enables containerized applications in Kubernetes clusters to use block storage. To

address the challenges of persistent storage, PowerFlex provides its unique CSI plug-in.

The CSI plug-in for PowerFlex enables our customers to deliver persistent storage for

container-based applications on premises, for both development and production scale.

The Kubernetes CSI specification was developed as a standard for exposing arbitrary

block and file storage systems to containerized workloads through an orchestration layer.

Kubernetes previously provided a powerful volume plug-in that was part of the core

Kubernetes code and shipped with the core Kubernetes binaries. Before the adoption of

CSI, however, adding support for new volume plug-ins to Kubernetes when the code was

“in-tree” was challenging. Vendors who wanted to add support for their storage system to

Kubernetes, or even to fix a problem in an existing volume plug-in, were forced to align

with the Kubernetes release process. Also, third-party storage code can cause reliability

and security issues in core Kubernetes binaries. The code was often difficult—or

sometimes impossible—for Kubernetes maintainers to test and maintain.

The adoption of the CSI specification makes the Kubernetes volume layer truly extensible.

Using CSI, third-party storage providers can write and deploy plug-ins to expose new

Kubernetes

clusters

Kubernetes

Container

Storage Interface

specification

https://kubernetes-csi.github.io/docs/introduction.html

Chapter 3: Supporting Software Technology

18 Oracle with Docker Containers Managed by Kubernetes
Software Development Use Cases using Dell EMC Infrastructure
White Paper

storage systems in Kubernetes without ever having to touch the core Kubernetes code.

This capability gives Kubernetes users more storage options and makes the system more

secure and reliable. Our Use Case 2 highlights these advantages by using the Dell EMC

CSI Driver for Dell EMC PowerFlex to show the benefits of Kubernetes storage

automation.

Figure 4. PowerFlex and Kubernetes architecture with the CSI driver

The PowerFlex CSI driver enables customers to automate storage activities while using

Kubernetes. Capabilities include:

• Persistent volume (PV) actions—Create, list, delete, and create from a snapshot

• Dynamic volume provisioning—Create persistent volumes on demand without

any manual steps

• Snapshot capabilities—Create, delete, and list

Volume prefixes enable LUN identification. For persistent volumes, the CSI plug-in

supports both the ext4 and xfs file systems on worker nodes. The GitHub dell/csi-vxflexos

page provides installation details and a download link for the latest PowerFlex CSI driver.

You can also download the driver product guide from GitHub.

Note: Dell Technologies also offers CSI drivers on GitHub for the following systems:

• Dell EMC XtremIO

• Dell EMC PowerScale

• Dell EMC PowerMax

• Dell EMC Unity

Kubernetes is an open-source container orchestration system. Dell Technologies is a

platinum member of the Cloud Native Computing Foundation (CNCF), which supports

ongoing Kubernetes development. Companies such as VMware, Red Hat, and Canonical

have created their own supported Kubernetes versions that are based on the common

Kubernetes

automation with

the Dell EMC

PowerFlex CSI

driver

Kubernetes

implementations

https://github.com/dell/csi-vxflexos/blob/master/CSI%20Driver%20for%20VxFlex%20OS%20Product%20Guide.pdf
https://github.com/dell/csi-vxflexos/blob/master/CSI%20Driver%20for%20VxFlex%20OS%20Product%20Guide.pdf
https://github.com/dell/csi-vxflexos
https://github.com/dell/csi-vxflexos/blob/master/CSI%20Driver%20for%20VxFlex%20OS%20Product%20Guide.pdf

 Chapter 3: Supporting Software Technology

19 Oracle with Docker Containers Managed by Kubernetes
Software Development Use Cases using Dell EMC Infrastructure

White Paper

open-source version. In the use cases that we describe in this white paper, we used open-

source Kubernetes because of its capability to run anywhere, to cover the broadest

number of designs. For example, key supported platforms include most versions of Linux

and clouds like Google GCP, Amazon AWS, and Microsoft Azure. There is no support

cost for open-source Kubernetes, which is supported by the Kubernetes community;

however, customers needing enterprise support must explore other versions.

VMware Enterprise PKS, which was jointly developed by VMware and Pivotal, is an

enterprise implementation of Kubernetes with deep NSX-T integration and a built-in

private registry. The commitment of VMware and Pivotal to support upstream Kubernetes

means that customers can get a new version of PKS within weeks of a new Kubernetes

release. For customers that have standardized on VMware vSphere, PKS is a natural

extension of the platform.

Red Hat OpenShift is a platform for managing containers across on-premises data centers

and clouds such as Azure Red Hat OpenShift. Red Hat OpenShift is part of the CNCF

Certified Kubernetes program, ensuring compatibility for your container workloads. Ease

of installation, a focus on security, and enterprise support make OpenShift a popular

choice. The Dell Technologies Solutions Info Hub for the Red Hat OpenShift Container

Platform has a library of related technical guides and papers.

Canonical offers a pure upstream Kubernetes platform for managing containers across a

wide range of clouds, including all major public clouds, and in private data centers for both

bare-metal and virtualized infrastructure. Canonical also offers enterprise support for

Kubernetes on Ubuntu for public clouds, VMware, OpenStack, and bare metal.

Kubernetes storage classes

We do not directly use Kubernetes storage classes in either of the use cases that we

describe in this white paper; however, the Kubernetes storage classes are closely related

to the CSI Driver for Dell EMC PowerFlex plug-in. PowerFlex uses a Container Storage

Interface (CSI)-compatible driver with Kubernetes, supporting the broadest set of features

for block storage integration. Using storage classes, persistent applications dynamically

provision PowerFlex volumes directly for any persistent volume requirements. Kubernetes

provides administrators with an option to describe various levels of storage features and

differentiate them by quality-of-service (QoS) levels, backup policies, or other storage-

specific services. Kubernetes is agnostic about these class representations. In other

management systems, this concept is sometimes referred to as storage profiles. The

unique features of PowerFlex make it an excellent complement to Kubernetes for stateful

applications. The storage classes objects are required during Dynamic Volume

Provisioning, but we are performing Static Volume Provisioning in our use cases that are

described in the following sections.

The CSI Driver for Dell EMC PowerFlex creates three storage classes in Kubernetes

during installation. The PowerFlex classes, which can be viewed from the Kubernetes

dashboard, are predefined. These storage classes enable users to specify the amount of

bandwidth to be made available to persistent storage that is created on the array.

Using PowerFlex predefined storage classes efficiently scales an environment by defining

performance limits. For example, a storage class of low for a pool of 100 containers limits

containerized applications so that they consume no more than their allocated bandwidth.

https://infohub.delltechnologies.com/t/red-hat-openshift-container-platform/
https://infohub.delltechnologies.com/t/red-hat-openshift-container-platform/
https://www.dell.com/community/Containers/FAQ-CSI-Driver-for-VxFlexOS/td-p/7285716
https://kubernetes.io/docs/concepts/storage/dynamic-provisioning/
https://kubernetes.io/docs/concepts/storage/dynamic-provisioning/
https://cloud.ibm.com/docs/containers?topic=containers-kube_concepts#static_provisioning
https://github.com/dell/csi-vxflexos/blob/master/CSI%20Driver%20for%20VxFlex%20OS%20Product%20Guide.pdf

Chapter 3: Supporting Software Technology

20 Oracle with Docker Containers Managed by Kubernetes
Software Development Use Cases using Dell EMC Infrastructure
White Paper

Such limitations help to maintain more reliable storage performance across the entire

environment.

Using QoS-based storage classes helps balance the resources that containerized

applications consume and the total amount of storage bandwidth. For scenarios that

require a more customized set of storage classes than those that the CSI Driver for Dell

EMC PowerFlex creates, you can configure PowerFlex storage system QoS in

Kubernetes. In creating a custom QoS policy, you can define maximum bandwidth per GB

or, alternatively, maximum IOPS. You can also define a burst percentage, which is the

amount of bandwidth or IOPS above the maximum limit that the container can use for

temporary performance.

The benefits of using predefined storage classes and customized QoS policies include:

• Guaranteed service for critical applications

• Eliminating “noisy neighbor” problems by placing performance limits on

nonproduction containers

Oracle and Docker containers on Linux

At the DockerCon US event in April 2017, Oracle announced that its Oracle 12c database

software application would be available alongside other Oracle products on Docker Store,

the standard for dev-ops developers. Dev-ops developers have pulled images from the

Docker Store over four billion times, and are increasingly turning to the Docker Store as

the canonical source for high-quality curated content. The other benefit to using a

containerized Oracle database is that administrators, developers, and customers need not

worry about patching and upgrading their Oracle database applications. Docker

containers make it easy to deploy applications that are packaged with all their runtime

dependencies. The basic aim is to build the capability for building microservices-based

container applications without changing code or infrastructure. This approach enables

portability between data centers and obviates the need for changes in traditional

applications by treating them agilely for faster deployment.

Eventually, deploying these containerized applications at a scale of thousands surpasses

human ability. In this task, Kubernetes pods (a group of containers) help in open-source

container orchestration. In the future, it is likely that Oracle Docker containers will run the

microservices while Kubernetes will be used for container orchestration. Also, the

microservices running within Docker containers will communicate with the Oracle

databases by using messaging services.

For this white paper, we worked exclusively with Oracle containers for Oracle Linux. We

recommend that you check with Dell Technologies to ensure that the latest certified CSI

plug-ins are used in your Kubernetes environment.

The following figure shows a prototypical converged Oracle database architecture

featuring Docker and Kubernetes:

https://github.com/dell/csi-vxflexos/blob/master/CSI%20Driver%20for%20VxFlex%20OS%20Product%20Guide.pdf
https://github.com/dell/csi-vxflexos/blob/master/CSI%20Driver%20for%20VxFlex%20OS%20Product%20Guide.pdf
https://www.youtube.com/watch?v=YvU9rfdz-9Q
https://hub.docker.com/_/oracle-database-enterprise-edition
https://en.wikipedia.org/wiki/Oracle_Linux
https://github.com/dell/csi-vxflexos/blob/master/CSI%20Driver%20for%20VxFlex%20OS%20Product%20Guide.pdf
https://github.com/dell/csi-vxflexos/blob/master/CSI%20Driver%20for%20VxFlex%20OS%20Product%20Guide.pdf
https://www.red-gate.com/simple-talk/sql/oracle/getting-started-with-oracle-database-12c-multitenant-architecture/

 Chapter 3: Supporting Software Technology

21 Oracle with Docker Containers Managed by Kubernetes
Software Development Use Cases using Dell EMC Infrastructure

White Paper

Figure 5. Architecture for Oracle database featuring Docker and Kubernetes

Docker volumes provide the ability to define storage to be managed by a Docker

container. The storage is maintained under the Docker directory structure (for example,

/var/lib/docker/volumes) and can be managed from the Docker CLI or through the Docker

API. The Docker engine manages the volumes, which are isolated from direct access by

the host, as shown in the following figure:

Figure 6. Docker volumes

Advantages of Docker data volumes include:

• Volumes work on both Linux and Windows containers.

• Volumes can be safely shared across containers.

• Any container can prepopulate content into new volumes.

Docker volumes

(in container

storage)

Chapter 3: Supporting Software Technology

22 Oracle with Docker Containers Managed by Kubernetes
Software Development Use Cases using Dell EMC Infrastructure
White Paper

For a full list of benefits, see Volumes in the Docker documentation. For this solution, the

Linux administrator used Docker Data Volumes for Use Case 1, which is described in the

next section.

In Use Case 1, the Linux administrator can also use Linux bind mounts to connect an

Oracle database container to PowerFlex storage that has already been provisioned to the

server. The Docker guide indicates that bind mounts are fast, which makes this method

ideal for attaching storage to a container. As shown in the following figure, bind mounts

can be anywhere in the host operating system and are not managed by Docker:

Figure 7. Linux bind mounts

Linux bind

mounts (in host

storage)

https://docs.docker.com/storage/volumes/

 Chapter 4: Dell EMC Flex Nodes and Storage

23 Oracle with Docker Containers Managed by Kubernetes
Software Development Use Cases using Dell EMC Infrastructure

White Paper

Chapter 4 Dell EMC Flex Nodes and Storage

This chapter presents the following topics:

PowerEdge family servers .. 24

Dell Technologies hyperconverged infrastructure - PowerFlex Family
overview .. 24

Chapter 4: Dell EMC Flex Nodes and Storage

24 Oracle with Docker Containers Managed by Kubernetes
Software Development Use Cases using Dell EMC Infrastructure
White Paper

PowerEdge family servers

Dell EMC PowerEdge family servers provide a scalable business architecture, intelligent

automation, and integrated security for high-value data-management and analytics

workloads. The PowerEdge portfolio of rack, tower, and modular server infrastructure,

based on open-standard x86 technology, can help you quickly scale from the data center

to the cloud. PowerEdge servers deliver the same user experience and integrated

management experience across all our product options; thus, you have one set of

runbooks to patch, manage, update, refresh, and retire all your assets.

The R640 server is a 1U form factor that houses up to two Intel Xeon Scalable

processors, each with up to 28 compute cores. It has support for the most popular

enterprise-deployed versions of Linux—Canonical Ubuntu, Red Hat Enterprise Linux, and

SUSE Linux Enterprise Server. The R640 server supports a range of memory

configurations to satisfy the most demanding database and analytic workloads. It includes

24 slots for registered ECC DDR4 load-reduced DIMMS (LRDIMMs) with speeds up to

2,933 MT/s and has expandable memory up to 3 TB. Onboard storage can be configured

with:

• Front drive bays holding up to 10 x 2.5 in. SAS/SATA SSDs, for a maximum of 76.8

TB

• Up to 10 NVMe drives for a maximum of 64 TB

• Up to 4 x 3.5 in. SAS/SATA drives, for a maximum of 56 TB

For our use cases, we chose the PowerEdge R640 server. Three R640 servers are used

as PowerFlex controller nodes and four R640 servers are used as PowerFlex customer

nodes. In summary, the PowerEdge R640 is a 1U rack server that supports up to:

• Two Intel Xeon Scalable processors

• 24 DIMM slots supporting up to 1,536 GB of memory

• Two AC or DC power supply units

• 10 + 2 SAS, SATA, or near-line SAS hard drives or SSDs

For details about the PowerEdge server configuration of R640 that the Dell Technologies

engineers used for the use cases, see Appendix A Solution Architecture and Component

Specifications.

For more details about PowerFlex cluster controller node setup and configuration, see the

Dell EMC PowerFlex: Networking Best Practices and Design Considerations White Paper.

Dell Technologies hyperconverged infrastructure - PowerFlex
Family overview

PowerFlex (previously called VxFlex OS) is the software foundation for the PowerFlex

family. It is a scale-out, software-defined, block storage service designed to deliver

flexibility, elasticity, and simplicity with predictable high performance and resiliency at

scale. The PowerFlex family, which includes the PowerFlex appliance and PowerFlex

rack, are fully supported and configured to customer specifications. VxFlex Ready Nodes

are validated server building blocks configured for use with PowerFlex. They are available

https://i.dell.com/sites/csdocuments/Product_Docs/en/poweredge-r640-spec-sheet.pdf
https://www.dellemc.com/en-ie/collaterals/unauth/white-papers/products/ready-solutions/h17332_dellemc_vxflex_os_networking_best_practices.pdf

 Chapter 4: Dell EMC Flex Nodes and Storage

25 Oracle with Docker Containers Managed by Kubernetes
Software Development Use Cases using Dell EMC Infrastructure

White Paper

with thousands of configuration options and are available for customers who prefer to

build their own environments.

Customers have several configuration options—from solid-state drives (SSDs) to newer

storage technologies such as Non-Volatile Memory Express (NVMe) or Peripheral

Component Interconnect Express (PCIe) flash. With these options, customers can create

storage tiers that match their capacity and performance requirements. Complementary to

storage tiering is the ability to use Quality of Service (QoS) settings. With QoS, customers

can define maximum IOPS, maximum IOPS per GB, maximum bandwidth, and maximum

bandwidth per GB.

PowerFlex virtualization software supports data compression, which saves valuable

storage space on SSDs. Compression is not enabled by default; rather, it must be

specified when a volume is created. If a volume does not support compression, then thin

provisioning is used by default. Thin provisioning is a technology that reserves storage

space by allocating only space that is used, enabling more efficient use of storage.

The PowerFlex rack is an engineered system that provides the ultimate performance,

reliability, scalability, agility, and flexibility for modern data center workloads, IaaS, and

PaaS cloud infrastructure initiatives. The system is powered by PowerFlex software-

defined storage and based on industry-leading enterprise-class PowerEdge servers. It is a

rack scale hyperconverged system that comes with a proprietary intelligent physical

infrastructure (IPI) cabinet and offers integrated networking and a dedicated system

management control plane.

Figure 8. PowerFlex integrated rack benefits

The modular design of the PowerFlex integrated rack enables you to add standardized

units of infrastructure to the environment. With this scalable model, you can expand the

infrastructure in small increments, to help to eliminate the overprovisioning that is

experienced with other approaches. The following figure shows the overall PowerFlex

architecture:

Chapter 4: Dell EMC Flex Nodes and Storage

26 Oracle with Docker Containers Managed by Kubernetes
Software Development Use Cases using Dell EMC Infrastructure
White Paper

Figure 9. PowerFlex integrated rack scalability

The entire system is built and configured at the Dell Technologies factory according to

proven and tested best practices. In addition to the unmatched performance, scalability,

and performance, customers benefit from one-call support for all components and end to

end life cycle management through a proven automated Release Certification Matrix

(RCM) for all components including software and firmware.

PowerFlex consists of three primary components:

• Meta Data Manager (MDM)—The MDMs are responsible for managing metadata

and core functions such as automated rebuild and rebalance, which ensure data

access if media and servers fail. A PowerFlex cluster has multiple MDMs deployed

as master, slaves, standby, and tiebreakers to ensure high availability. At any given

point, a PowerFlex cluster has one master, one or two slaves, and one or two

tiebreaker MDMs. Optionally, the cluster can have up to 10 standby MDMs.

Resiliency improves as you add these standby MDMs, and six-nines of availability

can be expected with three standby MDMs and two tie-breakers.

• Storage Data Client (SDC)—The SDC runs in a server's kernel and acts like a

virtual HBA providing highly available connectivity to the storage cluster, consuming

the storage as required by the application workload. The SDCs are installed on the

same server that is running the application workload, and present PowerFlex

volumes to the operating system as if they were local disks.

• Storage Data Server (SDS)—The SDSs are daemons that contribute storage to

the storage cluster. SDCs communicate directly with the SDSs. When an SDC gets

an I/O request from the application, it detects the cached metadata map and sends

the request directly to the SDS, which contains the requested data. For read

operations, the SDC sees the volume metadata map and sends the request to the

SDS using the network that has the data. The volume metadata map has SDS data

block mapping for the volume. If the I/O is a write, then the SDC detects the volume

metadata map and sends the write request to the SDS that has available block

storage. The SDS concurrently writes a secondary copy of the data to another SDS

in the protection domain. The other SDS becomes the secondary SDS for that data

block. When the secondary copy is written, the primary SDS sends an

acknowledgment to the SDC, completing the I/O request.

PowerFlex has an efficient decentralized block I/O flow that is combined with a distributed,

sliced volume layout. This design results in a massively parallel I/O system that can scale

PowerFlex

Components

 Chapter 4: Dell EMC Flex Nodes and Storage

27 Oracle with Docker Containers Managed by Kubernetes
Software Development Use Cases using Dell EMC Infrastructure

White Paper

up to several hundred nodes. PowerFlex offers multiple deployment options, taking the

flexibility of an HCI and an engineered system to the next level.

In the VMware environment, the PowerFlex SDS is installed as a vSphere Installation

Bundle (VIB) in a special VM called Storage VM (SVM). In other words, the MDM and

SDS components are installed on a dedicated SVM, whereas the SDC is installed directly

on the ESXi host. Storage VMs (SVMs) must have a management IP address and another

address for the data network. The data network is where traffic flows between SDSs and

SDCs (for read/writes) and between SDSs (for rebuild and rebalance).

The PowerFlex volumes that are defined over the Storage Pools are mapped to the ESXi

host and then can be formatted as VMFS datastores, or can be used as RDM devices.

When an SDC is mapped to a volume, it immediately gets access to the volume and

exposes it locally to the applications as a standard block device. DirectPath Device

management is performed using the SVM, yielding the best high availability and

performance using two data networks.

From the PowerFlex GUI, you can perform standard configuration and maintenance

activities, as well as monitor the storage system’s health and performance. You can use

the PowerFlex GUI to retrieve overall PowerFlex performance metrics, and to examine

various elements.

From the PowerFlex GUI, select Backend > Storage.

The Dashboard displays the following performance metrics:

• Overall system IOPS

• Overall system bandwidth

• Read/Write statistics

• Average I/O size

To retrieve volume-specific performance metrics like Read/Write size, Read/Write IOPS,

and Read/Write Bandwidth, select Frontend > Volumes > Volume Monitor.

PowerFlex Manager is a PowerFlex integrated rack management and orchestration

(M&O) tool that provides a simple interface for provisioning, managing, monitoring,

alerting, life cycle management, and reporting. It increases efficiency by reducing time-

consuming manual operations that are otherwise required to implement, provision, and

manage operations for your PowerFlex integrated rack. Through automation, you can

deploy and manage operations for your PowerFlex integrated rack.

Using PowerFlex Manager, you can:

• Quickly discover and inventory nodes in your PowerFlex integrated rack

deployment

• Grow or shrink the PowerFlex integrated rack environment by adding or removing

nodes

• Run your PowerFlex integrated rack that is aligned to IT operations management

practices

VMware storage

virtualization

PowerFlex GUI

PowerFlex

Manager

https://blogs.vmware.com/vsphere/2011/09/whats-in-a-vib.html
https://blogs.vmware.com/vsphere/2011/09/whats-in-a-vib.html
https://en.wikipedia.org/wiki/VM-aware_storage
https://cpsdocs.dellemc.com/bundle/VXF_DEPLOY/page/GUID-58DF3063-7FA5-4DC9-9CB8-53B9B44136F4.html
https://cpsdocs.dellemc.com/bundle/VXF_DEPLOY/page/GUID-58DF3063-7FA5-4DC9-9CB8-53B9B44136F4.html

Chapter 4: Dell EMC Flex Nodes and Storage

28 Oracle with Docker Containers Managed by Kubernetes
Software Development Use Cases using Dell EMC Infrastructure
White Paper

• Monitor, alert, report, and troubleshoot technical issues

• Provide support for the two-layer architecture

• Add or remove volumes within a service

• Store configurations as service templates for easy and consistent deployments

 Chapter 5: Manual Provisioning

29 Oracle with Docker Containers Managed by Kubernetes
Software Development Use Cases using Dell EMC Infrastructure

White Paper

Chapter 5 Manual Provisioning

This chapter presents the following topics:

Use Case 1: Manual provisioning of a containerized
dev/test environment ... 30

Step 1: Install Docker .. 31

Step 2: Activate the Docker EE-License .. 31

Step 3: Run the Oracle 12c container on Docker .. 32

Step 4: Build and run the Oracle 19c container on Docker 34

Step 5: Import sample schemas from GitHub ... 35

Step 6: Install Oracle SQL Developer and query
tables from the container ... 35

Use Case 1 review ... 36

Chapter 5: Manual Provisioning

30 Oracle with Docker Containers Managed by Kubernetes
Software Development Use Cases using Dell EMC Infrastructure
White Paper

Use Case 1: Manual provisioning of a containerized development
and testing environment

Use Case 1 includes both Oracle 12c and 19c containers running on development and

testing environments. As part of this use case, we created four virtual machines:

• Two VMs for running Oracle 12c and 19c containers respectively, each with a 300

GB hard disk, 2 vCPUs, and 20 GB of memory. These VMs are named UC1_12C

and UC1_19C.

• The third VM is used for the Oracle SQL Developer client application, which

provides the GUI interface between both the 12c and 19c Oracle databases

residing inside the containers to the external network.

• The fourth VM is used for storing the Container registry so that Oracle DB images

are available locally. The following diagram shows the Use Case 1 architecture:

Figure 10. Use Case 1 - Architecture

In Use Case 1, we manually provision the container-based development and testing

environment shown above as follows:

1. Install Docker.

2. Activate the Docker EE-License.

3. Run the Oracle 12c database within the Docker container.

4. Build and run the Oracle 19c database in the Docker container.

5. Import the sample Oracle schemas that are pulled from GitHub into the Oracle

12c and 19c database.

6. Install Oracle SQL Developer and query tables from the container.

 Chapter 5: Manual Provisioning

31 Oracle with Docker Containers Managed by Kubernetes
Software Development Use Cases using Dell EMC Infrastructure

White Paper

Step 1: Install Docker

In this step, we install Docker on Oracle Enterprise Linux 7.6 on both VMs (UC1_12C and

UC1_19C). Before installing Docker, ensure that:

• Oracle Enterprise Linux 7.6 is already installed on both VMs

• The host operating system has an Internet connection to Yum repositories for

Oracle Enterprise Linux

When these prerequisites have been met, perform these steps to install the Community

version of Docker:

1. Enable kernel UEKR5 on Oracle Linux 7.6.

[root@docker ~] #yum-config-manager --enable ol7_UEKR5

2. Enable the add-ons.

[root@docker ~] # yum-config-manager --enable *addons

3. Update the repository using Yum.

[root@docker ~] # yum update

4. Install the docker engine.

[root@docker ~] #yum install docker-engine

5. Enable the docker service.

[root@docker ~] #systemctl enable docker

6. Start the docker service.

[root@docker ~] #systemctl start docker

7. Check the docker version.

[root@docker ~] #docker version

Step 2: Activate the Docker Enterprise Edition license

To activate the Docker Enterprise Edition (EE) license, do the following:

1. Download and copy the Docker license key (docker_subscription.lic) to

your local Docker host.

2. Activate the license key.

[root@12c-docker ~] # sudo docker engine activate –license

docker_subscription.lic

3. Verify that the license key has been successfully applied.

[root@12c-docker ~] #docker info

4. Pull a sample “Hello-World” image to validate Docker.

[root@12c-docker ~] #docker pull hello-world

5. Run “hello-world”.

[root@12c-docker ~] #docker run hello-world

Chapter 5: Manual Provisioning

32 Oracle with Docker Containers Managed by Kubernetes
Software Development Use Cases using Dell EMC Infrastructure
White Paper

Step 3: Run the Oracle 12c container on Docker

To pull the Oracle image from the Oracle registry, run the Oracle 12c container from the

Oracle Container Registry (OCR). Follow these steps:

1. From your local host, log in to Oracle Container Registry and provide the

credentials.

[root@12c-docker ~] # Docker login container-

registry.oracle.com

2. Open a web browser, log in to the OCR, provide your Oracle support ID and

password, and select a database.

3. Select the Oracle database 12.2.0.1 Docker image.

4. Pull the 12c Docker image from the OCR.

Note: Having access to high-quality container images from a trusted source can save many hours

of labor that are typically required to create and manage images that are built locally from Docker

files. Always check requirements before attempting to deploy a container image.

[root@12c-docker ~] # docker pull container-

registry.oracle.com/database/enterprise:12.2.0.1

5. Display the Docker images.

[root@12c-docker ~] #docker images

6. To save bandwidth, we recommend using the option to set up a private Docker

registry for running the containers. Follow these steps to set up a local private

registry:

a. [root@12c-docker ~] # mkdir -p /opt/registry/data

b. [root@12c-docker ~] # mkdir -p /var/lib/registry

c. [root@12c-docker ~] #docker run -d -p 5000:5000 --name

registry -v /opt/registry/data:/var/lib/registry/ --

restart always registry

7. Tag the Oracle 12c image with the local host.

[root@12c-docker ~] #docker tag container-

registry.oracle.com/database/enterprise:12.2.0.1

localhost:5000/ora12C

8. Push the Oracle 12c image to the local repository.

[root@12c-docker ~] # docker push localhost:5000/ora12c

Note: If you customize the Oracle container image, save both the base image and any

customization to the local private registry with appropriate annotations, if required, for your

business use case.

9. Examine the contents of the local repository.

[root@12c-docker ~] # ls -ll

/opt/registry/data/docker/registry/v2/repositories/

 Chapter 5: Manual Provisioning

33 Oracle with Docker Containers Managed by Kubernetes
Software Development Use Cases using Dell EMC Infrastructure

White Paper

10. On the host OS, create a Docker volume named “test” and mount it on

/home/oracle. Oracle Linux administrators can also use bind mounts to ensure

local persistence and avoid data loss. (Add a bind mount to the File Systems table

in your server’s File Systems Table (fstab)). Though bind mounts are better

suited for the Oracle database usage within a container environment, volumes are

the preferred mechanism for persisting data generated by and used by Docker

containers. In other words, volumes have several advantages over bind mounts;

these advantages are described in Docker docs. For Use Case 1, Dell

Technologies used Docker volumes. To create Docker volumes, run these

commands:

a. [root@12c-docker ~] #docker volume create --driver local

--opt type=none --opt device=/home/oracle/ --opt o=bind

test

b. [root@12c-docker ~] #docker volume create -d local -o

Mountpoint=/home/oracle --name=test

11. Create any necessary groups and users. To implement the security and access

mechanism within Oracle database, create groups and valid permissions and add

them to the Oracle users as described in the steps below.

a. [root@12c-docker oracle] # groupadd -g 54321 oinstall

b. [root@12c-docker oracle] # groupadd -g 54322 dba

c. [root@12c-docker oracle] # useradd -u 54321 -g oinstall

-G dba oracle

12. Because we are hosting database files in the /home/oracle directory on the

local host, avoid permissions issues from subsequent commands by changing the

permissions of this directory:

a. [root@12c-docker oracle] # chown -R oracle: dba

/home/oracle

b. [root@12c-docker oracle] # chmod -R 777 /home/oracle

13. Create the Oracle database within the container with the parameters shown

below:

[root@12c-docker ~] #docker run -d --name database12c -p

1521:1521 -p 5500:5500 -e ORACLE_SID=ORCLCDB -e

ORACLE_PDB=orclpdb1 -e ORACLE_PWD=oracle -v test:/ORCL

localhost:5000/ora12c

14. Log into the 12c container. In this step we execute an interactive bash shell on

the container to run the Oracle 12c database services that are running inside the

Docker container. Subsequently we will log in to the Oracle 12c database residing

within the container.

[root@12c-docker ~] # docker exec -it 3804167e17da

bash[oracle@3804167e17da ~] $ sqlplus "/ as sysdba"

https://docs.docker.com/storage/bind-mounts/
https://docs.docker.com/storage/volumes/

Chapter 5: Manual Provisioning

34 Oracle with Docker Containers Managed by Kubernetes
Software Development Use Cases using Dell EMC Infrastructure
White Paper

Step 4: Build and run the Oracle 19c container on Docker

This step is similar to Step 3 except that the Oracle 19c database image (unlike the

Oracle 12c database image) is pulled from the Github repository.

1. Download the build files (images) for Oracle 19c from GitHub.

[root@19c-docker ~] # git clone https://github.com/marcelo-

ocha/docker-images.git

2. Download and copy the Oracle 19c database binaries to the location shown

below.

[root@19c-docker ~] # pwd

/root/dockerimages/OracleDatabase/SingleInstance/dockerfiles

/19.3.0

3. Build the Docker images.

[root@19c-docker ~] #./buildDockerImage.sh -v 19.3.0 -e –I

4. Push the 19c Docker images to the local private registry.

a. [root@19c-docker ~] # docker run -d -p 5000:5000 --name

registry -v /opt/registry/data:/var/lib/registry/ --

restart always registry

b. [root@19c-docker ~] # docker tag oracle/database:19.3.0-

ee localhost:5000/ora19

c. [root@19c-docker ~] # docker push localhost:5000/ora19

5. On the host operating system, to ensure persistence, create named Docker

volumes.

[root@19c-docker ~] # docker volume create --driver local --

opt type=none --opt device=/home/oracle/ --opt o=bind test

[root@19c-docker ~] # docker volume create -d local -o

Mountpoint=/home/oracle --name=test

6. Create any necessary groups and users.

a. [root@19c-docker oracle] # groupadd -g 54321 oinstall

b. [root@19c-docker oracle] # groupadd -g 54322 dba

c. [root@19c-docker oracle] # useradd -u 54321 -g oinstall

-G dba oracle

7. On the local host, we are hosting database files in the /home/oracle directory. To

avoid permissions issues from subsequent commands, change the permissions of

this directory.

a. [root@19c-docker oracle] # chown -R oracle: dba

/home/oracle

b. [root@19c-docker oracle] # chmod -R 777 /home/oracle

8. Run the container.

[root@19c-docker ~] #docker run -d --name database19c -p

1521:1521 -p 5500:5500 -e ORACLE_SID=ORCLCDB -e

https://github.com/oracle/docker-images
https://github.com/oracle/docker-images

 Chapter 5: Manual Provisioning

35 Oracle with Docker Containers Managed by Kubernetes
Software Development Use Cases using Dell EMC Infrastructure

White Paper

ORACLE_PDB=orclpdb1 -e ORACLE_PWD=oracle -v test:/ORCL

localhost:5000/ora12c

9. Log in to the 19c container.

[root@19c-docker ~] # docker exec -it d9a40ee6ca10 bash

[oracle@d9a40ee6ca10 ~] $ sqlplus "/ as sysdba"

Step 5: Import sample schemas from GitHub

In this step we pull the ready-made Oracle 19c schema repository from the Github

location and dump it into the local volume. This repository contains a copy of the Oracle

Database sample schemas that are installed with Oracle Database Enterprise Edition.

From the repository, we import the HR schema into the Oracle 19c database by running

the script @mksample.

To pull the sample schemas from GitHub, do the following:

1. Import sample schemas.

[root@12c-docker ~] # git clone

https://github.com/oracle/db-sample-schemas.git

2. Copy these sample schemas to the Docker volume that is accessible to the

container.

[root@12c-docker oracle_sample_schema] # cp -R db-sample-

schemas/ /home/oracle/

3. Modify the folder path inside the scripts to what it is inside the container. For

example:

[root@12c-docker db-sample-schemas] # perl -p -i.bak -e

's#__SUB__CWD__#'/opt/oracle/oradata/db-sample-schemas'#g'

*.sql */*.sql */*.dat

4. Run the script “mksample” in the container to create sample schemas inside the

database. Provide the credentials for sys, system users, and all other schemas

when prompted.

sql>alter session set container=ORCLPDB1;

sql>@mksample

Step 6: Install Oracle SQL Developer and query tables from the
container

In this step we download Oracle SQL Developer from the Oracle download site and install

Oracle SQL Developer into the fourth VM as demonstrated in Figure 10. Oracle SQL

Developer is a client software that can be used to connect to any of the Oracle 12c and

19c databases for data manipulation within the Oracle databases. By running different

SQL queries from the Oracle SQL Developer (Figure 11) to Oracle databases, we

establish that the Oracle databases are operational

https://github.com/oracle/db-sample-schemas
https://github.com/oracle/db-sample-schemas
https://www.oracle.com/tools/downloads/sqldev-v192-downloads.html

Chapter 5: Manual Provisioning

36 Oracle with Docker Containers Managed by Kubernetes
Software Development Use Cases using Dell EMC Infrastructure
White Paper

To install Oracle SQL Developer, do the following.

1. Download Oracle SQL Developer 19.2.1 Downloads for Linux 64 bit rpm with

Oracle jdk 13.0.1 from https://www.oracle.com/tools/downloads/sqldev-v192-

downloads.html.

2. Install the Oracle SQL Developer rpm package.

[root@12c-docker ~ #rpm -ivh sqldeveloper-

19.2.12.247.2212.noarch.rpm

3. Open sqldeveloper.

[root@12c-docker ~] #sqldeveloper

4. Set up the connection user:hr password service name: ORCLPDB1, as shown in

the following figure.

5. You can now query the tables in as shown in the following figure:

Figure 11. Query the tables

Use Case 1 review

The key benefit in our first use case was the time that we saved by using Docker

containers instead of the traditional manual installation and configuration method of

building a typical Oracle database environment. The traditional build process is complex

and involves much time and planning. With Docker containers, the traditional build

process is transformed into a self-service on-demand experience that enables developers

and others to rapidly deploy applications. Using Docker containers offers many

advantages. The primary benefit in this first use case is the capability of having an Oracle

database container running in a matter of minutes.

https://www.oracle.com/tools/downloads/sqldev-v192-downloads.html
https://www.oracle.com/tools/downloads/sqldev-v192-downloads.html

 Chapter 5: Manual Provisioning

37 Oracle with Docker Containers Managed by Kubernetes
Software Development Use Cases using Dell EMC Infrastructure

White Paper

While setting up the Docker container environment for this use case, we learned valuable

lessons regarding server environment configuration and its impact on the cost of Docker

licensing. Use Case 1 planning also demonstrated the importance of selecting the Docker

registry location and storage provisioning options that are most appropriate for the

requirements of a typical development and testing environment.

Dell Technologies offers a broad selection of servers, enabling customers to configure

their compute resources to match business requirements. PowerEdge R640 servers

optimize the Docker Enterprise Edition per-core licensing. We recommend investing time

into designing a PowerEdge server environment that maximizes your Docker licensing

investment. The key to the greatest return on your Docker environment is consolidation

that maximizes the efficiency of CPU utilization.

When selecting the location for a Docker registry, consider ease of use and support,

speed of container provisioning, and frequency of container provisioning. Container

provisioning speed and frequency requirements help determine where the registry

resides. For example, for low-speed and low-frequency provisioning, a cloud-based

registry approach might be ideal. High-speed provisioning that is coupled with high-

frequency provisioning can mean that a local private registry using a LAN is best.

Provisioning storage from the PowerFlex storage array is fast and easy, but it is a manual

process that requires coordination between the developer and the storage administrator.

In this use case, we demonstrated manual provisioning of storage, which works well for

small development environments. For larger development environments, or for customers

who are interested in automation regardless of the environment size, Use Case 2 shows

how Kubernetes, combined with the CSI Driver for PowerFlex, accelerates storage

provisioning.

In Use Case 1, we used Docker volumes, but we could have used bind mounts which

would allow Docker to implement in-host storage for fast performance. This method is

ideal for attaching storage to a container and can be anywhere in the host operating

system. When bind mounts are used, any server processor or person can access the

directory. However, administrators can manage this access by securing database files at

the owner and group levels and by using directory and file permissions.

The following table provides a high-level summary of the decisions we made when

implementing containerized Oracle database Server in Use Case 1.

Table 6. Summary of business decisions in Use Case 1

Choice Decision Explanation

Docker Community Edition
or Enterprise Edition

Enterprise Edition Provides certified images and
business support

Cloud-based private registry
or local private registry

Local private registry Offers the fastest provisioning
of containers, although
increases complexity and
support requirements

Server

environment

configuration

Docker registry

location

Storage

provisioning

Business

decision

summary

Chapter 5: Manual Provisioning

38 Oracle with Docker Containers Managed by Kubernetes
Software Development Use Cases using Dell EMC Infrastructure
White Paper

Choice Decision Explanation

CSI Driver for PowerFlex
product guide or automated
provisioning

Manual storage provisioning Is appropriate for the limited
requirements of this use case

Docker volumes or bind
mounts

We used Docker volumes in
Use Case 1. But customers
could use bind mounts for this
use case instead.

Provides speed, flexibility and
ease of deployment of Oracle
database in the Docker
containers.

 Chapter 6: Automated Provisioning

39 Oracle with Docker Containers Managed by Kubernetes
Software Development Use Cases using Dell EMC Infrastructure

White Paper

Chapter 6 Automated Provisioning

This chapter presents the following topics:

Use Case 2: Automated provisioning of a containerized dev/test
environment .. 40

Step 1: Set up the Kubernetes cluster ... 42

Step 2: Set up the Kubernetes dashboard .. 46

Step 3: Set up the Kubernetes load-balancer ... 47

Step 4: Configure the CSI driver for Dell EMC PowerFlex 48

Step 5: Create Persistent Volume Claim (PVC) and
Oracle Pods on PowerFlex .. 53

Step 6: Create snapshot(s) and restore persistent volume............................ 55

Step 7: Verify data persistency and restore snapshot 56

Use Case 2 review ... 58

CSI plug-ins: Additional Dell EMC options .. 59

Chapter 6: Automated Provisioning

40 Oracle with Docker Containers Managed by Kubernetes
Software Development Use Cases using Dell EMC Infrastructure
White Paper

Use Case 2: Automated provisioning of a containerized
development and testing environment

In Use Case 1, we showed the manual provisioning of a container on an Oracle Linux OS,

PowerFlex storage system, and VMware vSphere virtualization stack. The next step will

effectively lead to automated provisioning of containers and storage via Container

orchestration (Kubernetes), further accelerating the provisioning of the software

development environment. This is even more important when hundreds or thousands of

containers must be managed. Implementing Oracle databases in Docker containers

ensures consistent, isolated, and reliable behavior across environments. In this use case,

a developer provisions the Oracle database in containers on the existing infrastructure

described in Use Case 1 by using Kubernetes with the CSI Driver for Dell EMC

PowerFlex.

Use Case 2 demonstrates the value of CSI plug-in integration with Kubernetes and

PowerFlex storage. Kubernetes orchestration with PowerFlex provides a container

strategy on persistent storage. This strategy demonstrates the ease, simplicity, and speed

in scaling out a development and testing environment from production Oracle databases.

Use Case 2 includes both Oracle 12c and 19c database containers running on the

development and testing environment within the Kubernetes cluster as shown below.

Figure 12. Use Case 2 – Architecture

As shown in the architecture diagram of Use Case 2 (above), one master node and three

worker nodes are running within the Kubernetes cluster. The Kubernetes Master is a

collection of processes that run on a single node in the cluster, which is designated as the

Use Case 2

architecture

description

https://kubernetes.io/docs/concepts/

 Chapter 6: Automated Provisioning

41 Oracle with Docker Containers Managed by Kubernetes
Software Development Use Cases using Dell EMC Infrastructure

White Paper

master node. Those processes are: kube-apiserver, kube-controller-manager and kube-

scheduler. Each individual worker node in your cluster runs two processes:

• kubelet, which communicates with the Kubernetes Master.

• kube-proxy, a network proxy which reflects Kubernetes networking services on

each node.

Kubernetes in an ESXi environment, the PowerFlex SDS, and MDM (explained earlier)

are deployed in a special VM called Storage VM (SVM). A Storage VM (SVM) must have

a management IP address and another address for the data network where traffic flows

between SDSs and SDCs (explained earlier) for read/writes. Inside the Kubernetes

cluster, we install the CSI Driver for Dell EMC PowerFlex which is a plug-in that provides

persistent storage, using PowerFlex. The driver has two components: CSI controller and

CSI agent. While CSI controller facilitates control, coordination, and communication

among various worker nodes, the CSI agent sends the status of the target node/server to

the CSI controller for management purposes. The distribution of various components of

Use Case 2 objects in different Kubernetes worker nodes is depicted in the following

table:

Table 7. Distribution of application/Objects across different Kubernetes worker nodes

Kubernetes Virtual Machine Application/ Object POD

Kubernetes Worker 1 VM1 CSI Controller POD1

CSI Agent POD2

VM2 Oracle Container registry

Kubernetes Worker 2 VM1 Oracle 12c DB POD1

 CSI Agent POD2

Kubernetes Worker 3 VM1 Oracle 19c DB POD1

 CSI Agent POD2

 VM2 Oracle SQL Developer

Use Case 2 runs on VxFlex Ready Nodes which combine PowerEdge servers with

PowerFlex software in scalable, reliable, and easy-to-deploy building blocks for hyper-

converged or server SAN architecture, heterogeneous virtualized environments, and high

performance databases. VxFlex Ready Nodes provide flexibility in deployment options,

quick and easy deployments, enterprise-grade resilience, and massive scalability.

In Use Case 2, we manually perform the following tasks to provision a container-based

development and testing environment:

1. Setting up the Kubernetes cluster

2. Setting up the Kubernetes dashboard

3. Setting up the Kubernetes load-balancer

4. Configuring the CSI driver for PowerFlex

5. Creating Persistent Volume Claim (PVC) and Oracle Pods on PowerFlex

Provisioning the

environment

https://kubernetes.io/docs/admin/kube-apiserver/
https://kubernetes.io/docs/admin/kube-controller-manager/
https://kubernetes.io/docs/admin/kube-scheduler/
https://kubernetes.io/docs/admin/kube-scheduler/
https://github.com/dell/csi-vxflexos
https://www.dell.com/en-in/work/shop/povw/vxflex-ready-nodes

Chapter 6: Automated Provisioning

42 Oracle with Docker Containers Managed by Kubernetes
Software Development Use Cases using Dell EMC Infrastructure
White Paper

6. Creating snapshots and restoring persistent volumes

7. Verifying Data persistence and snapshot restore

Step 1: Set up the Kubernetes cluster

For Use Case 2, we show a basic Kubernetes installation to demonstrate how having the

container orchestration system on our LAN provides greater performance and control as

well as the ability to customize the configuration. The Kubernetes administrator performs a

custom installation of Kubernetes before performing prerequisite tasks as described

below. The Kubernetes cluster will facilitate the automation of the manual tasks of the

Docker containers that were already described in Use Case 1.

Setting up the Kubernetes includes the following tasks:

• Fulfilling prerequisites

• Installing Kubernetes

• Initializing the Kubernetes cluster

• Adding worker nodes to the Kubernetes cluster

Before setting up the Kubernetes cluster, complete the following prerequisite tasks:

• Set SELinux to permissive mode.

• Configure the firewall.

• Ensure that the br_netfilter module is loaded.

• Disable swap for all nodes.

The following sections provide the details for performing these tasks.

Set SELinux to permissive mode

Setting SELinux to permissive mode enables containers to access the host file system,

which is required by pod networks.

/usr/sbin/setenforce 0

sed -i 's/^SELINUX=enforcing$/SELINUX=permissive/'

/etc/selinux/config

Configure the firewall

To configure the firewall, select one of the following options:

• If you have a requirement to run a firewall directly on the nodes on which

Kubernetes is deployed, be sure to comply with these requirements:

a. The firewall must support masquerading.

firewall-cmd --add-masquerade --permanent

b. All nodes must be able to accept connections from the master node on TCP

port 10250.

firewall-cmd --add-port=10250/tcp --permanent

Prerequisites

 Chapter 6: Automated Provisioning

43 Oracle with Docker Containers Managed by Kubernetes
Software Development Use Cases using Dell EMC Infrastructure

White Paper

c. Traffic must be allowed on the UDP port 8472.

firewall-cmd --add-port=8472/udp --permanent

d. Ensure that all ports required by Kubernetes are available. For instance, TCP

port 6443 must be accessible on the master node to allow other nodes to

access the API Server. Run the following command on the master node:

firewall-cmd --add-port=6443/tcp –permanent

e. Restart the firewall for these rules to take effect.

All nodes must be able to receive traffic from all other nodes on every port on the

network fabric that is used for the Kubernetes pods.

• If you have a requirement NOT to run a firewall directly on the nodes on which

Kubernetes is deployed, enter the following commands:

systemctl disable firewalld

systemctl stop firewalld

Ensure that the br_netfilter module is loaded

Ensure that the br_netfilter module exists and is loaded. This module is usually loaded,

and it is unlikely that you would need to load this module manually.

1. Check whether the br_netfilter module is loaded with this command:

lsmod|grep br_netfilter

2. (Optional) If necessary, load the br_netfilter module manually by entering these

commands:

modprobe br_netfilter

echo "br_netfilter" > /etc/modules-

load.d/br_netfilter.conf

3. Kubernetes requires that packets traversing a network bridge are processed by

iptables for filtering and for port forwarding. Ensure that net.bridge.bridge-

nf-call-iptables is set to 1 in the sysctl configuration file on all nodes.

cat <<EOF > /etc/sysctl.d/k8s.conf

net.bridge.bridge-nf-call-ip6tables = 1

net.bridge.bridge-nf-call-iptables = 1

EOF

/sbin/sysctl -p /etc/sysctl.d/k8s.conf

Disable swap for all nodes

Enter these commands to check for performance degradation.

sed -i '/swap/d' /etc/fstab

swapoff -a

Chapter 6: Automated Provisioning

44 Oracle with Docker Containers Managed by Kubernetes
Software Development Use Cases using Dell EMC Infrastructure
White Paper

In Use Case 2, we are using one master node and three worker nodes.

To install Kubernetes, follow these steps:

1. Ensure that network configuration is complete on all Kubernetes nodes and that

all the nodes are communicating with each other and the Internet. Place the

hostname and IP address in the /etc/hosts file on all the nodes. All references

of IP addresses for the Kubernetes master and worker nodes are stored in this

hosts file which is used by different Kubernetes processes.

2. Ensure that Docker Enterprise Edition is installed on all the Kubernetes nodes. To

check if Docker service is running, enter the following command:

[root@docker ~] # systemctl status docker

To check the Docker version, enter this command:

[root@docker ~] #docker version

3. If the Docker Enterprise Edition is not already installed, install it by following the

procedure described in Step 2: Activate the Docker Enterprise Edition license.

4. Add the Kubernetes repository, which is basically the creation of the etcd

repository that is the primary key-value datastore of Kubernetes cluster state as

depicted in Figure 12.

cat <<EOF > /etc/yum.repos.d/kubernetes.repo

[kubernetes]

name=Kubernetes

baseurl=https://packages.cloud.google.com/yum/repos/kubernet

es-el7-x86_64

enabled=1

gpgcheck=1

repo_gpgcheck=1

gpgkey=https://packages.cloud.google.com/yum/doc/yum-key.gpg

https://packages.cloud.google.com/yum/doc/rpm-package-

key.gpg

EOF

5. Install the Kubernetes packages kubeadm, kubelet, and kubectl. If you are

installing a specific version of Kubernetes (such as 1.14.9), specify the version

now.

yum install kubelet-1.14.9 kubectl-1.14.9 kubeadm-1.14.9

systemctl enable kubelet

systemctl start kubelet

Note: All these Kubernetes processes are described in earlier sections and depicted in Figure 12.

Kubernetes is now loaded on all nodes and ready to be configured.

Installing

Kubernetes

file:///C:/Users/Tucker5/Downloads/packages.cloud.google.com/yum/doc/rpm-package-
file:///C:/Users/Tucker5/Downloads/packages.cloud.google.com/yum/doc/rpm-package-

 Chapter 6: Automated Provisioning

45 Oracle with Docker Containers Managed by Kubernetes
Software Development Use Cases using Dell EMC Infrastructure

White Paper

These steps help you initialize Kubernetes, set up a cluster, and test your Oracle 12c and

19c applications. The steps in this section verify the operability of the Kubernetes cluster

and test the networking communications between the master and worker Kubernetes

nodes.

1. To initialize the Kubernetes cluster, run the following command on the master

node.

kubeadm init --pod-network-cidr=192.168.0.0/16 --

kubernetes-version=1.14.9 --ignore-preflight-

errors=Swap,FileContent--proc-sys-net-bridge-bridge-nf-call-

iptables,SystemVerification

Where:

▪ pod-network-cidr =192.168.0.0/16 is the range of IP addresses for the pod

network. (We are using the ‘calico’ virtual network. If you want to use another

pod network such as weave-net or flannel, change the IP address range.)

There will be different IP addresses for different pod networks. For example, for

flannel the address can be 10.244.0.0/16.

▪ kubernetes-version=1.14.9 is the Kubernetes version that you installed on the

Kubernetes nodes

2. After the initialization completes, perform the following steps on the master node

to copy the node joining command and save it to use in the next section when

adding worker nodes to the cluster:

mkdir -p $HOME/.kube

sudo cp -i /etc/kubernetes/admin.conf $HOME/.kube/config

sudo chown $(id -u):$(id -g) $HOME/.kube/config

3. Deploy the pod (calico) network to the Kubernetes cluster.

kubectl apply -f

https://docs.projectcalico.org/v3.10/manifests/calico.yaml

4. Check the Kubernetes system pods.

#kubectl get pods --all-namespaces

1. Connect to each worker node and run the kubeadm join command that we copied

in the previous procedure. The addition of Kubernetes worker nodes to the

Kubernetes master completes the cluster creation process.

kubeadm join 10.230.87.241:6443 --token

sntfta.wjsndor3q8zqrpjz --discovery-token-ca-cert-hash

sha256:2e46cf8ffb2838bfee7d419d6bc27b27e0713f98741b84c8cb673

bc34f49e017

Note: Synchronize the system time on the master node and worker nodes.

2. Connect to the master node and check the nodes' status.

kubectl get nodes

Initializing the

Kubernetes

cluster

Adding worker

nodes to the

Kubernetes

cluster

Chapter 6: Automated Provisioning

46 Oracle with Docker Containers Managed by Kubernetes
Software Development Use Cases using Dell EMC Infrastructure
White Paper

Step 2: Set up the Kubernetes dashboard

Kubernetes dashboard is a web-based Kubernetes user interface that you can use to

deploy containerized applications like Oracle database to a Kubernetes cluster,

troubleshoot your containerized application, and manage the cluster resources. You can

use the dashboard to get an overview of applications running on your cluster, as well as to

create or modify individual Kubernetes resources (such as deployments, jobs, daemon

sets, and so on).

Figure 13. Kubernetes Dashboard

The steps to set up the Kubernetes dashboard are as follows:

1. To create a dashboard for the Kubernetes cluster, connect to the git repository

and download the following required yaml files:

▪ influxdb.yaml

▪ heapster.yaml

▪ dashbord.yaml

▪ sa_cluster_admin.yaml

2. Create the following dashboard configuration files:

#kubectl create -f influxdb.yaml

#kubectl create -f heapster.yaml

#kubectl create -f dashbord.yaml

#kubectl create -f sa_cluster_admin.yaml

3. Display the token for the service account.

#kubectl -n kube-system describe sa dashboard-admin

4. Using the service account token displayed in the previous step, get the token for

the dashboard login and copy it.

https://kubernetes.io/docs/tasks/access-application-cluster/web-ui-dashboard/

 Chapter 6: Automated Provisioning

47 Oracle with Docker Containers Managed by Kubernetes
Software Development Use Cases using Dell EMC Infrastructure

White Paper

#kubectl -n kube-system describe secret <sa token copied

above>

5. In a web browser, access the Kubernetes dashboard using this URL format:

https://<ip address of master node>:32323

For example: https://10.230.87.241:32323

6. Choose the token option and specify the same token value that you received from

the command line in Step 3 and copied in Step 4.

7. The Kubernetes dashboard displays various navigation options, as shown in the

following figure:

Figure 14. The Kubernetes dashboard

Step 3: Set up the Kubernetes load-balancer

Load balancing in Kubernetes is used to optimally balance the load distribution emanating

out of the networking traffic from external sources. Load balancing is accomplished

through a feature called kube-proxy, which manages the virtual IPs used by services. To

access deployments in the Kubernetes cluster from the external network, we must set up

a load-balancer. In this setup, we are using MetalLB as a load-balancer.

1. To install MetalLB, apply the manifest on the master node.

#kubectl apply -f

https://raw.githubusercontent.com/google/metallb/v0.8.3/mani

fests/metallb.yaml

This command deploys MetalLB in the Kubernetes cluster, under the metallb-

system namespace.

2. To configure MetalLB, create the config yaml file (metallb-config.yaml) by

adding the following content to the file:

apiVersion: v1

Chapter 6: Automated Provisioning

48 Oracle with Docker Containers Managed by Kubernetes
Software Development Use Cases using Dell EMC Infrastructure
White Paper

kind: ConfigMap

metadata:

 namespace: metallb-system

 name: config

data:

 config: |

 address-pools:

 - name: default

 protocol: layer2

 addresses:

 - 10.230.87.180-10.230.87.190

3. Run the create command.

#kubectl create -f metallb-config.yaml

4. After configuring the load-balancer, create a service type called ‘LoadBalancer’ for

deployment. This service generates an IP address that helps to connect pods with

the external network.

Step 4: Configure the CSI driver for Dell EMC PowerFlex

The CSI Driver for Dell EMC PowerFlex is a plug-in that is installed in Kubernetes to

provide persistent storage, using PowerFlex. In addition to our Kubernetes environment,

we also need a CSI Driver for Dell EMC PowerFlex to complete the automation process.

CSI plug-ins are a Kubernetes-defined standard that Dell Technologies and others use to

expose block and file storage to container orchestration systems. CSI plug-ins unify

storage management across many container orchestration systems, including Mesos,

Docker Swarm, and Kubernetes.

Helm charts initiate the installation of the CSI driver. The Helm chart uses a shell script to

install the CSI Driver for Dell EMC PowerFlex. This script installs the CSI driver container

image and the required Kubernetes sidecar containers.

To configure the CSI Driver for Dell EMC PowerFlex:

• Install Kubernetes (see the previous section for Installing Kubernetes).

• Verify that zero padding is enabled on the PowerFlex storage pools that will be

used. Use PowerFlex GUI or the PowerFlex CLI to check this setting.

Then complete the following tasks (defined in detail in the following sections) for

configuring the CSI Driver:

• Enable the Kubernetes feature gates

• Configure the Docker service

• Install the Helm package manager

• Install the PowerFlex Storage Data Client (SDC)

• Install the CSI Driver for Dell EMC PowerFlex

https://github.com/dell/csi-vxflexos
https://helm.sh/docs/topics/charts/

 Chapter 6: Automated Provisioning

49 Oracle with Docker Containers Managed by Kubernetes
Software Development Use Cases using Dell EMC Infrastructure

White Paper

Enable the required Kubernetes feature gates before installing the CSI Driver for Dell

EMC PowerFlex. In this case, we enable the VolumeSnapshotDataSource feature gate as

shown in the steps below:

1. On each Kubernetes master and worker node, to set feature gate settings for the

kubelets, edit the /var/lib/kubelet/config.yaml file by adding the

following line at the end:

VolumeSnapshotDataSource: true

2. On the master node, set the feature gate settings of the kube-apiserver.yaml

file:

vi /etc/kubernetes/manifests/kube-apiserver.yaml

Append the following line to the kube-apiserver.yaml file

- --feature-gates=VolumeSnapshotDataSource=true

3. On the master node, set the feature gate settings of the kube-controller-

manager.yaml file as follows:

vi /etc/kubernetes/manifests/kube-controller-manager.yaml

Append following line to the kube-controller-manager.yaml file:

- --feature-gates=VolumeSnapshotDataSource=true

4. On the master node, set the feature gate settings of the kube-scheduler.yaml

file as follows:

vi /etc/kubernetes/manifests/kube-scheduler.yaml

Append the following line to the kube-scheduler.yaml file:

- --feature-gates=VolumeSnapshotDataSource=true

5. On each node, edit the variable KUBELET_KUBECONFIG_ARGS of

/usr/lib/systemd/system/kubelet.service.d/10-kubeadm.conf file

as follows:

Environment="KUBELET_KUBECONFIG_ARGS=--bootstrap-

kubeconfig=/etc/kubernetes/bootstrap-kubelet.conf --

kubeconfig=/etc/kubernetes/kubelet.conf --feature-

gates=VolumeSnapshotDataSource=true"

6. Use the following commands to restart the kubelet on all nodes:

systemctl daemon-reload

systemctl restart kubelet

Configure the mount propagation in Docker on all Kubernetes nodes before installing the

CSI driver. Mount propagation volumes mounted by a Container to be shared with other

Containers in the same Pod, or even to other Pods on the same node.

1. Edit the service section of /etc/systemd/system/multi-

user.target.wants/docker.service file as follows:

Enable the

Kubernetes

feature gates

Configure the

Docker service

https://kubernetes.io/docs/reference/command-line-tools-reference/feature-gates/
https://kubernetes.io/docs/concepts/storage/volumes/#mount-propagation

Chapter 6: Automated Provisioning

50 Oracle with Docker Containers Managed by Kubernetes
Software Development Use Cases using Dell EMC Infrastructure
White Paper

Docker.service

[Service]

…

MountFlags=shared

2. Restart the Docker service.

systemctl daemon-reload

systemctl restart docker

Helm is a package manager. A companion server component called Tiller runs on your

Kubernetes cluster, listens for commands from Helm, and handles the configuration and

deployment of software releases on the cluster. Find details on Helm and Tiller in Getting

Started with Helm/Tiller in Kubernetes. Once you have successfully installed the Helm

Client and Tiller, you can use Helm to manage the charts described in Step 4: Configure

the CSI driver for Dell EMC .

The curl tool fetches a given URL from the command line in order to save a web file to the

local client, or pipe it to another program. Use curl as shown below to install the Helm and

Tiller package managers on the master node:

1. Type this command:

curl

https://raw.githubusercontent.com/helm/helm/master/scripts/g

et > get_helm.sh

2. Change permissions on the script.

chmod 700 get_helm.sh

3. Run the script.

./get_helm.sh

4. Initialize Helm.

helm init

5. Test the Helm installation.

helm version

6. Set up a service account for Tiller.

a. Create a rbac-config.yaml file and add the following content to the file:

apiVersion: v1

kind: ServiceAccount

metadata:

name: tiller

namespace: kube-system

kind: ClusterRoleBinding

apiVersion: rbac.authorization.k8s.io/v1beta1

metadata:

Install the Helm

package

manager

https://helm.sh/
https://v2.helm.sh/docs/install/
https://medium.com/@anthonyganga/getting-started-with-helm-tiller-in-kubernetes-part-one-3250aa99c6ac
https://medium.com/@anthonyganga/getting-started-with-helm-tiller-in-kubernetes-part-one-3250aa99c6ac
https://curl.haxx.se/docs/manpage.html

 Chapter 6: Automated Provisioning

51 Oracle with Docker Containers Managed by Kubernetes
Software Development Use Cases using Dell EMC Infrastructure

White Paper

name: tiller-clusterrolebinding

subjects:

- kind: ServiceAccount

name: tiller

namespace: kube-system

roleRef:

kind: ClusterRole

name: cluster-admin

apiGroup: ""

b. Create the service account.

kubectl create -f rbac-config.yaml

c. Apply the service account to Tiller.

helm init --upgrade --service-account tiller

To install the PowerFlex Storage Data Client (SDC) on all Kubernetes nodes, follow these

steps:

1. Download the PowerFlex SDS from Dell EMC Online support. The filename is

EMC-ScaleIO-sdc-3.0-1000.208.el7.x86_64.

2. Export the MDM_IP in a comma-separated list. This list contains the IP addresses

of the MDMs.

export MDM_IP=192.168.152.25,192.168.160.25

3. On each Kubernetes node, use the following command to install the SDC.

#rpm -iv ./EMC-ScaleIO-sdc-3.0-1000.208.el7.x86_64.rpm

The CSI Driver for Dell EMC PowerFlex facilitates Use Case 2 by providing the following

features:

• Persistent volume (PV) capabilities - create, list, delete, and create-from-snapshot

• Dynamic and static PV provisioning

• Snapshot capabilities - create, delete, and list

• Supports the following access modes:

▪ single-node-writer

▪ single-node-reader-only

▪ multi-node-reader-only

▪ multi-node-single-writer

• Supports HELM charts installer

To install CSI the Driver for Dell EMC PowerFlex, follow these steps:

1. Download the installation source files from github.com/dell/csi-vxflexos.

git clone https://github.com/dell/csi-vxflexos

Install the

PowerFlex

Storage Data

Client

Install the CSI

Driver for Dell

EMC PowerFlex

Chapter 6: Automated Provisioning

52 Oracle with Docker Containers Managed by Kubernetes
Software Development Use Cases using Dell EMC Infrastructure
White Paper

2. Namespaces provide a way to divide cluster resources among multiple users.

This step creates the vxflexos namespace within the Kubernetes cluster:

#kubectl create namespace vxflexos

3. Create a Kubernetes secret with PowerFlex username and password. Use the

secret.yaml file to create the secret with the following values to match the

default installation parameters:

Name: vxflexos-creds

Namespace: vxflexos

apiVersion: v1

kind: Secret

metadata:

 name: vxflexos-creds

 namespace: vxflexos

type: Opaque

data:

 # set username to the base64 encoded username

 username: YWRtaW4=

 # set password to the base64 encoded password

 password: QFZhbnRhZ2U0

4. Collect information from the PowerFlex Storage Data Client (SDC) by running the

get_vxflexos_info.sh script located in the top-level helm directory. This

script displays the PowerFlex system ID and MDM IP addresses.

5. To customize settings for installation, copy the csi-vxflexos/values.yaml

into a file in the same directory as the install.vxflexos named myvalues.yaml.

6. Edit the myvalues.yaml file to set the following parameters for your installation.

a. Set the systemName string variable to the PowerFlex system name or

system ID. This value was obtained by running the

get_vxflexos_info.sh script in Step 4 of this procedure.

systemName: 31846a6a738a010f

b. Set the restGateway string variable to the URL of your system’s REST API

Gateway.

restGateway: https://10.230.87.31

c. Set the storagePool string variable to a default (already existing) storage

pool name.

storagePool: R640_SP2

d. Set the mdmIP string variable to a comma-separated list of MDM IP

addresses.

mdmIP: 192.168.152.25,192.168.160.25

e. Set the volumeNamePrefix string variable so that volumes that are created

by the driver have a default prefix. If one PowerFlex system is servicing

several different Kubernetes installations or users, these prefixes help you

distinguish them.

https://kubernetes.io/docs/concepts/configuration/secret/

 Chapter 6: Automated Provisioning

53 Oracle with Docker Containers Managed by Kubernetes
Software Development Use Cases using Dell EMC Infrastructure

White Paper

volumeNamePrefix: k8s

7. Run the sh install.vxflexos command to proceed with the installation.

When the script finishes running, it displays the status of the pods (by calling

kubectl get pods -n vxflexos).

Step 5: Create Persistent Volume Claim (PVC) and Oracle Pods
on PowerFlex

A Persistent Volume Claim (PVC) is a request for storage, similar to how a pod requests a

compute resource. A PVC provides an abstraction layer to underlying storage. For

example, an administrator could create static persistent volumes (PVs) that can later be

bound to one or more persistent volume claims.

After creating the Kubernetes cluster and installing the CSI driver for PowerFlex, create

persistent volumes using yaml files. Next, create pods on these volumes by following

these steps:

1. The following are yaml files for creating the Persistent Volume Claim (PVC) for

deploying an Oracle 12c pod and the Oracle 12c load balancer service.

The PVC claim file is as follows:

#1-pvc.yaml

apiVersion: v1

kind: PersistentVolumeClaim

metadata:

 annotations:

 volume.beta.kubernetes.io/storage-provisioner: csi-

vxflexos

 finalizers:

 - kubernetes.io/pvc-protection

 name: pvc-1

 labels:

 app: oracledb12c

spec:

 accessModes:

 - ReadWriteOnce

 resources:

 requests:

 storage: 8Gi

 storageClassName: vxflexos

The Oracle 12c pod deployment file is as follows:

#2-deployment-Oracle12c.yaml

apiVersion: apps/v1

kind: Deployment

metadata:

 name: orcldb12c

 labels:

 app: oracledb12c

https://docs.cloud.oracle.com/en-us/iaas/Content/ContEng/Tasks/contengcreatingpersistentvolumeclaim.htm

Chapter 6: Automated Provisioning

54 Oracle with Docker Containers Managed by Kubernetes
Software Development Use Cases using Dell EMC Infrastructure
White Paper

spec:

 selector:

 matchLabels:

 app: oracledb12c

 template:

 metadata:

 labels:

 app: oracledb12c

 spec:

 containers:

 - image: regsrv.brora.com:5000/ora12c

 name: orcldb

 ports:

 - containerPort: 1521

 name: orcldb

 volumeMounts:

 - name: data

 mountPath: /ORCL

 imagePullSecrets:

 - name: oradocreg

 securityContext:

 runAsNonRoot: true

 runAsUser: 54321

 fsGroup: 54321

 volumes:

 - name: data

 persistentVolumeClaim:

 claimName: pvc-1

The Oracle 12c load balancer service file is as follows:

#3-service-Oracle12c.yaml

apiVersion: v1

kind: Service

metadata:

 name: oracledb12c

spec:

 type: LoadBalancer

 selector:

 app: oracledb12c

 ports:

 - name: client

 protocol: TCP

 port: 1521

selector:

 app: oracledb12c

2. Create yaml files for Persistent Volume Claim, Oracle pod deployment, and load-

balancing service.

kubectl create -f 1-pvc.yaml

 Chapter 6: Automated Provisioning

55 Oracle with Docker Containers Managed by Kubernetes
Software Development Use Cases using Dell EMC Infrastructure

White Paper

kubectl create -f 2-deployment-Oracle12c.yaml

kubectl create -f 3-service-Oracle12c.yaml

3. Use these commands to check the created persistent volume and pod with Oracle

12c container database:

kubectl get pv

kubectl get pvc

kubectl get pods -o wide

kubectl get deployments

kubectl get svc

Step 6: Create snapshots and restore persistent volume

After creating the PVC in step 5, use these yaml files to create a snapshot and to perform

a volume restore after installation of a new pod. The objective behind this step is to create

a “point in time database” with the help of PowerFlex snapshot and CSI Driver for Dell

EMC PowerFlex. The example yaml file that creates a persistent volume for the backed

up snapshot is as follows:

apiVersion: snapshot.storage.k8s.io/v1alpha1

kind: VolumeSnapshot

metadata:

 name: pvc-1-snap

 namespace: default

spec:

 snapshotClassName: vxflexos-snapclass

 source:

 name: pvc-1

 kind: PersistentVolumeClaim

The example yaml file for creating a persistent volume claim for restoring the backed up

snapshot is as follows:

apiVersion: v1

kind: PersistentVolumeClaim

metadata:

 name: pvc-1-restore

 namespace: default

spec:

 storageClassName: vxflexos

 dataSource:

 name: pvc-1-snap

 kind: VolumeSnapshot

 apiGroup: snapshot.storage.k8s.io

 accessModes:

 - ReadWriteOnce

 resources:

 requests:

 storage: 8Gi

https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#persistentvolumeclaims

Chapter 6: Automated Provisioning

56 Oracle with Docker Containers Managed by Kubernetes
Software Development Use Cases using Dell EMC Infrastructure
White Paper

Step 7: Verify data persistency and restore snapshot

In this step we create an Oracle 19c database backup using the PowerFlex snapshot

mechanism. We also use snapshot restore to verify data persistence in the newly created

Oracle 19c database. The objective is to show that the 19c database in the newly created

pod can be easily restored.

Follow the steps in this section to create the yaml files to create, snapshot, and restore a

volume, and to deploy Oracle 19c. In this use case, to show persistence and snapshot

restoration, we are using the yaml files that are shown in the following table:

Table 8. yaml files

yaml File Description

1-initial-19c-

deployment.yaml

Creates persistence volume and Oracle 19c deployment and service.

2-snap1-

pvc19c.yaml

Creates a snapshot of the PVC that was created in Step 1.

3-restore1-19c-

deployment.yaml

Creates a PVC from the snapshot that was created in Step 2, then
creates Oracle 19c deployment and service.

4-snap2-

pvc19c.yaml

Creates another snapshot of the PVC that was created in Step 1.

5-restore2-19c-

deployment.yaml

Creates a PVC from the snapshot that is created in Step 4, then
creates Oracle 19c deployment and service.

To verify persistence and snapshot restore, do the following:

1. Create an Oracle 19c pod using the yaml file 1-initial-19c-

deployment.yaml . This command first creates a persistence volume, and then

an Oracle 19c deployment and service. It then mounts the new persistence

volume to the Oracle 19c container.

kubectl create -f 1-initial-19c-deployment.yaml

a. In the Kubernetes dashboard, examine the newly created persistence

volume in the PowerFlex GUI and Oracle 19c pod.

b. Using Oracle SQL Developer, connect to this container database using the

external IP address that was generated from the load balancer. (In this use

case, the external IP is 10.20.87.183.)

c. Using Oracle SQL Developer, add test data into the database.

d. Log into the pod and check the mounted volume from PowerFlex to the

Oracle 19c container.

2. Take a first snapshot of the PVC by using the file 2-snap1-pvc19c.yaml.

kubectl create -f 2-snap1-pvc19c.yaml

a. Using the PowerFlex GUI, check the newly created snapshot.

b. Using Oracle SQL Developer, add one more row to the initial Oracle 19c

database.

 Chapter 6: Automated Provisioning

57 Oracle with Docker Containers Managed by Kubernetes
Software Development Use Cases using Dell EMC Infrastructure

White Paper

Figure 15. Add a row to the Oracle 19c database

3. Use the snapshot to create an Oracle 19c pod. This step restores the PVC from

the snapshot and deploying Oracle 19c database along with its services by

mounting the restored volume.

a. Use the 3-restore1-19c-deployment.yaml file to restore the Oracle

19c database.

kubectl delete -f 3-restore1-19c-deployment.yaml

b. Check for the pod and restored PVC.

kubectl get pods -o wide

c. Using Oracle SQL Developer, connect to the restored Oracle 19c pod, using

the external IP that we got from the load balancer (10.230.87.184). Check for

the initial row that we entered before taking snapshot.

4. Take a second snapshot of the initial PVC, using the file 4-snap2-

pvc19c.yaml.

kubectl create -f 4-snap2-pvc19c.yaml

Using Oracle SQL Developer, add one more row to the initial Oracle 19c

database. At this point, we have a second snapshot which includes the initial 19c

database and all its existing rows plus one extra row.

5. Use the second snapshot to create an Oracle 19c pod. This step restores the

PVC from the second snapshot and deploys the Oracle 19c database along with

the services by mounting the restored volume.

a. Use the 5-restore2-19c-deployment.yaml file to restore the Oracle

19c database.

kubectl delete -f 5-restore2-19c-deployment.yaml

b. Check for the pod and restored PVC.

Chapter 6: Automated Provisioning

58 Oracle with Docker Containers Managed by Kubernetes
Software Development Use Cases using Dell EMC Infrastructure
White Paper

kubectl get pods -o wide

c. Using Oracle SQL Developer, connect to the second restored Oracle 19c

pod, using the external IP that we got from the load balancer

(10.230.87.185). Check for all the rows that we entered before taking the

second snapshot.

6. Show the persistence of the volume by deleting the pod created by the yaml file

restore2-19c-deployment.yaml in the previous step.. Once we delete the

initial pod, it automatically re-creates itself, and its exact data, using the existing

PVC.

a. Display the pod names.

kubectl get pods -o wide

b. Delete the initial pod.

kubectl delete pod pod_name

c. After the pod is deleted, verify that another pod that has the same PVC was

created.

kubectl get pods -o wide

7. Using Oracle SQL Developer, compare the data between original and restored

environments. In the original pod, the data was comprised of existing data plus

one extra row. In the post-delete environment, the data in the Oracle 19c

database created inside the new pod is the same as in the original environment

pod.

Finally, use the Kubernetes dashboard to display all the pods, deployments, services, and

PVCs.

Use Case 2 review

In our second use case, using Kubernetes combined with the CSI Driver for Dell EMC

PowerFlex simplified and automated the provisioning and removal of containers and

storage. In this use case, we used the yaml files along with the kubectl command to

deploy and delete the containers and pods.

This use case demonstrated how we can easily shift away from the complexities of

scripting and using the command line to implement a self-service model that accelerates

container management. The move to a self-service model, which increases developer

productivity by removing bottlenecks, becomes increasingly important as the Docker

container environment grows.

 Chapter 6: Automated Provisioning

59 Oracle with Docker Containers Managed by Kubernetes
Software Development Use Cases using Dell EMC Infrastructure

White Paper

Using a container orchestration system such as Kubernetes is the next step in the

container journey for database developers. Automation becomes necessary with the

growth of containerized applications. In this case, it enabled our developer to bypass the

complexities that are associated with scripting and uses the Google Kubernetes Engine

(GKE) to accomplish the developer’s objectives. The CSI plug-in integrates with

Kubernetes and exposes the capabilities of PowerFlex, enabling the developer to:

• Take a snapshot of the Oracle database, including the sample schema that was

pulled from the GitHub site.

• Protect the work of the existing Oracle database, which was changed before taking

the snapshot. We can protect any state. Use the CSI plug-in Driver for Dell EMC

PowerFlex to create a snapshot that is installed in Kubernetes to provide persistent

storage.

• Restore an Oracle 19c database to its pre-deletion state using a snapshot, even

after removing the containers and the attached storage.

The power of this enablement is that steps such as these have traditionally required

multiple roles—developers and others working with the storage and database

administrators, for example—and more time. Kubernetes with the CSI plug-in enables

developers and others to do more in less time and with fewer complexities. The time

savings means that coding projects can be completed faster, benefiting both the

developers and the business-side employees and customers. Overall, the key benefit of

our second use case was the transformation from a manually managed container

environment to an orchestrated system with more storage capabilities.

CSI plug-ins: Additional Dell EMC options

Apart from using the PVCs to take snapshots, the Dell EMC plug-ins for the PowerFlex

rack and the PowerFlex appliance provide a broad range of features in the Kubernetes

plug-in space. The PowerFlex rack and PowerFlex appliance create a server-based SAN

by using PowerFlex with PowerEdge servers. Local server and storage resources are

combined to create virtual pools of block storage with varying performance tiers. For more

information, see PowerFlex and VxFlex Ready Nodes for Kubernetes. The CSI plug-in for

PowerFlex integrated rack and PowerFlex appliance is available from Docker Hub.

For more information about CSI plug-ins from Dell EMC, see Dell EMC Storage

Automation and Developer Resources.

https://cloud.google.com/kubernetes-engine
https://www.dellemc.com/en-us/collaterals/unauth/data-sheets/products/ready-solutions/vxflex_kubernetes_solution_brief.pdf
https://hub.docker.com/r/dellemc/csi-vxflexos
https://www.dellemc.com/en-us/storage/storage-automation-and-developer-resources/index.htm
https://www.dellemc.com/en-us/storage/storage-automation-and-developer-resources/index.htm

Chapter 7: Conclusion

60 Oracle with Docker Containers Managed by Kubernetes
Software Development Use Cases using Dell EMC Infrastructure
White Paper

Chapter 7 Conclusion

This chapter presents the following topic:

Summary statement .. 61

 Chapter 7: Conclusion

61 Oracle with Docker Containers Managed by Kubernetes
Software Development Use Cases using Dell EMC Infrastructure

White Paper

Summary statement

Innovation drives transformation. In the case of Docker containers and Kubernetes, the

key benefit is a shift to rapid application deployment services. Oracle and many others

have embraced containers and provide images of applications, such as for the Oracle 12c

database, that can be deployed in days and instantiated in seconds. Installations and

other repetitive tasks are replaced with packaged applications that enable the developer

to work quickly in the database. The ease of using Docker and Kubernetes combined with

rapid provisioning of persistent storage transforms development by removing wait time

and enabling the developer to move closer to the speed of thought. The Docker

containers have also eased the workload of Oracle DBAs. They do not have to divide their

attention between performing production database maintenance and copying the

production copies to the developers for development and testing work.

While the shift to Docker containers in Use Case 1 benefited our developers, provisioning

and attaching storage was a manual process that slowed the overall speed of application

development. The challenges with manual storage provisioning are two-fold: variety and

velocity. As the IT organization adds more application images, variety increases

administration and support complexity. Velocity, the frequency of provisioning

applications, tends to increase with greater selection. Increased velocity is a growth

indicator but also places pressure on the IT organization to address automation.

The second transformation was the addition of the Kubernetes orchestration system and

the CSI Driver for Dell EMC PowerFlex. Kubernetes brings a rich user interface that

simplifies provisioning containers and persistent storage. In our testing, we found that

Kubernetes plus the CSI Driver for Dell EMC PowerFlex enabled developers to provision

containerized applications with persistent storage. This solution features point-and-click

simplicity and frees valuable time so that the storage administrator can focus on business-

critical tasks.

Kubernetes, enhanced with the CSI Driver for Dell EMC PowerFlex, provides the

capability to attach and manage PowerFlex storage volumes to containerized applications.

Our developer worked with a familiar Kubernetes interface to modify a copy of Oracle

database schema gathered from the Github repository database and connect it to the

Oracle database container. After modifying the database, the developer protected all

progress by using the snapshot feature of PowerFlex and creating a point-in-time copy of

the database.

Moving to a Docker plus Kubernetes infrastructure provides a faster and more consistent

way to package and deploy an Oracle database. In 2017, Oracle developers made the

Oracle 12c database available in the Docker Store. The open-source community that

supports Docker and Kubernetes has done much of the foundational work. Manual or

scripted installation procedures are not necessary, leaving only customization to the

business. Dell EMC adds storage value through PowerFlex for enterprises and the CSI

Driver for Dell EMC PowerFlex, streamlining the delivery of applications. The goal of this

white paper is to jump-start your application development transformation to enable you to

achieve these benefits. Dell Technologies can show you how and can provide an

infrastructure that optimizes your containerized applications so that Oracle 12c and 19c

databases can be rapidly deployed, initiated, and used.

https://github.com/oracle/db-sample-schemas.git

Chapter 8: References

62 Oracle with Docker Containers Managed by Kubernetes
Software Development Use Cases using Dell EMC Infrastructure
White Paper

Chapter 8 References

This chapter presents the following topics:

Dell Technologies documentation ... 63

VMware documentation .. 63

Microsoft documentation ... 63

Oracle documentation .. 63

 Chapter 8: References

63 Oracle with Docker Containers Managed by Kubernetes
Software Development Use Cases using Dell EMC Infrastructure

White Paper

Dell Technologies documentation

• Dell.com/support is focused on meeting customer needs with proven services and

support.

• Dell EMC Technical Resource Center on DellTechnologies.com provides expertise

that helps to ensure customer success on Dell EMC PowerFlex rack platforms.

• VxFlex Data Sheet

• CSI Driver for Dell EMC PowerFlex product guide

• Dell EMC PowerFlex Networking Best Practices and Design Considerations White

Paper

• CSI Driver for Dell EMC PowerFlex Product Guide

• VxRack FLEX and VxFlex Ready Nodes for Kubernetes

Kubernetes documentation

The following Kubernetes documentation provides additional and relevant information:

• Kubernetes Concepts

Docker documentation

The following Docker documentation provides additional and relevant information:

• Docker Hub

Oracle documentation

The following Oracle documentation provides additional and relevant information:

• Oracle 12c Database Administrator’s Guide

• Oracle 19c Database Administration

VMware documentation

The following VMware documentation provides additional and relevant information:

• Best Practices for Storage Container Provisioning

http://www.dell.com/support
https://www.delltechnologies.com/en-us/hyperconverged-infrastructure/vxflex.htm
https://www.dellemc.com/resources/en-us/asset/data-sheets/products/converged-infrastructure/vxrack-flex-data-sheet.pdf
https://github.com/dell/csi-vxflexos/blob/master/CSI%20Driver%20for%20VxFlex%20OS%20Product%20Guide.pdf
https://www.dellemc.com/en-ie/collaterals/unauth/white-papers/products/ready-solutions/h17332_dellemc_vxflex_os_networking_best_practices.pdf
https://github.com/dell/csi-vxflexos/blob/master/CSI%20Driver%20for%20VxFlex%20OS%20Product%20Guide.pdf
https://www.dellemc.com/en-us/collaterals/unauth/data-sheets/products/ready-solutions/vxflex_kubernetes_solution_brief.pdf
https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/
https://hub.docker.com/
https://docs.oracle.com/en/database/oracle/oracle-database/12.2/admin/index.html
https://docs.oracle.com/en/database/oracle/oracle-database/19/administration.html
https://docs.vmware.com/en/VMware-vSphere/6.5/com.vmware.vsphere.storage.doc/GUID-5241FE91-B275-4315-8870-0A989779B5B3.html

Appendix A: Solution Architecture and Component Specifications

64 Oracle with Docker Containers Managed by Kubernetes
Software Development Use Cases using Dell EMC Infrastructure
White Paper

Appendix A Solution Architecture and
Component Specifications

This appendix presents the following topics:

Architecture diagram .. 65

Server layer ... 66

Network layer .. 67

CSI Plug-in for Dell EMC PowerFlex .. 68

Software components ... 69

 Appendix A: Solution Architecture and Component Specifications

65 Oracle with Docker Containers Managed by Kubernetes
Software Development Use Cases using Dell EMC Infrastructure

White Paper

Architecture diagram

The following figure shows the design of the system architecture:

Figure 16. Solution architecture

The PowerFlex family of products enable organizations to consume PowerFlex to best

meet their business goals and needs.

PowerFlex rack is a rack-scale engineered system, with integrated networking, that

enables customers to achieve the scalability and management requirements of a modern

data center. This turnkey system allows businesses to reduce cost and risk by buying

versus building an infrastructure platform that can run both traditional and emerging

business applications or deploy cloud-native applications.

The PowerFlex rack is a software-defined storage platform designed to deliver flexibility,

elasticity, and simplicity with predictable performance and resiliency at scale by combining

compute as well as high performance storage resources in a managed unified network.

This rack-scale engineered system, with integrated networking, enables customers to

achieve the scalability and management requirements of a modern data center.

The PowerFlex rack comes preinstalled with integrated top-of-rack (ToR), aggregation,

and out of band (OOB) management switches to provide optimal network traffic flow. The

PowerFlex is designed using Cisco Nexus aggregation switches that provide 10/40 GbE

IP uplink connectivity to the external network for superior performance. Often, network

bottlenecks can limit the scale of an HCI system. The 10/25 GbE ToR switches in the rack

eliminate these restrictions and provide a path for future growth.

The PowerFlex appliance is a fully integrated appliance that enables customers to achieve

the scalability and management requirements of a modern data center. This turnkey

Appendix A: Solution Architecture and Component Specifications

66 Oracle with Docker Containers Managed by Kubernetes
Software Development Use Cases using Dell EMC Infrastructure
White Paper

system allows businesses to reduce cost and complexity with an easy to manage,

purpose-built solution. PowerFlex reduces the risk involved in buying versus building an

infrastructure platform that can run both traditional and emerging business applications or

deploy cloud-native applications.

The VxFlex Ready Nodes support bringing together industry leading PowerEdge servers

with PowerFlex in ascalable, reliable, and highly configurable building block. Customers

can choose to deploy VxFlex Ready Nodes in a two-layer model, as storage only or in an

HCI/single-layer architecture. No matter what configuration they choose, VxFlex Ready

Nodes can fit within their existing infrastructure. PowerFlex Manager is not available as

part of the VxFlex Ready Node offer.

Server layer

The server layer consists of two separate sets of servers:

• Three PowerEdge R640 servers that are used as PowerFlex controller nodes

• Four PowerEdge R640 servers that are used as PowerFlex customer nodes

The PowerEdge R640 is a 1U rack server that supports up to:

• Two Intel Xeon Processor Scalable Family processors

• 24 DIMM slots supporting up to 1,536 GB of memory

• Two AC or DC power supply units

• 10 + 2 SAS, SATA, Nearline SAS hard drives or SSDs

For more details about PowerFlex cluster controller node setup and configuration, see

Dell EMC PowerFlex Networking Best Practices and Design Considerations White Paper.

The following tables lists the PowerEdge R640 configuration details. While the upper limits

of resources for the R640 server are higher, these configurations are enough for

supporting a functional design showing the advantages of containerizing Oracle database

instances.

The following table shows the R640 server configuration details for the three PowerFlex

controller nodes:

Table 9. PowerEdge R640 server configuration

Component Details

Chassis 1-CPU configuration

Memory 6 DDR4 Dual Rank 32 GB @ 2,666 MHz

Processors 1xIntel Xeon Gold 6230 CPU @ 2.10 GHz, 16c

rNDC Intel 2P X710/2P I350 rNDC

Add-on NIC Intel 10 GbE 2P X710 Adapter and Intel Ethernet 10G 2P X550-t Adapter

Power supplies 2 x Dell 900 W

iDRAC iDRAC9 Enterprise

https://www.dellemc.com/en-ie/collaterals/unauth/white-papers/products/ready-solutions/h17332_dellemc_vxflex_os_networking_best_practices.pdf

 Appendix A: Solution Architecture and Component Specifications

67 Oracle with Docker Containers Managed by Kubernetes
Software Development Use Cases using Dell EMC Infrastructure

White Paper

Component Details

Physical disks 5 x 1.7 TB SAS SSD for storage

The following table shows the R640 server configuration details for the four PowerFlex

customer nodes:

Table 10. PowerEdge R640 server configuration

Component Details

Chassis 2-CPU configuration

Memory 12 DDR4 Dual Rank 32 GB @ 2,666 MHz

Processors 2 x Intel Xeon Platinum 8268 CPU @ 2.70 GHz, 24c

rNDC Intel 2P X710/2P I350 rNDC

Add-on NIC 2 x MLNX 25 GbE 2P ConnectX4LX Adpt

Power supplies 2 x Dell 1,260 W

iDRAC iDRAC9 Enterprise

Physical disks 2 x 224 GB SATA SSD for Boot disk

5 x 1.7 TB SAS SSD for storage

Network layer

The network layer consists of:

• Two Cisco 93180YC-EX 1/10/25 GbE network switches—Provide data connectivity

for the VxFlex cluster.

• Two Cisco 3172TQ 1/10 GbE network switches—Provide OOB management

network connectivity for the VxFlex cluster.

• Each cabinet is equipped with redundant access switches (Cisco 93180YC-EX). A

pair of aggregation switches is installed in the first cabinet and configured in an

access/aggregation network topology. If more than one cabinet exists, the

aggregation switches can be spread across or installed in other cabinets.

VMware vSphere Distributed Switches (VDSs) manage virtual networking in the

PowerFlex rack. The VDSs contain multiple port groups. Each port group is identified with

a network label and associated VLANs. Each node contributes physical adapters or

vmnics to VDS uplinks, as shown in the following diagram:

Appendix A: Solution Architecture and Component Specifications

68 Oracle with Docker Containers Managed by Kubernetes
Software Development Use Cases using Dell EMC Infrastructure
White Paper

Figure 17. Virtual networking in PowerFlex rack

For the hyperconverged nodes, separate virtual switches are used for each of the

PowerFlex rack data networks. The ports that carry data traffic are not aggregated using

Virtual Port Channel but are configured as simple access ports. PowerFlex software uses

the two networks redundantly. All other communication is through a separate virtual switch

that carries all the other VLANs. Customer VLANs (not shown here) are also be added to

this virtual switch. The storage-only nodes have a similar arrangement, but do not use

virtual switches. Two ports are used for the PowerFlex rack data networks, and a pair of

ports are used for the PowerFlex management network. Like the hyperconverged node,

the two PowerFlex rack ports are unaggregated access ports, while the two management

ports are configured as a bonded interface. The switch connections for these ports are

part of a Virtual Port Channel. VMware and customer VLANs are not added to a storage-

only node.

CSI Plug-in for Dell EMC PowerFlex

To address the challenges of persistent storage, the Dell EMC CSI plug-in for Dell EMC

PowerFlex storage clusters enables containerized applications in Kubernetes clusters to

use block storage. The V CSI plug-in implements the Kubernetes CSI specification, and

 Appendix A: Solution Architecture and Component Specifications

69 Oracle with Docker Containers Managed by Kubernetes
Software Development Use Cases using Dell EMC Infrastructure

White Paper

enables organizations to deliver persistent storage for container-based applications on

premises, both at development and production scale.

For additional information, see CSI Driver for Dell EMC PowerFlex Product Guide.

Software components

Table 11. Software components and details

Component name Details

PowerFlex 3.0.1000.208

VMware vCenter and ESXi 6.7 u3

Operating system version Oracle Linux 7.6 –Mapio, Kernel: 4.14.35-
1818.3.3.el7uek

Docker 18.09.6 Enterprise Edition

Kubernetes 1.14.9

Pod network Calico 0.11.0-amd64

MetalLB (load-balancer) 0.7.3

Oracle Database Enterprise Oracle 12c, Oracle 19c

Helm 2.16.0

CSI Plugin PowerFlex CSI Plugin 1.1.3

https://github.com/dell/csi-vxflexos/blob/master/CSI%20Driver%20for%20VxFlex%20OS%20Product%20Guide.pdf

Appendix B: Scaling Up the Database Analytic Workload

70 Oracle with Docker Containers Managed by Kubernetes
Software Development Use Cases using Dell EMC Infrastructure
White Paper

Appendix B Scaling Up the Database
Analytic Workload

This appendix presents the following topic:

Scaling up DB analytic workloads using
Intel Optane DC Persistent Memory .. 71

 Appendix B: Scaling Up the Database Analytic Workload

71 Oracle with Docker Containers Managed by Kubernetes
Software Development Use Cases using Dell EMC Infrastructure

White Paper

Scaling up DB analytic workloads using Intel Optane DC
Persistent Memory

Use Intel Optane DC Persistent Memory for scaling up heavy database analytic workloads

inside an Oracle database. Further areas of exploration can include scaling up the use

cases beyond 500 GB DRAM, especially when using Oracle in-memory database or

analytics-heavy workloads. Increasing memory density can enable the entire Oracle

workload to be placed in memory, increasing performance significantly. The performance

improvement was demonstrated in Oracle Open World 2019. For more information, go to:

• The Database In-Memory on Intel Optane DC Persistent Memory video

• The Delivering Enterprise Value Through Trailblazing Innovations with Oracle:

Oracle OpenWorld 2019 video

The configurations shown in the following tables are suggested configurations with Intel

Optane DC persistent memory. The Optane DC persistent memory is configured as

memory mode and no Oracle software change is required.

Table 12. 1-CPU configuration components and details

Component Details

Chassis 1-CPU configuration

Memory

6 DDR4 Dual Rank 16 GB @ 2,666 MHz

4 Intel Optane PMem 128 GB @ 2,666 MHz

Processors 1 x Intel Xeon Gold 6230 CPU @ 2.10 GHz, 16c

Table 13. 2-CPU configuration components and details

Component Details

Chassis 2-CPU configuration

Memory

12 DDR4 Dual Rank 16 GB @ 2,666 MHz

4 Intel Optane PMem 128 GB @ 2,666 MHz

Processors 2 x Intel Xeon Platinum 8268 CPU @ 2.70 GHz, 24c

file:///C:/Users/Tucker5/Downloads/Database%20In-Memory%20on%20Intel%20Optane%20DC%20Persistent%20Memory
file:///C:/Users/Tucker5/Downloads/Delivering%20Enterprise%20Value%20Through%20Trailblazing%20Innovations%20with%20Oracle:%20Oracle%20OpenWorld%202019
file:///C:/Users/Tucker5/Downloads/Delivering%20Enterprise%20Value%20Through%20Trailblazing%20Innovations%20with%20Oracle:%20Oracle%20OpenWorld%202019

	Oracle in Docker Containers Managed by Kubernetes
	Table of Contents
	Chapter 1 Executive Summary
	Business challenge
	Solution overview
	Document purpose
	Audience
	We value your feedback

	Chapter 2 Use Case Overview
	Introduction to use cases
	Recommended platforms and components
	Use Case 1 overview
	Use Case 2 overview
	Use case comparison summary

	Chapter 3 Supporting Software Technology
	Container-based virtualization
	Docker containers
	Benefits of virtualization with containers
	Kubernetes
	Kubernetes clusters
	Kubernetes Container Storage Interface specification
	Kubernetes automation with the Dell EMC PowerFlex CSI driver
	Kubernetes implementations

	Kubernetes storage classes
	Oracle and Docker containers on Linux
	Docker volumes (in container storage)
	Linux bind mounts (in host storage)

	Chapter 4 Dell EMC Flex Nodes and Storage
	PowerEdge family servers
	Dell Technologies hyperconverged infrastructure - PowerFlex Family overview
	PowerFlex Components
	VMware storage virtualization
	PowerFlex GUI
	PowerFlex Manager

	Chapter 5 Manual Provisioning
	Use Case 1: Manual provisioning of a containerized development and testing environment
	Step 1: Install Docker
	Step 2: Activate the Docker Enterprise Edition license

	Step 3: Run the Oracle 12c container on Docker
	Step 4: Build and run the Oracle 19c container on Docker
	Step 5: Import sample schemas from GitHub
	Step 6: Install Oracle SQL Developer and query tables from the container
	Use Case 1 review
	Server environment configuration
	Docker registry location
	Storage provisioning
	Business decision summary

	Chapter 6 Automated Provisioning
	Use Case 2: Automated provisioning of a containerized development and testing environment
	Use Case 2 architecture description
	Provisioning the environment

	Step 1: Set up the Kubernetes cluster
	Prerequisites
	Set SELinux to permissive mode
	Configure the firewall
	Ensure that the br_netfilter module is loaded
	Disable swap for all nodes

	Installing Kubernetes
	Initializing the Kubernetes cluster
	Adding worker nodes to the Kubernetes cluster

	Step 2: Set up the Kubernetes dashboard
	Step 3: Set up the Kubernetes load-balancer
	Step 4: Configure the CSI driver for Dell EMC PowerFlex
	Enable the Kubernetes feature gates
	Configure the Docker service
	Install the Helm package manager
	Install the PowerFlex Storage Data Client
	Install the CSI Driver for Dell EMC PowerFlex

	Step 5: Create Persistent Volume Claim (PVC) and Oracle Pods on PowerFlex
	Step 6: Create snapshots and restore persistent volume
	Step 7: Verify data persistency and restore snapshot
	Use Case 2 review
	CSI plug-ins: Additional Dell EMC options

	Chapter 7 Conclusion
	Summary statement

	Chapter 8 References
	Dell Technologies documentation
	Kubernetes documentation
	Docker documentation
	Oracle documentation
	VMware documentation

	Appendix A Solution Architecture and Component Specifications
	Architecture diagram
	Server layer
	Network layer
	CSI Plug-in for Dell EMC PowerFlex
	Software components

	Appendix B Scaling Up the Database Analytic Workload
	Scaling up DB analytic workloads using Intel Optane DC Persistent Memory

