
Give DevOps teams self-service resource
pools within your private infrastructure
with Dell Technologies APEX cloud and
storage solutions
We confirmed several real-world use cases in
a VMware vSphere with Tanzu environment

The fast-paced needs of modern application development and delivery have
pushed some companies to subscribe to public cloud-based solutions such
as Amazon Web Services (AWS). It can be frustrating for a DevOps team to
wait for a separate IT team to approve every individual resource request.
Beyond frustration, this fragmented approach can waste time and money as
the teams deliberate over resource usage instead of innovating in their own
areas. What some companies don’t realize, however, is that ITOps teams can
use VMware® vSphere® technology to deliver public-cloud-like self-service to
private cloud solutions such as those in the Dell Technologies APEX portfolio.

At Principled Technologies, we validated key use cases and functionality
for a solution comprising Dell Technologies APEX Private Cloud and APEX
Data Storage Services running a VMware vSphere with Tanzu environment.
The solution allowed us to set up namespace self-service that could enable
DevOps teams to create resources within an ITOps-defined quota; set up
VM and Kubernetes cluster self-service that dev teams can use to create
and destroy clusters and VMs at will; and configure storage policies within
VMware vSphere that dev teams could then use to assign storage with
specific quality of service (QoS) to clusters and VMs. We then verified the
functionality of each of these features by using them to create a simple
containerized application and VM appliance and ensuring that the two could
communicate with each other. Though each feature we tested would directly
empower a theoretical DevOps team, setting up these capabilities would
allow ITOps teams to establish limits up front without the need to approve
individual DevOps requests.

Enable DevOps to
provision and manage
their own resources

Namespace, VM, and cluster
self-service enables DevOps to

build and tear down Kubernetes®
clusters and VMs at will

Create custom
storage policies

that leverage a variety of
classes and tiers of storage

Avoid cloud
cost spirals

with on-premises
managed hardware

Give DevOps teams self-service resource pools within your private infrastructure
with Dell Technologies APEX cloud and storage solutions January 2022

A Principled Technologies report: Hands-on testing. Real-world results.

http://www.principledtechnologies.com

How we tested
Table 1 shows basic details of the environment we used for testing. For full details on our test environment,
including hardware components, see the science behind this report.

Table 1: Our testing environment

Component Purpose

APEX Private Cloud Infrastructure-as-a-service (IaaS) environment
built upon Dell EMC VxRail hyperconverged
infrastructure with VMware vSphere and vSAN™.

VMware Tanzu Containers-as-a-service functionality with
Kubernetes orchestration built into the vSphere
hypervisor. Together with APEX
Private Cloud, this provides an on-premises,
as-a-service VMware private cloud environment

VMware vSphere with Tanzu Software-defined data center technology that
serves as the basis for the environment

APEX Data Storage Services Optional Block Services storage attached
to VMware vSphere with Tanzu

Fictional scenario

A fictional company is modernizing its approach to applications. Their app DevOps team wants to implement a
containerized mobile app that runs as a set of microservices in the containerized environment. Those containers will
also need to access a legacy data source running in a VM appliance. It’s a complex task, but the DevOps team is
more than capable of rising to the challenge. There’s only one problem: their toolset.

To hit their aggressive schedules, the DevOps team wants more self-service features for provisioning resources
during development and testing.

Sean, the ITOps team lead,
has some concerns with the
DevOps request and thinks
they can accomplish everything

the DevOps team wants with the tools they
already have. After conferring with his team, Sean
plans to build a test solution to demonstrate that
VMware vSphere with Tanzu together with APEX
Private Cloud and APEX Data Storage Services
can deliver a DevOps-empowering solution right
from the company’s existing on-premises cloud.

Aylea, the mobile app DevOps
team lead, has requested
permission to implement a
development sandbox using

AWS so her team can easily experiment, stand up
and tear down Kubernetes clusters, and configure
tools to support the new containerized mobile
app without the resource request process that can
interrupt the DevOps team’s flow and creativity.

Give DevOps teams self-service resource pools within your private infrastructure
with Dell Technologies APEX cloud and storage solutions January 2022 | 2

https://facts.pt/g9zebZB

Management use case sections
Figure 1 shows the main use cases we used to deliver and verify DevOps self-service in a VMware vSphere with
Tanzu environment on APEX Private Cloud and APEX Data Storage Services solutions.

Ultimately, we were able to set up and confirm each use case without issue. The following sections cover these
use cases in more detail and demonstrate how they could each help a hypothetical company modernize its
mobile applications.

Management use cases

Configuring storage policies within VMware vSphere with Tanzu

Setting up namespace self-service

Setting up VM and Kubernetes cluster self-service

Confirming self-service use:

 ✓ Creating and deleting Kubernetes clusters within a namespace

 ✓ Creating and deleting VMs within a namespace

 ✓ Provisioning Kubernetes clusters and VMs with higher QoS
storage for production

 ✓ Configuring an application environment

Figure 1: Summary of the management uses cases we investigated.

Aylea’s DevOps team thinks they need a public cloud solution to accomplish their goals,
but as our report will show, the fictional company already has everything it needs at its
disposal. Currently, they maintain a highly virtualized VMware vSphere environment and
use APEX Private Cloud for IaaS and APEX Data Storage Services to scale their storage
with configurable service levels. Can their ITOps team use the existing solution to deliver
a self-service app development environment to the DevOps team?

Give DevOps teams self-service resource pools within your private infrastructure
with Dell Technologies APEX cloud and storage solutions January 2022 | 3

Configuring storage policies

We set up storage policies within the VMware
vSphere with Tanzu environment that enabled us
to leverage different storage classes and assign
low, medium, and high storage tiers to different
resources within the environment.

Aylea’s DevOps team wants to be
able to set guarantees on storage
performance and fault-tolerance
minimums for their test environment
without first needing to go through the
ITOps team, which would involve an

approval process that may slow down development.
Without the ability to guarantee certain levels of
performance, the DevOps team’s test environment
could have unreliable performance that makes it
difficult to optimize their mobile app.

Though Aylea thinks cloud storage may be the most
viable solution, Sean knows that he can enable the
DevOps team to assign storage tiers to their test
resources from within their current VMware
vSphere with Tanzu environment.

Namespace self-service
would allow Aylea’s DevOps
team to set the pace of their
own resource usage, without
needing to formally request
resources from ITOps—that’s

one big reason why they originally wanted to use
a public cloud solution.

With a public cloud solution, Sean’s ITOps team
would be concerned about the ensuing cost
spirals should DevOps provision more resources
than their budget allows. With a private cloud
solution, ITOps would still be concerned that
DevOps’ resource usage for the test environment
could eat into their production resources. This
could cause QoS degradation on the company’s
production apps and negatively affect the end-
user experience for client-facing work.

VMware vSphere allows Sean to set up a self-
service namespace with overall resource limits
and let Aylea’s DevOps team choose how they
want to spend it.

Setting up namespace self-service

We set up a VMware namespace service that could
enable a hypothetical app development team to
provision their own VMware vSAN storage resources
within a test environment. We then set up a high-
performance, high-QoS production namespace that
a hypothetical company could use in its production
environment. Finally, we verified that we could use
namespaces to establish resource quotas for VMs,
memory, and disk usage.

IT administrators can enable the VMware namespace
service with a total resource quota for all resources
within that namespace. Once a development team
creates their namespace, a vCenter operator will need
to provision the namespaces with CPU, memory,
storage quotas, and storage tiers (if necessary). After
establishing a quota, the dev team is free to provision
clusters and VMs within the established resource limits.

Give DevOps teams self-service resource pools within your private infrastructure
with Dell Technologies APEX cloud and storage solutions January 2022 | 4

On the day of the demonstration,
Sean walks Aylea and the rest of the
DevOps team through the solution
he’s designed. Though skeptical at
first, Aylea is able to confirm that

all of the functionality the DevOps team wanted is
actually already possible with the APEX solutions the
company already uses. With the ITOps demonstration
environment, Aylea’s team can use their designated
namespace to stand up and wipe away Kubernetes
clusters at will; they can use VM self-service to stand up
and tear down VMs within that namespace; and they
can use storage policies to provision clusters with high-
QoS tier storage suitable for a production environment.

As a final test, Aylea configures a containerized
app and VM appliance, and enables the two to
communicate with each other. On a very basic level,
this is how Aylea envisions the app will ultimately
behave. Because ITOps demonstrated that the
desired functionality exists within the APEX solutions
the company currently runs, Aylea no longer believes
they need a public cloud dev environment to get the
job done. Go team!

VM and cluster self-service would enable Aylea’s DevOps team to create clusters and
VMs for app infrastructure without needing to first request resources from the ITOps
team. It’s important for the DevOps team to have access to VMs so they can develop
the infrastructure required to link their new, modernized app to the company’s legacy
monolithic data service. But Sean’s team is again concerned that without proper
approval from ITOps, the DevOps team’s resource usage might exceed their limits
and begin to degrade performance for their services already in production.

Because the company’s VMware vSphere with Tanzu environment allows for self-
service, Aylea’s DevOps team will be able to quickly provision required resources on
an ad hoc basis while remaining within the resource limits that Sean’s team sets.

Setting up VM and cluster self-service

Modern development workflows may require devs to use both containers and VMs. We set up VM and cluster
self-service that could enable a hypothetical development team to provision and deprovision both Kubernetes
clusters and VMs using the self-service namespaces we configured earlier. This self-service approach could save
both time and money for dev and IT teams, as each could focus on their own needs rather than processing
infrastructure requests.

Confirming self-service use

After configuring storage policies for
APEX Data Storage Services and setting
up namespace and VM self-service,
we confirmed that a hypothetical
DevOps team would be able to use
these features to implement an app
using self-service. We created and
destroyed Kubernetes clusters and VMs
within the dev namespace we set up,
and we were able to assign storage
with high quality of service to each
of those resources. Additionally, we
configured a containerized application
and a VM appliance and enabled each to
communicate with the other.

Give DevOps teams self-service resource pools within your private infrastructure
with Dell Technologies APEX cloud and storage solutions January 2022 | 5

Conclusion
Giving DevOps teams the power to manage resources at will can provide flexibility and speed to the
application modernization process, save valuable time (and therefore money) by avoiding the resource
approval process, and give IT administrators peace of mind by enabling them to set overall resource limits
that the DevOps team won’t be able to exceed. By deploying a modern applications environment in an
existing private cloud, organizations can avoid having to manage multiple environments and can use a
consistent governance framework to control resource usage and policy compliance. This can optimize
resource utilization through a unified pool of capacity/performance and service levels, thereby reducing
management complexity and the need for multiple sets of specialized skills.

At Principled Technologies, we successfully used a VMware vSphere with Tanzu environment running on
Dell Technologies APEX Private Cloud and APEX Data Storage Services solutions to perform the following
real-world tasks:

• Set up self-service namespaces
that can enable DevOps teams
to create resources within
established quotas

• Set up self-service for VMs and
Kubernetes clusters, which can
enable dev teams to create and
destroy said resources at will

• Set up storage policies that
can allow dev teams to assign
storage with specific QoS
to VMs and clusters

With these abilities, your DevOps team can enjoy self-service in their private IT infrastructure while ITOps
maintains overall control of resources. To learn more about VMware vSphere with Tanzu on Dell Technologies
solutions, visit www.delltechnologies.com/tanzu.

Give DevOps teams self-service resource pools within your private infrastructure
with Dell Technologies APEX cloud and storage solutions January 2022 | 6

http://www.delltechnologies.com/tanzu

The science behind the report
The following sections describe what we tested, how we tested, and what we found.

We concluded our hands-on testing on November 9, 2021. The results in this report reflect configurations that
we finalized on October 22, 2021 or earlier. Unavoidably, these configurations may not represent the latest
versions available when this report appears.

System configuration information
Table 2: Detailed information on the system we tested.

System configuration information 4 x Dell EMC™ VxRail E560F

Version VxRail 7.0.240-27141857

BIOS version 2.11.2

Non-default BIOS settings APEX default

Operating system name and version/build number VMware ESXi™, 7.0.2, 18426014

Date of last OS updates/patches applied APEX default

Processor

Number of processors 2

Vendor and model Intel® Xeon® Gold 6212U

Core count (per processor) 24

Core frequency (GHz) 2.40

Stepping B1 (SRF9A)

Memory module(s)

Total memory in system (GB) 256

Number of memory modules 4

Vendor and model Samsung® M393A8G40MB2-CVF

Size (GB) 64

Type DDR4

Speed (MHz) 2,933

Speed running in the server (MHz) 2,933

Storage controller

Vendor and model Dell HBA330

Cache size (GB) 0

Distributed storage

Storage type vSAN

Number of nodes 4

Number of disk groups 4

Number of disks per disk group 4

Give DevOps teams self-service resource pools within your private infrastructure
with Dell Technologies APEX cloud and storage solutions January 2022 | 7

System configuration information 4 x Dell EMC™ VxRail E560F

Network adapter

Vendor and model Mellanox® ConnectX®-4 MT27710 Family

Number and type of ports 2 x 25GbE

Firmware version 14.28.45.12

Cooling fans

Vendor and model APEX default

Number of cooling fans APEX default

Power supplies

Vendor and model APEX default

Number of power supplies 2

Wattage of each (W) APEX default

Give DevOps teams self-service resource pools within your private infrastructure
with Dell Technologies APEX cloud and storage solutions January 2022 | 8

How we tested

Setting up Storage Policy Based Management (SPBM)

Reviewing the native VMware vSAN™ policy
1. Inside the workload vCenter host, navigate to Storage Policy Based Management by following this path: Menu Policies and Profiles.
2. To see the policy rules, select vSAN Default Storage Policy from the list.

Creating new tiered storage policies
1. Select Create.
2. Select the appropriate vCenter account to create the Policy.
3. Give the policy a name. We used ADSS-high
4. Select Enable rules for DELLEMC.ADSS.VVOL storage.
5. Click Next.
6. From the dropdown menu, select High.
7. Review compatible Storage.
8. Click Next.
9. Review the settings, and click Finish.
10. Review the VM Storage Policy. In the center-right area of the screen, the Storage Compatibility tab shows you that the storage policy is

indeed targeting the external storage you chose.
11. To create the Medium and Low quality of service (QoS) value options, complete steps 1 through 10 twice more.

Setting up self-service namespaces

In the current iteration of the VMware namespace service, there is only the option for a single overall namespace service template
configuration. Meaning, you enable the namespace service with a set resource quota that serves as the overarching quota. After developers
create individual namespaces, the vCenter operator must be notified and will need to go into those namespaces and provision them
accordingly with CPU, memory, and storage quotas as well as storage tiers, if necessary. Currently, there is no namespace service template
option that can provision individual custom namespaces created in this manner ahead of time; however, once the quota is established, the
developer is free to work within those limits setting up clusters or VMs. Any new namespaces created at the CLI will need to go through the
operator to provision quotas.

Enabling the namespace service
1. Log into vCenter, and navigate to Menu Host and Clusters Configure Namespaces General.
2. Expand the Namespace Service.
3. Toggle the Namespace Service Status from Inactive to Active.
4. Enter values for Configuration template. We used the following:

• CPU - 128 Ghz

• Memory - 128 Gb

• Storage - 128 Gb

• Storage Policy - vSAN default

5. Review the values, and click Next.
6. Select an Identity Source.
7. For the identity source, select either vsphere.local or an AD/LDAP user if one is connected.
8. Review the namespace template, and click Finish.
9. Review the details of the namespace service. The namespace self-service status should show as activated.

Installing kubectl
1. Install kubectl:

snap install kubectl --classic

Give DevOps teams self-service resource pools within your private infrastructure
with Dell Technologies APEX cloud and storage solutions January 2022 | 9

Getting the link for the Kubernetes CLI Tools download page

1. Using the vSphere client, log into the vCenter Server.
2. Navigate to vSphere Cluster > Namespaces, and select the vSphere Namespace where you are working.
3. Select the Summary tab, and locate the Status area on this page.
4. Beneath the heading for Link to CLI Tools, to open the download page, select Open. (Or, you can copy the link.)

Installing Kubernetes CLI Tools

1. Using a browser, navigate to the Kubernetes CLI Tools download URL for your environment.
2. Select the operating system.
3. Download thevsphere-plugin.zipfile.
4. Extract the contents of the ZIP file to a working directory.
5. Add the location of both executables to your system’s PATH variable.
6. Verify the installation of kubectl:

kubectl

7. Verify the installation of the vSphere Plugin for kubectl:

kubectlvsphere

Creating a namespace from CLI
1. Navigate to Menu Host and Clusters Configure Namespaces General.
2. Toward the bottom of the list is a field for Link to CLI tools. To open this link in a new tab, choose Open. This is the IP address of the

server you will be logging into for future CLI commands.
3. At the CLI, use the IP address for logging into the --server field:

kubectl vsphere login -u demouser@vsphere.local --server=100.80.28.241 --insecure-skip-tls-verify

4. If the context you wish to use is not in this list, you may need to try logging in again later, or contact your cluster administrator.
5. To continue, switch your context:

kubectl config use-context 100.80.28.241

Creating the namespace

1. Create the namespace:

kubectl create namespace demo1

2. To see the new namespace you have created, log out and log back into the vSphere kubectl CLI:

kubectl vsphere logout
kubectl vsphere login -u demouser@vsphere.local --server=100.80.28.241 --insecure-skip-tls-verify

3. You can now use the new context:

kubectl config use-context demo1

4. To verify that the demo1 context is mapped to the demo1 namespace, list the contexts:

kubectl config get-contexts

Verifying the namespace in vCenter

1. Navigate to Menu Host and Clusters Namespaces. You will now see the namespace you created at the CLI.

Give DevOps teams self-service resource pools within your private infrastructure
with Dell Technologies APEX cloud and storage solutions January 2022 | 10

Enabling and provisioning the VM and Kubernetes cluster services in VMware Tanzu

In a modern DevOps workflow, a developer will need access to both container orchestration tools (such as Kubernetes) and traditional
standalone VMs. Whether the purpose is to utilize a VM-based appliance style application/database or to spearhead the migration to
microservices, having powerful development tools delivered to your team as a service will undoubtedly save time and money, freeing
them to focus on development rather than infrastructure requests.

Creating the Content Library for VM images
To make VMs available for your team members to spin up, we first need to get the VM images and insert them as an item into a content
library for the VM service to reference.

1. In the top left, click the vSphere client to reach the shortcuts dashboard.
2. Click Content Libraries. If you have Tanzu enabled, you should see the TKG library.
3. To create a new library, click Create.
4. Name the new library VM service.
5. Click Next.
6. In the Configure content library menu, select Local content library, and click Next.
7. In the Add storage section, select the default vSAN storage array, and click Next.
8. In the Ready to complete section, review your choices, and click Finish.
9. View the Content Libraries section, and verify that the library was indeed created.

Importing the Centos VM item into the content library
You can download the VM image we used during testing from the following website:
https://marketplace.cloud.vmware.com/services/details/vm-service-image-for-centos1111?slug=true

1. In the Content Libraries menu, select the VM Service content library you created earlier.
2. From the Action dropdown menu, select Import Items.
3. Select Local file, and click Upload files.
4. On your local machine, select the OVA image file to upload.
5. Verify that the file uploaded successfully. In the lower left, you should now see the new imported item in the OVA templates window.

Adding the demouser and permissions
The demouser should already exist. We now need to permit that user to our newly created Tanzu namespace.

1. From the dropdown menu, select Hosts and Clusters, and select the newly created demo1 namespace.
2. Select the permissions tab.
3. Click Add.
4. Select the identity source you will use. We used vsphere.local.
5. In the User field, type the username demouser.
6. From the Role field, choose Can edit.
7. Click OK.
8. Verify that the demo user was added to this namespace.
9. In the namespace summary, the Permissions tile should now show users and their roles.

Adding tiered storage policies to the namespace
These steps describe how to pull the storage policies that you created earlier into the namespace you just created, so that a hypothetical
dev team can choose which storage best suits their needs when building clusters and VMs.

1. In the namespace summary, on the Storage tile, click Edit Storage.
2. Select the three storage tiers you created: ADSS High, Medium, and Low.
3. Click OK.
4. The Storage tile should now show a small summary of storage policies.

Adding VM classes for VM creation
1. In the namespace summary, from the VM service tile, choose Manage VM classes.
2. Select the classes you wish to deploy. We chose the three basic "best effort" sizes.
3. Click OK.
4. The VM Service tile should now display the number of available VM classes.

Give DevOps teams self-service resource pools within your private infrastructure
with Dell Technologies APEX cloud and storage solutions January 2022 | 11

https://marketplace.cloud.vmware.com/services/details/vm-service-image-for-centos1111?slug=true

Adding a content library to the VM service
The following steps provide the service with the VM image that we uploaded earlier.

1. From the VM Service tile, select Manage Content Libraries.
2. Select the VM service content library you created previously that contains the Centos VM image you retrieved from VMware.
3. Click OK.
4. The VM Service tile should now display the number of available content libraries.

Adding storage capacity limits for tiered storage
1. In the namespace summary, from the Capacity and Usage tile, select Edit Limits.
2. Expand the storage section. You should see the storage tiers you created previously.
3. Choose your desired limits. We chose the following:

• adss-high: 500 Gb

• adss-medium: 200 Gb

• adss-low: 100 Gb

4. Click OK.
5. Return to the namespace summary and review section.

Creating the Tanzu Kubernetes cluster (tkc)

Bringing up the cluster
1. If you are not already logged in, log into the namespace as the demouser:

kubectl vsphere login -u demouser@vsphere.local --server=100.80.28.241 --insecure-skip-tls-verify

2. Set the context to the demo1 context that you created earlier.

kubectl config use-context demo1

3. Create a yaml file that has the following contents. Save this file as tkc1.yml:

tkc1.yml
apiVersion: run.tanzu.vmware.com/v1alpha1 #TKGS API endpoint
kind: TanzuKubernetesCluster #required parameter
metadata:
name: tkc1 #cluster name, user defined
namespace: demo1 #vsphere namespace
spec:
distribution:
version: v1.20 #Resolves to the latest v1.18 image
settings:
storage:
defaultClass: vsan-default-storage-policy defaultClass: ADSS-low
topology:
controlPlane:
count: 1 #number of control plane nodes
class: best-effort-small #vmclass for control plane nodes
storageClass: ADSS-low #storageclass for control plane
workers:
count: 2 #number of worker nodes
class: best-effort-small #vmclass for worker nodes
storageClass: ADSS-low #storageclass for worker nodes

4. Apply the tkc cluster object:

kubectl apply -f tkc1.yml
tanzukubernetescluster.run.tanzu.vmware.com/tkc1 created

Give DevOps teams self-service resource pools within your private infrastructure
with Dell Technologies APEX cloud and storage solutions January 2022 | 12

5. Check the status of tkc:

kubectl get tkc
NAME CONTROL PLANE
WORKER
DISTRIBUTION
AGE
PHASE
TKR COMPATIBLE
UPDATES
AVAILABLE
tkc1 1
2
v1.20
41s
creating
True

6. You can also retrieve more details from the 'describe' command output. The bottom of the output displays the most recent
status and events:

kubectl describe tkc tkc1
...
...
Node Status:
tkc1-control-plane-4bvtj: ready
tkc1-workers-qbffs-5bf887c966-cpbkm: pending
tkc1-workers-qbffs-5bf887c966-tdfg5: pending
Phase: creating
Vm Status:
tkc1-control-plane-4bvtj: ready
tkc1-workers-qbffs-5bf887c966-cpbkm: pending
tkc1-workers-qbffs-5bf887c966-tdfg5: pending
Events: <none>

7. If all is well, you should see everything up and running after a few minutes, depending on the number of nodes in your topology choice:

Node Status:
tkc1-control-plane-4bvtj: ready
tkc1-workers-qbffs-5bf887c966-cpbkm: ready
tkc1-workers-qbffs-5bf887c966-tdfg5: ready
Phase: running
Vm Status:
tkc1-control-plane-4bvtj: ready
tkc1-workers-qbffs-5bf887c966-cpbkm: ready
tkc1-workers-qbffs-5bf887c966-tdfg5: ready

8. Because the tkc you created lies in a lower level of administration and privileges, you will need to log out of the kubctl vsphere session,
and log back in with some additional arguments:

kubectl vsphere logout

The login now targets the namespace and the cluster that you created. You should now have access to the new tkc1 context.

9. Set the context to use tkc:

kubectl config use-context tkc1

10. Verify the context:

kubectl config get-contexts

11. Check the nodes:

kubectl get nodes

Give DevOps teams self-service resource pools within your private infrastructure
with Dell Technologies APEX cloud and storage solutions January 2022 | 13

Deploying a web-server workload to your cluster
1. Add the docker hub credentials to your cluster. If you are pulling images from the public docker hub, you'll need to create a docker

account and a personal access token. Docker recently changed the way images are pulled. The only way to pull multiple images
frequently is to set up a personal or a company account.

https://docs.docker.com/docker-hub/access-tokens/

2. Once you have created your docker hub account and have your access token, you will need to create a secret in Kubernetes that allows
your worker nodes to authenticate and pull from docker hub. The PASSWORD field should contain your access token:

kubectl create secret docker-registry regcred --docker-username=XXXXXX --docker-
password=XXXXXXXXXXXXXXXXXXXXX --docker-email=XXXXXXXXXX

Adding a pod security policy role to vSphere authenticated users

1. To deploy workloads, your "authenticated" user must be added to the cluster role that has system-level privileges. The following
command creates a new role bind and assigns the authenticated users the privileged pod security policy role of psp:vmware-system-
privileged. Without this, your deployments will stall.

kubectl create clusterrolebinding default-tkg-admin-privileged-binding --clusterrole=psp:vmware-
system-privileged --group=system:authenticated

2. Create a webserver deployment file from the following code. Save this file as nginx-deployment.yml

nginx-deployment.yml
apiVersion: apps/v1
kind: Deployment
metadata:
name: nginx-deploy
spec:
selector:
matchLabels:
app: nginx
replicas: 2
template:
metadata:
labels:
app: nginx
env: frontend
spec:
containers:
- name: nginx
image: nginx ports:
- containerPort: 80 imagePullSecrets:
- name: regcred

3. Create a load balancer service file from the following code. Save this file as lb-nginx-svc.yml

lb-nginx-svc.yml
apiVersion: v1
kind: Service
metadata:
creationTimestamp: null
labels:
app: nginx
env: frontend
name: nginx-svc
spec:
ports:
- port: 80
protocol: TCP
targetPort: 80
selector:
app: nginx
type: LoadBalancer
status:
loadBalancer: {}
Apply web server and load balancer objects:
kubectl apply -f nginx-deployment.yml
kubectl apply -f lb-nginx-svc.yml

Give DevOps teams self-service resource pools within your private infrastructure
with Dell Technologies APEX cloud and storage solutions January 2022 | 14

4. Verify the webserver pod creation:

kubectl get pods

5. Verify the load balancer external IP:

kubectl get svc

6. Using the GUI, verify the webserver. (Nginx comes with a default homepage that you can reach via the external IP. Use the GUI to reach
that page now.)

7. Log out of the tkc:

kubectl vsphere logout

Creating VMs using the VM service

Preparing the VM cloud-init file
When spinning up a VM, devs often want some commands or customized configuration executed at run-time so that when they log in,
the VM is prepared and ready for their needs. Typically, a dev will create a cloud-init or user-data file in advance that will send this block of
configuration commands to the VM during spin up. The following steps guide you through creating the cloud-init file, encoding its contents,
and inserting the encoded contents into a Tanzu VM object deployment file.

1. Log into the Tanzu Kubernetes demo1 namespace (note that we are logging into the namespace level and not the lower tkc level):

kubectl vsphere login -u demouser@vsphere.local --server=100.80.28.241 --insecure-skip-tls-verify

2. To continue, switch your context:

kubectl config use-context demo1

3. Create an ssh key:

ssh-keygen -t rsa

4. To skip past each of the prompts, press Enter.
5. Output the contents of the public key to a text file:

cat ~/.ssh/id_rsa.pub

The expected output is:

ssh-rsa AAAPI1yFTrmtg/rJIRVXLBFj9a1GvimhfgjqzhHU+1G+8d9+d/6ef3cqxTccQwMNs1f6Nb0Zf2R/2Z
1A0=... you@your_host

Give DevOps teams self-service resource pools within your private infrastructure
with Dell Technologies APEX cloud and storage solutions January 2022 | 15

6. Create the cloud-init file from the following contents. Save this file as cloud-init.yml

cloud-init.yml
#cloud-config
Required syntax at the start of user-data file
Create a user called centos and give a password of VMware1! and set it to not
expire chpasswd:
list: | centos:VMware1!
expire: false
Create a docker user group on the OS
groups:
- docker users:
Create the default user for the OS
- default
Customise the centos user created above by adding an SSH key that's allowed to
login to the VM
In this case, it's the SSH public key of my laptop
- name: centos ssh-authorized-keys:
- YOUR-PUBLIC-SSH-KEY-GOES-HERE
Add the centos user to the sudo group and allow it to escalate to sudo without a password
sudo: ALL=(ALL) NOPASSWD:ALL
groups: sudo, docker
Set the default shell of the user to bash
shell: /bin/bash
Enable DHCP on the default network interface provisioned in the VM network:
version: 2 ethernets: ens192:
dhcp4: true
Paste your public key contents into the line shown, preserving the dash and the indentation. Save
and exit this file.
ssh-authorized-keys:
- YOUR-PUBLIC-SSH-KEY-GOES-HERE

7. Encode the cloud-init file into single-line base64 format:

cat cloud-init.yml | base64 -w 0

8. Copy the output of the previous command to a text file. You will use this code later.

Preparing and deploying VM object files
1. Get the network name that the system created while enabling Tanzu early in the setup for vCenter:

kubectl get network

2. On your local machine, create a VM deployment file named deploy-centos-vm.yml from the following code:

deploy-centos-vm.yml
apiVersion: vmoperator.vmware.com/v1alpha1
kind: VirtualMachine
metadata:
name: centos-vm-dev
namespace: demo1
labels:
env: dev
spec:
networkInterfaces:
- networkName: "network-1" ### uncomment if your are NOT using NSX-T load balancing
networkType: vsphere-distributed ### uncomment if your are NOT using NSX-T load balancing
- networkType: nsx-t
className: best-effort-small
imageName: centos-stream-8-vmservice-v1alpha1-1619529007339 ### available at time of writing
powerState: poweredOn
storageClass: vsan-default-storage-policy ### this is the default storage class
storageClass: ADSS-low ### this is a custom class we created, low Qos, 100Gb
capacity
vmMetadata:
configMapName: centos-vm-cm-dev
transport: OvfEnv

apiVersion: v1
kind: ConfigMap

Give DevOps teams self-service resource pools within your private infrastructure
with Dell Technologies APEX cloud and storage solutions January 2022 | 16

metadata:
name: centos-vm-cm-dev
namespace: demo1
data:
user-data: |
YOUR-CLOUD-INIT-ENCODED-SINGLE-LINE-CONTENT-HERE-KEEP-INDENTATION hostname: centos-vm

3. Open the text file where you put the encoded user data string from earlier, and copy the string. In the deploy-centos-vm.yml file you
just created, replace the relevant part of the final line with the string you copied.

4. Save the deployment file, and exit.
5. Apply the VM deployment file:

kubectl apply -f deploy-centos-vm.yml

Please note that the VM service places the VMs into the first-tier namespace and not inside a Tanzu Kubernetes Cluster (tkc). In other
words, the VMs will be one level above any tkc you create. VMs will not "live" in a tkc, they will "live" in the namespace that created the
tkc, not inside the tkc.

6. Create a virtualmachineservice file for ssh access to the VM by establishing port 22 ingress and egress through a Tanzu virtual machine
load balancer service. This will allow any VMs with the 'env=dev' label to use this network service. First, create a file from the following
code, and name the file vm-ssh-svc.yml

vm-ssh-svc.yml
apiVersion: vmoperator.vmware.com/v1alpha1
kind: VirtualMachineService
metadata:
name: vm-ssh-svc
namespace: demo1
spec:
selector:
env: dev
type: LoadBalancer
ports:
- name: ssh
port: 22
protocol: TCP
targetPort: 22

7. Apply the virtual machine service for ssh access:

kubectl apply -f vm-ssh-svc.yml

Validating self-service VM creation capability
1. Verify that the VM exists at the CLI.

kubectl get vm

2. Verify that the VM exists within vSphere.
3. Verify that the configmap object you created successfully deployed:

kubectl get configmap

4. Find the load balancer external IP for ssh access:

kubectl get svc

5. Using ssh, log into the VM:

ssh centos@100.80.27.162

Give DevOps teams self-service resource pools within your private infrastructure
with Dell Technologies APEX cloud and storage solutions January 2022 | 17

6. Verify that the system successfully executed the cloud-init items:

[centos@centos-vm-dev ~]$ cat /etc/group
....
docker:x:1000:centos
sudo:x:1001:centos
centos:x:1002:
cloud-user:x:1003:

7. Using yum, install a simple application to verify external internet connectivity:

sudo yum install telnet

Communicating between VM and Tanzu Kubernetes cluster

Accessing the tkc webserver workload from the VM
1. If you are not already logged into the namespace you created, log in now:

kubectl vsphere login -u demouser@vsphere.local --server=100.80.28.241 --insecure-skip-tls-verify

2. Set the context to the demo1 context that you created earlier:

kubectl config use-context demo1

3. Get the external IP of the VM:

kubectl get svc

4. Log into the VM:

ssh centos@100.80.27.162

5. To demonstrate communication between the VM and the tkc application, cURL the webserver pod homepage.

[centos@centos-vm-dev ~]$ curl 100.80.27.164

Accessing the VM from the containerized workload in tkc
After validating communication from the CentOS VM to the tkc cluster, we connected to the tkc cluster and validated that it was possible
to ping and log into the VM we previously created via SSH. In a production environment, this connectivity might be used to connect to a
database from a web application cluster hosted in tkc.

Give DevOps teams self-service resource pools within your private infrastructure
with Dell Technologies APEX cloud and storage solutions January 2022 | 18

Principled Technologies is a registered trademark of Principled Technologies, Inc.
All other product names are the trademarks of their respective owners.

DISCLAIMER OF WARRANTIES; LIMITATION OF LIABILITY:
Principled Technologies, Inc. has made reasonable efforts to ensure the accuracy and validity of its testing, however, Principled Technologies, Inc. specifically disclaims
any warranty, expressed or implied, relating to the test results and analysis, their accuracy, completeness or quality, including any implied warranty of fitness for any
particular purpose. All persons or entities relying on the results of any testing do so at their own risk, and agree that Principled Technologies, Inc., its employees and its
subcontractors shall have no liability whatsoever from any claim of loss or damage on account of any alleged error or defect in any testing procedure or result.

In no event shall Principled Technologies, Inc. be liable for indirect, special, incidental, or consequential damages in connection with its testing, even if advised of
the possibility of such damages. In no event shall Principled Technologies, Inc.’s liability, including for direct damages, exceed the amounts paid in connection with
Principled Technologies, Inc.’s testing. Customer’s sole and exclusive remedies are as set forth herein.

This project was commissioned by Dell Technologies.

Principled
Technologies®

Facts matter.®Principled
Technologies®

Facts matter.®

Cleaning up
1. In the upper-tier namespace where you created the VM (the demo1 context and namespace), to remove the VM objects, issue the

following commands:

kubectl get vm
kubectl delete vm XXXX
kubectl get configmap
kubectl delete configmap XXXX
kubectl get VirtualMachineService
kubectl delete VirtualMachineService XXXX

2. Remove the tkc objects:

kubectl delete tkc tkc1

Give DevOps teams self-service resource pools within your private infrastructure
with Dell Technologies APEX cloud and storage solutions January 2022 | 19

http://www.principledtechnologies.com

